Uncertainty Principles
on

Some Lie Groups

Swagato Kumar Ray

Thesis submitted to the Indian Statistical Institute
in partial fulfillment of the requirements
for the award of the degree of
Doctor of Philosophy
CALCUTTA
1999



Uncertainty Principles
on

Some Lie Groups

Swagato Kumar Ray

Thesis submitted to the Indian Statistical Institute
in partial fulfillment of the requirements
for the award of the degree of
Doctor of Philosophy
CALCUTTA
1999



1.

3

Page 20, line 13,

m=r=spanp{Xy,..., Xp, X, - Y X, 1<i< T}

. Page 20, line 15,
- Page 20, line 19,
. Page 22, line 5,

. Page 32, line 16,

. Page 32, line 17,

- Page 51, line 20,

ERRATA

2k

...C"is ar x 2% matrix ...

J(Y) o J(Y) = —|Y|Ld...



Acknowledgements

1 amdeeply indebted to my thesis supervisor Dr. Somesh C. Bagchi who
introduced me to Harmonic Analysis. I owe enormously to his teaching and

id. and less detailed jons on lities and different

aspects of Harmonic Analysis.

T am extremely grateful to Prof. Alladi Sitaram who made me interested
in uncertainty principles. Many short but very effective discussions which I
had with him encouraged me all through the years of working for this thesis.

T am grateful to M. Sundari for making me aware about her recent results
which was of great help for me.

T am grateful to Prof. Kalyan K. Mukherjea for many informal discus-
sions I had with him.

T also wish to thank my teacher Prof. Shobhakar Ganguly at Calcutta
University for his encouragement and concern in my M. Se. days.

1 am also grateful to my friends Rudra P. Sarkar, Sudeshna Basu and
Subhashis Ghosal.

I thank the faculty and all other members of the Stat-Math Unit of ISI,
Calcutta, for providing a friendly and relaxed work environment.

The Indian Statistical Institute provided me facilities for research and

the financial support for this work. I gratefully acknowledge this help.

Swagato K. Ray



Contents

1 Introduction

1.1 Euclidean Spaces . . . .. ... .

2 Analysis on two step nilpotent Lie groups
2.1 Parametrization of coadjoint orbits . . . .

2.2 Polarization and unitary representation

2.3 The Plancherel theorem . . .. ... ... ... .......

2.4 Infinitesimal

3 Uncertainty principles on two step nilpotent Lie groups

3.1 Extensions of Hardy’s theorem . .. ... ..........

3.2 Heisenberg’s inequality . . . . . . . . .

4 Uncertainty principles on some semidirect products

4.1 The Euclidean motion group of the plane . .. .. .. ...

4.2 The Oscillator group

5 Semisimple Lie Groups
5.1 Notations and preliminaries

5.2 The uncertainty principle

il

" ations and the sub-Laplacian . . . .

11
12
23

38

43

44

63
63
69



Chapter 1

Introduction

The uncertainty principles of Harmonic Analysis say that: a nonzero func-
tion and its Fourier transform cannot both be sharply concen-
trated. After the initial work on this phenomenon in 1920’s, the last two
decades witnessed a spurt of activity in this direction (we refer the reader
to a very readable survey [FS]). One may notice two broad phases in this
activity, the first concentrating on R where the notion of concentration is
given different formulations to see whether the phenomenon still holds. In
the later phase R" is replaced by other commutative or noncommutative
groups, or more generally by homogeneous spaces to sce which uncertainty
principles remain valid.

In this thesis our main objective is to get analogues of the following

theorem due to Cowling and Price on some classes of Lie groups.

Theorem 1.0.1 Suppose f: R — C be a measurable function and sat-
isfies

(i) Ju e |f(z)Pdz < oo,

(#) Jee®™1f(y)l7dy < oo,
where min(p, g) < 00, a,b> 0 and f(y) = Jp f(z)e™*Vdz is the Fourier
transform of f. If ab > 1 then f =0 almost everywhere and if ab < 1



then there exist nonzero functions satisfying the above conditions.

For the proof of the theorem see [CP].

Their motivation for the result is a classical result due to Hardy which
uses L* norm instead of [” and L7 norms; namely, if f : R — C is a
measurable function such that |f(z)] < Ce =, |f(y)| < Ce ¥ with
a,b,C > 0, then f = 0 almost everywhere if ab > 1, f(z) = Ce~a" if
ab =1 and the case ab < 1 is like in the previous theorem (see [HJ]).

Whereas the result of Hardy’s states that f and f cannot be very rapidly

decreasing pointwise, that of Cowling and Price’s asserts more; it says that
both f and f cannot decay very rapidly on an average. Barring the case ab =
1 (seems to be something special to Euclidean spaces), we see that Hardy’s
theorem follows from that of Cowling and Price, as expected. However
one of our results (Theorem 1.1.4) shows that for R*, the case ab > 1 of
the Cowling-Price theorem can be obtained from Hardy’s theorem in an
elementary way, without the subtle modification of the Phragmen-Lindel6ff
theorem originally employed. We should mention that because of the case
ab = 1, these two theorems still stand as independent theorems at least
on R™. Though these results on R uses complex variable methods (mainly
Phragmen-Lindelsff theorem) via entire extension of the Fourier transform,
their extensions to B* need only analysis of one complex variable

The complex analytic techniques used in Cowling-Price theorem moti-
vates us to look at semisimple Lie groups. The decay of the matrix coef-
ficients of the Principal series representations prepares the ground for an
approach similar to what is done on the Euclidean spaces. There are, how-
ever, two serious obstacles in the way. The first one is the existence of the
discrete series and the second one is caused by the zeros of the real ana-
Iytic function appearing in the Plancherel theorem. While we get around
the first obstacle, using the main idea of [CSS], the second obliges us to
restrict ourselves to the rank one case. The method of analytic continuation

is also found to work for some groups outside of the semisimple class. These



“freaks’ include the Euclidean motion group of the plane and the oscillator
group.

The situation is different on nilpotent Lie groups. Looking at the exam-
ple of Heisenberg groups we know that the complex analytic techniques no
Jonger work here. But we could prove an analogue of the Cowling-Price the-
orem on Heisenberg groups (see [BR]) making use of a technique from [SST]
(ISST] obtains an analoguc of Hardy’s theorem on Heisenberg groups). The
logical next step is then the two step, nilpotent Lie groups which are known
to be the closest relatives of the Heisenberg groups. Here the problem de-
mands a good parametrization of the essential dual (a measurable subset of
the unitary dual G with full Plancherel measure) and a clear understanding
of the Plancherel theorem. The first one is needed to make precise the mean-
ing of the rapid decay of f and the second one for reducing the problem down
to the center of the group. It is the first problem for which we use the Kir-
illov correspondence, although to get hold of the unitary dual of a two step,
nilpotent Lie group Kirillov theory is not required as has been pointed out

.in [ACDS] also. We do a detailed discussion of the parametrization problem
to point out that because of the simple structures of the coadjoint orbits of
two step, nilpotent Lie groups, the parametrization of the essential dual is
by far casier than for general nilpotent Lie groups. Coming to the second
problem, we know that the proof of the Plancherel theorem for Heisenberg
groups as given in [F1], for instance, does not generalise to nilpotent Lie
groups but we could make it work for two step, nilpotent Lie groups and
that does the trick for us. It is basically the second problem which prohibits
us from going towards general nilpotent Lie groups.

Whatever we have discussed so far about two step, nilpotent Lie groups
relies heavily on explicit description of the irreducible, unitary representa-
tions via a choice of polarization. Using these descriptions we could describe,
more or less explicitly, those eigen functions of the sub-Laplacian which are

matrix ffici of irreducibl p i motivated by the exam-




ple of Fa,2 as given in [St]. We turn to uncertainty principles proved on
Heisenberg groups, which use instead of Fourier expansion, eigen function
expansions (see [SST], [T1]). Prominent among those are the analogues of
the Heisenberg’s inequality (this is the result with which the whole story
of uncertainty principles began). As far as we know there are three possi-
ble analogues of Heisenberg’s inequality available on Heisenberg groups in
[SST], [T1] and [GL] (actually [SST] generalises the result of [T1]). Unlike
the result of [T1] the results given in [SST] and [GL] use the existence of
rotation on Heisenberg groups, but it is now known that for existence of
rotation on nilpotent Lie groups, two step is a necessary condition but is not
sufficient (see [BJR]). So we could only hope for an analogue of the result
proved in [T1] which is free from extra structures of the Heisenberg groups.
And that is our final result on two step, nilpotent Lie groups

This thesis is organised as follows. In section 1.1 we obtain extension
on R" of Cowling-Price theorem as well as some related uncertainty princi-
ples. It is here that we also show the ‘equivalence’ of Hardy’s theorem and
the Cowling-Price theorem. Chapter 2 deals with the essential background
material for two step nilpotent Lie groups, namely, parametrization of the
essential dual, Plancherel theorem and the description of the eigen functions
of the sub-Laplacian. In chapter 3 we prove analogues of Cowling-Price

theorem and Heisenberg’s inequality on all conn

ed, simply connected,
two step nilpotent Lie groups. Chapter 4 deals with the extension of the
Cowling-Price theorem on two semidirect products, namely, the Euclidean
motion group of the plane and the oscillator group. In chapter 5 we prove an

analogue of the Cowling-Price theorem on rank one semisimple Lie groups.

1.1 Euclidean Spaces

The Cowling-Price theorem depends on the following result for entire func-

tions.



Lemma 1.1.1 [fg:C — C is an entire Junction and for 1 < p < co
() lg(z +iy)| < Ac,
() (alo(z)Pda)"? < oo,

then g = 0.

This was proved in [CP] and the proof uses an L? analogue of Phragmen-
Lindeloff Theorem. Using this lemma we can extend the Cowling-Price

theorem on R" for n > 1
Theorem 1.1.1 Let f: R" — C be a measurable function such that
) / el f(z)Pd < oo,
L

@) [ )y < o,
L
where a,b > 0, and min(p,q) < co. Ifab > 1 then f = 0 almost
everywhere. If ab < 1 then there exist nonzero functions satisfying the

above conditions.

PROOF. As in n =1, it is enough to prove the case a = 1 = b, otherwise
we use dilation. By (i) and (ii) it follows from Holder’s inequality that
£.f € LMR™). Then for w = u+iv € € and fixed (yy, .., Yn1) we have

e g,
= 1 S e T gy
< [ @z, .. do,
-
_ /exﬂznz'f(zl“»2"”671”:1{“»2!1)1,.12!'_‘_ydz"
e
— e“’/ e”“”"’l[(zl,...,z,,)fe”(z-'f-"3*(’"’“”)@,,__.,dz,.
-

< Const.e™ (1.1)

by Holder’s inequality and (i). By a standard argument using Lebesgue’s

dominated convergence theorem, Fubini’s theorem and Morera’s theorem it

o



follows that w — f(y1,...,yn_1,w) is an entire function. We define as in
[CP]
ww? £
9(w) = €™ f(y1,- - Yn-1,)-

By the relation (1.1)
|9(@)] € Const.[e™"|e™ = Const.e™, 1.:2)

and by ii), g|R € LY(R"). Hence by lemma 1.1.1, g = 0, and thus f = 0
almost everywhere by the uniqueness of the Fourier transform.

The case ab < 1 easily follows from the one dimensional case: we take
f(# 0) € LI(R) satisfying the conditions i), ii) of the theorem for ab < 1
and define F(z1,...,2,) = f(z1) ... f(za)-

Note: We notice that the above proof actually gives us the following

Theorem 1.1.2 Let f : R* — C be measurable. Supposec for some k,
1<k<n,

(@) fan €™ |g(21, oy By, T) IS (@10 20) P2y - dy < 00

(#0) fom €101, Gk Bl F @1,y -y < 00,
where a,b > 0, g,h : R* — C are measurable and bounded away from
zero such that 1/g € IP(R*™"), 1/p+1/p' =1, 1/h € LY(R* ), 1/q 4
1 =1, (z1, - Fxr o Z0) = (Z1y s T 12Ty 10 o Z0). If ab > 1 then

f =0 almost everywhere.

The case ab > 1 of the Cowling-Price theorem can actually be deduced
from a very powerful result due to Beurling, which says that: if f € L'(R)
and

[ @Iy < o,

then f = 0 almost everywhere (see [Ho] for proof).
It is the n-dimensional version of Beurling’s theorem on which now we
are interested in, but that involves a suitable interpretation of the quantity

‘|zy|’. We suggest one such interpretation in the following theorem.



Theorem 1.1.3 Let f € L'(K") and for some k, 1 < k < n,

Sl 2w, a0y . iy dy < 0.
Then f =0 almost everywhere.
PROOF. We fix y = (yy,... SYk—15Yk 41 - - - > Yn)- We define

=Fef w1700

9y( \Un), T ER,

where

Fif s Y1, 2 Y, -

= /nw [, T, 2z, o0f3)
x e~ 2@ Tk ) (i 'y"»dtv oy dgy . o,
Then §y(y) = f(y1,.. Yk Y Ykt 1h - - Yn)- Now
[ L lav@llgy(leriazay

< /R /n f@me i) G e v vyl
x ¥y dzy ydzg, . drdedy
< [es)
for almost every (y1,...,yk 1, Y41, .. -2 Yn) by hypothesis. So by Beurling’s
theorem on R, for almost every W1 Yk 1y Ykt 1 -y Yn),
Fif (Y1s- o Y12 2. Ukt ) = 0
for almost every z. Hence by Fubini’s theorem and the uniqueness of Fourier

transform, f =0 almost everywhere.

Corollary 1.1.3.1 Let f € L}(R").
(@) If feu lf@)If W)le? 1l dzdy < oo then f = 0 almost every-

where.



(b) 1

L@ 2 )0, dadyydy, < oo
-

then f =0 almost everywhere.

(c) Suppose for some k, 1 <k <n, f and f satisfy
@ ISl < Cgl@y, . mpmg, Bpg, - -z )e 01l
) 1@yl < Ch(yn - Y1, Y1 - e bl

where p~! +p" 1 =1, g, h(> 0) € L"), If (ap)/P(bp)) /P > 2

then f =0 almost everywhere.

Remark 1.1.1 The case ab = 1 of the Cowling-Price theorem motivates us
to ask the following question. An affirmative answer to this question yields
a stronger form of Beurling’s result.

Question: Suppose f € LY(R) and [ |£(2)[P|f () |72 VPV dody < oo,

where 1 < p,q < co. Is f = 0 almost everywhere?

We have already noticed that for ab > 1 theorem 1.1.1 implies Hardy’s
theorem. The surprising fact is that the reverse implication is also true.
In some sense this observation allows us to get an analogue of theorem
1.1.1 on two step nilpotent Lie groups. We conclude this chapter with this
observation.

Let us introduce some notation. Let for k > 0 and z € R", ex(z) =

e*l1” and for 1< p,q < oo,

Epg(a,b) = {f :R* - C measurable and lleafll, < oo, ||e,,f||q < 00}

Theorem 1.1.4 The Sfollowing are equivalent :
(3) If ab> 1 then Ey o (a,b) =0
(#@) If ab> 1 then E, (a,b) =0

PROOF.  (ii) = (i) Follows on noting that if f € Ewoo(a,b) then f €
Epqe(a’,b) for @’ < aand ¥’ < b.



(i) = (i) Let f € Epq(a.b) and ab > 1. Without loss of generality we assume
that p < co. Let g € Cc(R") be such that supp g C {y € K" : ||y|| < 6}. We
choose an € > 0 which is to be specified later. We choose an 2 € R" such
that ||z|| > &/e. Then for all y in the support of g we have

lle = ol = llzll = gl > llzll = 6 > 21 — ) (3)
since e,.f € [P(R") and g € C.(R") we have
(eatl*lgh ) SC  forally B,
where C is a constant. By (1.3) we have
L= - llat)ldy
2 T [ = llgldy, for el > 5/

Hence
(*9)@)| < (If]* 191 (z) < Cemon@- el

for all z such that ||z]| > 6/c. Since f % g is a continuous function, C can be

so chosen that

(f*x @)@ < Ce Q11 for all 2 € B

Also
llew-(F* 9)lg < lglloslles-Flly < o0

as f € Epq(a,b). It follows tha;. f*g9 € Egq(a(l — €)%,b). Suppose q = oo,
then we choose an € such that ab(1 —€)? > 1 and then by (i) f*g = 0 almost
everywhere. By running g over an approximate identity we get f = 0 almost
everywhere. Suppose now ¢ < co. We define f; = f  g. Let h € C.(R") be
such that supp h C {z : ||z|| < 6,}. We choose an ¢ > 0 and do the same
thing as above with f; to get

[(F )@ < Ce =P for all y € g



Let 7! denotes the inverse Fourier transform. Then
FN( x h)(@)] < Crem ool

as fi € LM(R™). Thus fi* h € Eooeo (a(1 — €)?2,b(1 — 1)%) . We choose ¢ and
€ such that ab(1 —€)*(1—€')* > 1. By (i), fi+h = 0 almost everywhere. By
running h over an approximate identity we get 1 =0.So f*g =0 almost
everywhere. By running g over an approximate identity we get f =0 almost

everywhere.

10



Chapter 2

Analysis on two step

nilpotent Lie groups

The main objective of this chapter is to prove the Plancherel theorem for
connected simply connected two step nilpotent Lie groups. To describe the
unitary dual G of a two step nilpotent. Lie group G, we will follow the orbit,
method of Kirillov (see [CG] for details). For the Plancherel theorem the

following are the important steps:

i) To parametrize the coadjoint orbits of ¢' or at least to parametrize a

set of coadjoint orbits which is of full Plancherel measure.

ii) Given I € g*, to construct a maximal subalgebra b subordinate to 1,
that is I([h, b)) = 0.

For general nilpotent Lie groups i) and ii) have explicit answers by
Chevalley-Rosenlicht theorem and Vergne polarizations (see [CG)), but as
is only to be expected, on two step nilpotent Lie groups both i) and ii) turn
out to be much simpler. After this we will g0 to explicit construction of irre-

ducible unitary representations of G. In Kirillov theory the representations



arise as induced representation, but as we will see, for the two step case they
come directly from the Stone-von Neumann theorem. In section 2.1 we ob-
tain the parametrization of the coadjoint orbits and section 2.2 is devoted to
the unitary representations. In section 2.3 we prove the Plancherel theorem

and the last section deals with the eigen functions of the sub-Laplacian.

2.1 Parametrization of coadjoint orbits

For a Lie algebra g (we will always work with Lie algebras over R), we define

¢' = [o,9] and g" = [3.g" ']

Definition 2.1.1 A Lie algebra g is called two step nilpotent if g° = 0 and
' # 0. The connected simply connected Lie group G corresponding to such

a g is called a two step nilpotent lie group.

We find it more convenient to look at a two step nilpotent Lie algebra
in another way. Let

B:R" x R* — R™

. we define

be a nondegenerate, alternating, bilinear map. Let g = R™ @ F
[(z,0), (', ¥)] = (0, B(v,v)), (2.1)

where 2,2/ € R™ and v, € R". Then [.

is a Lie bracket and g is a two

step nilpotent Lie algebra with R™ as the center of g. If on G = R™ ®R" we
define the product

(o) () = (x4 2 + %B(v,v'),v +), (2:2)

then G is a connected, simply connected, two step nilpotent Lie group with

g as its Lie algebra ( as y(t) = (tz,tv) t € R is a one parameter subgroup)



and exp : g — G is the identity diffeomorphism. The computation of the
Lie bracket is easy; in particular,

[, '] = [(0,0), (0,%')] = B(v, ).
Let g" be the real dual of g. Then G acts on g* by the coadjoint action, that

is G x g° — g", (9,1) — g.l is given by

(9D(X) = (Adg”'(X)), geGleg Xegq,
= UAd(expY)(X)), Yegq,
= 1(e*(X))

= 1(X) + Y, X)).
We need to parametrize the orbits under this action. For this it is important
to consider the structure of these orbits. let us fix some notation first. Let
L€ g", then
O; = The coadjoint orbit of I.
Bi = The skew symmetric matrix corresponding to I, that is, given a ba-
si5 { X1, -, Xomy X1, Xy} of @ through the center, we consider the
matrix By = (By(i. ) = (I([Xs, X,).
71 = The radical of the bilincar form I3, that s,
n={Xea: l((X.Y])=0 forall ¥ egq}.
Clearly 7 is an ideal of g and (=R™) C .
71 = spang{Xm+1,- .., Xmsn} N7y
Bi=B | R™ x R™ that is restriction of B on the complement of the center
of g.
Theorem 2.1.1 Let I € ' Then Oy =L+ 1) where v} = {h € ¢" < h |
71 =0} (that is, the coadjoint orbits are hyperplanes).
PROOF. Let I € Or. Then I = I o Ad(exp X) for some X € g. Then for
Yen
E=DF) =) = 1Y) = 1Y) = 1Y) - (X, Y]) = 0.

13



Thus ' =1+ (I' = 1) € I + 7. Hence Oy C 1+ 1.

Let {X1,..., X, Xkt1, -+ Xmsn} be a basis of g passing through 7 in
the sense that spang{X1,..., Xk} = m. Let I € L + " and I'(X;) = §,
U(X;) = 4,1 < i < m+n. We want to get hold of an X € g such that

X))+ (X X)) =U(X:), k+1<i<m+n

that is
(X, X)) =066 k+1<i<m+n

Expressing X = Z;‘;, a; X;+ ;":2"‘ 1 @; X, we are looking for the solutions
of

min

SN N =6 -h k+1<i<m+n,

j=k+1
which is a system of m +n — k linear equations in m+n —k unknowns. Since
the matrix L = (Li;) = ({([Xk+s, Xks5])) is just the matrix of the bilinar
form corresponding to the linear functional I on g/ry, L is invertible. So
the above system has a unique solution (@i, ..., @min-k) say. Then for any

Y € 7, we have
min—k

exp(Y + > aXey) =1
7=1

So I’ € O and hence O =1 + 7. This completes the proof.

Note 2.1.1 : By theorem 2.1.1, I’ € O; if and only if y = 7y and I | 7y =
U|rp.
From now on g stands for a two step nilpotent Lie group with dim g = n.

Let B = {X1,..., Xm, Xms1.-- -, Xn} be a basis of g such that

spang{X1,..., Xn} = center of g = 3.

So By is the n x n matrix whose (i,j)—th entry is I([Xi, X;]), 1 <4,j < n.
Let B* = {Xj,..., X} be the dual basis of g'. This is a Jordan-Hélder
basis, that is * = spang{X[,..., X]} is Ad"(G) stable for 1 < j < n.

14



Let I € ¢* and \; € B.

Definition 2.1.2 i is called a jump indea for 1 if the rank of the i x n
submatrix of By, consisting of first @ rows, is strictly greater than the rank

of the (i — 1) x n submatrix of By, consisting of first (i —1) rows.

Since an alternating bilinear form has even rank the number of jump in-
dices must be even. The set of jump indices are denoted by J = {71, Jak}-

Notice that j; > m + 1. The subset of B corresponding to J is then

{Xus--- Xj,}. Notice that if i is a jump index then rank B =rankBj ' +1,

where Bj is the submatrix of By consisting of first i rows.

Note 2.1.2 : These jump indices depend on I and on the order of the
basis as well. But ultimately we will restrict ourselves to ‘generic linear

functionals’ and they will have the same jump indices.

Now we are going spell out what we mean by generic lincar func-
tionals. This is also a basis dependent definition. We work with the ba-
cis B chosen above. Let us fix some notations. Let Ri(l) =rankBj and

R; = Max{R:()/l € ¢"}-

Definition 2.1.3 A linear functional I € g" is called generic if Ri(l) = Fi
foralli,1 <i<n.

Let U = {l € g* : I is generic}

Example 2.1.1 : Let g = spang{X1, X2, X3, X4, X5}. The nonzero brack-
ets are given by
[X5, X3) = X1, [X5,X4] = Xo



Clearly 3 = spang{X,, X2}. This Lie algebra arises from the bilinear form
B:R*xR*®— R?

B ((a1,a2,a3), (a}, @5, @) = (a3a) — a1}, azay — ajaz).

Let I = 3%, [;X]. Then

0000 0
0000 0
Bi=|00 0 0 -4
000 0 —b
00 0L I O

and Ry(l) = Ra(l) = 0, Rs(l) = 1if Iy # 0, Ry(l) = 1if ) # 0, Re(l) = 2 if

one of I or Iy is nonzero. Clearly Ry = Ry = 0, Ry = Ry = 1, Rg = 2. Thus
U={leg : =I(X))#0}
and 3, 5 are jump indices. We call this Lic algebra gfs » and the corresponding

group QF.

Example 2.1.2 : Let f32 = spang{X,.... X6} with nontrivial brackets
[X4, Xs] = X1, [Xa, Xo] = X2, [Xs5, Xe] = X3.

Thus 3 = spang{X1, X2, X3}. Let I = 3%, X7 € g". Then

000 0 0 0
o000 0O 0 O
p_| 000 0 00
000 0 & b
000 -, 0 I
000 —l —l3 0



Thus Ry(1) = Ra(l) = Ry(l) = 0. Ry(l) = 1if [y £0 or I # 0.

P il £0
T oorl iflh =0

2 ifl 0
Re(l) = l o
Oor2 ifl, =0
Thus By = R2 = R3 = 0,134 = 1,Rs = Rg = 2. Hence U = {l € g* : ) =

I(X1) # 0} and 4,5 are jump indices.

Example 2.1.3 : let n be an even number. Let A%(R") = The set of
nx n skew symmetric matrices. A2(R") is an Euclidean space with the inner
product (y,y") = 3 ¥,k Uty = 3Tr(y()") for y,y' € A*(R"). Consider
the map
AR x R* — A2(RY)
Az, 2') ;1 = ;2 — 21Ty

Then A is alternating, bilincar and nondegenerate. Let f» = A2(R") & R”
with the induced Lie bracket. If {e; : 1 <4 < n} is the canonical orthonormal

basis for K*, then {Ei; = A(es,e;)

j > i} is an orthonormal basis for
A%(R™). So we can identify AZ(R") with RE(*=1) with respect to the above
basis. Let | € A%(R")". Thus I(A) = (L, A) = iTr(LA") for all A € A2(R™),
and for some L € A%(R"), representing L. Hence for =,y € R",

Bi(z,y) = (L,A(z,y))awm
= LAY

= —%TT(LAA(Z, v))
1
= —5(L@). Y.
Thus
zer = B(z,y)=0 for all y € R™

17



= (L(z).y)=0 for all y € R™*
= L{z)=0

= z€kerL.

Thus if L € A%(R") is such that det L # 0, then 7, = 3. Thus basis indices

outside the center are all jump indices and U = {L € A?(R") : det L # 0}.

Note 2.1.3 : If I € g° is such that B is an invertible matrix, then 1 = 3

and then m + 1,...,n are jump indices and then
U = {l €g' : Byis an invertible matrix}.

Clearly, if codimension of 3 in g is odd then this cannot happen. Following
[MW], we call the two step nilpotent Lie algebras, MW algebras if there
exist I € g* such that B is nondegenerate (or the corresponding matrix is

invertible ). So Heisenberg algebras and f,2 (n even) are MW algebras.

Remark 2.1.1 : Since for any | € g*, we have gl | 3 = | | 3 where
gl=1oAdg™!, we get I;(l) = Ri(g9.1), 1 <i < n and hence,

(i) U is a G—invariant Zariski open subset of g*. So ¢ is union of orbits.
(ii) If j is a jump index for some I € Y, then j is a jump index for all l € Y.

(iii) Let L € U, then the number of jump indices for ! is the same as the
dimension of O; (as a manifold). For, the rank of the matrix B is equal to
the number of jump indices (= 2k, say) and the dimension of the radical 1y
is the nullity of the matrix of B, which is n— 2k. Since g/r; is diffeomorphic
to Oy (see [CG]), we have dim O = 2k.

(iv) Every orbit in ¢ is of maximum dimension though every maximum

dimensional orbit may not be in .



Example 2.1.4 : We consider QF32. Here maximum dimensional orbits
are two dimensional. Let I € g' be such that I} = I{(X1) = 0 and I2 =
I1(X2) #0. then dimO; = 2 as 4,5 are jump indices but I ¢ U.

Our aim is to parametrize the orbits in . We will see that they consti-

tute a set of full Plancherel measure. We again describe some notation

N = {1,...,myny,....n;} C {1,...,n} is the complement of J in

{1,...,n},
Vy = spang{X;, : 1 <i < 2k,j; € J},
Vi = spang{Xi,..., Xoy Xy 11 <i<momy; € N},
Vj = spang{X},,..., X}, },

V}, = spang{Xj,...

Vi = spang{ X}, :n; € N}.
Now we come to the main theorem of this section. A basic tool here is

the theorem 2.1.1.

Theorem 2.1.2 (i) Vyy intersects every orbit inU at a unique point.

(#) There exist a birational homeomorphism ¥ : (Vi (U)x V; — U.

Proor. (i) Let I € Y. We first try to describe 7. Denoting by p;(l) the
i—th row of the matrix By, every vector j,.(l), n; € N, is a unique linear
combination of j;—th rows of B;, 1 < s < 2k that is

2k
(D) =3 WA M)
s=1



where the scalars ci(l) depend rationally on [, in fact they depend only on

113 Also if j; > ni, ci(l) = 0. Thus

() = (U Xy X)), - - W[ X, X))
2k
= > M X Xmr1])s - - WX Xmsa]))
s=1
2k 2k
= (MDA, Naedd) o UDZ AN, \i.}))
\ =1 s=1 /
So
2k 2k
(I(IX,,‘ =3 AMX e Xia])s - U[Xo, = 3 )X, X,.n) =0
s=1 s=1

Hence X,., E R 7} are linearly

independent vectors in 7 we have 7 = spang{ X, : i <
exhibit a unique { € Vi (that is, I(X}) = 0, 1 < j < 2k) such that I € Op;

2 ()X, € 7. Since {X,,, 11 <i <
i < r}. We need to

so [ has to satisfy 7; =7 and U | 7y =1 | 77 by note 2.1.1.

We define I'| 3 = I | 3. For any such [,
2k
=1 = spang{Ni. ..., Xo, Xp, — >_t()N;, 11 < j <7}
=i

We also define

and -
(X)) =UX) — > aUX,), 1<i<r
s=1

Thus I | r;=1| 7. Sole€ O,

Suppose there exist I’ € g* such that I'(X;,) = 0,1 <i < kand 7o =71
with U |7y =1 | 7. Then !’ | 3 =1|3 =1] 3 in particular. Now for all %,
1<i<r,

2k

U(Xy) = U (A = Zc;(z)x,) as I'(X;) =0

s=1
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2k
-3 r:(l)A',.) as e =1In
s=1

[(X,) by definition of I.

This completes the proof of (i).
(ii) Let (In,L1) € (Vi NU) x Vi where

m r 2k
Iv=3 LN +3 LX), and U =3 LX)
=1 =1 i=1

Since Iy € U, there exist constants ¢i(Iy) = ci(l1, . .. L) such that 7, =

spang {Xp, — 52, ci(l1. .. bn)X;, 1 1 <1 < 1}, Now we define ¥ by putting
pang 3 s=1Cs Jn

L, 1<i<m,

T, L) (X5)
Wiy, Li)(X,)

2k
VAN DX = b+ >l b,
s=1

1 1<i<2k,

e

As
2k
Fann) = spang{ X, — 2l L)X, 1< i< v} =y,
s=1
and

W(in,Ls) (X = ic’s(l;..~,.lm))(~.>
s=1

2k
= b+ b, — DAl )b,
s=1

% -
= IN(X — Dl ) X5),
s=1

it follows that W(ly,l;) € Oy, C U. Thus W is well defined. It is easy to
describe W1 1 U — (Vi NU) x V. Let I € U with I(X;) = L,1 < i < m,
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U(Xn) = b1 < <7 and I(X;) = L0 <i < 2k. Then ¥ (1) = (In, L) is
defined by the conditions

IN(X;) = L, 1<i<m,
2k

IN(X) = b=l ), 1<i<m,
s=1

(X)) = & 1<i<n

Clearly W is birational. This completes the proof.

Note 2.1.4 : If we keep Iy fixed, then ¥(Iy, 1) is a polynomial in (1., - .., L)

and the graph of this polynomial is Oy, .

Example 2.1.5 : Let ¢ = QF32. Then N = {1,2,4} and J = {3,5},
U = {l € qf3 : Iy = I(X1) # 0}, n; = First nonjump index outside center
=4, VinU ={l €qij,: h =UXy) #0,l3 = I(X3) =I5 = I(X5) =0},
pa(l) = £pa(1). Thus ci(lh, o) =  and ci(ly, ) = 0. Thus

1
W (2. 04). (13, 15)) = (b, o+ P, 1s)
A
where (Ih,l2,13) € Vi NU and (I3,15) € V] with the obvious interpretation.

Example 2.1.6 : Let G = Fy5. Then N = {1,2,3,6}, J = {4,5} U = {l €
B2:h =UX1)#0} VynU={l€fi:h =UX1)#0,l4 =U(Xs) =I5 =
1(X5) = 0}, n; = the first jump index outside center = 6.
_ [ b .
Bo(l) = = AuV) + (D).
1 1
Thus c§(1) = —l3/l1,c§(1) = lo/li. So

L
U (1,15, 16), U 15)) = (b, oy B o = la +
2

where, as before (11, Iz, I3, l6) € Viy NU and (ls, 15) € V.
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Note 2.1.5 : For each coadjoint orbit in ¢, we choose their representatives
from V3y\U. Notice that VN can be identified with the Cartesian product
of Vy and a Zariski open subset U’ of 3, where U’ = {l € 3" /Ri(l) = R;,1 <
i < m}. In the next section our aim will be to construct irreducible unitary
representations corresponding to elements in Vy NU by the orbit method of

Kirillov.

2.2 Polarization and unitary representation

We begin with a brief discussion of Kirillov theory, for details see [CG].
Let G be a connected, simply connected nilpotent Lie group with Lie
algebra g. G acts on g' by the coadjoint action. Given any I’ € Oy, the
coadjoint orbit of [, there exist a subalgebra by of g which is maximal with
respect to the property
([, b)) = 0. (2:3)
Thus we have a character xp : exp(hr) — T given by

Xrlexp X) = 20 X €y

Let mp = '”‘dgxp(.,,,

)X Then
(1) mp is an irreducible unitary representation of G'.

(2) If i is another subalgebra maximal with respect to the property
(v, 5]) = 0, then indS,_ ., xi = indS,
p(h;)

exp(y') X1'-
(3) m, = m, if and only if I; and I belong to the same coadjoint orbit.
(4) Any irreducible unitary representation 7 of G is equivalent to m for

some l € g*.
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So we have a map « : g'/Ad"(G) — G, which is a bijection. A sub-
algebra corresponding to | € g, maximal with respect to (2.3) is called a
polarization. It is known that the maximality of b with respect to (2.3) is

equivalent. to the following dimension condition
i 1. )
dimb = 5 (dimg + dimm).

Now suppose g is a two step nilpotent Lie algebra and I € g*. The following
technique for construction of a polarization corresponding to I, seems to
be standard: we consider the bilinear form By on the complement of the
center, we restrict B; on its nondegenerate subspace, then on that subspace
one can choose a basis with respect to which By is the canonical symplectic
form. With a little modification the basis can be chosen to be orthonormal
as well. This is essentially what was done in [MR1], [BJR], [St], [Pa]. We
will set down the basis change explicitly; our main ingredient for that is the

following lemma.

Lemma 2.2.1 Let B : K" x K% — R be a nondegenerate, allernating,
bilinear form. Then there exist an orthonormal basis {W;, Yi/1 <4 < k}
of R* such that B(X:,Y;) = 6:;0,(B). B(Xi.X;) = B(Yi.Y;) = 0,1 <

i,j < kon = 2k where +i\;(B) arc eigenvalues of the matriz of B.

As a consequence we have the following.

Corollary 2.2.0.1 Letl € g'. Then there exist an orthonormal basis

Xne ey X Z1@)1 - 2o, WA (O, WD (D, YD) (244)

of g such that
a) m = spang{X1, .-, Xm, Z1(1), ..., Z:(D)}.
b) (WD), Y;())) = 87,(1). 1 < 4,5 < k and

LW, WD) = (Y0, ;0 = 0.1 < i < k.
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¢) spang{X, (s Z1(1), s Z(), WD), . ... Wi(l)} = b is a polariza-

tion for L.

PROOF. We choose a basis B= {X1,..., Xon, Y1, X,.} of g such that
spang{X1, ..., Xm} = 3. We define the Euclidean inner product on g such
that B is an orthonormal basis. Let [ € g' and suppose dimr; = m + 1 and
dimO; = 2k = n —m —r. We get hold of r, = spank(z\’l,..A,Xm,X'.., =
Xp — 2%, ci(D)X),,1 < i < 7} we use Gram- Schmidt orthogonalization
on 1 to get an orthonormal basis {X1,.... Xm Z1(1), ., Z()}. On 7if,
the orthogonal complement of 77, B is nondegenerate. By lemma (2.2.1)
we get an orthonormal basis {Wi(l).. .., W), a(D). .- - Yi(1)} of 7 such
that 1[((W;(1). Y;(D)]) = 8i;,(Br) and L([W;(1), W5(D)]) = U([Yi(D), Y;(1)]) = 0.
If we define \;(B1) = A;(1).1 < j < k then a). and b) follow. ¢) follows by

observing that b satisfies (2.3) and the dimension condition.

Note 2.2.1 : we call the above basis an almost symplectic basis. Given

X € g and a basis (2.4) we write

Jw,y).

m T & 13
X =32 X0+ D0 520 + D wWi) + S uv ) = (=
=1 j=1 j=1 =1

Since we are going to use induced representations we need to describe
nice sections of G/H and a G—invariant measure on G/H. In our situation
we will always have that H is a normal subgroup of G. We identify G and g
via the exponential map. Let b be an ideal of g containing 3 and I = expb.

We take {X1,-- -, Xm, Xmi1,-% > Xmiks---» Xn} a basis of g such that
3 =spang{X1,..., Xm}, b =spang{X1,...,Xm, Xm+1,--+, Xmsk}-

If Ly(x) = g7'= and Ry(z) = zg, z, g € G, then it is clear from the group
multiplication that the Jacobian matrix for either of the transformations is

upper triangular with diagonal entries 1. Thus we have



Lemma 2.2.2 Let g, b, {X1.- oy Xone Xoi1oo o Nowiks -2 X} be as be-
fore. Then

i) dzy...dz, is a left and right mvariant measure on G.
) 0:G/H — G given by

n m—m-k
I (exp(z z,xJH) = exp( 3 lp\'",m.) 5
i=1

is a section for G/H.

i) dmiksr - dTn is @ loft G—invariant measure on G/H.

Now we come to the construction of representations corresponding to I €
VyNU. Let dimr = m+7r and dim Oy = 2k so m+1+2k = n. We choose an
almost symplectic basis (2.4) of g corresponding to 1 and get hold of b; as in
corollary 2, ¢). On H; = ezp(h;) we have the character x; : Hy — T. Let m =
indg,x,. We do not use the standard model for the induced representation
as given in chapter 2 of [CG], rather using the continuous section o given in

lemma 2.2.2 and computing the unique splitting of a typical group element
1
(,2,w,y) = (0,0,0,y)(z — 5[(0.0.0,4),(0. =, w, 0)], z, w, 0),

corresponding to @, the representation 7 is realised on L2(R*) and is given

by

(mz, 2w )@ feL®),
 2mE@HE @) -1/ T, s OF L se fg — ), (2.5)

for almost every § € RE. At this point we indulge ourselves a little to stop
to show that, for two step nilpotent lie groups, the Kirillov theory can be
totally bypassed. The conclusions 3) and 4) listed at the beginning of the
section can be reached through a straight forward application of the Stone-
von Neumann theorem. This fact is most likely known to experts, our
justification for including it here is that we know of no source pointing it

out clearly.



Suppose 7 is an irreducible unitary representation of ¢ acting on the
Hilbert space H,, with the condition that 7’(exp X') = 2UX) [ where X € 3
and [ € 3". As before we get hold of an almost symplectic basis (2.4) (note
that 7 is actually determined by [ | 3). We again write elements of the Lie
algebra and the group as well by (z,z,w,y). Then using (2.2) it is easy to

show that 7’ has to satisfy the following properti

a) (0, 2,0,0)7'(0, z1,0,0) = 7'(0, z + £,0,0),
b) (0, 2,0,0)7'(0,0,w,y) = 7'(0,0,w,y)7'(0, 2,0,0),
&) w(0,0,w,0)7'(0,0, w1,0) = '(0,0,w + w:,0),
d)  7'(0,0,0,)7'(0,0,0,y1) = 7'(0,0,0,y + 1),
e)  (0,0,w,0)n'(0,0,0,y) = 27 0 v 0a/(0, 0,0, y) 7' (0,0, w, 0).
From a) and b), it follows by Schur’s lemma that,
7(0,2,0,0) = 21O T e spang (Z1(1). ... Z. (D}

By c)-e) and Stone-von Neumann theorem Hn is unitarily equivalent to

L2(R*) and

@O.0.0.0N@ = SG-v.  feLE,
@©.0.w,0N@ = ST, gert,

for almost every § € R¥.Then by using the fact that

(z,z,w,y)
= (z—(1/2)[(0,2,0,0),(0,0,w,0)] — (1/2)[(0, z,w,0), (0,0,0,¥)],0,0,0)
(0, 2,0,0)(0,0,w,0)(0,0,0,y),

we get, that for almost every § € R

(' (z, z,w,9) ) (@)
— 2Rl L, Wk ) (/2 3, wwidi Ol f (g — ). 26
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Il =1 | spang{Z1(), ..., Z,(1)} then it follows from (2.5) that 7' = ind%, xr

where I’ € g* is such that

U | spang{X1,..., Xm} =1,
U | spang {W1 (), ..., Yi(l)} = 0.

We have noted above that every unitary irreducible representation of G is
of the form (2.5). The assertion about equivalences among the representa-
tions now is an immediate consequence of the uniqueness of the Stone-von
Neumann theorem. For, if m, and m, are given by (2.5), then the analysis

a)-e) on m, and m, would show that m, = m, if and only if
i) &L |3=1]3and hence r, =11, \i(l1) = \i(l2) for all 4,
) h|m, =l |,

which are equivalent to the condition Oy, = Oy,.

Now we give an example where we will carry out the construction of an

almost symplectic basis.

Example 2.2.1 : Consider ¢fs2. Let I € Vi NU that is I = I(X,) # 0 and
Iy = I(X3) = {(X5) = Is = O (see example 2.1.1). Then the eigen values of

the matrix

00 —
B=|o0 0o —i
L L 0
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are {0, i/l + I3}. Then the matrix

10 o o 0
01 0 0 0
1y 1
00 ~tm aw °
0 0 0 0 1
00 —hA_ _4h 9

/Bi 8 JBiE
changes the basis {X1, ..., X5} to {X1, Xa, Z,(), Wy (1), Yi(1)} where

— X3+ 1 Xy

Z) = —— Wi()) = Xs. () =
G+

Then I((W1(1), Yi(1)]) = /& +13 and Z,(I) € 1.

2.3 The Plancherel theorem

The clementary proof of the Plancherel theorem on a two step nilpotent
Lie group G, that we want to give, proceeds through asking the following
question: suppose f € L'(G) N L*(G) and suppose | € Vy NU. What
is the relation between f(m) and Fyf(l | 3,v)? Where f is the operator
valued group Fourier transform, (z,v) are elements of the group with z € 3
and v belongs to spang{Xm+1,-.., Xa} and F, (I | 3,v) means the partial
(Euclidean) Fourier transform of f in the central variables at the point I | 3?

The motivation comes from the Heisenberg groups, which we denote
by H,. Let b, = spang{Z,W,...,W,,Y1,...,Y,}, with the only nonzero
Lie brackets [W;,Y;] = Z, i = 1,...,n, be the Lie algebra of H,. Then
Vi = spang{Z} and V; = spang{Wi,...,Y,} and VynU = {L € b* : I(Z) =
X # 0}. Then it can be proved easily (see [F1]) that for f € L'(H,)NL*(H,)
and l € Vi nU

NFGrllzs =N [ 17w, )P dwdy. @7
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We are looking for an analogue of this. As with the Heisenberg groups, the

Plancherel theorem for G will just fall out of that analogue.

Definition 2.3.1 For I € g* we define

PJ(1) = \/det((B]);s)
called the Pfaffian of I, where (B})is = {([X},, X;.)), Xj,. X;, € Vi
Note 2.3.1 : If J is the set of jump indices for I, then Bj is nondegenerate
on V; and then Pf(l) is the Pfaffian of Bj (see [J]). It is easy to show that
a) det((Bj)is) is always a square of a polynomial and hence Pf(l) is a
homogeneous polynomial in [ | 3.

b) Pf(l) #0if L € U and is Ad’G invariant.

Example 2.3.1 : Let g = gfss. Then J = {3,5}, Vy nU = {l € g :
1(X1) =4 # 0,13 = I(XN3) = Is = {(X5) = 0} and

, 0o -
B} =
L oo

Example 2.3.2 : Let g = F32. Then J = {4,5}, Vw NU = {l € ¢' : | =
U(X1) # 0,1 = I(X4) = I(X5) =I5 =0}, and

0 1
B = X
- o

To find an analogue of (2.7), it is necessary to find the Jacobian of a

and hence Pf(l) =1{;.

and hence Pf(l) = ;.

transformation which we are now going to describe.
Let I € Vi = spang{X,, ..., X} }. Notice that for H, and F, 2, where

nis even, Vy = {0}, so the transformation we are going to describe, appears
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only for those two step nilpotent. Lie groups where there does not exist any
l € g* such that 11 = 3. Suppose l,, = I(X,,).1 < i < 7 and we also have
U(X};) = 0,1 < i < 2k. From B; we have constructed an orthonormal ba-
sis {Z1(1), ..., Z, (1), W1(1), - .., Wi(1), YA(1), . . ., Yi(1) } with respect to which

the matrix of B, is of the following form

0 0
(o s) ey

where the 2k x 2k matrix S is given by

()
0
(D)
2.9
=) @9
0
—\(l)
Let I(Z;(1)) = ;,1 < i < r. We consider the map
¢:Vy(ZR) - R
Sy -y L,) = (h,....1,). (2.10)

We need to find the modulus of the Jacobian determinant of ¢. To see what

it should be, we compute that in the following example.

Example 2.3.3 : Consider g = qfs2- Let 1 € Vi NU. Then eigenvalues of
B i+ 12 = =hXaih X,
By are {0, +i/13 + 13}, and Z,(1) Wi (see exemple 2.2.1). Thus
¢: Vi(=R) - R
Ul
?(la) = %—1—
VE+3
@ is actually linear. So the modulus of the Jacobian determinant of ¢ =

L _ 1PIQ)
ViE+E ',|713+1§
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Lemma 2.3.1 The modulus of the Jacobian determinant of ¢ is given

by 1P
ldet Jol = 3 3t

where Jy is the Jacobian matriz of ¢.

PROOF. : First we systematically describe the transformations which gave
the almost symplectic basis. We restrict ourselves only to the complement,

of the center, because it is there that the change of basis takes place.

Ay { X1, Xnga .oy N} — { X0
Az Xy o X, X,
Ag Xy Ko X
Vi), ... Yi(0)}
where X, = X, — 5%, ()X;,1 <i < r. A, is just a rearrangement, of

basis and hence is given by an orthogonal matrix. A, is clearly given by a

lower triangular matrix with diagonal entries equal to one. The matrix of

(2 )

where A" is a 7 x 7 matrix, C’ is a 2k x + matrix and D’ is a 2k x 2k matrix,

As looks like

because Aj is obtained from the following operations:
i) Gram-Schmidt orthogonalisation of {X,, : 1 < i < r}.
ii) Finding the orthogonal complement, of the span of {X,,:1<i< T}

#ii) Choosing an almost symplectic basis on the nondegenerate subspace of

By.

Notice that for I € Vn\ I(X;,) = 0,1 < i < 2k; thus (X)) = U X)), 1 <

i < 7. Hence
|det Jy| = | det A’|.
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Since | det Ay.det Ay det Az] = 1, we have | det Az| = 1. But
| det A| = | det A'|| det D]

So
| det Jy| = |det D'|1.

If we write By in terms of the basis {X,,...., X, Xj,,..., X}, }, then the

(25

where (B})is = I([X};, X},]). Thus clearly

matrix of B; looks like

|det Bi| = |Pf()[*.

Because of A3 the above matrix changes to

0 0
0 D'B{(D")

which is nothing but the matrix in (2.9). So

lr\l(l) (D)2

|det D')? = PrOP
. Do) 3@
QldetDI“lP{(l)[ .
e 1PIO)|
P
et Jol = 5y A
as claimed.

Now we come to the analogue of (2.7). Given f € LY(G) N L*(G) and

el we define the so called group Fourier transform by
) = [ £@)m(a™ duto)
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where p is a Haar measure of the group. The above integral is interpreted as
a bounded linear operator on H, (where H, is the Hilbert space associated

to ) given by

Fmem = [ fo)mg e mduto),  €me .

Given | € Vy NU, we get hold of an almost symplectic basis (2.4) and
because of the orthonormal basis change, dzdzdwdy is the normalized Haar

measure we started with, where

m " 3 3
(z,2,w,y) = > =X + Z S Zi(0) + D wiWi(1) + S wvi(h).
i=1 i=1 i1 =1

The representation m corresponding to I, we are going to work with are
given by (2.6). Let dl,, ...dl, denotes the usual Lebesgue measure on VI\',

(after we identify Vy with B™ through the basis (X0, X5
Theorem 2.3.1 Let [ € L'(G) N LXC). Then
IPI [, 1F(r) s, .. dt,,
)
:/Wm IF1 Wl T Ty, 0) P - do (2.11)
Jor almost every L € Vi AU, where
Fiflh, ooy Ty s Ty, u, )

= L@ T T ) T Ry
L.

m

and I(X;) = 4,1 <i < m.
PROOF. : Let ¢ € L*(R¥). Then from (2.6),
(F)e)(@)

= o T 20 )2, 2,0, ~)) (9)dmdzdwely
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= / (@, 2w, )21 1G5 05,20~/ 35, wiwh0)]
[——-
x@(§ + y)dzdzdwdy
_ _ )2l I@ G- 3T w0 -(1/2) o, w9 @)
= S (@ 2wy — e 5 5
[
x¢(y)dzdzdwdy

(by the change of variable y' = y + g)
= / f@, 2w,y — g)e?m 1@ UD-(/D TS wim s -(1/2) 4, wig M)
[S— s
x(y)dzdzdwdy
= / F(@zw,y — g)o 2T 2w S (g )wid ()
[r— L

x@(y)dzdzdwdy.

Let

o =
1(1/(y‘ g) = F(@, 2w, y—g)e 2Tl 2mill) W,ZH(My)A,(l)w,d;[dzde

Since f € L'(G) N L*(G), it follows that K{ € L2(R* x R¥) for almost
every L € Vy NU. Let | 3= (h.....Ln) and | spang{Zi(D), ..., Z, (1)} =
(I, .,1,). Then

K/ (y.9)

= Faaf(lh,.. .l b, ... L, & +y|

A+yA

(D), - - (), y — )

where Fjp3 stands for the partial Fourier (Euclidean) transform in the vari-
ables «, z, w. Thus f(m) is a Hilbert-Schmidt operator on L2(R¥) with the
kernel K. Hence
N7 Cm)li3ss
= [ K @ 9)ldyag

s on+ +3
= fulFms . BT >0,y — 9)Pdydy.
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If we do the change of variables
o = y’*”’A(:) 1<i<k,
vi = %i—%, 1<i<k,

then the modulus of the Jacobian determinant is [Ay(Z) ... \¢({)| and the

above integral reduces to
O RO I (=Y AN S A ) dudv)
o

where u = (u1,...,w) and v = (v1,...,v). By applying the Euclidean

Plancherel theorem in the variable u we get
HFGIP = @) NI [ 1Pl ol Ty, 0) P,

If we integrate both sides of the above equation on Vj with respect to the
usual Lebesgue measure and use change of variables by the map ¢ defined

in (2.10), we get

Sy Vst .,

- @) - @)
= @ MO
x L Fr2f (el 0) Pl - dl,, dudy.

Then by applying the Euclidean Plancherel theorem on the variables (I, . .,

R” we get

"

1210] /v )5l -

= LS )P . d, dude

This completes the proof.

Theorem 2.3.2 (Plancherel theorem) For f € L}(G) N L3(G)

Lo WS PI@I = 171 gy,
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where dl is the standard Lebesgue measure on V3 (2 R™'") with respect

to the basis {Xi,..., X} Xpv-oo, X0}

PROOF. : Regarding Vy NU as the Cartesian product of 4’ and R” as in note
2.1.5, we integrate both sides of (2.11) with respect to the standard Lebesgue
measure on 3* (upon identification with R™ via the basis {X{,..., X}) to

get

B COTRTGT
V,;IYI

=/, (IP!(I)S L,
/'" (/Wk IFef (s o sl B - Ty 10, 0) 2, ..Ad‘u) dly ... dly,

(by (2.11)
/m /R’m (@10 T Ty T 0) 2y . . Ay, . . dan, dudo,

5l sdt, - .-dl,.,> dly...dl,

Il

by using the Euclidean Plancherel theorem in the outer integral, U’ is a set
of full Lebesgue measure in 3*). The last integral is, of course, ”f”ii(c) and

the proof is complete.

Note 2.3.2 : The situation is simpler if we consider the case of MW groups.
In this case Vi; MU C 3" is Zariski open and for I € U C 3", the representation

 is given by

(mi(z, z,y) £)(§)
2MlE T 5o (0-(/2) 5, v 0] @ —v)

where § € R¥, f € L?*(R*) and dimg/; = 2k. Then it follows from the

calculations done in theorem (2.3.1) that

IF)liGs = m[ﬂ* [F1f (s s w, ) Pdudv.
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Clearly [Ai(1) ... \e(1)] = |Pf(1)], since By is nondegenerate. The Plancherel
theorem again follows from integrating both sides on U C 3*. So the change

of variables through the map ¢ is not needed for MW groups.

2.4 Infinitesimal representations and the sub-

Laplacian

Let g be a two step nilpotent Lie algebra with a basis B as in section 2.1.
In this section we consider elements of g as left invariant differential
operators acting on C*(G), that is given X € g and f € C™(G), the

differential operator X acts on f by the rule
- d > ’
(X(9) = Zli—oS(g-exptX). (2.12)

We define

(2.13)
im1

and as on the Heisenberg groups, call it the sub-Laplacian of G.

Given an irreducible, unitary representation 7 of G, we define a function
.G —C, wv € Hy
PL0(9) = (m(9)u,v) (2.14)

called the matrix functions of 7, where H, is the Hilbert space associated
with 7.

In this section our aim is to find: which matriz functions of represen-
tations are joint eigen functions of £ and {X;:1<i < m}?

Given 7 € G and X € g, we define
i d
dr(X)(u) = ELZUW(EXWX)" (2.15)

only for those vectors u € H, such that the above derivative exits for all

X € g. In that case u is called a C™® wvector for m and dn is called the
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infinitesimal representation corresponding to w. It can be shown that
dn(X) is

the space of C* vectors for m, which is a dense subspace for H, and dn

skew adjoint operator ( usually unbounded) with domain C*(x),

defines a representation of g on C°°(w). By the universal property dr extends
to a representation of the universal enveloping algebra U(g), which can be
viewed as the algebra of all left invariant differential operators acting on
C(G). If A € U(g) then it follows that

A(m(g)u,v) = (m(g)dm(A)u,v).

Thus if u is an eigen vector for dn(A) then ¢, is an eigen function for A.
Since for 1 < i < m, X; € Z(U(g)), the center of the universal enveloping

algebra, then dm(X;) acts as a scalar (see [CG]) and hence ¢7

PRy

is an eigen
function for X; for any wu, v. Thus our job reduces to finding the eigen
functions of dm(L) which are also matrix functions of 7. Looking at the case
(see [St]) it is r

expect that dn(L) is closely related to the Hermite operator and, indeed,

of the Heisenberg groups and the group I, asonable to

that is the case.
It is possible to be little bit more explicit about (2.12). Using expo-
nential coordinates we coordinatise G by the above chosen basis. Given

Z =Y @A and 2’ = 30, 20X, we define
2]y = (z.2].X,), 1<p<m,

where (.,.) is the Euclidean inner product on g such that {Xi:1<i<n}

is an orthonormal basis. Then it follows that, for 1 <i < m

X)(@)
%Ilinf(m_ exptX;)
= iy (2.16)

ox;
(2.17)




and form+1<i<n

(Xif)(=)
d
= il e
t o mem
- dt‘v o (Z(zl 5[1-/\;],)_\,+ S X,
jeme1
where z; = { ) ifj £
zi+t ifj =1

Kl 1. & )
= (Tz, + 52[2‘ 'X‘]’sz) fx). (2.18)

Now we start with a representation m € G such that I | 3 # 0. We get hold
of an almost symplectic basis (2.4) with dim7; = m 47 and dim Oy = 2k, so
n = 2k+m+r. The representations m are realized on L2(R*) and are given

by (2.6). It is known from theorem 4.1.1 of [CG] that C*(m) = S(E*), the

Schwartz class functions on R*. Now we want to compute the effect of dm

on elements of the almost symplectic basis (2.4).

Lemma 2.4.1 For ¢ € S(R¥) and € ¢ R*
i) dmi(Z;1))(€) = 2milp(€), 1< <
i) dm(W;(0)8(6) = 2mig;\(D$(E),  1<j <k
i) dm(Y;(0))$(€) = —§E(€),  1<j<k.
) dm(L)¢(€) = {42 5_1 B + L1}$(€) where

k
L= +4sz S(1)%€D).
=3 862
PROOF. We calculate directly
d
dni(Z;0)$©) = 2| mlexptZ;()a(e)

d 2mitl(Z;(1))
a |L:06 e(€)
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= 2mil(Z;(1))$(€)
= 2mil;¢(€),
dm(W;(0)$(E) = %L:om(exptwj(l))d’(f)

— %L:Oe?mg,x,(l)(ﬁ(g)
= 2mig; ) (0H(E),

dm(Y;(D)e€) = m(exp tY;(1))$(€)
(€ — tej)

d

i
dtlt -0
= 767{](&'

We notice that in terms of the almost symplectic basis (2.4), £ is given by
T k .
=320 = (W0 + Y50 (2.19)
=1 =1

(2.19) follows from the facts that £ and the right hand side of (2.19) are
both left invariant, and at the identity the two differential operators agree
by virtue of the invariance of the Euclidean Laplacian under an orthonormal

basis change. Now by i), i7) and ii1) we have

dm(L)p(€) = ( de(z ) - Z(dm(w 0))? + dm(Y; (l))’)) #(8)

=1

24121(2,(1)2+Z(4w’£?x,»(l)2 = | #(6)
J=1 i=1 65

(41r2 ZT]-' + L,) B(£)-
=1

This completes the proof.
Because of #v) now it is easy to describe the eigen functions of dm(L). Let
p(l) = 4n? 5, 2. Then dm(L) = p(l) + Ly, and p(1) > 0. If ¢ is an eigen

function of L; with eigen value c(l), then ¢ is an eigen function of dm(L)
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2 2 2

5 +A4m; (1)

with eigen value c(l) + p(l). If ¢ is an eigen function of

on R, then clearly
L GRS ER-H(3) B A ()

is an eigen function of L;. Since for s € N, the s—th normalized hermite
function h, is an eigen function of — 2 + z” with eigen value 2s + 1, it is
clear that

Ri(z) = (2m); (1) ho(V2ZrX; (1) E )

is an eigen function of ,% + 4m?);(1)%z? with eigen value 27 (1)(2s + 1)

and also [|hl|l2 = 1. So for (a1,...,ax) € N* we define

NGRS | NN (2:20)
where
R (6) = 27X (1) ha, (V2N (D) 2E;).
Then
Li(hl) = (i 27;(1) (205 + 1)) B (2.21)
=1
Thus '
dm(L)(hl) = (,1(1) ¥ izn,\,(l)(z(., + 1)) nl. (2:22)
=1

In the next chapter we will use (2.22) to get an analogue of Heisenberg’s
inequality on two step nilpotent Lie groups.

42



Chapter 3

Uncertainty principles on
two step nilpotent Lie

groups

The principal results in this chapter are the analogues of the Cowling-Price
theorem and the Heisenberg’s inequality for two step nilpotent Lie groups.
Along the way we also give a proof of a (p, q) version of Hardy’s theorem for
two step nilpotent Lie groups.

Hardy’s theorem for Heisenberg groups was proved in [SST| and its
I?—analogue (Cowling-Price theorem) and the (p, q) version was proved in
[BR]. An analogue of Hardy’s theorem on two step nilpotent Lie groups was
proved in [ACDS]. An analogue of Heisenberg’s inequality for Heisenberg
groups was proved in [T1] (see also [SST] and [GL] for two other variants).

Remark 3.0.1 Our treatment in this chapter tacitly assumes that G is
not MW. So for the case of MW groups the treatment needs only obvious

modifications using the description of || f(m)||us given in note 2.3.2.
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3.1 Extensions of Hardy’s theorem

In the case of Heisenberg groups, Hardy’s theorem and Cowling-Price theo-
rem (the (p, q) version as well) actually reduces to the corresponding prob-
lems on the center of the group by an application of (2.7). For two step
nilpotent Lie groups we have a reasonable analogue of (2.7), namely theorem
2.3.1. So it is expected that the same technique may work here also; and it
does, as we shall show presently. Since we are going to talk about exponen-
tial decay of the group Fourier transform, we need a growth parameter on
the dual, where exponential maps make sense, but that has been addressed
in section 2.1. In our parametrisation the dual is essentially a vector sub-
space (actually a Zariski open subset of that subspace) of g*, which is good
enough for us.

Let g be a two step nilpotent Lie algebra with basis B as before. G is the
corresponding connected, simply connected, Lie group. We write elements of
g (as well as that of G) by (z,v) = Y0 2 X+ 300" v Xmsi- Theset VNl
serves as the effective dual (that is, it is a set of full Plancherel measure in
&) of G and we put Euclidcan norm there such that {X{,... X} X :1<
i < 7} is an orthonormal basis. We write elements of Vi as

A7) = DoNXT + D wmAL
i=1 i=1

First we prove the (p, q) version of Hardy’s theorem.

Theorem 3.1.1 Let f: G — C be a measurable function. Suppose

(@ 1f(@,v)| < Cg(v)e=l=l,

(#0) Nf(may)lns < Ch(y)e A",
where C >0, p>2, 1/p+1/q =1 and g,h are nonnegative functions
with g € LR ™)NLAR™™) and h € L'(R")NLA(R"). If (ap)'/?(bg)'/® >

2, then f =0 almost everywhere.
PROOF. We notice that because of (i), f € L?(G), for all p and as a result

44



Jin (i) make sense. We define

f@v) = F(~z.0), and
h(z) = /m,m(fuva)(z)dv, (3.1)

where f,(z) = f(2,v) and * is the convolution on R™ If f € LI(C) then

h € L'(R™) and the Euclidean Fourier transform of h is given by
() = h(z)e 2m 02 gy,
(V) /R (e 2
= [ 1A
= IPION [ Wi mn)lsdy oy 211). (32)
B
By (ii) we get
hQ) =1h(N] < C|Pf(A)|e 20
< Be "M (s Pr(A) is a polynomial)  (3.3)
where &' < b is such that (ap)'/P(b/q)1/4 > 2. Now (writing expz = %)
@< [ 1 v )L~y 0)ldydo
< € [l exp(-anle — l? + i)y
= ¢ [ expl=an(iic - P + IulP))dy
O [l exp(=an2 =0/ z — yif + yi}2/2ay
-
(by Jensen’s inequality)
& [ exp—an2 S (lall - gl + 12"y
- C'/nm exp(=am2 0D {a(ly) - lall/2)? + ll2)2/2}7/2)dy

O [ exp(—am2!-CI 26/ | Iyl lall/2 p +2 22}y

IA

IA

IA

(by the elementary inequality,



A+2)P2 > 1422 forp > 2,2 > 0)
= C'GXP(*EWZI'P||2||")AM exp(—2ar | |lyll - llzll/2 [)dy

< Ae @27l (3.4)

where a’ < a is such that (a'p)'/P(b'q)/? > 2. Since (a'2! Pp)l/P(20/q)}/e =
(a'p)/P(b'q)"/%, we get that h satisfies the conditions of corollary 1.1.3.1, ¢),
by (3.3) and (3.4). So h = 0 almost everywhere. By (3.2), [|f (¢ ))llus = 0
for almost every (\,7). By Plancherel theorem f = 0 almost everywhere.
This completes the proof.

Our next result, theorem 3.1.2 is the analogue of the theorem 1.1.1 on
two step nilpotent Lie groups. We use a trick here we employed in theorem

1.1.4. First we need a lemma.

Lemma 3.1.1 Let G be a two step nilpotent Lie group. Then there

exist a constant C such that
Il v)-(@2,01) M 2 N, 0) | = @ o)l = Cll, )@ o)l (3.5)
for all (z,v),(z1,v1) € G.

PROOF. Since [, ] is a bilinear map on a finite dimensional vector space

there exist a constant C such that
lItw, 1]l < Cllllllva]l-
The lemma follows from the above and the formula of the group multiplica-
tion (2.2). :
Theorem 3.1.2 Let f € L'(G) N L*(G) and satisfies
@) Jo VeI f(z,v)Pdzdv < oo,
(&) Sy @O f (s )15l PF(N) dAdy < oo,

where 1 < p < 00 and 2 < ¢ < oo. If ab > 1 then f = 0 almost every-
where.
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PrOOF. : We first prove the case p = 0o and later, use this result for the
case 1 < p < oo.
Case 1 p=o00
In this case we interpret (i) as
1/ (z, )| < Ae—arli@l? (3.6)
We define f and h as in thecorem 3.1.1. Then writing ¢* = expz
@ < [ 1 F o)l
J 17 = w)ll =y, )iy

< 4 [ empant2lol? + s — ol + liP)dys

< A2 [ exp(an(zlol? + (sl = Il)? + Iy

- Ao (7”'—;"— [ exp(—ant2lvl® + 20l - “’”)1) dydv
R

< AyeGTDIRE 6.7

where @’ < a with a’b > 1 (the integral in the last line but one being a
polynomial in [|z|]). Choosing b < b such that a't’ > 1 we have, on the

other hand,

[ exp(m2p NP A 1#/2an
R 2

a/?
| exptambIAIR) (le(An £ llj(W(A,w))|I;lsd7) by (32)

. a/2
L. ( [, exp@miIDIf (rolis exp(—zb'ﬂuvu?)dv)
x exp(qmb | AIP) [ PFO)I/2dX

R 2/q
L explabxINe) { ( [, exe GBI u?qsdw)

IA
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Vo) 4?2
x ( / exp(—zb'm||vn2)dv) } IPFOI7/2an
2
( by Hélder’s inequality, where 2/q + 1/a = 1)
B[ [ @l I o) lis PO drdy
i

I

B [ explabml (5 DIPF o) s
*{exp((¥ — ByrllL IS Fdrdy
< o (by (). (38)

Since (a'/2)26' = a't’ > 1, by theorem 1.1.1 for the case p = oo and ¢/2
(which is > 1 as ¢ > 2) we get that h = 0 almost everywhere and thus
IO\ MllEs = 0 for almost every (\,7) and thus f = 0 almost everywhere

by the Plancherel theorem
Case 2 p< oo

Let ex(z,v) = KNI for k € R*. Suppose g € Co(G) is such that suppg C
{(z1,91) : @1, )|l < L}, where m € N. We choose (z,v) € G with
Iz, )|l > 1. Thus, if (z1,21) € suppg we have ||(z1,»1)|| < [|(z, v)[l/m and
hence by lemma 3.1.1

Iz )@, o)l 2 @)l = (1wl = Cliz, w) Gz, 01)ll

2 ol - 1My
d &
= l@)ia -2, (3.9)

where d = 1 + C. Thus for (z,v) € G with ||(z,v)]| > 1 we have

(€arlf] * 1g])(z, v)

= o, € (G )@ 0) g, 1) dardon
Suppg

> e @mPIEE (| f] x |gl)(z,v)  (by (3.9))- (3.10)
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By (i) we have that eu|f| is a L? function (p < 00) on G and g € C(G),
thus eqr|f| *|g| is a bounded continuous fonction. Thus from (3.10) we have
that

I(f % 9)(@.v)| < Beem(=CUm (3, ) 2,
for all (z,v) € & with Euclidean norm greater than 1. By continuity of f*g
we have

I(f * 9)(z,v)| < Beem(=@/mYiEIF (3.11)

for all (z,v) € G (possibly with a different constant). Since

IF* DEolas < Natraalloplfroalns
< H!I”L'((:)Hﬂ"(A,g)“H&

from (i7) we get that
. O T s PN < 00, (312)
A

We choose m so large that ab(1 — (d/m))? > 1. Then by (3.11) and (3.12)
we are reduced to case 1. Hence f x g = 0 almost every where. Now by
choosing g from an approximate identity we get f = 0 almost every where.

This completes the proof.

Note 3.1.1 : The conditions on p and g can be relaxed a bit in theorem
3.1.2 if G is one of the Heisenberg groups, or more generally, H-type groups.
For Heisenberg groups the following is true.

Theorem 3.1.3 Let f € L'(H,) N L(H,). Suppose for a,b > 0 and
min(p,q) < oo

@) Sy, GO £(z, 1)]Pdzdt < oo,

(i) fu €™ I F ()Y AP < oo.
a) Ifg>2, then f =0 for ab> 1.
b) If 1< q<2, then forp=oco, f =0 if ab> 2 and for p < oo, f =0 if
ab> 2.
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PROOF. : We notice that a) is just theorem 3.1.2 for H,.

b) We define f and h as in the previous theorems, then for p = oo,
|h(t)] < Ce~ (@D (3.13)
as usual. Since in this case we have
B\ = NI o)l
from (1) we get
fallie /.l'k’"""*’|tf’<m>n‘5,sul“dA
= /d"“"iz(/\)"/v’|,\| a2 \|"dA
w
:/ (BTN APC @D gy
1A=
+/ R RONIAPA- @D )
[Al>1
/ (M) 2d.
[AI>1

In the above we have used the facts that the first integral is over a compact
set and in the second, ¢ < 2. As the integrand in the last inequality is a

continuous function of X, we have
/ e R(N)/2d) < oo.
R
Hence

/ e ROYIdN = / PN () R(A)/ 2N
e A

IA

a2 / RN < 00, (3.14)
R

By (3.13) and (3.14) we get h = 0 almost every where if (a/2)b > 1 that is
ab > 2. This proves the theorem for p = co. The case p < oo follows as the

case 2 of theorem 3.1.2.
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The proof actually uses the nature of the Pfaffian arising in the Plancherel
theorem, in that {\ € R : |[Pf(\)| = |\|* < 1} is a compact subset of 3°.
This property of the Pfaffian we are using is never available for two step
nilpotent Lie groups which are not MW. Even for MW groups, we may not
have this property of the Pfaffian. To see that, let G = F, 2, which isa MW
group (sec example 2.1.3), and let I € 3* = A2(R?)* be given by the matrix

0 0 n 0

o o o i
-n 0 0 0
0 00

so that [Pf(1)] = |det!|'? = 1. But [ll|[a2@y = /2(n2 + ;%) > n. Thus
{t € 3*/IPf()| < 1} is an unbounded set in 3*. In fact Example 2 of [MW]
shows that any arbitrary homogeneous polynomial can arise as the Pfaffian
of the generic linear functionals of a MW group, so it is not possible to
enclose the zero set of that polynomial inside a compact set. Thus our proof
does not say anything for ¢ < 2 on a general two step nilpotent. Lie group;
nevertheless it goes through for H-type groups. We briefly outline the basic
features of H-type groups, to bring out this point.

Let B and Z be Euclidean spaces and consider the vector space sum
8 = Z ® B. Suppose there exist a linear map J : Z — End(B) satisfying the

conditions

)l = VX, forallY € Z,X € B,
B)J(Y) 0 J(Y) = —Id, forall Y € Z,Y #0.

We define a Lie bracket on g as follows: Z is defined to be central in g and
for X, X' € B,

(X, X'].Y) =(J(Y)(X),X'), forallY € Z,
(X, X'], X"y =0, forall X" € B.
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Then g is a two step nilpotent Lie algebra called an H-type Lie algebra and
the connected, simply connected Lie group corresponding to g is called an
H-type group (for details on structures of H-type groups, we refer to [KP],
[CDKR]).

Let A(# 0) € Z* C g where the inclusion stands for the trivial extension
to B. Let dim Z = m and dim B = 2n. We notice from a) that for fixed X,
Y — J(Y)(X) is || X|| times an isometry, so that

V)X, JYNXD) = NIV Y. (3.15)

Using the inner product on Z we can identify Z* with Z and write A\ —
7Ly Aje; where {e;} is an orthonormal basis for Z. We look at the skew

symmetric bilinear form B, on B x B; here
Ba(X,X') = M([X, X)) = (JO)(X), X7).

Then B, is nondegenerate, for, if By(X,X’) = 0 for all X’ € B, then
J(A)(X) = 0 and hence X = 0. Therefore Vi = 3" and Vi NU = {A € 3" :
A # 0} by note 2.1.3. Let \g = (1/||A|]).\. Then By (X, X') = ||\|| B, (X, X").
Since |det By, (Xi, X;)| = 1 (as J(\o) is an isometry) we have |Pf(\)| =
[IAI". Thus {X € 3 : [Pf(\)| < 1} C Vj is again compact, and we get the

case ¢ < 2 exactly as on [1,,.
3.2 Heisenberg’s inequality
The classical inequality of Heisenberg for L? functions on R says that

(/ Izl’lf(r)|2dz)1/2 ([ |y:2|f<y)|2dy)”2 > CIfI3 (3.16)

where f is defined by
i) = [ f@)emds

and C is a constant independent of f.



In this section our aim is to extend the result proved in [T1] for all
connected, simply connected, step two nilpotent Lie groups.

We state (3.16) in a slightly different way. Let A = — Y%, g, be
the Laplacian on R*. Then (Af)(y) = 4n2||y||2f(y) for any Schwartz class

function on R*. We may relate A to the character y,(z) = *™¥* of R" by

2] d
e <£) %

and hence dy,(A) = 47||y||>. Thus we have

£2misy;
s=0

= 2miy;,

d
Y(se) = oo

5=0 s

AN) = dn(A) )

Since dyy(A) is a positive, self adjoint operator, it has a (visible) square

root, which is multiplication by 2x|ly||. Thus we define

(1)) = 2nllyll Fv) = (@3 (AN F ).

for all Schwartz class functions on R". Since the Fourier transform is an
isomorphism on Schwartz class functions, the operator (A)# is defined com-
pletely. Then we can restate (3.16) as
Ve, — 1/2

(LePr@ras)  (IGEmePa) = clig. ¢an
for all f of Schwartz class on R”, where C' is a constant independent of f. It is
(3.17), whose analogue on connected, simply connected, two step nilpotent
Lie groups we are looking for. As in the case of Heisenberg groups, here also
the proof, in principle, is close to the proof on R™ (see [F2]) having the same
basic ingredients, namely, integration by parts, Cauchy-Schwartz inequality
and the Plancherel theorem.

We call a function f on G a Schwartz class function if f oexp is a
Schwartz class function on g. We denote the Schwartz class functions by
S(G).

The main result of this section is the following analogue of Heisenberg’s

inequality for two step nilpotent Lie groups.
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Theorem 3.2.1 Let G be a ed, simply d, step two nilpo-
tent Lie group and f € S(G). Then

1/2 — 1/2
([ 1wl?15 o) Ptoao) ( / u(t%f)(m)||%,s|Pf<l)|dl)
G V’;ﬂu
> Clifliiz (3.18)
where C is a constant independent of f and L is the sub-Laplacian.

Let us explain the meaning of (C%f)(m), Given X € g, we view this as

a left invariant ((X f)g = X (fy), where fo(z) = f(gz)) differential operator

on C*(G) with the action given by (2.12). Then in view of our definition of
the group Fourier transform, we have for f € S(G)

O)(m) = dm(X) o f(m), (3.19)

where dm(X) is given by (2.15). We view elements of the universal envelop-

ing algebra U(g), as the algebra of all left invariant differential operators on

C*(G). Since dm is a representation of g, it extends to a representation of
U(g) realized on C*(m). By (3.19) we have

(£N)) = dm(L) © f(m).
as £ € U(g). Tt is known that if m, is realized on L?(R¥) then C*(m)) = S(&K)
(see [CG], theorem 4.1.1). In section 4, chapter 2 we have scen that the
eigen functions of dm (L) are parametrized by N* and are given by (2.20).

Let {t;(!) > 0:4=0,...} be the real numbers such that there exist o € N*
with

K
(1) = p@) + 3 27X (1)(205 + 1). (3.20)
j=1
Let E;(1) = spang{hl, : dm(L)(h.) = t;()h!}, that is, Ei(l) is the eigen
space corresponding to the eigen value t;(I), which is clearly finite dimen-
sional. If Py(l) : L*(R*) — E;(l) is the projection, we have

(L) = 3 4B (321)
=0



Thus we define

dm (L)} = i: 0P, (3.22)

and -
dm(£) =3 )R, (3:23)

=0

Analogous to the Euclidean spaces, we define
(L4 f)(m) = dm(£)} o f(m), (3:24)

for all f € S(G) and l € VyNU. Thus the statement in theorem 3.2.1 makes
sense.

It follows from (3.20) that the eigen values of dm (L)~ # are bounded by
No(l) " where M\o(!) = min{)\;(1) : 1 < j < k}. As a consequence

Lemma 3.2.1 The operator dm(£)"? is bounded on L*(RF).

Let us consider the following elements of g¢, the complexification of g,

IA

k, (3.25)
k. (3:26)

D;(1) = Y;(1) — iW;(0), 1<j
D;(1) = Y;(1) +iW;(1), 1<y

IA

Because of lemma 2.4.1 we have

dm(D;(1)6(€) = (dm(Y(’)*Mﬂ:(Wj(l))M(E)

= ( a5t (l)€J)¢(€). (327)
dm(D;()SE) = (dm(¥; (1)) + idm(W. (D)) $(€)
= (—gfm,(%) #(8)- (3.28)

If hg is the s-th normalized hermite function on R, then we have

d
("E + z) he = (28 + 2)2 hgys,



(% +x) he = (25)%h, 1. s> 1.
(see [T2]). Thus if hS(x) = c'/*hy(c'/z), then

(— % + rz) R = V225 1 2) 2he,

(.;71 - (‘.r) he = M2(26)20e

Using this with (3.27) and (3.28) we get for a € NK

dm(D;())(h) = 2eX\(0))'2(205 + 2)Phae,. (3.29)
dm(D;0) (b, = —@rX(1)) 2 2a;) 20 (3.30)
where
a+e; = (an..., (Jj,|.(|j+1‘(\],1,....(|k)ENk.
a—e; = (an.... ajo10; = 1aj.. . ax) € R

Lemma 3.2.2 The operators dm(D;(1))odm(L) 5 and dm(D;(1))odm(L)"*

are bounded operators on L*(R*),1 < j < k.

Proor. We consider the orthonormal basis {h!, : a € N} of L2(R*). By
(3.23), (3.29) and (3.30) we have
dm(D(D) 0 dm(£) Lt = (—2mp@Ces ) T,
() + 250 2w, (D) (205 + 1) ’
and
i
~ - 27 (1)2a :
dm(D;(1)) o dm(L) 3 (ML) = — [ ——— T2y )\
1«(D;(1)) o dmi(L) "2 (hy,) D+ TE 2 D@ay D)) Mo
Since

i 270 (1) (20 + 2) 2 -
(ﬂm T EE 2 0) 2y 4 1)) =2
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and ,

27);(1)20; 2 <0
w() + by 200, (1) (20, + 1)) T
the operators dm(D;(1)) o dm(L£)~# and dm(D;(1)) o dm(L£)~* are bounded
operators on L*(R¥). This completes the proof.
Suppose f € S(G) and let I € Viy NU be arbitrary but fixed. So we have

an almost symplectic basis (2.4) of g. Let I | 3 = . We define
Fof(Av) = / Sz, v)e 2O g, (3:31)
Jom

that is, the partial Fourier transform in the central component. So v —
Fef (N v) is a Schwartz class function on R* ™. On Euclidean spaces, differ-
entiation and multiplication are intertwined by the Fourier transform. On
two step groups, as analogues of differentiation we consider the operators

Dy(1) and D;(1) and as analogue of Fourier transform we col

sider the par-
tial Fourier transform defined in (3.31). Want to find, who plays the role of
multiplication?

Let f € S(G)and X; € BC g, m+1< j <n. By (2.18) it is clear that

X;f € S(G7) and an easy calculation shows that
. 2] . -
Fo(N;NO0) = [ 2— + miBa(v. X;) | (Fef) (M)
Y
Thus using the basis in (2.4) we have

F(W;() (X z,w,y)

- “M](l)y,) (F YA =, w,y), (3.32)

F(V;(NA 2w, y)

= (% + i (t)m,) FDO = w.9). (3.33)

Yi
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for 1 < j < k. Thus writing

el
V() = (oy; «‘awl)—m\,a)(y;—fw;)‘

_ E] i) )
V() = (@ +a,3wj) + )y +wy),

we have from (3.32) and (3.33)

FAD; N zw,y) = VOFHO = w.9),
FUD; NN 2w y) = VOFNHO = w.y)-
Thus V;(1) and V;(1) play the role of multiplication.
Now we come to the proof of theorem 3.2.1.
Proof of theorem 3.2.1.

Let f € S(G) and I | 3 = \. Now

/ IFoS O = . ) 2d=dwdy
-

= [Mf;f(A,:,.u,y)T,:f(A,;,w,y)d;dmdy,

Since
8 .9 .
(8.1, - ’aTh) (z; +iy;)9(z,y)
= g+ G+ ) (o ol ),
= 9(z, Yy 7] Y (')I] By z, Yy
we have from the above equality

[ VeSO w0 ) Pddudy
1[(2
- /nm 3 {(ay, i ) (yj + i) Fof (N 2.w,)
—(y; +iw;) (01 (3i )}‘f(\ zw, y)}
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X Fof (h 2o w. y)dzdwdy

1 B 3 A
= e e f(Azw,
2 /RM (ay] ’auu) e s

<Fof (h 2w, y)dzdwdy
1 ) 2 9
-3 Rn’m(yj + iw;) (BTIJ - 76—%) FeS (N =z, w,y)
xFo(h 7w, y)dzdwdy
1 )
= -5 [t iw)Fs O wy)
(-
2 Fof 0z, w, y)d=dwd,
“\ 3y, Bw W,y y

1
2 Jgn-m

I

(y; + iw;) (;’J i3 ) Fef(N 2w, y)
xFJ O\ 2w, y)d=dwdy
(‘).V integration by parts in the first inlegral)
= "% Jan L+ iw;)Ff (N, =, w,y)
(G0 — (O (; + iw)) Fef (N, =, w, y)d=dwdy
‘% S 7+ 0DV X O w5 = ) TS O 2w y)
X Fof (N 2w, y)d=dwdy
(by (3:34) and (3.35))

_% [ + ) Fef O 2w ) GO FO 2w, y)dzdwdy
—% _(y + 1) VGOF O, 2, 0, 9)FT O 2w, ) dsdwdy
‘5 L+ iw;))Fof (O, z,w,9) Fe(D; ) N, 2, w, y)dzdwdy

*5 o (y; + 1) F(D;() YN, 2, w, ) Fef (N, z, w, y)dzdwdy

(by (3.36) and (3.37)). (3.38)

Let us recall, if I varies over Vy NU then I | 3 = X varies over the Zariski
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open subset &’ of 3' ( see note 2.1.5). Hence

Il

IA

<

/;[‘,_,m |f(z,v)|?dzdv

/u' /w- . |Fef O\, v)|2dAdo

(by Euclidean Plancherel theorem on 3)
/ (/ |fcf(/\,:.zu~y)l2d:dwdy) Y
i\
(by Fubini’s theorem and the orthogonal basis change on
R by T < spang{ Xmy1, -« X} — spang {Z1(1), ... Y2(D)})

L (3 Lo ) Oz, ) FD OO 22w, oy

(y; + iwj)fr(D,(l)f)(,\,z,w‘y)mdzdwdy> -

(by (3.38))
/” (7% [ T + ) Ff O ) FLD; O O v)dv

,% /R Ty + i) Fo(D; ) NN, ”)mdu) ™

1
B d oo

(by change of variables )

% (./u./ RUN +iwj)|2|fcf()\~u)|2dvd)\)%
x {(/u ‘/.;M. |F(D;(D) NN U)l"’dvd)\)%

* (/p/mm lfC(Di(l)f)(Xv)lzdvd,\)%}

(by Cauchy-Schwartz inequality and nonnegativity

of the integra])
s (L Lo uvuﬂfcf(x.u)pdvdx)%
* { (/I . /.M IF(D;() N, vmmu) :
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([ Lo, (t)f)</\.v)ﬁdudx)5}

- 3 (f / P ) dzdv)
{ / / L FD;0nNO v)|~d.,,dx)'7

+ ([ [ 7o anoran)’ } (3:39)

by the Euclidean Plancherel theorem on 3.

By theorem (2.3.1) we have
o ol dt, = IPFOI [ 17O o)
&

where I |3 =Xand [ | Vy =7 = (L, ... l,,,). Thus

(/ / |FLDA) TN u)|2dud,\)%

o f NBOD@GsiPr O, tu.‘,ru)'

Il

i
b

o o, Vema D50 o )t o dmccyt o frlrs

= (/ / lldm (D, (1)) f(m)llf:sle(l)ldlm«»-dl,.vdz\>

APl .. dld)

( Jo J, Wi P @ o ama@) i I D) s

IA

1
4
x|Pf(0)\db, -Hdlu,d,\)

2 ([ o WD @A POl .t ,,,d:..,)

(by lemma 3.22) o

A
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Similarly as above we can show that

(L[ IFC(D](I)I)(/\‘U)lgdudA)%

IA

—_— A I
( L, j WD) ) s P @l - - bl - ,dl,,,)

I

— 2
( It u(c%f)(m)u%,slpf(z)ldl)
vy
Thus from (3.39) we have

[ o dzdo

< ([ 1 vrdd)” ([ o u@)(m)\ms\Pf(l)\dz)z :

where C is a constant independent of f. This completes the proof.
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Chapter 4

Uncertainty principles on

some semidirect products

In this chapter, we work with two well known solvable Lie groups, the Eu-
clidean motion group of the plane and the oscillator group. Our aim is to
get analogues of the Cowling-Price theorem for these two groups and also of
a theorem of Morgan (see [HJ] or theorem 4.1.2) which is a slightly weaker
version of 1.1.3.1, ¢). As shown in [S], here it is possible to extend the proofs
given for the Euclidean spaces, the reason being that in both the cases, the
important series of irreducible unitary representations can be analytically

continued.

4.1 The Euclidean motion group of the plane

The Euclidean motion group of the plane, denoted by M(2), is a semidirect
product R? x., SO(2), where

v :S0(2) — Aut(R®) is given by

cos —sinf
A @) = @) | 0
sinf cos0
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and the product is given by

@9, ) @101, ¢) = ((@.y) + () @1, 0), €7%) .
If we identify R? with C that is (z,y) — z + iy, then the above product
takes the form
(z,a)(z1,01) = (= + az1,a0q), (4.1)
where a = ¢®. In terms of 4.1, dzdf is a Haar measure of M(2). All
irreducible, unitary, infinite dimensional representations of Af(2) are realized
on L*(T) and the equivalence classes of them are parametrized by {r € R :

7 € R*} and are given by

et M(2) — U(LA(T))

(mo(z, B)f)(a) = 2R f(Ba),  fe LX(T), a€T.  (42)

m_, can be defined similarly by replacing » by —r in (4.2). but m, and 7_,
are unitarily equivalent. It turns out that the family {z, : r € R"} is a set
of full Plancherel measure in the dual of A(2) and the Plancherel measure
is given by Const.rdr (see [Su] for details).

For f € L'(M(2)). we define the group Fourier transform by
For) % iy = . 2 8)1da
i fmy = [ 1A 8 =8

where the integral is interpreted in the weak sense. If f € L'(M(2)) n
L2(M(2)), then f(m,) € HS(L*(T)), the algebra of Hilbert-Schmidt opera-
tors on L(T).

First, for our use here we state an equivalent version of Lemma 1.1.

Lemma 4.1.1 Suppose g : C — C is an entire function and for 1 < p <
00,

(@) lg(z +iy)| < Ae™,

(i) (Jalg(@)Pdz)'/? < oo,



where a > 0. Then g =0.

Using this we prove

Theorem 4.1.1 Let f € L'(M(2)) N L*(M(2)) and
) Jme ereml| (2, 0)Pdzda < oo,
(i) for €™ NF @) Iysrdr < 00,

where ab> 0,1 < q< o0, 1<p< oo Ifab> 1 then f =0 almost

everywhere.

PROOF. Let {e, : n € Z} be the canonical orthonormal basis for L*(T). We
define

o (58 = (mEAemedrm  ((58) € MQ2), r>0)
/62’”“"("6:)e,,.(ﬁo)—_e,.(o)do.
T

the matrix functions of the representation . Now for h € L2(T),

(M=, B)h) (@) = 2RI (Ba) w=u+iveC

continues to be a nonunitary representation of A1(2) and we get the complex

extension of the function 7 — @, ,.(z,8), for fixed (z,5), m, n. Further
185, B = WD, Bems )] < [ &2, (43)

for fixed m,n, (z, 8). From (43), w — ®%,(z,8) is an entire function by a

standard argument. Also we have the estimate

1£(z,B8) @4, .(=B=, B)|
<17 A) / (PRA-602) gy where(w = u + iv € C)
T
=1/(z,B)le* .
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Hence
[ 1G5 (5= Pld=dp
2 e2mlvllzl g,
< [ 1repe s
= e =, Bl (e—aml==1/e?) gz g
et [ (G oNem) (e ) dzdp
< G (A + Blo| + Ko]?)

(by (i) and Holder’s inequality, A, B, K > 0)
< Gt (4.4)
for some k, such that b > k > 1/a. A routine argument using Morera’s

theorem and dominated convergence theorem now shows that the complex

extension of the function 7 — (f(r)em. €.), r € R*, which we write as
F@denen) = [ 1% (- B2 Adzdp,

is an entire function of the complex variable w, for fixed m, n. We note
further that (f(r)em,ea) = (f(=7)em, e} for 7 € R*. Since [(f(r)em, en)| <
1 (*)llns, we have from (ii)

/n T (F () ) |frdr < 0o.
Since |(f(r)em, ex)| is a continuous function of 7,
/R 7 |(F(r)em, en)|?dr < oo. (5)
From (4.4) we have
[(f(@)ems )] < C1ef™  where w = u + iv. (4.6)

We define
9(w) = ™ (fw)em, ).
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Then g is an entire function. The estimates (4.5) and (4.6) give

lg(u+dv)] < Cpef @ Pkm? — cgkme® (4.7)
/ lg@)|%dr = / e (F(r)emren)|tdr < 0o ask<b.  (4.8)
R R

By (4.7) and (4.8) it follows that g satisfies conditions of lemma 4.1.1 and
hence g = 0. So (f(w)em, €x) = 0 for all w. But m, n are arbitrary and hence
1/(#)|lms = 0, for all » > 0, which implies f = 0 by the Plancherel theorem.

This completes the proof.

Remark 4.1.1 A. Sitaram brought to our notice the preprint (EKK] which

proves Theorem 4.1.1 on M (n) but the proof is similar to ours.

Next we take up Morgan’s theorem. This theorem in some sense is comple-
mentary to Hardy’s theorem and is a special case of corollary 1.1.3.1, ¢). We

start with the statement of Morgan’s theorem for R.

Theorem 4.1.2 Let [ : R — C be a measurable function such that
(@) 1f(@)] < Cemamll
(@) 1f ()] < Ce- @iyl

where p>2, 1/p+1/q=1, a.e >0 and A(a) = 2?{q(pa)? 'sina} ! with

a=m(g—1)/2. Then f =0 almost everywhere.

Note 4.1.1 - It is easy to see that (ap)'/P{(A(a) + €)q}'/? > 2. Hence

Morgan’s theorem actually follows from corollary 1.1.3.1, ¢).

As in the case of Hardy’s theorem and theorem 1.1.1, a result on entire
functions is responsible for Morgan’s theorem. We state the result in the

following lemma.

Lemma 4.1.2 Suppose that q € (1,2), o = w(q—1)/2, 0 >0, A(q,0) =
o/sina. If the order of an entire function F does not exceed q and
B > A(g,0) and
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(7) F(iz) = O(e”l*")
(#1) F(z) = O(eBi=l"y
as |z] — 00. Then F =0.
For a proof of the above sec [HJ].
It is easy to get an n dimensional analogue of theorem 4.1.2 which we

now describe.

Theorem 4.1.3 Let f:R" — C be a measurable function such that
(@) 1f(z)] < Cemomlill,
(@) |f(y)| < Ce~A@+alivl®
where p> 2, 1/p+1/g=1, a,e >0 and A(a) = 2¢{q(pa)?~' sina} ! with
a =m(q—1)/2. Then f =0 almost everywhere.
PROOF. The proof is basically to reduce the problem in one dimension and

then apply theorem 4.1.2. Fix 2 € R*~! and define
() = [ Sy

By i) we have that g, € L'(R) and g;(€) = f(z,£). Now it is easy to see
that g, satisfies conditions of theorem 4.1.2. Thus g, = 0 almost everywhere.
By uniqueness of the Fouricr transform and Fubini’s theorem, f = 0 almost
everywhere.

Our result now is an analogue of Morgan’s theorem on M(2).
Theorem 4.1.4 Let f € L'(M(2)) N L>((M(2)) and satisfy

(@) If(z,a)| < Cemoml

(@) If()llns < CeA@ami
where p > 2, 1/p+1/g = 1, o = (g —1)/2, a > 0 and Aa) =
29{q(pa)*'sina}'. Then f =0 almost everywhere.
PROOF. For w = u+iv € C, if we define (f(w)em,e,) as in the previous

theorem, then
KF @)em, el
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< [ UGAI.(~Bz.5)lddp
b

< / / 1£(=, B)le2mRC0P2) g dad

T JCxT
= // £ (22 B et ReC-aBoP +a (a2 mlvl g a3
= JrJexr

v ! N — 1
(where @’ < a, o(a’) = Gy
< ed(a/)%‘v'q// 1z B)e* ™ d=dadp
'+ Joxr
< Ceote)Zml / / e~ g dadp ( by ()
TJOxT

< @i (4.9)

As in the previous theorem, by Lebesgue’s dominated convergence theo-
rem and Morera’s theorem it follows that g(w) = (f(w)em, €, is an entire

function. By (ii) and (4.9) it follows that

|9(iz)] < Cer@)2miat? }

la(@)] < e A ot )

Choosing a’' < a satisfying

297 297

+em > B
q(pa)? sina q(pa’)?~'sina

g satisfies conditions of lemma 4.12 with ¢ = o(a’)27. Hence g = 0. Thus
I7G)lls = 0 for all 7. Hence f = 0 almost everywhere, by the Plancherel
theorem. This completes the proof.

4.2 The Oscillator group

The oscillator group is the semidirect product of H, (the one dimensional

Heisenberg group) and R with respect to the homomorphism

v :R — Aut(H;)

Y(r)(z.€,t) = (zcosr + Esinr, —zsinr + E cos, t).
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Since ~ has a cocompact kernel, ; = Hy x, R is a type 1, unimodular group
with Hj as a regularly embedded, closed normal subgroup (see [KL]). If we
denote the elements of G by (z,£,t,7) where (z,€,t) € H, and r € R then
dzdfdtdr is a Haar measure of the group G. The Lie algebra of G is given
by g = spang{W, X, Y, Z} with the only nonzero Lie brackets

W.X]=Y.[WY]=-X,[X,Y]=2

of the basis elements.
To find the dual of the group we proceed by Mackey's little group
ent.

method (see [L)). For details about repr ion theory of i we refer to
[Str], [Q], [MR2]. For A € R\ {0}, we consider my € Hy. Since m\|Z(H;) =
(mxoy(r))|Z(H) for all » € R where Z(H,) is the center of Hy, by Stone-von

Neumann theorem there is an operator W (r) € U(L*(R)) satisfying

M) E1) = W) omi(2,6,0) 0 W),

for all (z,€,t) € Hy, and W(r) is unique upto a scalar. Since R has no
nontrivial multiplier (see [P]), 7 — W(7) can be chosen to be a true unitary
representation of R. We do not need an explicit description of W (r), but we
remark that the description is easy if we start with the Fock space description
of 7y (see [F3]) instead of the Schrodinger model. By the little group method

we get a family of irr unitary repres tions of G given by

s 1 G — U(LA(R)),

(@6 1) = xa(P)mA(226, 1) 0 W),

where x.(r) = €>™*"_ Instead of 7y, if we start with a nontrivial character of
Hy given by Iy g(z, &, 1)

i2+B) then the stabilizer is Gr = H) x 2 and
hence we get another family of irreducible unitary representations of G given
by Indfj,,,(T x a) where a € Z. Again if we start with the trivial character

of H, we get characters of G given by I'(z, &,t,7) = €>™9". Since this is a
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regular semidirect product the above said families of representations exhaust
G 1t follows from proposition 1., section 2 of [MR2] that the representations
{mxs : XA € R\ {0}, s € R} constitute a set with full Plancherel measure, and
the Plancherel measure is given by |\[d\ds (see also [KL], Theorem 3.1 ).

Now we prove an analogue of theorem 1.1.1 in this case.

Theorem 4.2.1 Let f € L'(G) N L*(G) and
(8) Jo ere @4l £(z, €, t,v)|Pdedédtdr < oo,
(@) Ja e IF O )y sds < Ax,
where Ay is a constant depending on X only, and a, b> 0, 1 < ¢ < oo,

1<p<oo. Ifab>1 then f =0 almost everywhere.
PROOF. Let {en, : n € Z} be any orthonormal basis of L' (R). We define

LAACN NN

(mas(z &t ) em, €n) L2(r)

ST (@, €,1) 0 W(r) (em) en) 12(m)»

the (m,n)-th matrix coefficient of the operator my (z,&,t,7). If for w =

u+iv € C we define )3, T (7 (2, €, 8)em €n) L2(r) then for fixed m, n,

X and (z,&,t,7) the function w — @)%, is entire. By definition of the group

.

Fourier transform we have
FO8)em, en) 2wy = /Gf(z, &1, )N (3, €, 1, 7) V) dwdedtdr.,
Now from the trivial estimate
1f(@ &t )0 (2,6, t,7) )] < ™| f(2,6,8,7)],
it follows from (i) and Hélder’s inequality that
KF O w)em, en)] < Ced™ < Cem” (4.11)

and that the function w — (f(A,w)em,en) for fixed \, m, n is an entire
function. Let

9(w) = ™ (f\ w)em €n),  weCT.
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Then g is an entire function and
l9(u + iv)| < Ce'™* (4.12)
by (4.11). Since ](f(A,s)em.e,.ﬂ < If(\, 8)llus, we have from ii) that
[ e Oem eitds < Ax,

that is \
(/ |g(1-)|qdr)“ <cn (4.13)
®
By (4.12) and (4.13) we have that g satisfies the conditions of lemma 4.1.1
and hence g = 0. Thus [|f(\,s)|lzs = O for all (\,s). Thus f = 0 almost

everywhere by the Plancherel theorem. This completes the proof.

Remark 4.2.1 We have not been able to settle the following question.
Should the answer to the question in the affirmative, we would get a more

natural candidate for the Cowling-Price theorem on the oscillator group.
Question- With the natation as abave let f € LMY O L2(GY and
v)/Ge""”"(*v&’-')"'u(z,e.L.r)|"dzdfdm7- <,
i) [ ™ F ) sINaA < A,

where A, is a constant depending on s only and a.b > 0. 1 < g < co. Does

ab > 1imply f = 0 almost everywhere?



Chapter 5
Semisimple Lie Groups

In this chapter our aim is to prove an analogue of Theorem 1.1.1 on rank
one semisimple Lie groups.

In the first section we set up the required notation and state the Plancherel
theorem for a rank one semisimple Lie group. In section 5.2 we prove the

proposed analogue of the Cowling- Price theorem in the rank one case.

5.1 Notations and preliminaries

We refer to [GV] and (K] for all unexplained notation and facts in the fol-
lowing. Let G be a connected, non compact, real semisimple Lie group with
finite center, and g denotes the Lie algebra of G. Let K be a fixed maximal
compact subgroup of G with Lie algebra t C g and g = t® p, be the Cartan
decomposition of g. We fix a maximal abelian subspace a of p and a* denotes
the real dual of the vector space a.

The set of restricted roots of the pair (g, a) is denoted by X. It consists

of all a € a* such that the vector space
o ={X €g:[H X]=a(H)X forall H€a}
has dimension m, > 0. We choose a system of positive roots £+ and with
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respect to £, the positive Weyl chamber
at ={XN €a:a(X)>0 forallae Xt}

We denote by n = 3 .5+ ga and obtain the Iwasawa decomposition g =
t® a®n. The corresponding decomposition G = KAN is the Iwasawa

decomposition of the group giving the unique expression
9 =k(9)a(g)n(g)

when g € G, k(g) € K, a(g) € A, n(g) € N. We denote by exp : g — G
the exponential map of the group. The inverse of the diffeomorphism exp :
a — Ais called log : A — a. Let M’ and M denote the normalizer and

centralizer of a in I respectively, that is
M = {k € K : Adk(a) C a}.
M ={keK:Adk(l) = H for all I € a}.

Then M is a normal subgroup of M’ and the quotient group W = M'/M
is a finite group, called Weyl group of the pair (g,t). W acts on a by the
following rule

wH = Adw(H), we W.H € a.
It follows that W acts as a group of orthogonal transformations (preserving
the Cartan-Killing form ) on a. Each w € W permutes the Weyl chambers,
and the action of W on the Weyl chambers is simply transitive.

Every element of G can also be written as g = kjakz for some kj, k2 € K
and a € A, but this representation is not unique. If g = kjaky = kja'k)
then there is a w € W such that @’ = w.a. Let A* = expa* and A¥ denotes
the closure of A* in ;. Then every element g € i can be uniquely written
as g = kyaks, ki, ky € K, a € AT that is G = KATK, called the polar
decomposition of Gi.

Everything above depends on the choice of a and a*, but for any two

choices of a, b and a*, b* there is an element k € K such that Ad(k)a = b

74



and Ad(k)a* =o' Thus in particular any two maximal abelian subspaces
of p have same dimensions, called the real rank of G.

The Haar measure ‘dz’ of G with respect to the polar decomposition is
given by dz = J(a)dk dadk,, where

J(a) = Mex+ (e20960) _ ¢-alloga)yme

that is

/Gf(z)u!z:/K//T/Kf(L-m,lcg)J(a)dk,dadk2

where da, dk are Haar measures on A and K respectively.

Given g € G, we define
llgllc = Blog gp,log gp)*

using Cartan decomposition where B is the Cartan-Killing form. Since B is
nondegenerate and positive definite, on a we have an inner product induced
by the Cartan-Killing form. We extend this inner product on a*( the real

dual of a) by duality, that is we set
o) = (I H,) Npea HyH,€a

where M is the unique element in a such that A(H) = (Hy. 1) for all
H € a. Let ol denote the complexification of a* that is all complex valued
linear functionals on a which are real linear. Let X : a — C be a real linear

functional. Then A\g:a —»Rand \;:a — R, given by
Ar(H) = Real part of A(H) for allH € a,

A1(H) = Imaginary part ofA(H) for allH € a

are real valued linear functionals on a and X\ = g + iA;. Using the inner

product of a*, for A, X’ € o we define
W) = [ A) = (AL AD] +l(A7, ARY + (o NS
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This inner product we denote by the same symbol as it extends the inner
product of a*.

Now we describe the series of representations of G, called spherical prin-
cipal series representations. Let G = KK AN be the Iwasawa decomposition
of G and M the centralizer of a in K. Since M normalizes N also, we have
a subgroup P = MAN of G, called a minimal parabolic subgroup. Let
£ € M with representation space Hg, a finite dimensional space as M is

closed in K. Let \ € a*. We define
pea s MAN — U(Hg) by
e a(man)(v) = Ve () (1) for all v € H

where m € M, a € A, n € N and p = § 3 ,c5e mao. From pe we get

by induction a representation mg s of G realized on the Hilbert space He x,

where
Hep={f: K —He: i)f is measurable
i) f (km) = £(m™1)(f (k)
iii) [ 1)k < oo}
and

) (me(9)f)(k) = e~ CAAWE ) (1 (g 1k)).

From the description of 7¢ x it follows that the action of K is by left trans-
lation. It can be shown that 7¢,» defined above is a strongly continuous,
unitary representation. We also notice that from ii) and i) of the defini-
tion of He,y, it follows that Mg x is isomorphic to the vector valued L%-space,
L2(K /M, dk,M¢) where dk is a Haar measure on K/M. It is known that
given £ € M there exist an open dense subset O¢ C a* such that for X € O,
mg,a is irreducible. Now we come to the equivalence of the above series of

representations. The Weyl group W acts on the equivalence class £ € M by
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conjugation, (gM.£)(m) = £(g9 ' mng), g € M. Since W acts on a by adjoint

action, it acts on a’ by coadjoint action. It turns out that
mg,x = me w if and only if there exist w € W such that £ = w.£ and X = w.\.

Now, let £ be the trivial representation of M on C. By m, we will de-
note the representation m¢y where £ is the trivial representation. These

are called the class 1 principal series representations as they contain the

trivial representation of I\ as a subrepresentation with multiplicity one. Let
{eo,€1,...} be an orthonormal basis of L2(J\/M) consisting of I -finite vec-
tors where we always choose as g to be the constant function 1 : I /M — C,
1(z) =1 for all z € /M. We notice that since the vectors e!s are K-finite,
e; € C*°(K) as functions on I, in particular they are all bounded functions.

Let

Pa(@) = (ma(z)eo, o) r2(x): zel
/;(-Mp)(mg*‘k))dk
k

= /’e(’*“’)("("‘))dk (see p. 104 of [GV])

be the so called elementary spherical functions. Let Dy (G) denotes the
set of all left invariant differential operators acting on C*(() which are also
right invariant under the action of K. The elementary spherical functions
on G are the K-biinvariant eigen functions ¢ of every differential operator
D € Dk(G), normalized by the condition ¢(e) = 1. It can be shown that
for A € a* that is X = Ag + i)}, the integral defining ®, make sense and it
is a result of Harish Chandra that ®,, A € a% exhaust the set of elementary
spherical functions on G. Moreover for A € o' and a € A*, we have the
following estimate

[®ir(a)] < " o), (51)

where A" is the image of \ in the fundamental Weyl chamber, under the
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action of the Weyl group. Now suppose A € ai. As we said above

/cf(:)+ﬂ)(ll(1,"k))dk
-

@y (x)
and if A = Ag + 1), then
/ e~ i tiAY Ep (H KD g
= /ﬁ CIPHET R g
= q’l—u\y(z)'

The integrand being continuous on I, the integral is well defined. For fixed
z € G, the function X — ®,(z) is clearly continuous by dominated conver-
gence theorem and hence entire by Morera’s theorem. From I -biinvariance
of @) and (5.1) we have

[@r(z)] < CHT0ED X € ar.

Going back to a principal series representation e, we define, for an or-

thonormal basis {¢{ /i € N} of L2(K/M, M) consi

ing of K-finite vectors

PN9) = (meal9)eh, €h)

[ meal) )0, S8y

K

n

= e CRRIETIL (g7 K)) e (ke .
K

Since the vector valued functions €f are K-finite, they are in C*(K, H) and
hence bounded in particular. Thert it follows as before, that for A € a,
the integral defining ®7'" make sense, in fact for each fixed g € G the
function X — ®’"(g) extends as an entire function of X € af. Again writing

D= S By TG
[275(9)] < Consl../ XA M gl = Const.d_, (). (5.2)
: ke

From now onwards we continue with the hypothesis that dima = 1. In this

case some further simplifications can be made. The set £+ consists of two
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elements at the most, o and possibly 2a. Hence p = j(ma + ma,) and
B(H, H) = 2a(H)?(na + 4ma,). We choose Ho € a* such that a(Ho) = 1.
Then
B(Ho, Ho) = 2(ma + 4ma,) = 6 (say ).

We identify a with R by this choice of Ho. Under this identification, the
usual inner product of R becomes {(a.b) = éab and inner product on R* is
(a,by = lab.

Given an integrable function f € ¢, we define the so called group

Fourier transform by

() = fim) = [ 1(a)n(@)duta).

a bounded lincar operator on H,. We follow [W] for a description of the

Plancherel measure for a rank one semisimple Lie group . G4 will stand

for the collection of equivalence classes of square integrable, unitary, irre-

ducible representations of i called the dis

‘rete series representations. By
a theorem of Harish Chandra these representations occur as subquotients
(subrepresentation of a quotient representation) of certain nonunitary prin-
cipal series representations (see [W]). We shall not go into the details of
these embeddings.
Theorem 5.1.1 For f € L'(G) N 12((')
= 3> du||f(U)l|Hs+ > / 1 (e )71 sQUE N)d,

UeGq teM
where dy ’s are ‘formal degrees’ of the representations U and Q(€,\) is
a nonnegative function with the property Q(€,\) # 0 for X # 0, having
the following form

Q&) = [W(M. A)la(xe A),

where [W(M, A))] is a constant and x¢ ts the trace of the representation
£ € M. Finally q(x¢,\) is of the form

P(xe. \) coth (’;—A) or  R(xe.)tanh (L;) .
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depending on £ (we shall not need the exact expression for this depen-

dence) and P, R are polynomials in X for a fived £ € M.

5.2 The uncertainty principle

Before we can embark on our extension of the theorem of Cowling and Price
to a group G as above, we need the following lemma which is essentially in
[CSS].
Lemma 5.2.1 Let f € LY(G) N L¥G). Suppose [ decays sufficiently
rapidly that f(mga) makes sense for all € € M, X € ap (see remark
below), and

f(men) =0 Jor alle € N, \ € .

then [ =0 almost everywhere.

For a rapidly decreasing integrable function f, even though f(me ) may
fail to make sense as an operator on Hg , when \ € ag, (note that, in general,
for X € az \ a", g, is not unitary), we however use the notation f(m¢,) in

the sense of an infinite matrix whose elements are
Frenmn = /(, T@ Mer (@) em ey dpt(@)  enren € Her
With this preparation we come to the main theorem of this chapter.

Theorem 5.2.1 Let f € L}(G) N L*(G), satisfying the following condi-
tions

(0) Jg 1 (@)Perliele dpu(z) < oo

(i) fo ™) fme a3, sQUE NN < C
where q < 00, a,b > 0 and C¢ is a constant which depends on £ only.

If @b >} then f =0 almost everywhere.

PROOF. Let £ € M be fixed and {¢}/i € N} be an orthonormal basis of

L2(I /M, M) consisting of K-finite vectors, as before. We choose m,n € N
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and keep it fixed. Our aim is to show that for \ € a&, the function
FO) = [ 1@ @)du(a), (5.3)

is zero. Then by lemma 5.2.1 we will conclude that f = 0 almost everywhere.
But the first thing is to show that (5.3) is well defined. If 2 = kjak2 and
a = exp(H), H € a then ||z|l¢ = ||[kiakallc = ||H]| and from the explicit

expression of J(a) it follows that there is a constant A; such that |J(a)|] <

Const.e™Wl_ Using this and i) the function F is well defined, for

LU@Ierr@lduz), e

< C()nst/ | [ (kraka) e O8] J (@) |dky dadks
G
Oy (5.2))
= Const. [ MG £ (kyaky)|e kel A (05 D) 7 (a) | dky dadk,
Jo
} 4
< Const. (/ Cﬁ\la\iél[(',:)lpd“(z))y (/cp'l—muurw;(logarmunmdu)’
G a
(By Hélder’s inequality, % + 7 =1, and dH denotes
the Lebesgue measure on a)
. | 2 !
< om0 ‘“’"’\:’”"""'%u:) T By Gy
< Cons, ([0 )
b
(where 0 < a’ < @ is such that @’ > 1 and
e~@lHIF+AHI < Conat.c-IHI?),
Now

I +(HH
/c,( <IIHI +(""\‘))d”

" /1a [ —pelH— D H o
e(P\IH,;H )/4d [e Paill W”x, I dH
]
Py 2

= Conste &
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by translation invariance of Lebesgue measure and the fact [[H,, || = |Hx, Il

Thus we have that F is well defined and
|F(\)| < Const.ew ™I for all A € ag. (5.4)
By the identification of af and C, (5.4) can be written as
|FO\)| < Const.ew@i. (5.5)
To see that F is a continuous function, for \,, — X in C, we define

Su(2) = F(@)P5(

Then f, — f.d‘)z')'(" pointwise by continuity of A\ — @g:;\"(r) for each fixed z.
‘We also have
[fu(@)] < Const.|f(z)]eP)i tos)
for £ = kjaks, a € A7. As {),} is convergent, there is a constant ¢ such
that
|fa(z)| < Const.|f(z)|e??lc  for all n, for all z € G.

By i) and Haélder’s inequality, it follows that the right hand side of the above
inequality is an integrable function. By dominated convergence theorem F

is a continuous function. As X\ — $7"(z) is an entire function, by Fubini’s

theorem and Morera’s theorem [ is an entire function. We define
3%
9(A) = ez F(X), Aec.
Then clearly g is an entire function and

1900 + iAs)| < Const.efd—DeaiN < Const.ct (5.6)

as 1/4a’6 < b/6. Now we show that g | R € LY(R). The argument here uses

the expression for the Plancherel measure. For r > 0 we have
Llseorax = [ #ipypean
R R
- / V| FO)|7dA +/ eF|P(A)[2d).
hi<r Al>r
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So it is enough to show that the second integral is finite. Now
[ eBIEOras = [ ), D1t
[A]>r IAl>r
A T(CV PN
A>T
_ S| F o Q&N
S PN e s 6 ) 3y

IA

From the description of the Plancherel measure it follows that the function
@iy is bounded for [\ > 7. So by i) g € L*(K) and hence by (5.6), g
satisfies the conditions of lemma 1.1.1, so g = 0. It follows that F' = 0. This

completes the proof.
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