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Chapter 1

Introduction.

T'his thesis contains four essays which broadly come under the area of Dynamic
Games. All the essays involve developments or applications of non-cooperative
equilibrium concepts to games played over infinite horizons. The two essays in
Chapter 2 and Chapter 3 involve the concept of ‘renegotiation proof equilibria’
n repeated games. The essay in Chapter 4 discusses how a social norm of slow
building of trust in bilateral relationships can be understood as a social equi-
hibrium even in the absence of asymmetric information problems. Chapter 5,
which represents joint work with Prabal Raychaudhuri, applies non-cooperative
bargaining theory to a context where the management of a firm has to bargain
with the union over wages and employment levels simultaneously, in the pres-
ence of minimum wage regulation.

The issues addressed in Chapter 2, titled “Existence of Internally Renego-
tiation Proof Sets in Infinitely Repeated Games”, are as follows. The notion
of Renegotiation Proof sets in infinitely repeated games involves internal as
well as external consistency. Debraj Ray (1994) has recently argued that in
infinitely repeated games with discounting, Weakly Renegotiation Proof sets
(WRP sets) as defined by Farrell and Maskin (1989), do not satisfy a natural
mternal consistency property. Ray defines an Internally Renegotiation Proof

IRP) set as a WRP set which satisfies such an internal consistency property.
He shows that as the common discount factor in a two player infinitely repeated




Introduction 2

game goes to 1, the limit IRP sets can only be either of two types: a singleton
or a subset of the efficient frontier of the payoff set. In other words, similar
to the results of Benoit and Krishna (1993) for undiscounted finitely repeated
games, renegotiation proof sets are either efficient or unique.

Chapter 2 addresses certain questions which nevertheless remained unre-
solved. Does an IRP set always exist? Ray presented an example where an
IRP set fails to exist, but this hinges on low discount factors. He conjectured
that IRP sets always exist with sufficiently high discount factors.

In section 2.3 of the chapter, I show that Ray’s conjecture is false by pre-
senting an example where an IRP set fails to exist for all high enough discount
factors. This holds irrespective of whether pure or mixed strategies are used
by the players. The non-existence result is robust to small perturbations of the
payoffs. It is interesting to contrast this with the profusion of subgame perfect
equilibrium as demonstrated by the Folk Theorem in infinitely repeated games;
this illustrates how demanding the requirement of internal consistency can be.
It can also be contrasted with the results of Van Damme (1989) and Farrell-
Maskin (1989) that limit WRP sets on the Pareto frontier of the feasible set
are typically ‘large’.

The concept of IRP as examined by Ray is stationary across time. To ad-
dress the non-existence problem, we introduce, in section 2.4, a modification of
the definition of IRP sets to include non-stationary behavior at different his-
tories. For mixed action spaces, our example admits (Almost) Non-Stationary
Internally Renegotiation Proof (ANIRP) collections for low discounting. More
generally, it is possible for each limit point renegotiation proof set of long finite
games to be included in an ANIRP collection, provided that the limit point

sets are sufficiently large.

In Chapter 3 titled “Renegotiation Proof Sets in Long Finitely Repeated
Games with Low Discounting”, I explore connections between renegotiation
proof sets in (long) finitely repeated games with discounting, and IRP sets of
infinitely repeated games. The notion of renegotiation-proofness in finitely re-
peated games is relatively uncontroversial, as noted by Benoit-Krishna (1993).
If some link exists between the two notions, that would provide additional
basis for the claim that IRP is the natural notion of internal consistency in
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infinitely repeated games. Benoit-Krishna considered undiscounted finitely re-
peated games and found that if a limit of the renegotiation proof sets exists as
the time horizon goes to infinity, then the limit set must either be a singleton
or a subset of the efficient frontier of the game. They were not able to settle
the existence question although they conjectured that the limits always exist
in games with finitely many actions.

The main results of Chapter 3 are the following:
(a) If for high discount factors, the limit of renegotiation proof payoffs of finitely
repeated games (as the number of repetitions T — o0o) exists, then the limit
sets can converge, as discounting goes to zero, only to sets which are either
singletons or are subsets of the efficient frontier of the payoff set. This extends
the main result of Benoit-Krishna for the undiscounted case to the case of low
rates of discounting.
(b) If as in (a), the limit of renegotiation proof sets for sufficiently long finite
repetitions of a game (with discounting) exists, then the set of limiting payoffs
must be a WRP set of the infinitely repeated game. If the limit is a singleton,
then it must be an IRP set. If in addition mixed strategies are allowed, and
the limit set is a “sufficiently large” non-singleton, then it is an almost IRP set
of the infinitely repeated game, where an almost IRP set is a slight weakening
of the definition of an IRP set.
(c) In the example in Chapter 2, where IRP sets failed to exist in the infinitely
repeated context, limits of renegotiation proof sets for long finite repetitions
of the stage game also do not exist for low enough discounting (irrespective of
whether we consider pure or mixed strategies). Combined with (b) above, this
indicates a close connection between IRP sets and renegotiation proof sets for
long finite games in the case of low discounting.
(d) In the same example, however, limits of renegotiation proof sets in the
undiscounted case exists, when attention is restricted to pure strategies. This
1s In contrast to the case of discounting, where they do not exist even for
discount factors arbitrarily close to 1.
(e) Even when Renegotiation Proof sets for long finite games do not have a limit,
it 1s possible for each limit point set to be included in an ANIRP collection,
provided that the limit point sets are sufficiently large. In particular, in the
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example of Chapter 2, every limit point set for low discounting belongs to
an NIRP collection. This provides additional insight into the connection of
Renegotiation Proof concept between finitely and infinitely repeated games.

Chapter 4 is titled ‘Building Trust’. Trust frequently builds slowly in most
bilateral relationships, such as in friendship, credit relations, or employer-
employee relations. One obvious reason why trust takes time to build is based
on reputation formation, resulting from incomplete information about the char-
acteristics of one’s partner. In this chapter, I provide an alternative explanation
which applies in a perfect information setting. It is based on the possibility of
endogenous quit decisions by partners.

To elaborate on the role of endogenous quits, consider an infinitely repeated
two player Prisoners Dilemma. It is now commonly known that if players are
sufficiently patient the full cooperation outcome can be supported as a subgame
perfect Nash equilibrium, where deviants are punished by suitable threats. Such
punishments, however, assume that the deviator is not free to avoid them by
terminating the relationship and starting afresh with a new partner. Conse-
quently, it is difficult to support cooperative outcomes in the conventional way.
We examine the question of how this possibility of ‘endogenous quitting and
finding new partners’ affects the level of cooperation that can be supported.

We consider a matching model of a credit market along the following lines.
There are large numbers of lenders and borrowers. The game takes place over
an infinite time horizon and all agents discount their future payoffs identically.
An exogenous process matches lenders and borrowers with one another at date
1. Whenever a player of lender is paired with a borrower, they become part-
ners in a new relationship. The stage game played between a matched pair
is common knowledge and is as follows. The lender offers a loan of a certain
size (a level of trust) to his client. The borrower decides whether to default
on the loan or repay it. Default generates short term gains to the borrower,
and short term losses to the lender. Before period 1 ends the partners simul-
taneously decide either to continue or terminate the relationship. Among all
relationships where both partners decided to continue, nature picks a fraction
of those relationships and terminates them for exogenous reasons. At the start

of the next period (date 2), another random matching amongst all the players
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with broken partnerships takes place and then the game continues as before
between the current partners.

Important features of the model are as follows: (a) a partnership can con-
tinue if it is wished to by both partners, except that (b) there is a small prob-
ability with which a partnership can be broken for exogenous reasons : (c)
when two new partners meet, they are not aware of the past histories of the
other; (d) and most importantly, they ignore their own past histories in decid-
ing how to play with the new partner; so players play with all new partners
identically. In this setting, cooperative behavior can be enforced only by the
threat of terminating the relationship, provided termination is costly for the
deviant. In the absence of any “unemployment” a la Shapiro-Stiglitz (1984),
this requires the ‘next’ relationship to involve a slow rather than immediate
build-up of cooperation.

We restrict our attention to equilibria where trust is never dishonored along
the equilibrium path. The main results are that maximal equilibria in terms of
payoffs exist for the population; along the equilibrium path of a maximal equi-
librium average trust must be non-decreasing and strictly increasing between
some time points; as the quit rate goes to zero and the discount factor goes to
one, along a maximal equilibrium path, the level of trust offered must either
attain or asymptotically approach the maximal level.

Chapter 5 is titled “Management Union Bargaining under Minimum Wage
Regulation” (joint work with Prabal Raychaudhuri). This chapter addresses
policy questions relating to minimum wage regulations. In many countries the
government enacts minimum wage laws in an effort to raise living standards of
the workers. In India, for example, the Minimum Wages Act of 1948 lays down
standards of minimum wage. The objective was stated to be “not merely...the
bare sustenance of life but...for some measure of education, medical require-
ments and amenities.” In other countries as well, such laws were motivated by
similar concerns.

Unfortunately, however, such laws may have a detrimental effect on the level
of employment, as they may induce firms to reduce the number of workers em-
ployed. The usual argument against such an objection is that, in the presence

of unionized workers, such an outcome cannot result. It is contended that the
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unions would prevent the employment level from declining at all, or that they
would minimize the extent of any such decline. The objective of this chapter
is to examine, in a formal bargaining setup and in the presence of unionized
workers, the impact of changes in minimum wage laws.

We model this problem as an infinite horizon alternating offers bargain-
ing game. Since we are concerned about the levels of both employment and
the wage, we allow the management and the union to bargain over both si-
multaneously. Therefore, in contrast to the standard bargaining models (e.g.
Rubinstein (1982)), the cake size is endogenously determined. The game starts
with the management making an offer and the union accepting or rejecting it
immediately. If the union rejects the offer, then it can make a counter-offer
after a delay of one period. The management in its turn can now either accept
the offer, or reject it. The game continues in this manner until an agreement
is reached, when the agreed upon offer is implemented. We assume that there
exists a minimum wage level, fixed by the government, below which a worker

cannot be employed by the firm. The union maximizes the wage bill of the

workers who belong to the union.

We first establish that a subgame perfect Nash equilibrium exists and that
it is unique. The structure of the equilibrium outcome is rather interesting. We
show that the outcome always involves a wage level equal to the minimum wage
set by the government. The level of employment, however, is higher compared
to what it would have been in the absence of the union (i.e., the competitive
level). This suggests that although bargaining takes place over both wage and
the employment level, in effect the union can affect only one of these. It is in
the interests of the workers not to demand an increase in wage level over and
above that set by the government.

We then carry out some comparative statics exercises. Those involving the
discount factors of the management and the union (§, and é; respectively) are
what we would expect intuitively, in the sense that an increase in §; leads to
an increase in the payoff of the concerned party and a decrease in the payoff of
the other party. If, however, the management’s bargaining position is strong
enough, then a small increase in §, may leave the payoffs unaffected.

We now look into the effects of an increase in the minimum wage level. We
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show that the employment level will decline. We also demonstrate that the
income of the management declines as well. The surprising part of the result
is that the income of the union may decline as well. We show that a sufficient
condition for this to occur is that the marginal product of labour 1s inelastic.
Thus, somewhat paradoxically, it is the very success of the union in increasing

the level of employment which ensures that the workers lose out as a result of

an increase In mMinimum wage.



Chapter 2

Existence of Internally
Renegotiation Proof Sets in

Infinitely Repeated Games
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2.1 Introduction

The notion of Renegotiation Proof equilibrium in infinitely repeated games
involves internal® as well as external? consistency. Ray (1994) has recently ar-
gued that in infinitely repeated games with discounting, Weakly Renegotiation
Proof sets (WRP sets) as defined by Farrell and Maskin (1989), do not satisfy a
natural internal consistency property®. Ray defines an Internally Renegotiation
Proof (IRP) set as a WRP set which satisfies such an internal consistency prop-
erty. He shows that as the common discount factor in a two player infinitely
repeated game goes to 1, the limit IRP sets can only be either of two types: a
singleton, or a subset of the efficient frontier of the payoff set. In other words,
similar to the results of Benoit and Krishna (1993) for undiscounted finitely
repeated games, renegotiation proof sets are either efficient or unique.
However, the existing literature leaves some issues unresolved, which are
addressed in this chapter. Does an IRP set always exist? Ray produces an
example where an IRP set fails to exist, but this hinges on low discount rates.
He conjectures that IRP sets always exist with sufficiently high discount factors.
In section 2.3, I show that Ray’s conjecture is false by presenting an example
where an IRP set fails to exist for all sufficiently high discount factors. This
holds irrespective of whether pure or mixed strategies are used by the players.
The non-existence result is also robust to small perturbations of the payoffs. It
1s interesting to contrast this with the profusion of subgame perfect equilibrium
for high discount factors as demonstrated by the Folk Theorem in infinitely
repeated games; this illustrates how demanding the requirement of internal
consistency can be. Moreover, it can be contrasted with the results of Van

Damme (1989) and Farrell-Maskin (1989) concerning WRP sets; for certain

!See Bernheim and Ray (1989), Farrell and Maskin (1989) and Ray (1994) for a discussion.
Note that Pearce ((1987) has a completely different way of studying renegotiation proofness.

Also see Abreu, Pearce and Stacchetti (1989).
?See Bernheim and Ray (1989), Farrell and Maskin (1989) and Asheim (1991) for a

discussion.
SRoughly speaking, this requires a set B of payoffs to be the Pareto Frontier of the set of
payoffs supportable by continuation payoffs from the set B itself.
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classes of games they show the existence of “large” limit WRP sets on the
Pareto frontier of the feasible payoff set®.

The concept of IRP set as examined by Ray embodies a form of stationary
behavior. To address the existence issue, we consider in section 2.4, a modifica-
tion of the definition of IRP sets to include non-stationary® behavior at different
histories: this is referred to as Almost Non-Stationary Internally Renegotiation
Proof (ANIRP) collection. For mixed action spaces, ANIRP collections exist
in our example for high discount factors. More generally, it 1s possible for each
limit point renegotiation proof set of long finite games to be included in an
ANIRP collection, provided that the limit point sets are “sufficiently large”.
This is shown in Theorem 2.2 and Corollary 2.1.

In the next chapter of this thesis, I explore connections between renegotia-
tion proof sets in (long) finitely repeated games with discounting, and IRP sets
of infinitely repeated games.

Section 2.2 introduces the basic framework of the model. Section 2.3
presents the example where IRP sets do not exist for sufficiently high dis-
count factors. Section 2.4 deals with the notion of ANIRP collections. Section
2 5 concludes. We shall essentially employ the notation used in Ray (1994).

2.2 Framework

Consider a one-shot garﬁe G = (A,, A3, g1, 92) played by two players (denoted
1 and 2 respectively). Each player is assumed to have a finite number of pure
actions and A; denotes the set of mixed actions® for ¢, while g;(-) : A1 x A2 — IR

denotes i’s payoff (1 = 1,2). gi(-) is continuous’ for each 7. Let A = A; X Aj.

4Qur example also has this property.
SRay makes a passing mention of this non-stationary conterpart of consistency although he

does not deal with it explicitly.
6Certain statements are also valid for pure strategy action spaces. We will mention them

as we go along. However, we assume that there are a finite number of pure actions supporting

the mixed strategies.
"When a = (a;,a;) € A, a; can be viewed as a probability distribution over the pure actions

of player i. For ay,a] € A, and a; € A3, and for A € [0,1], (1 = A)ay + Aa} denotes a new
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For an action vector a = (a;,a;) € A, let ¢;(a) = Max(,:ea,) 91(aj,a;) and
cz(a) = Max(are4,) 92(a1,a3). The functions ¢;(-) and ¢;3(-) are continuous and
represent the maximum deviation payoffs for player 1 and 2 respectively from
any action vector. Let F'* be the convex hull of the payoffs of the two players in
G. Let 6 be the common discount factor and (G7, §) denote the T-fold repeated
version of G. (G*°, §) denotes the infinitely repeated version of G with é as the
discount factor.

For a sequence {a,f:u € AT*! and § < 1, the normalized payoff to player
¢ in (GT+1,§) from this action sequence is (T[_l—;“r%—}zinc’i*gi(at). For a sequence
(@)oo € A% in (G°, §) with § < 1, the normalized payoff to player i from this
action sequence is (1 — §)3°226'g:(a;). Note that all normalized payoffs lie in
! e

Definition 1. Let B(T,§) be a set of normalized payoffs in (G7, §) for § < 1.
Clearly B(T,$é) C F* C IR?. Then the payoff vector p(T' 4 1) € IR? is said to be
supportable by B(T,$) if there exists a € A and p(T), p*(T), p*(T) € B(T, $)
such that for : = 1, 2:

1-46 6(1 —&67) .
(1{_ 51-31)9;({1) T (1(_ 5T+1))p='(T)

and[e(a) - ()] < 2T =52 (B(T) — p(T)),

pi(T+1) =

When the above conditions hold, we will say that the payoff vector (T + 1)
1s supported by B(T,$) through the action vector a and the payoff vectors
HT),p'(T), P*(T) € B(T,$).

As in Benoit-Krishna (1993), the payoff vector p(T + 1) is supported in
(GT*1,§) by an action vector a in period 1, and continuation payoff p(T') on the
equilibrium path, with p'(T) and p?(T) denoting the punishment continuation
payoffs for players 1 and 2 respectively.

Definition 2. p € IR? is said to be supportable by a set B C F* in (G, 6)

mixed strategy for player 1. If a;;,a), denote the probabilities that a,, aj respectively place
on pure action k of player 1, then (1 — A)aix + Aaj, is the probability that (1 — \)a; + Aa’,
places on pure action k. Hence, ¢;((1 — A)a; + Aaj,a2) = (1 — A)gi(a;.a2) + Agi(al, as).
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with § < 1 if there exists a € A and p, p!, p? € B such that for 2 = 1:2:

pi = (1 — 8)gi(a) + ép;
and 5 |
[ci(a) — gi(a)] < 1—;_5(1316 - p})-
When the above conditions hold, we will say that the payoff vector p is sup-
ported by B through the action vector a and the payoff vectors p, p',p? € B.

For a nonempty set of payoffs B(T,6) C F*, let 6(B(T,é)) denote the set
of payoff vectors supported by B(T,é). It follows that 6(B(T,6)) is compact
if B(T,§) is compact. 8(-) can similarly be defined for the infinitely repeated
game (G*,6). To avoid confusion, we will henceforth write this function as
@%(-) for the infinitely repeated game.

For any non-empty set C C IR?, define F(C) = {z € C| thereisno y €
C such that y >> z} where y >> z if y; > z; for 1+ = 1,2. Hence,
F(6(B(T,6))) is the weak Pareto Frontier of payoffs supported by B(T,é).
Similarly, in (G*,6), F(6’(B)) denotes the weak Pareto frontier of payofis
supported by B. The papers of Farrell and Maskin (1989), Benoit and Krishna
(1993), Ray (1994) all consider this definition of Pareto optimality. We are
now in a position to define two notions of renegotiation proofness in infinitely

repeated games.

Definition 3. A set of normalized payoffs W(§) C IR* is WRP (Weakly Rene-
gotiation Proof) in (G*, ) if and only if

(a) W(8) C 6(W(é))

(b) There exist no two vectors z,y € W(§) such that z >>y.

This definition of WRP set is due to Farrell and Maskin (1989). In a WRP

set, every payoff vector in the set is supported by the same set and no payoff

vector in the set strongly dominates any other payoff vector in the set.

Definition 4. A compact® set P C IR’ is Internally Renegotiation Proof (IRP)
in (G*,6) if P = F(6(P)).

81t is not true in general that if P is an IRP set, closure(P) is also an IRP set. Nevertheless,
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This is Ray’s definition of an IRP set. Hence, a payoff in the IRP set P must
belong to the weak efficient frontier of the set of payoffs supported by P itself.

Further, the set of all payoff vectors on the weak efficient frontier of the set
supported by P must identically equal P.

Let P(&) denote the collection of all compact IRP sets of the game for a
given 6. The space of all compact subsets of F* endowed with the Hausdorff
distance relative to the Euclidean distance, is a compact metric space (see
Theorem 1, page 17 of Hildenbrand (1974)). Define P to be the set of all limit
points® of sequences (P(6,))32,, where §, — 1 and P(6,) € P(é,) for each
n. The convergence is with respect to the Hausdorff metric relative to the
Euclidean distance. If P € P, then P is closed by virtue of a property of set

convergence. We will refer to a set belonging to P as a limit IRP set.

Theorem 2.1 (Ray, 1994) Each element of P is either a singleton or is a
subset of F'(F™), the efficient frontier of F™*.

Although Ray considered only the case of compact IRP sets, the result
extends identically to the case of IRP sets when the compactness assumption
is not 1mposed.

Before proceeding any further we need to define the ‘minimum payoff vector
for a player ¢’ in a compact set B C F™*. For any such set B, consider the subset
of payoff vectors in B which gives player i the minimum among all payoff vectors
in B. If this subset has an unique element, then that unique element is player
t’s ‘minimum payoff vector in B’. If the subset (note that this subset is closed)
is non-unique, then take that payoff vector in this subset which gives player 7
(7 # t) the highest payoff among all vectors in this subset. This vector will
be called the minimum payoff vector for player i in B. Note that a minimum

payoff vector for a player ¢ in any non-empty compact set B C F* always exists

we concentrate on compact IRP sets in examining the existence question. However, a simple

modification of the non-existence proof in our example goes through even when we allow for

non-compact IRP sets.

°A set B is a limit point of a sequence of sets (B,)52, if there is subsequence (B, )i,

which converges to B.
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and is unique. Player ¢’s minimum payoff vector in a non-empty compact set

will typically be denoted as D

2.3 Nonexistence of IRP sets

Consider the game with payoffs as depicted in Figure 2.1. Figure 2.2 gives the
structure of the convex hull of the feasible payoff set F™* for the game. There are
two pure strategy Nash equilibrium payoffs : (4,1) which results from Player 1
'.playing M and player 2 playing L, and (1,4) resulting from player 1 playing d i
and player 2 playing C. We will argue that a limit IRP set cannot exist in this
game. There are four major parts in the argument. The outline of these four
parts are as follows:

(a) First, we will show that for any discount factor §, the minimum payoff
vector p'(6) for player 1 in any IRP set cannot give player 2 a payoff less than
4. The argument runs as follows. Suppose a IRP set exists for some discount
factor and this result is false. The payoff (1 — §)(1,4) + 6p'(9) is supportable
by the IRP set. This new vector (or something that Pareto dominates it) must
also belong to the IRP set. Now there are two possibilities. Either this new
vector Pareto dominates p'(§) which contradicts the fact that p'(6) belongs to
the IRP set. Or this new vector gives player 1 less than his minimum payoff
vector p'(8) in the IRP set, which contradicts the definition of a ‘minimum’
vector.

(b) Second, we will use a result (Proposition 2.1) to conclude that the
minimum vector for player 1 in any IRP set for any discount factor cannot give
player 2 a payoff greater than 4. Proposition 2.1 really makes statements for
WRP sets. It tells us when a particular vector in the convex hull of the payoff
space can never belong to any WRP set. Since an IRP set is a WRP set, we
can use the proposition to conclude that no payoff vector which gives player 2
a payoff more than 4 can ever belong to an IRP set.

(¢) Third, using (a) and (b), we will show that any IRP set must contain
the payoff vector (1,4). (a) and (b) tells us that p3(6) must be equal to 4.
It cannot be that p:(é) > 1, for this will contradict that pt(6) is player 1’s
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minimum payoff in the IRP set. If pj(6) < 1, then it will be argued that (1,4)
is contained in the IRP set.

(d) Finally, from the symmetry of the problem (using the minimum payoff
of player 2 in any IRP set) it can be argued that (4,1) must also belong to any
IRP set. Since both (1,4) and (4,1) must belong to any IRP set, a limit IRP
set cannot be a singleton; nor can it belong to the Pareto frontier of F*, as
required by Ray’s theorem, as neither of these two vectors belong to the Pareto
frontier. So, no limit IRP set can exist, which implies that for high enough
discount factors IRP sets do not exist in this example.

The rest of this section is organized as follows. We will start with the formal
proof of part (a). Next, for the time being, we will assume Proposition 2.1 and
conclude’® part (b). At this stage, it is enough to note that part (b) holds,
since Proposition 2.1, applied to our example, tells us that no IRP set can
contain a payoff vector which gives player 2 a payoff greater than 4. Following
this, we will show part (c) formally. Part (d), requires no further elaboration.
At this stage, we would have seen that IRP sets do not exist in the example
for high enough discount factors provided part (b) holds. To see more clearly
where Ray’s theorem helps us, we then proceed to give an intuition to this
non-existence phenomenon. After this, we will start a discussion of WRP sets
which will conclude with the statement and proof of Proposition 2.1. Next,
with respect to our example, we will relate how the proposition limits the set
of payoff vectors (from the convex hull of the payoff set) which can possibily
be contained in some IRP set; in other words we will show why part (b) holds.

Suppose part (a) does not hold; i.e., there exists an IRP set P(§) for some
discount factor é such that the minimum payoff vector 5'(§) of player 1 in
P(8) (where p'(8) = (p1(8),p3(¢))) gives player 2 a payoff pi(§) < 4. Check
that y(1) = (1 —6)(1,4) + 6p'(8) can be supported by playing (T,C) (what
I mean is that player 1 plays T with probability 1, and player 2 plays C with
probability 1) today and using p'(§) tomorrow with the threats being p(§) for
both players 1 and 2 (observe that (T,C) is a Nash equilibrium and so no
player can unilaterally deviate and gain). If p}(6) > 1, then y(1) gives player

'“The reason for relegating Proposition 2.1 to later space is that the proof of Proposition 2.1

requires some technicalities to be built up.
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1 a payoff of less than p;(6). Since y(1) € F(6(P(6))) and P($) is an IRP set,
either of two cases must hold: (a) y(1) € P(§), or (b) there exists z € P(9)
such that z >> y(1). If (a) holds, this contradicts that p'(6) is the minimum
payoff vector for player 1 in P(6). If (b) holds, then note that z; > py(6). If
z; < pi(é), then p'(8) cannot be the minimal vector for player 1 in P($). If
z, > pi(6), then z clearly dominates p'(6) which contradicts that p'(6) belongs
to the IRP set P(8). If p1(6) < 1 and p3(8) < 4, then y(1) Pareto dominates
p'(8). This contradicts the fact that no payoff vector supported by an IRP
set can Pareto dominate any other vector in the IRP set. If p;(6) = 1 and
pL(8) < 4, then y(1) again contradicts that p'(8) (as defined) is the minimum
for player 1 in the IRP set. This shows that it is not possible that p3(§) < 4.

Once we assume Proposition 2.1 and the fact that 1t implies in our example
that player 2 cannot get more than 4 in any vector contained in the IRP set,
part (b) immediately follows. It cannot be that p3(§) > 4.

We are left with the proof of part (c). If p}(§) > 1 and p; = 4, then y(1) is
supportable by P(§). y(1) must belong to P(6) for if any vector strongly Pareto
dominates y(1), then we contradict Proposition 2.1 (that no payoff vector in
an IRP set can give player 2 a payoff greater than 4). If p}(8) < 1 and p; = 4,
then note that y(2) = (1—6)(1,4)+ 8y(1) which results from playing the Nash
equilibrium (7', C) today and y(1) from tomorrow, is supportable by P(6) and
must belong to P(§) (nothing can strongly Pareto dominate this vector when
(b) holds. In this way, by repeatedly supporting payoffs with the help of (1,4)
and y(k), we can in the limit approach (1,4) which must belong to P(6) as
P(6) is compact.

Now, applying the arguments given in the outline for part (d), we conclude
that our example does not admit any IRP sets for all high enough discount
factors.

Assuming the ramifications of Proposition 2.1, it is still instructive to know
where Ray’s theorem is helping us. The intuition behind the non-existence of
a singleton limit set is simple. Such a singleton set must Pareto dominate (at
least weakly) both the Nash equilibrium payoffs. Otherwise, for large 6, points
close to that Nash equilibrium which is not dominated can be supported by

repeatedly supporting payoffs with the help of that Nash equilibrium (note that
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nobody can unilaterally deviate and gain from a Nash equilibrium). However,
given the structure of F* in the example, there exists no payoff m F* which
weakly Pareto dominates both the Nash equlibria. It is in the non-existence of
a non-singleton limit IRP set where we use the full power of Ray's Theorem :
the argument hinges strongly on the structure of IRP set. From Proposition
2.1, no IRP set can have a payoff where player 2 gets more than 4. If IRP
sets exist, (1,4) should belong to the IRP sets as shown. The proof of Ray’s
theorem implicitly shows that if (1,4) has to belong to a non-singleton limit
IRP set, then for large discount factors, points arbitrarily close to (2,4) must
also belong to each member of the sequence of IRP sets which converge to
the non-singleton limit. Let (6,) be a sequence of discount factors converging
to 1 as n — oo. For any large discount factor §,,, let 2, be close enough to
(2,4). Let z, be the point on the line segment joining (0,6) and z, which
gives player 2 a payoff of 4. Now z,, for z, sufficiently close to (2,4), is far
away from (1,4). Consider the first large enough positive integer & such that
(1—6%)(0,6) + 6%z, Pareto dominates (1,4) for the first time. If A is the first
such k, then note that the expression (1 — §%)(0,6) + 6%z, can be supported
by the three element sets {z,,(1,4),(4,1)} for each k < K with the threat for
player 1 being reversion to the Nash equilibrium with payoff (1,4) if he deviates
(the threat for player 2 is reversion to the other Nash equilibrium with payoff
(4,1)). The future losses of player 1 for deviating is at least 6,(z, — 1) which
for large n (since player 1’s payoff from =z, is greater than and bounded away
from 1) will be higher than (1 — §,)4 (the one shot deviation gains). Now, one
can argue that (1—6X)(0,6)+ é6Xz,, or a payoff that Pareto dominates it, must
belong to the IRP set. However, player 2 gets more than 4 in this pavoff vector.
Consequently, this violates Proposition 2.1. Hence, in this exampie. there can
be no IRP set for high enough discount factors.

A minimal modification of this non-existence proof goes through even when
we do not explicitly require IRP sets to be compact.

Now, we proceed towards the statement and proof of Proposition 2.1. To
develop the idea and the notation, we will start with a discussion on WRP

sets. The first part of the discussion is essentially on the intuition behind the
necessary conditions of Theorem 1 of Farrell and Maskin (1989). Consider the
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payoff vector in a compact WRP set which gives player 1 his minimum payoff
in the WRP set (once again, if this is not unique, then take that vector among
player 1’s minimizers which give player 2 the highest payoff). Let this vector
be p'(6). Let p'(6) be supported by the compact WRP set with action vector
b and payoff vectors p, p!, p?, all belonging to the WRP set such that

(1 — 8)(91(b), 92(b)) + ép = p'(9)

and for each 7 = 1,2, (1 — 8)[c;(b) — ¢:(b)] < é[p; — P].
Note that (g1(b), g2(b)) must belong weakly to the northwest!! of p'(8) (If it
belongs strictly to the northeast, then p'(§) dominates the continuation vector
with which it is supported and this cannot happen. If it lies strictly to the
southwest of p'(§), then p'(§) is dominated by the vector with which it is
supported and this is also not possible. If it belongs to the southeast of p'(§),
then the vector with which p'(é) is supported contradicts the definition of
p'(6)). Note further the action pair must satisfy (1 = 6)ei(d) + 6p; < plif
player 1 is not to deviate and gain from p'(§); in other words ¢,(b) < p!(6).
Since such an action vector b has to exist, so for any v = (v;,v;) belonging
to the WRP set, vector a belongs weakly to the northwest of v and satisfies
c1(a) < v, (note that v belongs weakly to the southwest of p(6)).

Let A’ denote the set of all action pairs (of the one shot game G) such that
for each a € A’ (a = (a;,a;) where a, is player 1’s action and a, is player 2’s
action), there exists some v, such that (v;, g,(a)) € F(F*). In the example (see
figure 2.3) A’ corresponds to that section of F* which gives player 2 at least a

payoff of zero.
For each a € A’ | let f(a) denote the maximum value of v; for which

(v1,92(a)) € F(F*) for each a € A’. As an illustration, in the example,
f(Tm C) = 4.
Consider the following problem

Mingeq Max[ci(a), f(a)] (2.3.1)

1A vector (vy,vy) lies weakly to the northwest of (v),v5) iff v; < vy and vy > v). Observe

that (v}, vy) lies weakly to the northwest of itself. Lying ‘to the northwest’ indicates that at
least one of the inequalities is strict. Lying ‘strictly to the northwest’ implies that both the

inequalities are strict. Similarly, lying to the southwest, southeast, northeast can be defined.



Player 2's
payoft

Player 1's payoft
Figure 2.3
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where it may be remembered that ¢;(a) denotes the maximum deviation payoff
for player 1 from action vector a. Note that the solution to program (2.3.1)
exists because ¢; and f are both continuous functions on a compact set A’. It
can be shown (see Appendix) that irrespective of whether A4; for 1t = 1,2, are
mixed or pure action spaces, in the example, the solution to (2.3.1) is uniquely
attained at a' = (T, C) with payoffs (1,4). ¢;(T,C) =1 and f(T,C) = 4.
Program (2.3.1) helps us to identify how high player 2’s best payoff vector
(which is player 1’s minimum payoff vector) can be in the WRP set such that
we can have an action vector lying to the northwest with maximum deviation

payoff (for player 1) being less than player 1’s payoff from his minimum vector.
All this is formalized in the next proposition.

Proposition 2.1 Let player 1’°s payoff be written on the X-azis and player 2’s
payoff be written on the Y-azis. Suppose for a game G, F(F*) is downward
sloping. Let a' be one solution to problem (2.5.1) and k, be the value of (2.5.1).

Let X = ky intersect F(F*) at v,. Then for any § < 1, there cannot be a WRP
set W (&) such that there ezists (vy,vy) € W(6) where v, > 0,.

Proof. (See Figure 2.3) If there exists a WRP set with a payoff (v, v2) such
that v > v, then from Farrell and Maskin (Theorem 1, 1989) 3 a such that
c1(a) < vy < k; and g,(a) 2 vy, > v3. Now if F(F™) is downward sloping, then
f(a) < k;1. So a contradicts the fact that a' is a solution of (2.3.1). -

The existence of a® corresponding to player 2’s version of (2.3.1) is also guar-
anteed. In the example, k;, = Max [¢,(T, C), f(T,C)] = 2; where ¢;,(T,C) =1
and f(T,C) = 2. So, v = 4. To see the implication of the Proposition 2.1 on
our example, note that if P(§) is an IRP set, then it is a WRP set. So, it is not
possible that p;(6) > 4. A symmetric argument rules out p?(é) to be greater
than 4.

The game in our example has no dominated strategies. A small perturba-
tion of the payoff structure keeps the non-existence result valid. This is because
the solution to program (2.3.1) still remains a Nash equilibrium for small per-
turbations. There will be another Nash equilibrium far apart and there will be
no payoff in F* which will dominate both the equilibria simultaneously. This

is enough for non-existence of limit IRP set. Further, even for pure strategies
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an IRP set does not exist (the same proof). The non-existence remains even

when we consider the weak Pareto dominance criterion.

2.4 Almost Non-Stationary IRP Collection

We wish to examine if existence can be restored in our example with a mod-
ification of the concept of an IRP set. Specifically, we modify the stationar-
ity (across histories) assumption in the definition of IRP set to include non-

12 If the theory of tomorrow is that

stationary behavior at different histories
any payoff from the payoff set P’ can occur, then consistency should require
that P, the theory of what payoffs can accrue to the players today given to-
morrow’s theory, should be the Pareto frontier of the set of payoffs supportable
by P’. In other words, today’s theory P should equal F(6'(P’)). Further,
consistency also requires that the theory P’ of tomorrow should be consistent
with the theory of day after tomorrow (say P”); i.e. P’ = F(6'(P")). Sim-
ilarly, day after tomorrow’s theory should be consistently derived from “day
after day after tomorrow’s” theory and so on. Note that the concept of IRP
set goes beyond this kind of requirement of consistency. The definition of IRP
set requires that not only should the theories at different dates be derived con-
sistently, but that they should all be the same; i.e., it imposes an additional
stationarity property. We now dispense with this stationarity property in the

following notion of a Non-Stationary Internally Renegotiation Proof collection.

Definition 5. We call a collection N of compact subsets of F*, a Non-
Stationary Internally Renegotiation Proof Collection (NIRP collection) if for
any subset P, € N, there exists some subset Fy, € N such that P, =

F(6'(Pet1))-

In other words, if Py, is the theory of tomorrow, then today’s admissible
payoff set P, is the efficient frontier of payoffs supported by Pi+:. Note that
Pt+1 must itself Sﬂ.tiSf}r Pt—l-—l = F(ﬁI(Pt+g))' for some Pt+'1 e N and so on. When

12Ray has mentioned this non-stationary concept in his paper although he has not elab-

orated on its properties. Also, see Bergin and Macleod (1993) for a discussion on ‘efficient

arrangements’.
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a NIRP collection is a singleton, then the singleton element is an IRP set.
Nonetheless, it is difficult to show the existence of NIRP collections in most
classes of games (except when there is a unique Nash equilibrium). What exists
more generally is a marginally weaker concept which we will call an “almost”
NIRP collection. If P, , is the theory tomorrow, then the definition of an NIRP
collection requires that today’s theory P, be consistent with tomorrow’s theory,
and therefore be exactly equal to F(6'(P,4;)). In an almost NIRP collection
everything that belongs to P, must belong to F(8/(P,,,)). However, there could
be some payoff vectors in F(8/(P,,)) which may not belong to today’s theory
P, if each such vector is weakly Pareto dominated by some other payoff vector

(however, only one player should get a higher payoff in this dominating vector)

from today’s theory P,.

Definition 6. We call a collection N of compact subsets of F*, an Almost
Non-Stationary Internally Renegotiation Proof Collection (ANIRP collection)
if for any P, € N, there exists P,,; € N such that P, C F(6'(P,41)) and for any
p € F(0!(Py1)), there exists p' € P, such that p' = p where both co-ordinates
of p’ are not higher than the corresponding co-ordinates of p.

In an ANIRP collection, we have weakened the requirement that
F(6'(Piy1)) € P.. All that we require i1s that for p € F{HI(PHl)), if p it-
self 1s not in P, then some other p’ must belong to P, where p; = p: for some 1
and p; < p’ for j # 1.

In this section, we concentrate on mixed strategy action spaces. We first
show that, if for some discount factor, a game has certain properties, then it
must admit an ANIRP collection for that discount factor. We show, later, that
for all high enough discount factors, our example satisfies the property; so, an
ANIRP collection exists in our example. But before we can show this, we need
to develop some additional notation. Recursively, define R(T, §) as follows:
Let P(1,6) denote the set of Nash equilibrium payoffs!® of G. Moreover, let
R(1,46) denote F(P(1,6)) and R(2,6) denote F(6(R(1,4))). Continuing in this

13Since G is played once, § plays no part. Nevertheless to keep notation simple we put § in
the notation P(1,6).
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way, for T > 2, we can define'* R(T,¢) as denoting F(6(R(T — 1,4))).

Since P(1, ) is nonempty and compact and F(-) and 6(-) always map com-
pact sets onto compact sets, R(T, §) is non-empty and compact for each T and
§. R(T,§) as defined is nothing but the set of Renegotiation Proof equilibrium
in (G7,6) as defined by Benoit-Krishna. Nevertheless, we presently ignore the
significance of the above recursive expression in finitely repeated games. This
will be attended to in Chapter 3 in greater detail.

Theorem 2.2 portrays a situation in which every limit point set of
(R(T, 6))F-, belongs to an ANIRP collection. More generally, Theorem 2.2
says that if for a discount factor, the sets R(T, é) are large for all large enough
repetitions, then any limit point set of (R(T, $))F-, must belong to an ANIRP

collection.

Let p*(T,é) be the minimum payoft vector of player 1 among all vectors in

R(T, 6).

Theorem 2.2 Let A;;i = 1,2 denote mized strategy action spaces. Let & be
such that there exists a positive integer T'(6) > 1 and a B > 0 such that
whenever T > T'(§), there ezists z(T,8) € R(T,¥$) which satisfies, for each

i = 1,2 and any action vector a € A, the following inequality:

[ci(a) — gi(a)] + B <

é i
= !5[If(Tw‘5) — pi(T, 8)). (2.4.2)

Then any limit point set R'(8) of (R(T), §))7-, must belong to an almost NIRP

collection.

Observe that expression (2.4.2) can hold only for discount factors sufficiently
higher than zero. Put another way, if expression (2.4.2) holds for alla € A and
all repetitions T large enough, then, for all 7, for all a € A and all large
repetitions T, the following expression must also hold:

eia) — (@) + 8 < S (. 8) ~ AT )

14This recursive definition of R(T,8) is similar to the definition of Coalition Proof Nash
equilibrium in Bernheim and Whinston (1987).
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The above expression indicates how large R(T', §) must be for large T. It must
include a point z(T, §) such that, firstly,

(1-9)
(1 — 8T+1)

gi(a) + 7 2(T, 6)

is supportable in the T-times repeated game by the three point set
{z(T, 6),p"(T, 6), p*(T', 6)} for all a € A. Secondly, while supporting the above
payoft vector, the incentive constraints for both players must be satisfied with
a slack higher than some positive number 3.

We want to show that if R!(§) is a limit for some sequence (R(Tx, 6))32, and
R?(6) is a limit point set of (R(Tk_1, 6))%21=1, then R'(&) is derived consistently
(in the sense of the definition of ANIRP collection) from R?%*(§). The formal
proof can be outlined as a sequence of claims as follows: our first claim is that
R'(68) C 6'(R?*(6)); i.e., every vector in R! (6) belongs to the set supported by
R%*(é) in the infinite repeated game. Qur second claim is that for any payoff
vector r(4) belonging to the set supported by RZ?(§), there is some vector in
R'(6) which gives both player at least as high as from r(é). Before proving the
second claim, we will look at the ramifications that the second claim can have
when it is true. This leads to our third claim, which says that whenever the
second claim is true, any payoff vector in R'(4) must belong to the efficiency
frontier of the set of payoffs supported by R?*(8). Our fourth claim says that
whenever our second claim is true, for any payoff vector p belonging to the
efficiency frontier of the payoff set supported by R?*(6), there exists some payoff
vector in R'(6) which is no worse (for each player) than p but which cannot
give both players strictly higher payoff than p. After proving the fourth claim,
we will try to prove the second claim. In the proof of the second claim, we will
need mixed strategies (to move smoothly around any action vector) and also
the largeness of the sets R(T,§), as required by the statement of the theorem.

Proof of Theorem 2.2

Let (Ty)?Z, be an increasing sequence such that R(T},§) — R'(6) as k —
oo. Consider the sequence (T — 1)§2,. We can always extract a subsequence
(Tkn, — 1)72%, from (Ti — 1), such that R(T}, —1,8) — R?*(8) as n — oo. This
follows from the fact that the space of all compact subsets of F* endowed with
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the Hausdorff metric is a compact metric space. Note that R'(8) and R?*(§) are
compact from properties of set convergence. Since no payoff in R(T, §) Pareto
dominates any other payoff in R(T,§), this property holds also for the Limit
point sets; i.e., R'(§) = F(R'(§)) and R*(6) = F(R?*(6)). Let p'(é) be the
minimum payoff vector for player i in R*($).

Claim 1. R!(8) C 6'(R*(¢)).

Note that R(Tk,.,6) € 6(R(Tx, — 1,6)). If R(Tk,,6) — R'(8), then for any
z € R'(6), there must be sequence (z,)72, where each z, € R(T,_,6) such that
z, — z as n — oo. Let z, be supported by R(Tk, — 1,6) through the action
vector a, and the payoff vectors pn,p' (Tk, — 1,6), p*(T, — 1,8) € R(Tx, —1,96).
As n — oo, let the action vector converge to a and the payoff vectors converge
(taking converging subsequences if necessary) to p, p'(6), p*(8). Now, the payoft
vectors p, p*(6), p*(6) must belong to R?*(§) and from the continuity (see the
incentive constraints in Definition 1 and 2) of ¢;(+) — gi(+), z must be supported
by R%(8) with the help of action vector a and these payoft vectors. This proves
Claim 1.

Claim 2. For any vector r(8) € 8(R?(6)), then there exists ¢(§) € R'(8) such
that ¢(6) = r(9).

We will postpone the proof of Claim 2 until we have shown our other claims.
Claim 3. If claim 2 is true, then R'(§) C F(6'(R?*(9))).

We know from claim 1 that if r € R'(é), then r € 68'(R?*(8)). So, if r does
not belong to F(6'(R?*(é))), then there exists z € 8'(R?*(6)) such that z >>r.
Then, whenever claim 2 is true, there exists ¢ € R(6) such that ¢ 2> z. However,
this implies that ¢ >> r which violates R'(8) = F(R'(6)). Hence, it must be
that r € F(8'(R%*(4))).

Claim 4. If claim 2 is true, then for any p € F(8/(R?*(6))), there exists
p' € R'(6) such that p’ > p with p’ not strongly Pareto dominating p.

If claim 2 is true, and since p € 8/(R?(6)), there exists p' € R'(8) such that
p’ > p. Now, from claim 3, we know that p' € F(6'(R(8))). p' cannot strongly
dominate p, since otherwise, there are two vectors p’ and p in F(07(R?(8))) one
of which strictly dominating the other, which cannot be true.This proves claim

4.

Note that if we can show that claim 2 is true, then we can conclude with
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the help of claim 3 and claim 4 that R'(§) indeed is consistently derived (in the
sense of ANIRP collection) from the next day’s theory R2(§). We now start
proving claim 2.

Following the statement of claim 2, let r(§) € 6'(R?*(6)); then r(6)

be supported by R?(§) by some action vector b € A and payoff vectors
p(8),p'(6),p*(8) € R*(6). So, for i = 1,2,

ri(6) = (1 — 6)g:(b) + pi(6)

and
[ei(b) — 6i(B)] < ——[pi(6) — F(8)]

Extract a subsequence from (Tj, — 1)22,, such that, along the subsequence,
there exists payoff vectors z(T}, — 1,8), p(Tk, — 1, 6) and p'(Tk, — 1,6), all be-
longing to R(Ty, — 1, 8), such that

z(Tk, — 1,6),p(Ts,, — 1,8),p* (T}, — 1,6) — z(6),p(8),p'(8) as Tx, — oo for
some z(6),p'(8) € R*(8). For large Ty, — 1, the vector z(Ty, — 1,6) is the vec-
tor from the statement of this theorem. Note that extending expression (2.4.2)
to the limit, for each @ € A and i = 1,2, the following conditions must be

satisfied:

[ei(a) = gi(a)] < ——[x:(6) — A()].

;e
Now check that p;(8) > z;(§) for some i. Otherwise, z(8) will Pareto dominate

p(4) which will contradict R*(6) = F(R?*(6)). Let without loss of generality
p2(8) > z2(8), in which case

[c2(b) — g2(b)] < : fé[}?z(ﬁ} — P3(8)].
Case 1 :
Let [c,(b) — g1(b)] < {lfﬂ[pl{ﬁ) — pi(8)]- Then from continuity of [¢;(-) —
gi(-)], for large enough Iy.—1, for each 1 = 1,2, [ci(B) — gi(b)] <

5 pi(Thn — 1,8) = Fi(Th, — 1,6)]. So, (Tk,, 8) € O(R(T, — 1,6)) where
r(Tk,,96) = (r1(Tk,,6),72(T%,,8)) is defined for i = 1,2 as

§(1 — §Txn—1)
(1 — éTkn)

(1-8)
(T, 8) = G —5ry9i(a) +

pi(Tkn = 1, tﬁ)



Existence of IRP Sets in Infinitely Repeated Games 26

Now, from definition of R(Tk,,6,), there exists vector ¢(T%,,6) =
(¢1(T%., 6),q2(T%,,6)) € R(Tk,,9d) such that for : = 1,2, qi(Tx,.,6) = ri(Tk,,9).
Note that r(7%,,9) i r(§). We now extract a subsequence from
(¢(T%x, ,8))2, which converges to some ¢ € R'(§). It must be that ¢ > r(4).
Case 2:

Let [ci(b) — g1(b)] = {IEE}[pl(E} — p}(8)]. Note that if c1(a) = gi(a), the
proof in Case 1 goes through since [¢,(b) — g1(b)] < 5(1- 6 hn _ll[pl(Tkﬂ —1,6) —

(1-6)
pi(Tk, — 1,6)] as player 1 cannot deviate and gain. That player 2 should not

deviate follows for large n 1s easy to see.

If c;(a) > g1(a), it may no longer be true that for large n, r(7Tkx,,6) (where
ri(Tx,,6) = (1(_1;3,.191'(“) + 5{:1“_'5:;::;}_:1;(1"&“ —1,8) for some p(Ty, —1,8) €
R(Ty, — 1,6)) is supportable by R(Tk, — 1,6) because the incentive constraints
may not be satisfied. Nevertheless, we take a different route. We claim the

following : there exists a sequence (as)%., of mixed action vectors such that
bs — b, and for each bg and 1 = 1, 2,

6
(1-9)
To show this, let b = (by,b2); here b, and b, are probability distmbutions

(mixed strategies) over the pure action spaces of player 1 and 2 respec-

[ci(bs) — gi(bs)] <

[pi(6) — 5i(8)]

tively. Let b, denote the maximum deviation strategy for player 1 from ac-
tion vector b. So, c;(b) = ¢1(¥,,b,) (without loss of generality b, is a de-
generate distribution at a pure action). Let b;(A) = (1 — A)by + Ab for
A € [0, 1] denote a mixed strategy action for player 1. Note that g1(b:1(}), b2) =
(1 — A)g1(b) + Aei(b), and c;(b1(A),b;) = ¢1(b). Further, g;(5:1(A),b2) is an
increasing function of A and correspondingly, c1(bi1(A),b2) — g1(b1(A), b2) is a
decreasing function of A. For A close enough to zero, it must be the case that
c1(b1(A), b2) — g1(b1(A), b2) < gE5[P1(8) —p1(8)]. From continuity of c5(-) —ga(),
it follows that ca(b;(A), b2) — g2(b1(A), b2) < -{T{T}[pg(ﬁ)—ﬁg(ﬁ)]. So, it is possible
to get a sequence (bs = (b1(As), b2))Z, where for each 5, As is close enough to
zero, such that (b;(\s),b2) — b as S — oo and for each bg for : = 1,2,

)

[ci(bs) — 9i(bs)] < (T:?)fpi(‘g) — pi(9)] (2.4.3)

For each bs we apply the proof of Case 1. So, there exists r(bs,6) €
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0'(R*(6)) and g(bs) € R(6) such that q(bs) > r(bs,8), where for i = 1,2,
ri(bs,8) = (1 — 6)gi(bs) + 6.pi(6). Note that r(bs,6) — r(6) as bs — b (as
A — 0). Extract a subsequence (bg,){2, from (bs)%, such that ¢(bs,) — ¢ as
| = co. Note that ¢ € R'(8) and q > r(4).

This completes the proof of claim 2. Now, to see how R!(§) belongs to an
ANIRP collection, let us note that R?(§) must itself be almost ( in the sense of
the definition of ANIRP collection) the efficient frontier of payoffs supportable
by some other limit point set R3*(§) by an identical argument, and so on and
so forth. The collection {R*(§)|n = 1,2,---,00} is an ANIRP collection. We
started with an arbitrary R!(§). Taking different limit point sets as the initial
R'(é) shows that any limit point set belongs to some ANIRP collection. |

Note that in Case 2 of Theorem 2.2, we are using properties of mixed
strategy action spaces. The problem with pure strategies in this case is the
following. Suppose pure action vector a € A satisfies the hypothesis of case
2. So, [c(b) — g1(b)] = ﬁ[ﬁ('ﬂ — p1(8)] and the corresponding expression
for player 2 is attained with strict inequality. We cannot directly rule out that
[e1(b) — g1(B)] > ”‘;ff’;;“’?[pl(n_, —1,68) — pi(Tx, — 1,6)] for all large enough

T}, — 1 since the magnitude of the right hand side expression is not known. We

only know it’s limit as n goes to infinity to be [c;(b) — g;(b)]. Moreover, if we
restrict attention to pure strategy action spaces, unlike in the mixed strategy
case, we may not be able to action vectors bs close enough to b which satisfies
[ci(bs) — gi(bs)] < ﬁ{pi(ﬁ) — pi(8)] for each ¢ = 1,2. So we can no longer
apply the arguments of case 1 and case 2 in the proof of claim 2. This is where
Theorem 2.2 may fail to hold for pure strategy action spaces.

Can the collection of all limit point sets of (R(T, §))%_, be an ANIRP collec-
tion? In a setting as in Theorem 2.2, this is true. In the proof of theorem 2.2,
we started with an arbitrary limit point set R'(6) and showed that there must
exist some other limit point set R?*(§) such that R'(é) is consistently derived
from R?(é). Since the initial R'(§) is arbitrary, the collection of limit point sets
1s an ANIRP collection. This is formally stated in Corollary 2.1. The setting
in which this corollary works is enjoyed by all games which satisfy the setting
of Theorem 2.2.
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Corollary 2.1 Let A;,: = 1,2 denote mized strategy action spaces. Consider
the collection of all limit point sets of (R(T,6))F-,- Suppose, for any set R
belonging to this collection, there ezists a vecior z(R) € R such that for each
i = 1,2 and any action vector a € A, z(R) satisfies the following inequality

(@) — 9:()] < ——lzi(R) — B(R)] (2.4.9)

Then this collection of all limit point sets is an almost NIRP collection. Above,
p*(R) is the minimum payoff vector for player © in R.

Note that the main virtue of condition (2.4.2) in Theorem 2.2 is to guarantee
that in the limit, condition (2.4.4) holds for the limit point set R. So, the proof
of Corollary 2.1 follows immediately from the proof of Theorem 2.2 (through
the arguments in Case 1 and Case 2) and hence, will be omitted.

We now show that our example of the previous section satisfies the condi-
tions of Theorem 2.2 for large enough 4.

Example

We start by establishing that in the game considered in section 2.3, (see
figure 2.2) it must be the case that for all T, and : = 1,2, p'(T, ) is weakly to
the north-west of (1,4), and p*(T, §) is weakly to the north-west of (4,1). This
will further imply that for all T, p*(T, é) will always be on or above the straight
line passing through (6,0) and (1,4). Similarly, p*(T,$6) will always be on or
above the straight line passing through (0,6) and (4,1). So, we claim that for all
T and i = 1,2, p'(T, §) must satisfy p3(T,8) > 4 for j #{and 1 < pi(T,6) < 2.
Without loss of generality, we show that this is true for p'(T,é) for all T.
Otherwise, let T* be the first T such that either of these three situations occur:
(a) py(T,6) < 4; (b) pi(T,6) > 2 or (c) pi(T,6) < 2. Foral T < T7 ,
py)(T,6) > 4 and 1 < pi(T,¢) < 2. Note that T > 1 for at T =1, p(T,6) =1
and p}(T, §) = 4. Note that {2zrd5(1,4) + ”;;_f;j" ' (T* —1, 6) is supportable
by R(T* — 1,6) with the help of the Nash equilibrium (1,4) and gives a payoff
of less than 2 to player 1 and a payoff of at least 4 to player 2. Consequently,

given the structure of the feasible set of payoffs in this game, cases (a) and

(b) cannot occur. If case (c¢) occurs, then consider the action vector @ through
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which (we also require three payoff vectors to support) p' (7", §) is supported

by R(T" —1,6). (g1(a), g2(a)) must occur to the north-west of (1,4). However,

from our analysis in section 2.3, we know that ¢;(a@) > 2. So, if player 1 deviates
) - . = _§T*=1y _ . . .

from playing a, he gets {—E—Eﬂ—}q(u) + E{;_ﬁ&p] }p‘(T — 1,46) which is greater

than 1 (current payoff is greater than 1 while continuation payoff is at least 1);

this implies that player 1 should deviate since by not deviating he will get less
than 1. So, case (c) also cannot occur. This implies that p' (T, §) lies weakly to
the north-west of (1,4). A similar argument shows that for all T, p?(T, §) must
lie weakly to the north-west of (4,1).

Let d = Max;-;2 Max,ca[ci(a) — gi(a)]. d denotes the maximum one shot
deviation gain possible by one of the players. We will focus on the line segment
L joining points (2.3,2.7) and (2.7,2.3). Note that (2.5,2.5) lies on L. Also, note
that for all T, there exists p'(T, é) lying strictly to the north-west of (2.3,2.7)
(actually to the north-west of (2,4)) and p*(T, ) lying strictly to the south-east
of (2.7,2.3). Let 6 be high enough such that §é satisfies (a) 2.56 > 2.3 and (b)

(155}[2-5-—2.3] > d+ 3 for some B > 0. For § in the requisite range, let T(§) be

such that (a’) {4525 > 2.3 and (b’) 2028025 23] > d+ 8. For §
in the given range, we will show that there exists T'(§) > T'(§) such that for all
T > T'(6), there exist z(T,8) € R(T,$) and y(T,6) € L where z(T, &) satisfy
the conditions of Theorem 2.2 and z(T, §) > y(T, §). We build an algorithm to
get hold of such a T'(6). While going through the algorithm, always remember
that the algorithm can only pick such points which lie on or above the straight
line passing through (6,0) and (1,4).

Step 1. For § in the requisite range and T(d) as defined, we know that
p'(T(6),6) lies on or above the line passing through (6,0) and (1,4) and to
the north-west of (2,4). Check that for our § and T'(§), and the fact that player
1 cannot deviate and gain,

(1-9)
(1 — 6T(®)+1)

§(1 — 6T4)
(1 — §T(O)+1)

r“}(a) = (61 0) +

p'(T(8),6) € 6(R(T(9),$)).

So, there exists ¢()(§) € R(T(6)+1,6), such that ¢ (&) > r(1)(§). If ¢,V (6) >
2.5, then go to Step 2. If ¢,(V(§) < 2.5, then go to step 3. Note that ¢ (6) has
to lie above the straight line passing through (6,0) and (1,4). So, if ¢.(1)(§) <
2.5, then ¢,(V)(8) > 11.5/4 where (11.5/4,2.5) is a point lying on the line segment
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joining (6,0) and (1,4).
Step 2. If for some K > 1, ¢,(K)(6) > 2.5, then generate ¢!K+1)(§) in the
following manner. Check that

(1-9) 6(1 — §TO)+K)

PK+1)(5) = a __5:rm+x+1)(6v") + 7 —6T{5}+H+1)q”ﬂ(6) € 6(R(T(6)+K,$)).

So, there exists ¢'*+1)(§) € R(T(6) + K + 1, 6) such that g K+1(§) > r(K+1(§),
If ¢;'%*+1)(8) > 2.5, go to Step 2. If g2(K+1)(8) < 2.5, then go to Step 3.

Step 3. If for some K > 1, ¢,K)(§) < 2.5, then generate ¢(F+1)(§) in the
following manner. Using the fact that ¢,(X) > 11.5/4, and that player 2 cannot
deviate and gain, check that

(1-9) 6(1 — §T()+K)

e (1-— 5?‘{5}+H+1)(0’6) M (1-— 6T(5)+H+1)q{m(5} € 6(R(T(6)+K,$9)).

So, there exists ¢(K+1)(§) € R(T(6) + K + 1,6) such that ¢K+1(§) > r(K+1)(§),
If ¢;X+1(8) > 2.5, go to Step 2. If g K*+1)(§) < 2.5, then go to Step 3.

From the way we have built our algorithm, it is easy to see the following
facts. As K becomes large ¢'%)(§) approaches the line segment joining (0,6)
and (6,0). Further, there exists a large K’ such that for all KX > K', ¢K)(§) >
y(K) for some y(K) € L. Let T'(§) = T'(6) + K’, and for T > T'(8) define
z(T,¢) = ¢(T — T(6)). We will show that for T > T'(§), z(T,6) satisfies
the condition of Theorem 2.2. Given the 8 in the construction, we require
to show that for any action vector a € A, for each 1 = 1,2 we must have
lci(a) — gi(a)] + B < %[m;(’f, §) — pi(T,8)]. Note, from the fact that
pi(T,6) < 2, for T > T'(§) we must have

§(1 — 67)
(1—-9)

§(1 —&7)
(1-9)

§(1 — 674
(1-6)

[z:(T, 6) — pi(T, 8)] > 2.3 -2] > [2.5 — 2.3].

Observe that the expression on the extreme right is greater than d 4+ 3. So,
as required in the statement of Theorem 2.2, in the limit, lci(a) — gi(a)] <
ﬁ{:;(i"‘,ﬁ) — pi(T, 6)] for all action vector a € A. From Theorem 2.2, it now

follows that an ANIRP collection exists for our example.
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2.5 Conclusion

In this chapter, we have shown that IRP sets may not always exist, even with
high discount factors. Nevertheless, in many occasions, an almost NIRP collec-
tion may exist. In particular, in the example where no IRP sets exist for low
discounting, almost NIRP collections do exist for low discounting. One area
of my future research is to try and characterize games which admit ANIRP
collections. Another future research direction includes the question about the
structure of limiting ANIRP (also NIRP) collections as discounting vanishes.
In particular, do these limits look like the IRP set limits; i.e., are they either
singletons or efficient?

In the next chapter, we explore the connections between renegotiation proof
sets of long finitely repeated games for low discounting and internally renego-
tiation proof sets in infinitely repeated games.

2.6 Appendix

We will show that the solution to program (2.3.1) is uniquely attained at a’ =
(T,C). We will focus on mixed strategies (the proof for pure strategies is easy
to see).

Note that ¢;(a’) = 1 and f(a’) = 2. So, Max[c,(a’), f(a')] = 2. We will show
that there exists no other action vector & such that Max[c;(a), f(a)] < 2. We
focus on action vectors @ € A’ such that f(a@) < 2 (otherwise Max[c,(a), f(a)] >
2). So, it must be that g,(a) > 4.

The only two ways that there can be any action pair a € A such that
g2(@) > 4 are
(a) a is (T,C).

(b) a assigns at least § probability to (B,L) being played.

We will show that if (b) holds, then Max[c,(a), f(@)] > §. Let a = (ay,as).

Note that if @ has to assign at least probability 2 to (B,L) being played, then

2

a; must place a probability of at least 3 on L. Consider now the action pair

(M,a;), where player 1 plays the pure strategy Mwith probability 1 and player



Existence of IRP Sets in Infinitely Repeated Games 31
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In this chapter, we have shown that IRP sets may not always exist, even with
high discount factors. Nevertheless, in many occasions, an almost NIRP collec-
tion may exist. In particular, in the example where no IRP sets exist for low
discounting, almost NIRP collections do exist for low discounting. One area
of my future research is to try and characterize games which admit ANIRP
collections. Another future research direction includes the question about the
structure of limiting ANIRP (also NIRP) collections as discounting vanishes.
In particular, do these limits look like the IRP set limits; i.e., are they either
singletons or efficient?

In the next chapter, we explore the connections between renegotiation proof
sets of long finitely repeated games for low discounting and internally renego-
tiation proof sets in infinitely repeated games.

2.6 Appendix

We will show that the solution to program (2.3.1) is uniquely attained at a’ =
(T,C). We will focus on mixed strategies (the proof for pure strategies is easy
to see).

Note that ¢;(a’) = 1 and f(a') = 2. So, Max[c,(a’), f(a')] = 2. We will show
that there exists no other action vector @ such that Max|c,(a), f(a)] < 2. We
focus on action vectors @ € A’ such that f(a) < 2 (otherwise Max|[c;(a), f(a)] >
2). So, it must be that g,(a) > 4.

The only two ways that there can be any action pair @a € A such that
g2(a@) > 4 are
(a) a is (T,C).

(b) @ assigns at least % probability to (B,L) being played.

We will show that if (b) holds, then Max[c,(a), f(a@)] > &. Let a = (a1, a,).
Note that if @ has to assign at least probability % to (B,L) being played, then
a; must place a probability of at least % on L. Consider now the action pair
(M,a;), where player 1 plays the pure strategy Mwith probability 1 and player
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2 plays a;. Check that ¢,(a) > ¢;(M,a,) = %. So, clearly Max[c,(a), f(a)] > 3.
Consequently, program (2.3.1) must be attained uniquely at (T,C). @
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3.1 Introduction

In this chapter, I explore connections between renegotiation proof sets in (long)
finitely repeated games with discounting, and IRP sets of infinitely repeated
games. The notion of renegotiation proofness in finitely repeated games is
relatively uncontroversial, as noted by Benoit-Krishna (1993). If some link
exists between the two notions, that would provide additional basis for the
claim that IRP is the natural notion of internal consistency in infinitely repeated
games. Benoit-Krishna considered undiscounted finitely repeated games and
found that if a limit of the renegotiation proof sets exists as the time horizon
goes to infinity, then the limit set must either be a singleton or a subset of the
efficient frontier of the game. They were not able to show if such limits always
exist, although they conjectured the answer to be in the affirmative, at least
in games with finite number of actions. Do their results extend to the case of
low discounting? Do such limits exist for low but positive discounting? What
form do these limits take; in particular, do they bear any relation to internally
renegotiation proof sets (perhaps the non-stationary version presented in the
previous chapter)? These issues are addressed in this chapter.

The main results are the following:
(a) If for high discount factors, the limit of renegotiation proof payoffs of finitely
repeated games (as the number of repetitions 7' — o0 ) exists, then the limit set
is arbitrarily close to either of two types of sets as discounting goes to zero: a
singleton, or a subset of the efficient frontier of the payoft set. This extends the
main result of Benoit-Krishna (1993) to the case of low rates of discounting.
(b) If as in (a), the limit of renegotiation proof sets for sufficiently long finite
repetitions of a game (with discounting) exists, then the set of limiting payoffs
must be a WRP set of the infinitely repeated game. If the limit is a singleton,
then it must be an IRP set. If in addition mixed strategies are allowed, and
the limit set is a “sufficiently large” non-singleton, then it is an almost IRP
(ANIRP) set of the infinitely repeated game, where an almost IRP set (which
has been considered in chapter 2) is a slight weakening of the definition of an
IRP set.
(c) In the example in chapter 2, where IRP sets failed to exist in the infinitely

repeated context, limits of renegotiation proof sets for long finite repetitions
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of the stage game also do not exist for low enough discounting (irrespective of
whether we consider pure or mixed strategies). Combined with (b) above, this
indicates a close connection between IRP sets and renegotiation proof sets for
long finite games in the case of low discounting.
(d) In the same example, however, limits of renegotiation proof sets in the
undiscounted case exist, when attention is restricted to pure strategies. This is
in contrast to the case of discounting, where they do not exist even for discount
factors arbitrarily close to 1.
(e) Even when Renegotiation Proof sets for long finite games do not have a
limit, it is possible for each limit point set to be included in an almost NIRP
collection, provided that the limit point sets are sufficiently large. In particular,
in the example of chapter 2, every limit point set for low discounting belongs
to an ANIRP collection. This provides additional insight into the connection
of Renegotiation Proof concept between finitely and infinitely repeated games.
Section 3.1 introduces some basic definitions. The basic model is identical
to the one in Chapter 2 and will not be repeated. The definitions of a WRP
set, IRP set, an NIRP collection and an almost NIRP collection are as in
chapter 2. Section 3.2 discusses the case of long finitely repeated discounted
games. Section 3.3 discusses the non-existence (for low discounting) of limit
renegotiation proof sets for long finitely repeated version of the game considered
in the example of chapter 2. Section 3.4 briefly discusses the case of almost

NIRP collections. Section 3.5 concludes. We will follow the notation used in
chapter 2.

3.2 Framework

We use the same basic model of Chapter 2 and most of it will not be repeated.

Let § be the common discount factor and (G7,§) denote the T-time repeated

version of G.
For a sequence (at);‘;u € AT*! and § < 1, the normalized payoff to player 2
in (GT*1,§) from this action sequence is (1[_1&531]231:‘,6‘9.-(&1), whereas if § = 1,

the normalized payoff 1s T}ﬁ-z};ng;(m). Note that all normalized payoffs lie in
.




Reneg. Proof Sets in Finitely Repeated Games 36

Definition 1. Let B(T,é) be a set of normalized payoffs in (G7,4§). Clearly
B(T,6) C F* C IR®. Then payoff vector P(T + 1) € IR? is said to be support-
able by B(T,§) if there exists a € 4 and T),p'(T),p*(T) € B(T, 6) such
that fort = 1,2

1 §(Tiso &) .

>l > v RS

pi(T+1) =
and Ay
[ci(a) — gi(a)] < 5(;) §)(B:i(T) — pi(T)).

When the above conditions hold for a payoff vector p(T + 1), we will say that
p(T + 1) is supported by B(T, é) through the action vector a and the payoff
vectors p(T), p'(T), p*(T).

So for 6§ < 1, the above conditions reduce to

gt __£T
pi(T+1)= (1(1 57(1)1)9;(0) = (i(l_ 67(-5+1))15£(T)

=T _
wad [e(a) ~ gi(@)] < "G g2 (5(T) — B(T)).

On the other hand, for § = 1, they are equivalent to

PAT +1) = 7==0:(a) + 25 (T)

and [ci(a) — gi(a)] < T(p:(T) — pi(T)).
As in Benoit-Krishna (1993), the payoff vector p(T+1) is supported in (GT+1)¢)
by an action vector a in period 1, and continuation payoff P(T) on the equi-

librium path, with p!(T') and p*(T) being the punishment continuation payoffs
for players 1 and 2 respectively.

For a nonempty set of payoffs B(T,8) C F*,let 6(B(T, d)) denote the set
of payoff vectors p(T'+ 1) supported by B(T,é§). It follows that 6(B(T,$)) is
compact if B(T,§) is compact.

For any non-empty set C C IR?, define F(C) = {z € C| there is no y €
C such that y >> z} where! y >>zify; > z; for i = 1,2. Hence,
F(6(B(T,¥5))) is the weak Pareto Frontier of payoffs supported by B(T, é).

!As in Chapter 2, the notation y 2 z will mean that y; > z; fori = 1, 2.
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We will also require a modification of the definitition of an IRP set. We
will call this modification an almost IRP set.

Definition 2

A compact set P C IR* is an ‘almost IRP set’ in G if the following two
conditions hold;

(a) P C F(6(P)),

(b) If p € F(6(P)), then there exists p’ € P such that p. 2 pi for 1 = 1,2, but
p' does not strongly dominate p.

An almost IRP set is much like an IRP set. What has been weakened is
the requirement F(6(P)) C P. If p belongs to F(6(P)), then p may belong to
P. If not, then there must exist some p’ = (p},p}) in P such that p’ = p; for

some 1 and p| > p; for ; # 1. An almost IRP set is obviously a WRP set. An
IRP set is also an almost IRP set.

We now consider our analysis of renegotiation proof sets for discounted

finitely repeated games.

3.3 Long Finitely Repeated Games and Rene-

gotiation Proofness

The set of Renegotiation Proof Equlibria of (G7,§) is defined recursively? as
follows:
Let P(1,4) denote the set of Nash equilibrium payoffs of G. Let R(1,98) deiiot
F(P(1,6)), and let R(2,6)) denote F(6(R(1,6))). Continuing 111 thus way, for
any T > 2, R(T,é) denotes F(8(R(T — 1,4))).

R(T,é) will be defined as the set of Renegotiation Proof payoff vectors in
(G7,8). As shown in chapter 2, R(T,§) will be non-empty and compact®.

Here 1s some notation which we will use throughout this chapter.

This recursive definition was also required in section 2.4 of chapter 2.
3Remember that the way we have defined the map 6(-) guarantees us that payoffs in R(T', §)

are normalized. R(T, 1) here, is what Benoit and Krishna call ﬂg—‘l.
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Notation. R(T,§), as defined above, will denote -the renegotiation proof set
in (G7,8). If the sequence of R(T,§) has a limit as the number of repetitions
T go to infinity, then this limit will be denoted as R(§). R will denote the set
of all limit points* of sequences (R(6,))3%, where 6, — 1 and where R(6,) =
im7_ .o R(T,6n). A typical element of R will be R. Similarly, R(6) will denote
the set of all limit points of the sequence (R(T, §))3°_, with a typical element
of the set being R'(§). By virtue of a property of set convergence, note that
each R € R and each R'(§) € R(6) is a closed set. Just as in chapter 2, the
minimum payoff vector of player ¢ in a compact set B C F™ is that vector which
gives player : the minimum payoff in B. If the set of minimizers is non-unique,
then call that vector in the set of minima as ‘player i’s minimum vector’ which
gives player j (for j # i) the highest payoff in the set. In any compact set, the
minimum vector for any player ¢ is unique. p'(T,48), p'(6) and p will denote

the minimum vector of player 7 in R(T, §), R(6§) and R respectively.

Our first lemma is a technical reqirement which we will keep needing
throughout the chapter. This lemma states that when the limit of renegotia-
tion proof (RP) sets of finitely repeated game (as time horizon goes to infinity)
exists, the sequence of minimum payoff vectors for any player i in the RP sets
of the finitely repeated games, converges to the minimum payoff vector (for the
same player) of the limit set. A similar argument holds for the minimum payoff

vector sequence of any player from a sequence (R($,))32, converging to a set
R as 6, — 1.

Lemma 3.1 (a) If R(8) ezists for § <1, then fori = 1,2, p'(T,§) — p'(8) as
T — oo.

(b) If (R(6n))7%, converges to a set R as 8, — 1, then fori=1,2, p'(6,) — p'.

“P’ is a limit point set of a sequence of compact sets (Pe)32, if there exists a subsequence

(kn)axzy such that P, — P’ as k, — oco. Since the space of all compact subsets of F* when

endowed with the Hausdorff metric is a compact metric space, any sequence of compact sets

in F* will have a converging subsequence. Note that this implies that if (Pe)$2, does not have

a limit as £ — oo, then it must have at least two limit points.
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Proof.

Since the arguments for both (a) and (b) are similar, we will only show that (a)
holds. Suppose p'(T,6) — p # p'(6). Then, by a property of set convergence,
there must exist a sequence (p(T,§))F_, where p(T,6) € R(T,§), such that
p(T,6) — p'(8) as T — oo. Now, for large T, it must be the case that either
p(T, 6) gives player ¢ less than his minimum vector (or if it gives : the same
payoff, then it gives j a higher payoff) or it Pareto dominates p'(§). In either

case we have a contradiction. u

We now show, in Theorem 3.1, that if the limit of renegotiation proof sets in
(GT, 6) exists as the time horizon goes to infinity, then the limit set must be a
WRP set of the infinite repeated game. Later, we will examine the connection
of this limit set with the IRP notion.

To establish theorem 3.1, we need the following preliminary lemma: no

payoff in the limit set (when it exists) can Pareto dominate any other payoff in
the limit set.

Lemma 3.2 (a) Let limp_o, R(T,8) = R(§) for & < 1. Then R(§) =
F(R(5)).

(b) If (R(6,))2%, converges to a set R as 6, — 1, then fori1 =1,2,

Proof.

We will only prove (a) since the two proofs are very similar. Suppose (a)
does not hold. Then there exists z,y € R(é) such that z > y. So, for
ey e > 0,3 T(e) st. V T > T(e), 3 zT,yT € R(T,8) st. 2T €
B.(z) and yT € B.(y), where B.(z) and B,(y) are e-neighbourhoods around =z
and y respectively. If z > y, and ¢ is be taken small enough, then z7 > y7 for
all T > T'(€). This contradicts the fact that no vector in R(T, §) can dominate
any other vector in R(T,$). =

Theorem 3.1 Let limp_,o R(T,68) = R(8) for 6§ < 1. Then R(6) is « WRP

set.

Proof.
We will show that R(8) C 6'(R(9)), i.e., if z € R(§), then there exist a € A
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and p, p', p* € R(6) such that for i = 1,2

zi = (1 — é)gi(a) + ép;
and
[e:(a) = gi(a)] < —>—(: — p)
This combined with Lemma 3.2 gives us the proof.
Consider a sequence (z(T))%-, such that z(T) € R(T,é) and z(T) — z as
T’ — oo. Now, since z(T) € R(T,4), there exists a(T) € A and payoff vectors
(T —-1),p (T - 1),p*(T —1) e R(T — 1) such that

Sl ) ﬂl—&hﬂﬂ
=(T) = 5= 57y9:(a(T) + = =aTy PALim)

(1 — 8771y | .
and  [ci(a(T)) — g:(a(T))] < 1 =5 (Bi(T — 1) — p(T — 1))
Since F* and A are compact it is always possible to extract a subsequence
{T}32, such that along the subsequence, a(T,,) — a; p;(Tn— 1) = B, p?(Ta—
1) — p’ foreachi,j = 1,2 as n — oo. From the fact that R(7,—1,6) — R(6),
it follows that p, p!, p? € R(6).
From properties of limits and continuity of g; it follows that

== _ §(Tn=1)
(51— ﬁiz)gi(ﬂ(T")) 17 5(21 —651‘..) }ﬁ‘(Tﬂ —1) 2=y (1 —8)gi(a) + 6p; = z,
Further,

s 5{Tn‘1:| - — 00 A ;
6(1(1 5 D 5i(Th — 1) = pi (T — 1)) s a fg)(P" =)

since
S( I8 i sivep

(1-29) - (1-9)
From continuity of [¢;(-) — gi(+)], it follows that in the limit,

[e:(a) — 9:(a)] < —2—(p: — p})

So, z is supported by R(9). -
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The arguments of Theorem 3.1 essentially follow from the continuity of the

the function ¢;(+) — ¢i(-) and the compactness of the action set and the feasible
payoft set.

We now proceed to examine the connection of the limit (when such a limit
exists) of renegotiation proof sets for long finitely repeated games to the IRP
concept in infinitely repeated games.

In any game, let us consider the strong® Pareto Frontier of the set of Nash
equilibrium payoffs which we will call the set of undominated Nash equilibria
payoffs. If in some game this set 1s a singleton, then in any finitely repeated
version of this game, the renegotiation proof set is a singleton containing just
this solitary payoff. Further, if the limit set R(6) exists and is a singleton,
then the stage game must have a unique Nash equilibrium payoff which 1s
undominated by any other Nash equilibrium payoffs (i.e., the strong Pareto

Frontier of the set of Nash equilibrium payoffs is a singleton) and R(6) must
be this singleton. This is our next theorem.

Theorem 3.2 In a game G, ‘the set of undominated Nash equilibria’ payoffs

is a singleton if and only if R(8) ezists and is this singleton. This is true for
all §.

Proof.

If R(§) is a singleton, then the singleton has to be a WRP set (from theo-
rem 3.1); so, it must be a Nash equilibrium payoff. It is easy to see that
R(6) cannot be a Nash equilibrium payoff which is dominated by some other
Nash equilibrium, as then for large T, R(T,$) will have payoff vectors close
to the dominating equilibrium. Suppose, without loss of generality, the stage
game has at least two distinct undominated (each not dominated by any other
Nash equilibrium) Nash equilibria payoff z and y, and let R(4) be {z}. Now
R(T,6) — R(8) as T — oo. Without loss of generality, let z; > y2 (so 1. < »1
from strong Pareto frontier property). Let ¢(T') = p*(T,é) for some large T.
Let 5(T) = (1 — §)y + éc(T). b(T) is supportable by R(T,$) as y 1s a Nash

5The strong Pareto frontier F(B) of a set B € IR? is the subset of all vectors in B such

that there are no two vectors z,y € F (B) such that for i = 1,2, z; > y; with at least one strict
inequality.
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equilibrium payoff. If &T) € R(T + 1,6), define ¢(T + 1) = b(T'). Otherwise, if
there exists some p(T + 1) € R(T +1,6) which Pareto dominates 5(T), then let
¢(T + 1) = p(T + 1). Continuing in this way, for an arbitrary positive integer
k, define (T + k) = (1 — 8)y + 6c(T + k) where (T + k) = &(T + k — 1) if
XT+k—1) € R(T+k, §); otherwise, if there exists some p(T +k) € R(T +k, §)
which Pareto dominates (T + k — 1), then ¢(T + k) = p(T + k). Note that for
each k, b(T + k) is supportable by R(T+k,6) and ¢(T + k) € R(T +k, §). How-
ever ¢(T + k) moves away from z as k — oo. So, it cannot be that R(§) = {z}.

The ‘only if’ part of the proof is trivially true once we observe that R(T, )

1s the unique undominated Nash equilibrium for all 7. -

If the stage game has a unique Nash equilibrium, then Theorem 3.2 implies
that the limit set R(§) is a singleton containing only the Nash equilibrium
payoff.

We now investigate a non-singleton limit set R(§). We find that R($),
when it exists, can be an almost IRP set provided it is ‘sufficiently’ large. The
requirement of the ‘extent of largeness’ is reminiscent of a similar requirement
in Corollary 2.1 in chapter 2. Corollary 2.1 was an easy application of theorem
2.2 in chapter 2. The proof of Theorem 3.3 draws heavily on the proof of
Theorem 2.2 and therefore, a lot of detail will be omitted.

Theorem 3.3 Let A be mized strategy action space. Let there ezist some vector
z € R(6) such that for any action vector a € A and i = 1,2, [c;(a) — gi(a)] <
ﬁ[xi — Pi(8)]. Then, R(6) is an almost IRP set.

Proof. :
Any p(8) € R(4), must satisfy, for some : = 1,2, p;(§) > z;; otherwise,
will Pareto dominate p(6), which is not possible by Lemma 3.2. So, for any
such p(6) € R(6), there exists some i, such that for any action vector a € A,
(@) — 9i(a)] < ey [pil8) - Fi(O)]

The proof follows from the following four claims.
Claim 1. R(68) C 81(R(9)).
Claim 2. For any vector r(8) € 8'(R(8)), there exists ¢(§) € R(6) such that
q(8) > r(9).
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Claim 3. If claim 2 is true, then R(§) C F(8/(R($))).

Claim 4. If claim 2 is true, then for any p € F(8/(R(8))), there exists p' € R(8)
such that p’ > p with p’ not strongly Pareto dominating p.

Note that when Claim 2 is true, Claim 3 and Claim 4 together tells us that
R(4) must indeed be an almost IRP set. The proofs of the four claims are
copies of the proofs of four similar claims in theorem 2.2 of chapter 2; hence,

they will not be repeated (in particular, claim 2 is proved by taking an identical

approach as in Case 1 and Case 2 in the proof of theorem 2.2). [

We now turn to the result of Benoit-Krishna (1993) which establishes that
when 6 = 1, limr_. ., R(7T,1) is either a singleton or is a subset of the efficient
frontier. We show that this extends to the case of low discounting as well, using

a modification of the analogous result of Ray (1994) for IRP sets (see Theorem
2.1 in Chapter 2).

Theorem 3.4 If R € R, then either (a) R 1s a singleton or (b) R is a subset
of F(F*).

The reader can verify that Theorem 3.4 i1s established by an argument which
mimics Ray’s proof; hence, the proof will be omitted. We will give the argument
very briefly. We require the following notation. For each i = 1,2, define ¢* € F*
by first maximizing p; over p € F* and then minimizing p; over the set of
maximizers. Observe that ¢' is unique and is the payoff ensuing from a pure
action vector in G. Let R € R. Suppose for some p’, p” € R and for some
i € {1,2}, we have p! < p”. Define the following subset of IR* :

L(i,p',p") ={pI3A€[0,1)st. p = (1 = A)g’ + Ap", j # i, and p; > pi}

To prove Theorem 3.4, the following two Lemmas (3.3 and 3.4) are required.

They are analogous to two lemmas in Ray’s (1994) paper (the difference is that
R has to be read as a limit IRP set in Ray’s paper) and can be established by

similar arguments; so the proofs are omitted.

Lemma 3.3 For each p € L(1,p',p"), there ezists ¢ € F* such that ¢ > p and
qg € R.
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equilibrium payoff. If &T) € R(T + 1,6), define ¢(T + 1) = b(T'). Otherwise, if
there exists some p(T + 1) € R(T +1,6) which Pareto dominates 5(T), then let
¢(T + 1) = p(T + 1). Continuing in this way, for an arbitrary positive integer
k, define (T + k) = (1 — 8)y + 6c(T + k) where (T + k) = &(T + k — 1) if
XT+k—1) € R(T+k, §); otherwise, if there exists some p(T +k) € R(T +k, §)
which Pareto dominates (T + k — 1), then ¢(T + k) = p(T + k). Note that for
each k, b(T + k) is supportable by R(T+k,6) and ¢(T + k) € R(T +k, §). How-
ever ¢(T + k) moves away from z as k — oo. So, it cannot be that R(§) = {z}.

The ‘only if’ part of the proof is trivially true once we observe that R(T, )

1s the unique undominated Nash equilibrium for all 7. -

If the stage game has a unique Nash equilibrium, then Theorem 3.2 implies
that the limit set R(§) is a singleton containing only the Nash equilibrium
payoff.

We now investigate a non-singleton limit set R(§). We find that R($),
when it exists, can be an almost IRP set provided it is ‘sufficiently’ large. The
requirement of the ‘extent of largeness’ is reminiscent of a similar requirement
in Corollary 2.1 in chapter 2. Corollary 2.1 was an easy application of theorem
2.2 in chapter 2. The proof of Theorem 3.3 draws heavily on the proof of
Theorem 2.2 and therefore, a lot of detail will be omitted.

Theorem 3.3 Let A be mized strategy action space. Let there ezist some vector
z € R(6) such that for any action vector a € A and i = 1,2, [c;(a) — gi(a)] <
ﬁ[xi — Pi(8)]. Then, R(6) is an almost IRP set.

Proof. :
Any p(8) € R(4), must satisfy, for some : = 1,2, p;(§) > z;; otherwise,
will Pareto dominate p(6), which is not possible by Lemma 3.2. So, for any
such p(6) € R(6), there exists some i, such that for any action vector a € A,
(@) — 9i(a)] < ey [pil8) - Fi(O)]

The proof follows from the following four claims.
Claim 1. R(68) C 81(R(9)).
Claim 2. For any vector r(8) € 8'(R(8)), there exists ¢(§) € R(6) such that
q(8) > r(9).
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Lemma 3.4 Suppose that R 1s not a singleton and that R 1s not a subset of
F(F*). Then there exists p € R, q € F*, such that ¢ > p and for 1 = 1,2,
e

The argument in the proof of Theorem 3.4 runs in the following manner.
Lemma 3.3 helps to show that any R € R must be a closed and connected
set (see Lemma 3.5 stated and proved in the Appendix). Now, lemma 3.4
tells us that if R is a non-singleton which is not a subset of the Pareto fron-
tier, then there will be a payoff vector p € R which is not on the Pareto
frontier and which gives each player a payoff higher than from his minimum
payoff vector in R. There exist sequences p(6,),p'(6,), p*(6n) € R(é,), con-
verging, as §, — 1, to p, p' and p® respectively. Similarly, there exist sequences
(T, é,), ' (T, 6,), P*(T,6,) € R(T,$,), converging, as T — oo, to p(6,).p*(8.)
and p?(6,) respectively. Now, note that all these payoffs are normalized: for
large é,, and all large enough (depending on how large is §,,) T, the actual pay-
offs for each player : from p(é,) may be very far away from the payoff that the
same person is getting from p*(é,). Consequently, there should be no incentive
problem to support payoffs which in the limit (as T — oo) Pareto dominate
p(4,), which is a contradiction. So, no point in the relative interior of R can be
Pareto inefficient. Connectedness of R helps us to extend the same conclusion
to the endpoints of R.

Our next result holds for mixed action spaces. Theorem 3.5 states that if
the Pareto frontier of F'* is strictly downward sloping, and R(4, ) converges to
a nonsingleton R along a sequence (6,)52, converging to one, then for large
bn, R(6,) must be an almost IRP set. In other words, it is not possible for
a sequence of R(§,) to hit a non-singleton (on the Pareto frontier from Theo-
rem 3.4) limit as discounting vanishes, without sets from the sequence already
becoming almost IRP sets for high discount factors.

We need some further notation before we can embark on Theorem 3.5. For

any closed set S C IR?, define B(S) = {y| dist(y, S) < €} to be the open ball
of radius € around S.
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Theorem 3.5 Fori = 1,2, let A; denote the mized strategy action space for
player i in G. Let there be a sequence (6,)7%, such that 6, — 1, R(6,) ezists
for each n and R(6,) - Rasn — oo. IfR s a non-singleton such that
Min{p? —p!,ps —p3} > B for some f > 0, then there ezists § <1, such that
if 6, > &, R(8,) is an almost IRP set.

Proof.

Let the conditions of the theorem hold. So, there exists a sequence (6,)5%, such
that 6, — 1, R(é,) exists for each n and R(é,) — R where R is a non-singleton
subset of F(F*) (from theorem 3.4) satisfying Min{p; — p;,p; — P2} > B for
some 3 > 0. It follows from Lemma 3.5 that R 1s closed and connected.

Can p' € F(F~) belong to a vertical segment of F(F"), i.e. can there be
p' € F(F*) such that p' # p' and p} = pi? Note that if such a p exists, then
the set X = {p € F(F*)|p: < p}} must have for each element z € X, 7, = Dy
Note further that p? belongs to X. So, p? = p;. This will contradict that
Min{p? — p},ps — P2} > B > 0. So, p' cannot belong to a vertical segment of
F(F*). Similarly, p* cannot belong to a horizontal segment of F(F*).

Let ¢ > 0 be such that the intersection of B.(p') and B.(p?) is empty. Note
that such an e always exists (any € < /2 will do) given that Min{p? — p1, P —
p2} > B. Consider ¢/m for any positive integer m. Since R(4,) — R, 1t
follows (from the definition of convergence in Hausdorff metric®) that there
exists 8(m) < 1 such that whenever 6, > §(m), R(6,) C Bym(R). Now Ris a
connected set whereif p € Rand p ¢ B.(p') for some ¢ = 1,2, then there exists a
number 2v > 0 such that p; — pi > 27 (remember from the previous paragraph
that p! cannot belong to a vertical section of F(F*), nor can p° belong to
horizontal section of F(F*)). It now must be the case that there exists a m
sufficiently large ( say M), such that if for some 6, > 6(M), if p(6,) € R(6,)
but p(6,) € B.(p') for some i = 1,2, then p;(6,) — pi(6s) > 7. If the above does
not happen, then R(§,) cannot conveige to the set R. Moreover, since B.(p")
is disjoint from B,(p?), the above must be true for each p(é,) € R(4,) for large
enough 6,. Let 6§ € (§(M),1) be such that for all 6, > §, and for : = 1,2,

6See Hildenbrand (1974) for a discussion.
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[ci(a) — gi(a)] < {Ti_ﬁ"f for each a € A; x A,. In other words for some i = I 2

(@) ~ 9:(@)] < 255 pi(8n) — FiC6)] (3.3.1)

We now have to show that for 6, > 6, R(6,) is an almost IRP set. One can
check that the four claims of the proof of Theorem 3.3 holds; in particular the
second claim holds from (3.3.1) through the arguments of Case 1 and Case 2
of theorem 2.2 in chapter 2. ]

When Min{p? — p}, p3 — p2} = 0, the above theorem may not go through.
To see why, let {p} — p2} = 0 without loss of generality. Off-hand, we
cannot rule out the case that for large §,, punishments for player 2 are not
very severe (in other words ﬁ%ﬁblg(ﬁﬂ) — p3(6,)] is very small). Consider
such a scenario for some large 6,. Suppose r(é,) is a payoff vector belonging
to the ‘strict’ Pareto frontier of the payoff set supported by (R(é,)). Consider
this extreme perverse case where the only way r(é,) is supported by R(§,) is
through a ‘bad’ action vector a, a ‘bad’ continuation vector p(é,) € R(é,)) and
punishment vectors 5'(8,) for i = 1,2. The vectors are called ‘bad’ if, firstly,
each player i’s incentive constraint

(@) ~ (@) = "5 pu(6) — pi80)

1s attained with equality: and secondly, for any three sequences
T, 6,),p (T, 6,),p*(T,6,) € R(T,é,), which converge, as T — oo, to
P(6.), P (6n), p*(6,) respectively, there exists a small neighbourhood around a
such that for any b in that neighbourhood, and for all large T, the following is
satisfied for some player i:

(8) ~ 0:(0)] > =22 (57, 6) — pi(T,8,)

(Note that such a case cannot occur when we consider mixed strategies and
the condition of the theorem holds). Consequently, it may not be possible to
construct a sequence p'(T'+1,6,) € R(T +1,4,) such that p/(T +1, 6,) — r(6,)
as T — oo. Now r(é,), which had been supported by the bad a and the
bad p(é,), belongs to the Pareto frontier of the payoff set supported by R(6,).
However, it is neither in R(é,), nor is there any other payoff in R(é,,) which
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weakly (in the sense of almost IRP) dominates r(é,). This is the reason why

the limit set may not be an almost IRP set when the ‘largeness’ condition of

Theorem 3.5 is violated.

3.4 Example

We consider the example in chapter 2, in which we showed that IRP sets
cannot exist for high discount factors in the infinitely repeated game context.
If there were a close connection between the limit of renegotiation proof sets
for long finitely repeated games, we might expect a similar non-existence result
pertaining to the former. This turns out to be precisely the case: we show that
there exists § > 0 such that for all § > 6, R(§) does not exist.

Suppose not (see figures 2.1 and 2.2 in chapter 2). Let (6,)22, such that
én — 1, R($,) exists for each n and that R(4,) - R. By Theorem 3.4, R is
either a singleton or is a subset of the Pareto efficient Frontier of F*.

That R cannot be a singleton follows from a logic very similar to the proof
of the ‘if’ part of Theorem 3.2. The same logic works as there are two ‘undom-
inated’ (among Nash) Nash equilibrium payoffs.

If R is a non-singleton it must be a subset of F(F*). Note that F(F*) in this
example does not have any horizontal or vertical sections. So, if A; for i = 1,2,
are mixed action spaces of the stage game, R must satisfy the conditions of
Theorem 3.5. Consequently, for all large 4, (greater than some é§ > 0), R(6,)
1s an almost IRP set. Although we have not said anything about the existence
of almost IRP sets in infinitely repeated games, we will show, in our example,
that an almost IRP set which is a limit of renegotiation proof sets for long finite
repetitions of the game, cannot exist for large discount factors.

From Theorem 3.1, R(é,) is a WRP set for each n. Further, since R($6,)
1s a limit set, R(é,) is closed and so compact. p'(6,), p'(T,6,) and p' as
usual denote the minimum payoff vectors of player 1 in R(é,), R(T,$6,) and R
respctively. Can p;(6,) < 4 for large n? For such an n, let ¢(T) = p!(T, 5n)
for some large T. Let ¥(T) = (1 — 6,)(1,4) + 6.c(T). bT) is supportable by
R(T,é,) as (1,4) is a Nash equilibrium payoff. If &T) € R(T + 1,4,), define
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¢(T + 1) = b(T). Otherwise, if there exists some p(T+1) € R(T +1,46,)) which
Pareto dominates 5(T), then let ¢(T + 1) = p(T + 1). For an arbitrary positive
integer k, define )(T+k) = (1—6,)(1,4)+6.¢c(T+k) where o(T+k) = b(T+k-1)
if (T + k —1) € R(T + k,$,); otherwise, if there exists some (T + k) €
R(T + k,é,) which Pareto dominates 5T + k — 1), let ¢(T + k) = p(T + k).
Note that each b(T + k) is supportable by R(T + k, 6n,) and c (T + k) — 4 as
k — co. Moreover, it must be that pi(T + k,4,) > c2(T + k). From Lemma
3.1, p(T + k,6,) — p'(6,); so, it cannot be that pa(6,) < 4.

R(én) is a compact WRP set (Theorem 3.1). so, from Proposition 2.1 of
chapter 2, note that p}(é,) cannot be greater than 4.

Can p;(8,) = 4 and p}(8,) > 1? Since R(6,) is WRP it follows from
Theorem 1 of Farrell-Maskin (also see discussion in chapter 2 before Proposition
2.1) that p'(é,) is supportable in R(é,) by using an action vector a € A such
that g;(a) > 4 and ¢;(a) < p}(6,) < 2. The only such action vector available is
the Nash equilibrium (T, C) with payoff (1,4). So, it must be that for large n,
p'(6) is supported as (1 — 6,)(1,4) + 6,(p(6,)) for some payoff vector p(é,) €
R(6,) where p,(8,) > 1 and p2(6n) = 4. Now from Lemma 3.1, we know that
P (T, 6,) — p'(6,) as T — oo. Let p'(T, 6,) be supported in R(T,§é,) as

(1—45)
(=00

6n(1 — 8,771
=% f) Yyr-1

p'(T,6.) = g(ar) +
where yr_, € R(T — 1,6,). If p(T,é,) has to converge to p'(é,), then it
has to be the case that ay — (T,C), for otherwise there will be at least
two distinct subsequential limits a(1) and a(2) which can support P (6,); this
contradicts the fact that the only such vector is the Nash equilibrium vector
(T,C). Also, yr—, € R(T — 1,6,), for otherwise, there will two distinct sub-
sequential limits from p'(T, §,) which converge to p'(T, é,); thus contradicting
p'(T,6,) — p'(6,). Can for all large T, g2(ar) > 47 If go(ar) > 4 for all
large T', then note that c;(ar) — g;(ar) is bounded away from zero for large T.
Extract a subsequence such that ap converges to some a’ and yr_; converges
to some y’ along the subsequence. Since a’ is a subsequential limit, note that
c1(a’) —g1(a’) must be bounded away from zero (from continuity of ¢;(-) — gi(-));

so a’ cannot be (T, C), which is a contradiction. This implies that it must be
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the case that g;(ar) < 4 for all large T (greater than some T’ > 0). Define

(11__;'}5(1,4) +

We claim that for all T > T + 1, p'(T,6,) = p'(T, é,). Check that for all T,
p(T +1,6,) € 6(R(T,é,)). For T > T' + 1, p'(T,é,) as defined must either
lie weakly to the north-west of p(T,é,) or must Pareto dominate p'(T,é,)
(as gz(ar) < 4 and yr_; lies weakly to the south-east of p'(T — 1,6,)). If
pY(T, 6,) # p'(T, 6,), then p*(T,é,) cannot be the minimum vector of player 1
in R(T,$é,). So, for all T > T' + 1, p(T, 6,) = p'(T, b,). So, for T > T' + 1, the

following recursive relation holds:

(180 ) i1 —1,8,).

PJ(T, Eﬂ) — (1 = {,‘HT) p

(1 _'Eﬂ)_
(1-6,)"

5a(1— 6,
(1 F EnT)

PU(T, 6,) = (1,4) + Jp (T - 1,6,).

From the above recursive relation, it must be the case that p'(T,6,) —
(1,4). So, p'(é.) = (1,4) for all discount factors higher than § and cannot

converge to the Pareto frontier; in other words, a non-singleton R cannot exist.

The non-existence of IRP set in the example for low discounting therefore
extends in a certain sense to long finite games. Small perturbations of the payoff
structure maintains the non-existence. The example also does not admit limit
Renegotiation Proof sets (IRP or long finite games, as the case may be) in
pure strategies (the proof of which is similar). However, the undiscounted long
finite game with pure strategies, admits a limit renegotiation proof set as the
horizon goes to infinity. The limit can be calculated through the techniques
employed by Benoit-Krishna and the explicit calculations are being omitted.
The limit works out to be the convex hull of {(1.8,4.2),(4.2,1.8)} which lies on
the efficient frontier. Note that this limit set contains payoffs (e.g. (1.8,4.2))
which does not satisfy the necessary condition (see proposition 2.1 of chapter
2) of a payoff vector to belong to a limit WRP set vanishing discounting (no
payoff vector giving player 2 more than 4 can belong to a WRP set). This fact
tend to point out that renegotiation proof sets for long finitely repeated games
with vanishing discounting may not have much in common with the case where

there is no discounting.



Reneg. Proof Sets in Finitely Repeated Games o0

3.5 Existence restored

We wish to examine if in the example considered in the previous section, exis-
tence can be restored with some modifications of the concept of renegotiation
proof sets for long finitely repeated games. We already know that, in the ex-
ample, R(6) does not exist for large discount factors. When such limits do
not exist, can we conclude that limit point sets (which will always exist) will
correspond to something like a NIRP set of the infinitely repeated game? We
will show that this indeed is the case. In this section, we concentrate on mixed
strategy action spaces and show that if the discount factor is such that R(T,§)
1s ‘sufficiently large’ for all large enough T then any limit point set of the se-
quence (R(T, 6))%-, will belong to some almost NIRP collection. Theorem 3.6
portrays such a situation. More generally, if the above conditions hold, the col-
lection R(4), of all limit point sets will be an ANIRP collection (Corollary 3.1).
This suggests that under certain situations, when R(T,§) do not converge to
some R(§), almost NIRP set may be a good concept of extending the concept of
renegotiation proof sets from long finitely repeated games to infintely repeated
games.. OQur example satisfies the conditions of Theorem 3.6 and Corollary 3.1

for large discount factors. So almost NIRP sets exist in the example.

Theorem 3.6 Let A;,i = 1,2 denote mized strategy action spaces. Let & be
such that there ezists a positive integer T'(6) > 1 and a B8 > 0 such that
whenever T > T'(8), there ezists 2(T,8) € R(T,6), which satisfies, for each

t = 1,2 and any action vector a € A, the following inequality:

[6(a) — 9:(@)] + B < T[x:(T, ) - (T, 8)).

Then any limit point set R'(8) of (R(T,68))%., must belong to an almost
NIRP collection.

Theorem 3.6 is exactly the same as Theorem 2.2 in chapter 2; the proof is
therfore omitted.

Corollary 3.1 If the conditions of Theorem 3.6 hold, then the collection of all
limit point sets of (R(T,6))¥_, is en NIRP collection.
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Corollary 3.1 is again a restated version of Corollary 2.1 in chapter 2 and
so the proof will be omitted.

That our example satisfies the conditions of theorem 3.6 has been shown
following Theorem 2.2 in chapter 2.

3.6 Conclusion

In this chapter, we have focused on the behavior of Renegotiation Proof sets
for discounted finitely repeated games as the time horizon goes to infinity and
the discounting vanishes. We started by looking at the limiting behaviour of
the renegotiation proof sets R(T,d) for T'-times repeated games, as the time
horizon goes to infinity for a given factor § < 1. Such limits are always WRP
sets (as shown in Theorem 3.1). Theorem 3.2 told us that this limit can be
a singleton only if it has an unique undominated Nash equilibrium, in which
case, it 1s an IRP set of the infinitely repeated version of the game. Theorem
3.3 gave some sufficient conditions under which a non-singleton limit can be
almost like an IRP set of the infinitely repeated game (discount factors are also
required to be high enough). As discounting vanishes, such limits can converge
(may be subsequentially) to sets which are either singletons or subsets of the
Pareto frontier (Theorem 3.4); moreover for most games, if the limits converge
to a non-singleton set, then these limits must be almost IRP sets for higher
discount factors (Theorem 3.5). However, do such limits always exist? Our
example of chapter 2 does not admit such limits for all high enough discount
factors. However, all games admit limit point sets even if they do not admit
a limit. Do these limit points look like the non-stationary version of the IRP
sets which we have discussed in chapter 27 The answer is provided in the
affirmative for certain class of games for high discount factors (Theorem 3.6).
In particular, for this class of of games, the collection of all limit points (for
reasonably large discount factors) is an almost NIRP collection (Corollary 3.1).
Our example belongs to this class of games.
This chapter has left several issues unresolved.

Will any limit point set of long finite repetitions of a game belong to some
almost NIRP collection of the infinite repeated game when discounting is suffi-
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ciently low? Where do these almost NIRP collections, which are limit points for

long repetitions of the stage game, converge as discounting vanishes? Do they
also exhibit properties as in Ray (1994) and Benoit-Krishna (1993); namely,

that they are either singletons or are subsets of the efficiency frontier? Further
my results on NIRP collections depend heavily on mixed strategies. Do these

results remain true if we consider pure strategies?

3.7 Appendix
Lemma 3.5 If R € R, then R is a closed and connected set.

We will require some additional notation to conclude that R is connected.
For two vectors z,y € IR?| let x|y denote z, < y, and z, > Y. f R € R and if
Z,y € R, define R(z,y) = {z € R such that z|z|y}

Proof.

Since R is a limit of sets, R has to be closed from a property of set convergence.
Trivially, R is non-empty. If R is a non-singleton which is not connected, then
there exist z,y € R such that R(z,y) = {z,y}. Without loss of generality,
let z; < y;. Now, from Lemma 3.3, for small enough A > 0, there exists
p € L(1,z,y), where p = (1 — A\)g? + \y and a ¢ € F* such that ¢ 2 p and
¢ € R. Further, since R C F(F*), ¢ € F(F*). Note that if ) is large enough,
z|gly, and this contradicts that R(z,y) = {z,y}. n
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4.1 Introduction

Friendship involves give and take, and good friendship rarely starts as soon
as two persons meet. Typically, people take time to nurture their friendship
till the friends assess that they can fully trust each other. Credit relations
involve trust building. Rarely will a lender give a lot of credit to a borrower
whom he has recently met. However, if the borrower consistently keeps a good
credit record, then the lender can feel confident in course of time to increase the
scale of lending. Slow trust building is also visible in most employer-employee
relationships. An employer will very rarely give a very responsible job to a
freshly recruited employee, or a large purchase order to a new contractor. In
countries (like India) where domestic hands are often employed in houses (by
housewives), a new domestic hand often faces intense monitoring by the em-
ployer. If the domestic hand is a good worker, then, only with time will the
level of monitoring diminish.

One obvious reason why trust takes time to build is that partners may
be incompletely informed about each other’s characteristics (e.g. whether the
partner is honest or dishonest; or about how long the partner intends the
partnership to last) which are gradually revealed. This is the subject of the
‘reputation’ literature (see Fudenberg and Kreps (1987), and Fudenberg and
Levine (1989)). In this chapter, we provide an alternative explanation which
operates even in a perfect information scenario. Our explanation relies, instead,
on the possibility of endogenous quits.

To elaborate, consider an infinitely repeated Prisoners’ Dilemma played by
two players. It is well known that if players are sufficiently patient, then the full
cooperation outcome can be supported as a subgame perfect Nash equilibrium,
where deviations are punished by suitable threats. The effectivenrss of such
punishments is however, predicated on the assumption that the deviator is
not free to avoid them by terminating the current relationship and seeking a
new partner. If players could change partners, a switch to non-cooperation (a
typical punishment strategy to support cooperation) would then fail to punish
a deviator, as he could quit from the ongoing relationship and find a new
partner. Indeed, in a population where all relationships involve full cooperation

from the very beginning, a player could take advantage of others, by repeatedly
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defecting and then changing partners. Consequently, it is difficult to support
cooperative outcomes in the conventional way. We examine the question of
how the possibility of ‘endogenous quitting and finding new partners’ affects
the level of cooperation that can be supported.

We develop a matching model for the credit market of the following kind.
There 1s a large population of players (or agents) belonging to either of two
types of equal size, ‘Lenders’ and ‘Borrowers’. The game takes place over
an infinite time horizon and all players discount their future identically. An
exogenous process matches players of the two types with one another at date
1. Whenever a lender is paired with a borrower, they become partners in a
new relationship. The stage game played between a matched pair is common
knowledge and is as follows. The lender offers a level of trust (loan size) to his
partner borrower. The borrower decides whether to respond honestly (repay
the loan) or dishonestly (defaulting on the loan). Whenever the loan size is
positive, defaulting gives short term gains to the borrower and short term
losses to the lender. On the other hand, conditional on a honest response, the
welfare of both players increase in the loan size. Before the period ends the
partners simultaneously decide either to continue or terminate the relationship.
Among all relationships where both partners decided to continue, nature picks
a fraction of those relationships and terminates them for exogenous reasons. At
the start of the next date, another random matching amongst all the players
with broken partnerships takes place and then the game continues as before
between the matched partners.

We assume that players in any relationship condition their actions ‘only’
on the history of the current relationship, and we focus on symmetric strategy
profiles (where all members of a given type select the same strategy). Suppose
we restrict attention to socially self-sustainable play where trust is never dis-
honored along the equilibrium path!. Along such paths involving “maximal”
trust the following property is established in this chapter: “average” trust
should build gradually along the course of any partnership. The only threat
against dishonoring trust in the relationship is termination (since any other

threat can be avoided by changing partners); this can be effective only if trust

INote that trust can be dishonored in out of equilibrium behavior
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builds slowly in a new relationship. Borrowers are deterred from dishonoring
(defaulting on the loan) as any change of partner will lead to a fresh phase of
slow trust building. Hence the slow build up of trust can be thought of as a
social norm to induce cooperation when endogenous quits are possible.

Our model is related to that of Shapiro-Stiglitz (1984), where the fear of
involuntary unemployment acts as a deterrent to deviation. Shapiro and Sti glitz
argue that with imperfect monitoring and full employment, termination of the
employee’s contract (upon defection of shirking) does not serve to punish the
worker since he can be immediately rehired in the market. They go on to
show how involuntary unemployment can solve this incentive problem. In this
chapter, however, there is no involuntary unemployment: defectors are re-
matched in the very next date. Consequently, the only way in which a non-
myopic “social norm of behavior” can be sustained js if the play invoves slow
build-up of cooperation among new partners. Defection is thus discouraged by
the fact that it will take time to build up a new cooperative relationship. In
paticular, there is no difference between “on” and “off” equilibrium paths:; the
norm 1tself must serve as its own punishment.?

Okuno-Fujiwara (1990) introduced the notion of local information process-
ing in matching games. Kandori (1992) considers a situation where agents
change their partners over time (at every time point there is random match-
ing). Amongst other things, Kandori gave an example where a community
can sustain cooperation through the threat of an epidemiological process of
defection, even when each agent knows nothing more than his personal ex-
perience. Our model differs from Kandori’s in the following respects: (a) A
partnership can continue if mutually desired, except that (b) there is a small
probability with which a partnership can be broken for exogenous reasons ; (c)
when two new partners meet, each does not know whether the other partner

has quit an old relationship by choice or for exogenous reasons; and most im-

?Other related papers in the literature of contracts include the following: Stiglitz and Weiss
(1983) discuss why it can be better for banks to terminate a credit relationship with a de-
faulter rather than charging a higher interest rate in the future; Lazear (1979) argues that it
18 preferable to pay workers less than their marginal value product when they are young and

more when they are old. Then he argues why firms should have mandatory retirement.
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portantly, (d) players treat all new partners identically; in other words no one
will want ‘not to cooperate’ with a new partner just because of a bitter expe-
rience with someone before. If (d) did not hold and the exogenous quit rate
was low enough, then Kandori’s epidemiological process of defection could have
ensured full cooperation right from the start. Now, consider what happens if
somebody defects. Condition (b), now, would lead us to the unhappy situation
where after some time there will be matched partners who have exogenously
quit their initial partnership (for no fault of their own) and have to forever
play the inefficient (minimal trust) course of play. With time almost all (with
probability one) partnerships and levels of cooperation would break down for
€XOgenous reasons.

One should emphasize that this chapter has nothing to do with the building
of trust as is commonly known in the literature (in particular, there is no
incomplete information). The point is that social norms which slowly build up
cooperation (and which look like trust building) are relatively more immune to
defections.

Section 4.2 simplifies the search for an equilibrium (we call ‘social equilib-
rium’) which is maximal for that type of the population which offers trust.
Section 4.3 analyzes the model.

The main results are that a maximal equilibrium among all social equilibria
in the honesty regime exist for all discount factors and quit rates (Theorem
4.1) ; along a maximal equilibrium path, average trust must be non-decreasing
and strictly increasing between some time points (Theorem 4.2 and 4.4) ; for
high quit rates and low discount factors, positive trust is never offered along a
maximal equilibrium. However, for high discount factors and low quit rates, the

full trust level will eventually be offered along a maximal equilibrium (Theorem
4.3).

4.2 The Model

There is a large population of players (agents) belonging to either of two types
of equal size, Type 1 and Type 2, where the number of players are equal across
the two types. A Type 1 player will be thought of as a lender and a Type 2
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player will be thought of as a borrower. The game takes place over a discrete
infinite time horizon t = 1,2, .- 0co. We assume that all players discount their
future with a common discount factor strictly between 0 and 1.

An exogenous process matches players of the two types with one another at
date 1. Whenever a lender 1 is paired with a borrower, they become partners
in a new relationship (partnership). All players belonging to a particular type
of the population are identical in terms of their available actions at every date
and their payoff functions. The stage game played between a matched pair is as
follows. The lender offers a level of trust (in our credit market interpretation,
this is the loan size) Q lying in the interval [0, Q] to his borrower partner where

Q > 0. The partner decides whether to respond honestly (H) or dishonestly
(D). In the lender-borrower interpretation, honesty is repayment of loan and
dihonesty amounts to defaulting on the loan. Let d denote the borrower’s de-
cision; so d € {H, D}. The payoff to the Type k partner is 9x(Q, d) where

91(Q,H) = BQ and 91(Q,D) = —Q, where 8 >0 and
9AR, M) = «Q and ¢(Q,D)=Q, 1>a>0

Everybody in the population knows the value of a and 8. The stage game (the
action spaces and the payoffs) is common knowledge amongst all the players in
the population.

Note that D is a dominant strategy in the stage game for the borrower.
The only Nash equilibrium in the stage game is where a lender offers trust
Q = 0 (zero loan) and the borrower player plays D. The Nash equilibrium is
inefficient. The only efficient action choice is where a lender offers trust Q and
the borrower plays H, in which case they get 8Q and aQ respectively.

The game starts at date 1 with random pairing between lenders and bor-
rowers (see Rosenthal (1979) for issues in modelling ‘matching’) such that each
lender gets matched with exactly one borrower and vice versa. The partners
proceed to play the stage game as described above at date 1. Once the part-
ners have played the stage game, the extensive form (see figure 4.1) proceeds
as follows. Just before date 1 ends the partners simultaneously decide either to
‘continue’ (C) the relationship, or ‘terminate’ (S for ‘stop’) it. We will call this
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decision c; so ¢ € {C,S}. If either of the partners play S, then the relationship
is ‘broken’, in which case both the partners have to look for fresh partners in
the next date. If they both decide to continue (both plays C) with the relation-
ship, nature comes into play before the next date starts. Among all relation-
ships which have decided to ‘continue’, nature picks a fraction ¢ (0 < ¢ < 1)
of those relationships and terminates them for exogenous reasons. At the start
of the next date (date 2), another random matching amongst all the players
with broken partnerships (broken by choice of either of the partners, or by
nature) takes place and then the game continues as before between the current
partners.

For notational convenience, let : represent a generic ‘lender’ and j represent
a generic ‘borrower’ in the population. (z,7) denotes a generic partnership at
time ¢ if 1 and j are partners at time ¢. Figure 4.1 is an illustration of the
timing and course of actions when lender i and borrower j are matched at time
t.

The following definition tells us when a partnership will be labelled ‘new’ or

‘old’. It also tells us what we mean by ‘current player history’ of a partnership
at some date.

Definition 1. A partnership (i,7) is labelled ‘new’ at date t > 1 if both
i and j had different partners at date ¢t — 1. At date 1, every partner-
ship is new. A partnership (z,7) is labelled ‘old’ at date ¢ > 1 if : and
7 had been partners at date t — 1. If at date t, the partner of lender 1
is borrower j, then j is the ‘current’ partner of lender : at date t. More-
over, if j is the ‘current’ partner of i at date t + k where t,k > 1, and

the (i,7) partnership was ‘new’ at date t, with the course® of play between
date t and date t + k — 1 being (Qn de, Qt+1= deyr, -, Qt4+k-1,de4k—1), then the

3When we say that the course of play between date ¢ and date ¢t + k — 1 (of current partners
(i, ) at date t + k who were ‘new’ at date t) is (Q:,d;, Qi41,de41, -  Qt4k-1,d14x—-1), what
we mean is that at date I, Q; is the level of trust offered, d; is the decision of player j from

{H, D} to honor or dishonor trust, and ¢; = C for both players i and j. Note that the decision

c; at date ! from {C, S} to continue or stop the relationship does not feature explicitly in the
course of play as the very fact the relationship is on at date t + k implies that both partners
opted for C (continuation) between date ¢t and date t + k — 1.
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Current Player History (CPH) of the partnership (i,7) at date ¢t + k is
hi = (Q¢,dty Qeg1,degr, -+ -, Qt+k-1,de4k-1). When a partnership (i, 7) is new at
date t, the current player history of the partnership is h; = {¢}, the null set.
At date 1, all partnerships have current player history h;.

Note that the current player history of a partnership at date ¢t 4+ k does
not include play at date ¢ + k. Further, note that it is possible that a lender i
meets a ‘new’ partner j at date ¢ > 2 who had also been i’s ‘current’ partner
at date ¢’ < t — 1, in which case j is not really a fresh partner. Nevertheless,
this likelihood can be ignored as the population of players to be matched at
any date is large. Moreover, in some contexts a ‘new’ partner for lender i,
who is not a fresh partner for lender ¢ in the above sense, can suitably disguise
himself such that lender i cannot recognise him as any different from a really
new partner.

In Definition 1, we have considered ‘current player history at a date ¢t + k
of a partnership’. Noting that players have possibly different information when
they take their respective actions, what we ought to define is the current player
history of a player at a particular date. If h: is a current player history of a
partnership at some date T, then the current player history of lender i at date
T when he decides on the level of trust to offer, is h, itself. The current player
history of lender i at date T' when he is to make his continuation decision at
date T is the history A, followed by the trust level Qr that he had offered at T,
followed by the honesty decision dy of his partner j at date T,i.e. (h,Qr,dr).
A representative current player history for lender i at a decision node where he
has to move following a partnership current player history h; will be denoted as
h'*; where the superscript 1 is for type 1 and s is for the kind of decision node
(the two kinds are Q, the ‘level of trust to offer’ and c,the continuation decision
of lender i) that lender i has reached. Similarly, the current player history of
borrower j at all nodes where he has to move can be defined with the help
of partnership current player history at a particular date. A representative
current player history of borrower j after partnership CPH A, will be hit:
where s is either a kind d node or kind ¢ (continuation node for type 2) node.
The continuation decisions of players : and j will be referred as ¢! and 2
respectively.
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We focus our attention on strategies of a player in which, actions taken by
the player at any date can be contingent only on the current partner history
of the player at that date. In other words, we assume that players ignore their
experiences with previous partners. Let H' be the set of all current player
histories for lender i. The set of all current player histories for lender : where
he has to take a decision on the level of trust is denoted by H'?. The set of
all current player histories for lender : where he takes his decision to continue
is H'¢. So, H! = H¥Q U H'¢. Similarly, the set of all current player histories of
borrower j is H? which is the disjoint union of H** and H?*® where H?*? is the
set of all current player histories of lender j where the lender has to make his

decision d and 7 is the set of all current player histories where lender ; has

to make his continuation decision c?

Definition 2. ¢' is a current player history contingent (CPHC) strategy
for player i if o° is a function which maps ! into the set [0, QJU{C, S} such that
(a) o*(h9) € [0, Q] for h'? € H'? and (b) o'(h,'°) € {C, S} for helc € He. A
similar CPHC strategy o’ can be defined for borrower j.

When a player plays a CPHC strategy, he takes on every ‘new’ partner with
an identical contingency plan. In a CPHC, at all dates when the current player
history of the player is the same, the actions taken are also the same.® Also
note that a player has information only on that part of the game which he has
actually played. He cannot see the course of play in partnerships in which he

4We elaborate on the notation used. Let h; be a partnership current player history at
date T + t of the form (QT,dT,QT+11dT+11 " ‘:QT+I—1:—dT+I—1}- Let QT+th+t,ﬂ%~+uC';-+i
respectively be the trust offered, the decision d, the continuation decision ¢ of lender i
and the continuation decision ¢/ of i’s current partner j at date T + t. The current
player history of lender i at date T + t when lender i is to make his trust level deci-
sion 18 {QT,dT,QT+1,dT+1,---,QT“_I,dTH_l) = (h{) = h (by convention). Then the
current player history for borrower j when he is to make his choice d at date T + ¢ 18

(Qr,dr, Qr41,d741, -, QT41-1,9741-1, Q7 +1) = (ht, QT41) Where Qr 4. is the level of trust
offered at date T" + t. Similarly, the current player history of lender i at date T + ¢ when 1 18

to make hi'H' mntinuat.inn dﬁﬂiﬂiﬂ'ﬂ iﬂ {QT'I dTl QT+1 ' dT-‘l‘-l SR QT+1-1 ! dT+t—l 1 QT-‘\I-'! ’ dT-i-f} —

(ht ) QT+11 dT-I"i)*
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himself had no part. In particular, when lender i meets a ‘new’ borrower j at
date T' > 1, lender ¢ does not know whether borrower j is only seeking a fresh
partner after cheating somebody in the previous date, or whether borrower j’s
old relationship had been broken exogenously by nature.

We will be interested in social norms represented by ‘symmetric’ strategies
which are self-enforcing in the sense that no individual player has an incentive
to deviate in his self-interest to some other current partner history contingent
strategy. In other words, we shall consider strategy profiles where all mem-
bers of the same type employ the same strategy. To formalize the notion of
‘self-enforcement’, we need to consider the outcome of individual deviations.
Accordingly, we introduce the notion of ‘population strategy profile’ with the
help of which we define a ‘social equilibrium’.

(of,0',0%) for k = 1 or 2, will be called a population strategy profile
where o7 is the current partner history contingent (CPHC) strategy of member
! from Type k of the population, when everybody else in Type k uses the
CPHC strategy o* and everybody of the other Type m, uses CPHC strategy
o™. A ‘symmetric (population) strategy profile’ will usually be written as
(o', 0?) where every lender in the population uses CPHC strategy o! and every
borrower in the population uses CPHC strategy o2. o will indicate a typical
symmetric strategy profile.

If CPH h; is the partnership history at some date T, and Q, d, ¢!, & are the
actions taken at date T, then the partnership CPH A(T + 1, Q, d, c',c?) that

evolves at date T' + 1 according to population strategy profile (o}, 0!, 0?) is as

follows:

when ¢ = C for k t; 7,
(T +1,Q,d,c',c*) = (h,Q,d) with probability (1 — q)

|

= h; with probability ¢ (4.2.1)
when ¢* =5 fork = iorj,
(T +1,Q,d,c',¢?) = hy (4.2.2)

Let ¢ = (o},0',0?) be a population strategy profile and h'*, be CPH
for a lender i with the corresponding partnership CPH being h;. Let
V(h':,0},0',0%) be the expected present value payoff to lender i after his
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CPH h!'*,. We use the following notation to derive an expression for the ex-

pected present value payoff of lender i. We will use the following notation
fhroughnut. the rest of the chapter. Let Q; denote the level of trust that lender i
will offer after his CPH h'9, if he is using the CPHC o}; so Q, = o';(h;). For an
arbitrary level of trust Q offered after h'9,, let d,*(Q) = 0?(h'9,, Q). Similarly,
following h'9,, for an arbitrary trust level Q followed by an arbitrary decision d,
define the continuation decisions ¢**¢ = o';(h'Y%, Q,d) and ¢, = ¢?(h'9,, Q, d).
Let d, = ::ri(h:,fjt), & = o'i(hy, énéc) and E‘:,’ = a'i(h,,ét,&'t). In other words,
Qt, d,, ¢1, €, is the course of actions taken following h'9, according to o. The

expected present discounted payoffs for lender : at hl9, according to o, i.e.
V1(h'9, 0}, 01, 0?%), is as follows:

when é =C fork = 1i,j,

VI(R'9,0l,0%,0%) = g1(Qe,di) +6(1 — @)V ((he, Qr, de), 07, 0%, 0%)
+8qV (119,01, 0%, 0?) (4.2.3)

when é& =S fork = 1iorj,

VI(R'9,0},0%,0%) = q1(Q:,de) + 6V (R, 0}, 0, 0%) (4.2.4)

A similar expression V?(h'9, 0? 0',0?) for any borrower j’s expected
present discounted payoff can be found by replacing V! by 1’}2 and g; by g:
in (4.2.3) and (4.2.4).

Similarly, after the CPH h'¢, = (h'9,, Q,d) of lender i, the present dis-
counted (expected) payoff V}(h'¢,, o}, 0!, 0?) for lender : is as follows:
when ¢**,(Q,d)=C fork = i,j,
Vi(h',00,0%,0%) = ¢:1(Q,d)+ 61 — q)V((he, Q,d), 0}, 0", 0?)

+6q1};1(h1q1,ﬂ'i‘ﬂ' T ) (4-2;5)
when c**, =S fork = 1 or 7,
Vi(h'%,00,0%,0%) = ¢(Q,d)+ §VA(R'9,, 0}, 0%, 0%) (4.2.6)

For any borrower j, his payoff V2(h'c, o}, ,0%,0%) after CPH h'S; of lender i
can be found by replacing V;! by V? and g, by ¢, in (4.2.5) and (4.2.6). Pay-
offs at other decision nodes can also be derived as above. In general, if a
player m belongs to type ! of a population and A', for | = 1,2, is a CPH
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of this player at some decision node s, then his present discounted expected
payoff V. (h',o0,,,0',0%) from the population strategy profile (om0t 0?)
following k', can be derived in a manner analogous to the derivation of
V(h'9,0},01,0%). V1(R19,,0!,0',0?%) and V32(h'9,,0},0',0%) will denote the

payoffs to lender ¢ and j respectively in the game from o.

Definition 3. A symmetric social equilibrium in CPHC strategies is
a symmetric population strategy profile (¢!,02?), such that for any player
m of any type k¥ and any CPH h*, of that player, Va(h**, 0%, 0',0%) >
Va(h**,0p,,0",0%) for all CPHC strategies o* of player m. The payoff for
player m from the social equilibrium is V*(A19,, ol,ol,0?).

In the rest of the chapter, whenever we have a symmetric strategy profile we
will drop the subscript m from V* since all players of the same type will obtain
the same payoffs in a symmetric social equilibrium. Also, for any symmetric
strategy profile o = (o, 03), if h**; is a CPH of player m of type k, his payoff
VE(R**, 0%, 0%,0?) will in future be referred simply as VE(h*, o).

Note that, in spirit, the definition of social equilibrium is similar to the
usual definition of a subgame perfect equilibrium. The problem in using the
concept of subgame perfect equilibrium here is that the only proper subgame

is the whole game (since a player does not observe the course of play in other
partneships).

4.3 Simplification of the search for social equi-
librium

In this section, we try to develop the concept of a ‘Principal outcome Path strat-
egy profile’. A principal outcome path (POP) strategy profile is a symmetric
strategy profile which is very simple. With a POP strategy profile, the con-
tinuation play after any deviation history is just a restart of the original path
from date 1. Moreover, every symmetric strategy profile has a correspond-
ing POP strategy profile which generates the same payoff for every player.
Also, any social equilibrium strategy profile induces a POP strategy profile
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social equilibrium (see Proposition 4.1 below). We want to see if the set of
social equilibrium has a maximal element in terms of players’ payoffs (actually
among those equilibrium in which along the equilibrium path, trust is never
dishonored) and if one does exist we seek to characterize its properties. The
simplicity of POP strategy profiles help us confine our analysis to the set of
all Principal outcome path social equilibrium. The use of Principal Qutcome
Paths is analogous to the use of ‘Optimal Penal Code’ in Abreu (1988) where
he characterized subgame perfect equilibrium paths with the help of this code.

We now proceed to define a ‘principal outcome path’ (POP) from a sym-
metric (CPHC) strategy profile o = (o',02). A POP helps us track down the
outcome path from a social equilibrium o = (¢!, 0?), however complicated, by
a relatively simple procedure. However, before defining a POP, we need to
define an outcome path generated by a symmetric strategy profile. In simple
language, an outcome path generated by a symmetric strategy profile is the

course of play that will result from a ‘newly’ matched partnership in which

nature never intervenes to terminate.

Definition 4. Given a symmetric strategy profile o, consider a ‘new’ part-
nership (7,j) with CPH as h;. Suppose nature never breaks the partnership
(¢,7), ¢t and j play according to ¢ and the course of play in the partnership is
consequently given by (Q:(0),d(c))T,. If T is infinity, then the partnership
lasts forever. Note that the continuation decisions ¢ are not mentioned in the
course of play as it is implied that the partners both choose to continue upto
T. If T is finite, then the partnership chooses to continue along the course
of play until T' dates, when at least one of the partners decides to ‘stop’ the

relationship. (Q:(c),d:(o))’_, will be called the outcome path generated by
o.

Whenever we mention an ‘outcome path’, it will be implied that the path
has been generated by some symmetric strategy profile o even if the strategy
profile is not explicitly mentioned. Further, any arbitrary sequence (finite or

infinite) is an outcome path generated by some symmetric strategy profile.

Definition 5. Let 0 = (o!,0?) be a symmetric strategy profile, and A =
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(ai(0))i=1 = (Q:(2), di(o))L, be the outcome path generated by o. If T = oo,
then the Principal Outcome Path (POP) generated by o is the ‘outcome
path’ A itself. If T < oo, then the Principal Outcome Path (POP) gen-
erated by o is A® = (A(n))32, where each A(n) is a copy of A. Whenever
the partnership comes to the end of A, a new relationship between the same
partners commences with a fresh copy of A.

It i1s not difficult to see that a POP is also - . infinite length outcome path
generated by some symmetric strategy profile. -urther any symmetric strategy
profile generates a POP. For notational convenience, if o is a symmetric strategy
profile, then P(o) will denote the POP that o generates.

Definition 6. Let o be a symmetric strategy profile and P(o) be the POP gen-
erated by o. Then the principal outcome path strategy profile (POPSP)
induced by o is as follows. Players always take the decision C at all nodes where
they have to make the continuation decision ¢. Any new partnership starts with
partners playing along P(c). If i deviates from P(o) in the level of trust at
any point of date, ; plays D, following which both players decide to play C and
then, in the next date, if nature has not already broken their partnership, they
restart P(o). Any deviation by partner j from his stated decision d will lead
to continuation decisions C' by both partners and then restarting P(o), if they
are still matched in the next date. Any deviation from any restarted P(o) is
dealt with exactly as above.

Note that a POPSP induced by a symmetric strategy profile o is itself a
symmetric strategy profile. In a POPSP all that any player can do by chang-
ing partners (by deviating and playing S) is to restart the POP. The way the
POPSP has been defined makes the set of payoffs available at any date, follow-
ing some history along the path of actual play of o, from unilaterally deviating
from o in that date (and then changing partners) equal to the set of payofis
available by making the same deviant decision following a corresponding his-
tory in the POPSP and restarting the POP. Whenever there is no confusion, if
P(c) is a POP, P(o) will also be called the POPSP. The payoffs for any player
in the game along ¢ and P(0) must be same given the definition of POPSP.
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This i1s the next remark.

Remark 4.1. If ¢ is a CPHC symmetric strategy profile and P(o) is the
POPSP it generates, and h;(c) and h,(P(c)) are partnership CPH for ‘new’
partners along the two strategy profiles, then the payoff for any player along
the equilibrium path from o following h;(c) will be the same as the payoff
for that player along the equilibrium path from P(¢) following hi(P(c)). In
other words, for any player m belonging to any type k, = 1,2, V*(h;,0) =
V*(hy, P(0)).

For two symmetric strategy profiles v = (9;,72) and o = (0,,02), we will
say that partnership CPH h(v) in 4 corresponds to partnership CPH hy(0)

in o, if the following three conditions are true:

(a) For m =1,2, V™ (h(7), 7™, 7, 7?) = V™ (he(o), 0™, ', 0?).
(b) 7 (he(7)) = 0*(he(o)) and
7 (he(7), Q(Y' (he(7)))) = o*(he(a), Q(a (he(2))))-
(c) For any sequence {Q,d,c*} where c* is the continuation decision

for some player of type k, there exists some continuation action
¢* which depends on he(v),Q,d, c® such that
Vk((hi('r)a Q,d, Ck)s 'Tks 'Tlt 'T?) = Vk((hi'(ﬂ}i Q,d, Ek)! ﬂ'k*l '9'11 Uz)

When a partnership CPH of one strategy profile ‘corresponds’ to a part-
nership CPH of some other strategy profile, the situations, in terms of payoffs,
as viewed from the stage games immediately following the two histories are
very much alike. Condition (a) says that any player should get the same payoff
from the games following the two histories according to the respective strat-
egy profiles. Condition (b) says that following both the partnership histories,
lender @ will offer identical trust according to the respective strategy profiles.
Moreover, if lender ¢+ does not deviate in his trust level, then borrower ; should
also take the same decision d following both the partnership CP histories ac-
cording to the respective strategy profiles. Condition (c) asserts the following:
whatever payoffs are possible by a player following any stage game interaction
immediately after h,(<), is also possible for the same player following k(o) by,
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at most, a suitable modification of only his continuation decision in the stage
game.

What we hope to gain from the above definition of correspondence of
partnership histories from two different strategy profiles is roughly as follows.
Firstly, we will show that any partnership CPH of the POPSP P(o) induced
by o corresponds to some partnership CPH of o along the outcome path of ¢
(i.e., no partner has deviated along such history). This is Lemma 4.1. Next, we
show in Proposition 4.1 that if o is a social equilibrium, then P(0) must also be
a social equilibrium. To see why, let us for the time being replace v by P(¢) in
the definition of ‘corresponds’ in partnership CP histories. Roughly speaking,
if any player can deviate in the stage game following any partnership CPH of
P(o), then for the ‘corresponding’ partnership CPH in o the same player can
make a similar deviation by using his S option and gain. We are exploiting the
possibility of endogenous termination here.

Lemma 4.1 Let o be a symmetric profile and P(0) = (v, ~?) be the symmetric
strategy profile POPSP induced by 0. Then every parinership CPH of P(o)
corresponds to a partnership CPH of o along the actual course of play of o
(i.e, from the set of partnership CP histories of o which can result when no

player ever deviates from o).

Proof.

Let A = (a:)L, (where T can be infinity) be the outcome path generated by
o. Let hy(P(c)) be a typical partnership CPH of P(0). We first show that
hi(P(c)) corresponds to hi(o). Condition (a) holds good from Remark 1.
Condition (b) holds from the way the POPSP P(o) has been defined from o.
To check condition (c) for lender i, let {Q,,d;,c!} be an arbitrary sequence
of actions following h,(P(c)). If it is the case that no player has deviated
from P(o) while actions Q,,d; and ¢! were being played, then, from the way
the POPSP P(o) is defined from o, it must be that continuation decisions
following h,(o) (according to o) must be identical to that following h,(P(o))
(according to P(o)). So, (c) must hold. If some partner has deviated follow-
ing h,(P(c)) along P(o) while decisions Q,,d; or c; were being taken, then
according to P(o), the POP ought to get restarted from the next date. This is
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payoff equivalent for lender : to the situation along o, where following his CPH
(hi(o),@1,d1), lender i plays ¢! = S. The stage game payoffs are the same
(they depend only on @, and d,) and the same POP is going to be restarted
at the next date. So, (c) must hold true. A similar argument can be made
to show that (c) holds for borrower j too. In the rest of the proof, this above
argument will be considered standard and will not be repeated.

Consider h¢(P(c)) when t > 1 where h(P(c)) = (he—1(P(0)),Q,d,C,C)
for some partnership CPH h,_;(P(c)) and actions Q,d. If there has been a
deviation from P(o) by any partner while playing  and d, a check through
the standard argument shows that h(P(c)) corresponds to h,(o). If there has
been no such deviation, then there must be a maximum positive integer 7",
where 1 < T < T (if T is infinity, then just 1 < T"), such that the last 7" dates
play in h¢(P(o)) is identical to (a;)7_,. If T = T, then standard checking shows

that hP(c)) corresponds to hy(¢). If T < T, then h(P(c)) corresponds to
the partnership CPH hpi(o) = (a,)L, of o. .

Proposition 4.1 Consider a social equilibrium o = (6',0%). Then P(o) =
(7v',v?), the symmetric strategy profile POPSP generated by o is also a social
equilibrium which gives each player the same payoff as o.

Proof.

That ¢ and P(o) generate the same payoff as o follows from Remark 1. To
check that P(o) is a social equilibrium, we use the Principal of Unimprovability
in Dynamic Programming. All that we have to show is that no player can gain
by a ‘single stage’ deviation® from his prescribed strategy.

We will show first that in P(o), if borrower j can deviate (stage game)
after some CPH h{*(P(c)), and then follow the prescribed P(o) and gain, then

borrower j can also gain by stage game deviating even in the symmetric strategy

® A single stage deviation by player k (in any symmetric strategy profile) at date T following a
CPH history of player k is a one stage deviation by player k, following which all players return
to play according to the original strategy profile. In this one stage deviation, player k can
deviate in any of his decision nodes at date T which follows the CPH. If he has two decision
nodes left at date T, he can deviate, if he chooses to, at both his nodes from his prescribed

actions.
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profile o after some CP history. Let h?*(P(0)) be of the form (h(P(c)), Q;) for
some partnership CPH h.(P(0o)) following which lender i played Q;. Let hy(o)
be a partnership CPH in ¢ along the play of o, as demonstrated in the proof
of Lemma 4.1, such that h;(P(c)) corresponds to hy (o). Now, borrower j has
to take two successive decisions d and ¢*. If Q, itself is a deviation by lender
t from P(o), then borrower j cannot stage game deviate and gain, for, (a) he
cannot get in this date anything more than what he gets from playing D; and
(b) irrespective of his continuation action, the POP is going to get restarted at
the next date, because lender i deviated in his trust level. So, let Q, be not a
deviation for :. Now, if borrower j plays d; and ¢?, at least one of which is a
deviation, he can mimic the payoff at CPH (hy(o), Q;) by playing the same d,
followed by S and get more than he would have got by not deviating, which is
V23((he(0),Q:), 0%, 0%, 0%). This contradicts that o is a social equilibrium.
Now, we check that lender i cannot make a stage game deviation and gain.
Suppose, in P(o), lender i unilaterally deviates in the stage game following
some CPH A'?(P(0)) (with partnership CPH as h(P(0)) = h'?,(P(cs))) and
- gains. So, the left hand side of (c) is greater than the left hand side of (a) for
some Q,d,c' where d is played by borrower j according to P(o). Let hy(o)
be the partnership CPH in ¢ along the course of actual play of ¢ such that
h¢ corresponds to hy(o). If there is no deviation by i in Q, then his deviation
must be in playing ¢' = S instead of the required C. Check that at the CPH
(he(c),Q) in o, 5 will still offer d (according to condition (b)). So, if : plays
S at (he(0),Q,d), there will be a change of partner at the next date which is
like restarting the POP. Correspondingly, since right hand side of (¢) must be
greater than right hand side of (a), ¢ should gain in ¢ which contradicts that
o 18 a social equilibrium. On the other hand, if there is a deviation in i’s trust
level when he plays Q at h'9,(P(0)) in P(o), then according to P(o) d must be
D. Without loss of generality, ¢! can be taken as S because the POP is anyway
getting restarted (as there already has been a deviation in Q). Let d be the
honesty decision of j in o at the CPH (hy(0), Q). Now, if S is the continuation
decision of i at CPH (he(0),Q,d), then the stage payoff cannot be less than
the stage game payoff from Q, D and the POP is going to be restarted from
the next date. So lender i gets more in V!((he(0),Q,d,S),o?,0!,0?) than
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following o at hy(o). This again contradicts that o is a social equilibrium. =

The above proposition helps us to restrict our attentions to Principal Out-
come Path strategy profiles while we search for a ‘payoff maximal’ social equi-
libria. In a POPSP equilibrium, there is no difference between “on” and “oft”
equilibrium paths. The norm itself must act as its own punishment. We study

the existence issue of maximal paths and their time behavior in the next section.

4.4 Analysis of the Model

In the rest of the chapter, by a social equilibrium with some trust, what we
mean is an equilibrium, along the POP of which, there is some date ¢t where
lender j plays H. Moreover, if there is a t such that Q. > 0 and d; = H along
the POP generated by the equilibrium, then we will say that the equilibrium is
characterized by positive trust. In other words, for us to say that the equilib-
rium has positive trust, borrower j must honor a positive level of trust offered
at some date ¢.

We will focus attention on ‘honesty regime equilibria’ where the honesty
decision will always be H along the equilibrium outcome path. Note that this
does not mean that dishonesty cannot occur ‘off’ the equilibrium path. From
now on 2 = (Q.)2, will denote a typical POP along which the honesty decision
is always H (in the notation we will not mention the continuation decisions
which are always C). V*(Q,t,¢q,6) will denote the payoff for a player from
type k after partnership CPH h, arising along actual play of the corresponding
POPSP, where the quit rate is ¢ and the discount factor is é. We will drop g, )
in the notation of payoffs when it creates no confusion. Similarly, 2 will also
be dropped in the notation of payoffs when the POP is understood.

The next Proposition states that a social equilibrium always exists. Further,
an equilibrium with positive trust (all positive loans that have been offered
have been repayed along the equilibrium path) can also exist when players are
patient enough and the exogenous quit rate is low. More particularly, we show
that the POP with (Q = 0, H) for a fixed number of dates ¢t followed by (Q,H)

forever, constitutes a POPSP equilibrium for large enough ¢ when players are
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very patient and the exogenous quit rate is very low.

Proposition 4.2 An honesty regime social equslibrium always ezist. There
ezists 6° and ¢* such that for all § > 6* and P < p*, there is a social equilibrium
with posstive trust.

Proof.

The POP where trust level 0 is always offered by a lender and borrower always
play H induces a POPSP which is an equilibrium for all ¢ and 6. This is easy
to see.

We will prove the second part of the proposition.

Let us construct the principal outcome path strategy profile where the prin-
cipal outcome path is to play (Q = 0, H) for a fixed number of dates ¢ > 2
and thereafter play (Q, H) forever. Let Vi(k,q, 6)be the payoff of the player
from Type i along the principal outcome path strategy profile after partnership
CPH hi. Check that Vit + n,¢,6) = V(t +1,¢,6) Vn = 1. This implies
Vit +1,4,6) = BQ + 6qV'(1, ¢, 6) + 6(1 — @V (t+1,q,6) So,

8 1

T = 6(i—2) (4.4.7)
Again,
Vi(1,¢,6) = 0+6qV'(1,4q,6) + 8(1 — q)V1(2,q,6)

= 6qV(1,4,6){0+ 6(1 - q)V'(1,q,6)} + 62(1 — 9)*V(3,4q,9)

1"“5:(1‘_‘3)1 1 t tys1
qu_s(l‘_q)V(1,q,§)+6(1—q)V(t+l,q,6) (4.4.3)

A similar expression can be found for V?(1,4,6). Replacing Vi(t+1,q,6) in
(4.4.8) with the help of (4.4.7),

Vi(1,4,6) = é&q 11*_668 — 3 Vi(1,q,6) + 16_(;(;3);) {BQ +6qV'(1,4,6)}
2 6q (1 —-gq) -
= g q)Vl{l,q,ﬁ) + 1= 40 _q)ﬁQ
So,
Vi(l,¢,6) = 21 =955 (4.4.9)

- (1-49)
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i V(s 1.0, < PO = 80) + 8250 o]

{1-6(1—¢q)}{1—dq} (44.10)
Similarly,
d 2 Et(l - Q)t
V*(1,q,6) = (1= 6q) aQ (4.4.11)
Vet 10,6 < Q= 80) + 8081 ) .

{1-6(1 —¢q)}{1 - éq}

We will show that after any partnership CPH, borrower ; cannot deviate

in a stage game once and gain (a similar argument applies to ). Without loss
of generality, we will focus on deviation oppotunities of j when Q has been
offered after partnership CPH h,. His deviation payoff is Q+46 '5;1'?} aQ. If
j has to gain, then j has to receive hlgher than (4.4.10). This, reduces to

al[l-6*(1—
the requirement that 1 > b {{11 qalu{l_ qﬂ“ =)} . Note that the numerator of the

right hand type is positive and bounded away from zero as ¢ — 0 and § — 1,

while the denominator goes to zero. So, the right hand type must go to infinity.
The requirement thus cannot be satisfied for low enough ¢ and high enough é.
L]

The next lemma says that in any social equilibrium, there cannot be a last
date in the induced POP in which positive trust is offered and honored.

Lemma 4.2 Consider any POPSP social equilibrium with principal outcome

path Q along which there is positive trust. Then positive trust must be offered
and honored infinitely often along the path.

Proof.
Let T be the last date with positive trust, Qr > 0 denoting the trust level which

was H (honored). Now, it cannot be that after date T, positive trust 1s ever
offered by i along the equilibrium path because borrower ; must respond by
playing D (otherwise T would not be the last date positive trust is honored);
so, lender i will do well to offer zero trust after date T. Then, at date T,
borrower j; would be better off by dishonoring trust when Qr has been offered

and restarting the POP, since following the original POP from date T +1 offers
him no positive payoff. =



Building Trust 74

We proceed to investigate if there is a best social equilibrium in the honesty
regime for any type of the population. Note that as long as we restrict our
attention to honesty regime equilibria, the best equilibrium for both types co-
incide, by virtue of the structure of the payoff functions. We shall be interested
in the properties of this maximal (best) equilibrium. It would have been more
natural to look at the the best equilibrium for the ‘lenders’ in the population
where we do not restrict our attention to honesty regime equilibria. However,
a general analysis of such an equilibrium turns out to be rather complicated
and will be addressed in future research ®

We need to define a ‘maximal outcome path’ in an honesty regime. By
& mazimal outcome path, we refer to a POP induced by that honesty regime
POPSP social equilibrium which gives the highest payoff ( expected) to a player
of Type k amongst all honesty regime social equilibrium POPSP. Any such
equilibrium which maximizes payoff will be referred to as a maximal POPSP
equilibrium. The next theorem tells us that a maximal POPSP social equilib-
rium exists in the honesty regime. The main idea of the proof is that the set
of honesty regime equilibrium POPSP s compact and the payoff functions are
continuous.

Theorem 4.1 A mazimal POPSP social equilibrium ezists (given any g and

5).

Proof

Let 2 be a typical honesty regime POPSP social equilibrium for some ¢ and
6 such that @ = (Q,)2,. Let V!(Q,t) be the expected payoff for player of
Type [ at date t along the path while following the principal outcome path
social equilibrium strategy. Let V! — supgep{V/(Q,1)} where P is the set of
all honesty regime POPSP social equilibria. This is the maximum payoff that
a type ! player can get from a honesty regime POPSP social equilibrium if a
maximum exists. From the discussion just before the statement of this theorem,

*In particular, it remains as yet, an unresolved question if lenders will strictly do better
in the best ‘lender’ equilibrium in the unrestricted regime as compared to the best ‘lender’

equilibrium in the honesty regime.
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we know that the best equilibrium for lenders is also the best equilibrium for
borrowers as long as we restrict our attention to the honesty regime.

Note that the space B = [0,Q] x {H, D} is a compact subspace of R?
(interpret {H,D} as {0,1} where 0 stands for H and 1 stands for D). B,
the space of all POPSP, is compact in the product topology by Tychonoff’s
Theorem. Moreover, as the stage game payoffs ¢g;(.) and g2(.) are continuous,
V*(h',.) is continuous in B* for any k,l = 1,2 and any player history h's.
All that is required to show that maximal POPSP exists is that P is compact.
Given that B is compact, it is enough to show that P is closed.

Let ("), be a sequence of honesty regime POPSP social equilibrium
such that O — Q asn — oo. Let, Q" = (Q1)2, and = (Q:)®2,. It is enough
to show that € is a POPSP social equilibrium. Let us see that the borrower
should not be able to deviate and gain from this POPSP. Let, on the contrary
there be a partnership CPH h, along the actual path of play of Q (without
loss of generality), such that after lender ¢ offered some trust Q% following h;,

borrower j stage game deviated and gained. Without loss of generality, let
92(Q, D) + 6V(2,1) > V*((he, Q7). t)

where D denotes the deviation (dishonesty) of player 2 at date t. From the fact
that QO — € as n — oo, and the fact that V? is continuous, there will exast,

for sufficiently large n, a history h{(2,) such that if j plays D at his decision
node h}(Q2,,Q";), then

92(Q", D) + 8V*(Q",1) > V((K', Q71), 2", 1)
So, Q" cannot be a social equilibrium POPSP for large enough n. This is a

contradiction. A similar argument can be given to show that lender : cannot
deviate after any of his CPH and gain. This proves that Q1 is a social equi-
librium. That € is of the honesty regime is easy to see. So, P is a closed

set.

A continuous function on a compact set attains it’s maximum. So, a maxi-

mal POPSP social equilibrium exists. -

For the rest of the section, we will use the following notation. = (Q)$2,
will denote a typical honesty regime POPSP where all levels of trust have been
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honored along the the principal outcome path. Along (,

ViQ,t) = aQ, + 8qV3(Q,1) + 6(1 — QVi(Q,t +1)
= aQ:+ 8qV*(Q,1)+ 6(1 - q)aQqyq
+6°9(1 - ¢)*V3(Q,1) + 62(1 — ¢)*V¥(Q, ¢ + 2)

i 771 - ¢)"taQ,

=t

q 2
Ry g Lt

Replacing V?(Q,t) in the left hand side of above by V3(,1), we have,

O

V3(Q,1) = {1 _(16(_1;) 2)} D61 -¢) a0,. (4.4.13)

r=1

So,

VIQ,t) = 361 - ¢)*aO.
r=t
] - &
t o (1-0 e,

r=1]

6q
= AN,¢)+ A= A1) (4.4.14)

where A(Q,t) = ©2, 67%(1 — ¢)™*aQ, .
Let us normalize the payoffs by multiplying both sides of (4.4.14) by {1 —
6(1 —g)}. Let, V**(Q,¢) be the normalized right hand side of (4.4.14). So,

VHR,E) = {1-58(1-q)}A(Q,¢)

(1 —6(1 — q))éq
+ 1-2) A(Q2,1) (4.4.15)

We now turn to an important lemma. In any maximal honesty regime
POPSP social equilibrium, the amount of trust offered at any date along the
POP cannot be higher than the average level of trust offered from that date.
Otherwise, we can replace the social equilibrium with some other POPSP social
equilibrium and increase payoffs.
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Lemma 4.3 Let Q = (Q)2, be the sequence of trust levels offered in a mazi-
mal social equilibrium POPSP. Then, Vi, |

Q. < {1-6(1-g) 6 (1-a)"9Q; (4.4.16)

r=t

Proof. Let the right hand side of (4.4.16) be denoted by Qo. Suppose, (4.4.16)
does not hold, i.e., Qo < Q: for some ¢t > 1.

Consider the POPSP § = (Q,)2,where @, = Q, V 7 <t,
= Qo VT 2>t

i clearly cannot deviate from ) and gain. Can j deviate and gain? Clearly for

all T < t, j's deviation opportunities remain identical as in §1. So, there is no
incentive to deviate for 7 < t.

At date T = t, since {0 is a social equilibrium, we have {1 — é(1 —
O1Qe + §V*2(Q,1) < VX(RQt). Since Q@ = Qo < Qe V(1) =
V+3(Q,1) and V*3(Q,t) = V**(Q,t), we must have

(1—6(1—q)}Q: +6V-2(Q,1) < V(1) (4.4.17)
Further, for all 7 > t, as Q. = Q., V*E(ﬂ,r) = V"‘E[fl,t), it must be true that
(1—6(1—q)}0x+6V2(Q1) < V(RQ,7) (4.4.18)
So Q is a social equilibrium POPSP.
Consider a new POPSP Q" = (Q})2, where Q7 = Q. Vr < t,
— Q+€ Vr>t.

Now from the strict inequalities in (4.4.17) and (4.4.18), it is easy to see that
for low enough ¢ > 0, Q is a social equilibrium POPSP with higher payoft

for any player than Q. Consequently, Q* contradicts that £ is maximal. So it
must be that (4.4.16) holds. ]

Note that the right hand side of expression (4.4.16) can be interpreted as the
average trust honored (and kept) from date t. The following theorem extends
Lemma 4.3 in an obvious way to conclude that average trust must be non-

decreasing in the duration of a relationship, in a maximal social equilibrium.
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Theorem 4.2 Along a mazimal social equilibrium POPSP, average trust is
non-decreasing in the duration of a relationship; i.e. for all t, {1 - 61—

D267 (A =) 9Q, < {1 - 6(1 — g)} T2y, 67411 — ) g 4

Proof.

If the above does not hold for some t, then re-arranging terms it must be the
case that for that ¢,

{1-6(1-9)}Q: > {1-6(1 - ¢))? i o1 — g)T-tng

T=1t+41

Note that whenever the above is true, Q; > 0 and

Q: > {1-6(1 - q)) i §7-(1(1 — g)ym-lt+1) g

T=1+41

However, this implies that Q: > {1 —-46(1—gq)) 2-72:0""(1 — g)"*0Q,. This
contradicts Lemma 4.3. |

Let Q = (Q¢)2, be a maximal honesty regime social equilibrium POPSP.
Denote Q* to the supremum of trust offered along time along Q, i.e., Q' =
sup;Q:. Note that Lemma 4.3 implies that if Q’ is attained at some finite
date T, then Q, = Qr for all 7 > T. The next theorem states how high the
supremum trust level can be in a maximal honesty regime social equilibrium. If
the discount factor is low and the quit rate is high such that {1 — 6(1—¢q)} > a,
then @Q° = 0. When discount factor is high and quit rate is low enough such
that {1 —é6(1 — q¢)} < a, then the supremum of offered trust is Q. So, «, the

rate of returns from co-operation acts as the benchmark.

Theorem 4.3 Let Q = (Qe)f2, be @ mazimal honesty regime social equilibrium

POPSP.
(e¢) If {1 —6(1 —q)} > a, then Q" =0.
(%) If {1-6(1—-q)} < a, then Q* = Q.

Proof

Since (2 is a social equilibrium, a borrower should not be able to deviate and
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gain; in other words for all ¢, we have {1—46(1 —q)}Q¢+§V"2(Q, 1) < V*3(Q,t).
Rearranging terms, this boils down to the requirement that

(1 — 61 — @)}A(Rt) — Qd = 6(1 — g){1 — 6(1 — 9)}A(2, 1) (4.4.19)

As Q; — Q*, note from Lemma 4.3 that the left hand side of expression (4.4.19)
goes to [a — {1 — 6(1 — ¢)}]@Q* and this should be greater than equal to the
right hand side of (4.4.19). Also, note that the right hand side of (4.4.19) is
non-negative. If [a — {1 — &§(1 — g)}] < 0, then Q* must be zero as otherwise
the left hand side will be negative. If [a — {1 — 6(1 — g)}] = 0, then Q* must
be zero as otherwise the left hand side of (4.4.19) will be zero whereas the
right hand side will be positive. This proves part (a) of the theorem. Now, we
prove part (b) of the theorem. Suppose, Q* < Q when {1 — §(1 — q)} < a.
Construct an alternate honesty regime POPSP Q = (Q.)2, such that Q: =
(1 + €)Q¢ where € > 0 1s chosen small enough such that Q* < Q. Note that
(1 — 801 — MA@, ) — Od = (1 + {1 — 6(1 — DHAR1) — Q. Further
§(1 —g){1 —6(1 — )}IAR,1) = (1 + €81 — g){1 — 6(1 - q)}A(,1). So, if
(4.4.19) holds, then {1—6(1—¢)}[A(Q,1)—Q:] 2 §(1—q){1—6(1—¢)}A(£2,1) So,
borrower j cannot deviate and gain from (). A similar check for lender : shows

that lender i cannot deviate and gain from Q). So, Q is a social equilibrium.

Note that  gives a higher payoff to each player. This contradicts that {1 is

maximal. "

The next theorem tells us that the average trust must be strictly increasing
between certain dates when the maximal social equilibrium gives a positive
payoff to either of the types. The intuition was provided in the introduction
with the Prisoners’ Dilemma. If there is no initial trust building, then borrower

j can gainfully cheat lender 1, change partners thereafter and gain. The proof
of Theorem 4.4 formalizes this.

Theorem 4.4 If {1 —6(1—¢q)} < a, then Q° = Q, then average trust must be
strictly increasing between some dates.

Proof.

From Theorem 4.2, we know that average trust must be non-decreasing along

time along a maximal POP. From Theorem 4.3, we know that when {1 — é(1 —
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9)} < a, we have Q* = Q. If the average trust were constant along time,
then using Lemma 4.3 it must be the case that Q: = Q for all ¢. So, for all ¢,
{1-46(1-9)}A4(2,¢) = {1-61 - g)}A(Q, 1) = aQ. We know that (4.4.19)
has to be satisfied for  to be a socjal equilibrium. However, using the fact
that average trust is constant at aQ, this would imply that aQ < Q which
i8 a contradiction since o« < 1 and Q > 0. So, average trust must be strictly
increasing between some dates. oy

4.5 Conclusion

Although our model is asymmetric in the sense that the actions available to the
two types are different, the same qualitative results hold for symmetric version,
e.g. when the two types play a symmetric Prisoners’ Dilemma.

We conjecture that a maximal POPSP social equilibrium with positive pay-
off is evolutionarily stable in the following sense: if the population is invaded
by small fractions of mutants with different strategies of both types, then these
mutants will be driven out of the population. The reason is as follows: the
mutants, being small in number, have a high probability, of meeting a part-
ner from the original population. Since the mutants’ strategy is different from
the population’s, there will be problem of co-ordinating their strategies. Then,
either this partnership will not reach any reasonable level of cooperation, or,
there will be a certain date at which the partnership with the current partner
will break down; in either case the mutant will have a smaller expected payoff,
and so will become extinct. This is another reason why the maximal POPSP
equilibrium might be an appropriate social norm.

Another question which might arise is that, given the slow trust building
in a maximal POPSP equilibrium, whether partners can profitably renegotiate
bilaterally, and cooperate from the very beginning. However, if every member
of the population thinks the same way, then such renegotiation may not be
credible. A borrowers can argue in the following way: if his current partner
is willing to renegotiate and immediately cooperate, his future partners should
also be willing to renegotiate similarly. Then he can cheat his current partner
after renegotiating, change partners, again renegotiate and cheat the new part-
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ner and so on. However, all lenders should be able to foresee this possibility

and refrain from renegotiating.
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9.1 Introduction

This chapter represents joint work with Prabal Raychaudhuri. In this chapter
we address some policy questions relating to minimum wage regulations. In
many countries the government resorts to minimum wage laws in a bid to
raise the living standards of the workers. In India, for example, the Minimum
Wages Act of 1948 lays down standards of minimum wage. The objective was
“not merely...the bare sustenance of life but...for some measure of education,
medical requirements and amenities”!. In other countries also, such laws and
regulations were motivated by similar concerns.

Unfortunately, however, there is little concern about the possible detrimen-
tal effects of such laws on the level of employment, as these laws may induce
the firms to cut down on the number of workers employed. The usual argument
against such an objection is that, in the presence of unionized workers, such an
eventuality cannot come about. It is contended that the unions would prevent
the employment level from declining at all, or they would minimijze the extent

of any such decline.
| The objective of this chapter is to examine, in a formal bargaining setup
and in the presence of unionized workers, the impact of changes in minimum
wage laws.

We model the bargaining problem as an infinite horizon alternating offers
game. Since we are concerned about the levels of both employment and the
wage, we allow the management and the union to bargain over both simulta-
neously. Therefore, in contrast to the standard bargaining models (e.g. Ru-
binstein (1982)), the cake size in this model is endogenously determined. The
game starts with the management making an offer and the union accepting
or rejecting it immediately. If the union rejects the offer, then it can make a
counter-offer after a delay of one period. The management in its turn can now
either accept the offer, or reject it. The game continues in this manner until
an agreement is reached, when the game ends and the agreed upon offer is
implemented. We assume that there exists a minimum wage level, fixed by the
government, below which a worker cannot be employed by the firm. Further,

!Committee on Fair Wages appointed by the Government of India, 1948.
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we focus on the case where there is widespread unemployment in the economy.
This would imply that if a worker does not find employment in a firm, then he
could be unemployed. In other words, the actual alternative wage of a worker
could be much lower than the minimum wage?. In particular, we would con-
centrate on the case where the alternative wage of a worker, whenever he does
not find employment in a firm with minimum wage regulation, is zero. The
conclusions we draw from zero alternative wage remain valid for low, positive
alternative wages.

We first establish that a subgame perfect Nash equilibrium exists and that
it is unique. The structure of the equilibrium outcome is rather interesting. We
show that the outcome always involves a wage level equal to the minimum wage
set by the government. The level of employment, however, is higher compared
to what it would have been in the absence of the union (i.e., the competitive
level). This suggests that though bargaining takes place over both the wage
and the employment level, in effect the union can affect only one of these. It
is in the interests of the workers not to demand an increase in wage level over
and above that set by the government.

We then look into some comparative statics results of our model. Those
involving the discount factors of the management and the union (6; and 6,
respectively) are what we would expect intuitively, in the sense that an increase
in &; leads to an increase in the payoff of the concerned party and a decrease
in the payoff of the other party. If, however, the management’s bargaining
position is strong enough, then a small increase in 6, may leave the payofis
unaffected.

We now look into the effects of an increase in the minimum wage level. We
show that the employment level is going to decline. We also demonstrate that
the income of the management declines. The surprising part of the result is

that the income of the union may decline as well. We show that a sufficient

2 Another reason why the alternative wage of a worker could be lower than the minimum
wage applicable is because it could be difficult for a government to monitor minimum wage
regulation in all the sectors of the economy. In countries like India, there is a huge unorganized

sector where minimum wage regulation, by and large, do not prevail despite the country’s

regulation.
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condition for this to occur is that the marginal product of labour be sufficiently
inelastic. The elasticity condition is identical to that for a profit maximizing
competitive firm in the absence of any bargaining. Under both competitive
and bargaining outcome, an increase in minimum wage leads to a decline in
the level of employment. However, since the level of employment is higher
under the bargaining outcome, the decline in employment would be greater in
this case. This follows since the concavity of the production function implies
that under a bargaining setup, a decline in employment is less costly in terms
of output. Therefore the sufficient condition under the competitive outcome
18 sufficient under bargaining as well. Thus, somewhat paradoxically, it is the
very success of the union in increasing the level of employment which ensures
that the workers lose out as a result of an increase in minimum wage.

This demonstrates that our apprehension regarding the possible harmful
effects of minimum wage regulations are well founded. Not only does the man-
agement lose out, so may the workers. Furthermore, since the level of output
declines, this implies that the consumers are adversely affected as well.

There has been quite a few theoretical papers trying to deal with problems
of management-union interaction e.g. strikes?, unemployment*, formation of
unions® etc. However, most of these deal with bargaining over wages alone, so
that the cake size is exogenous. Macdonald and Solow (1981) does deal with
the case where bargaining takes place over both wages and employment, though
in a cooperative framework. Moreover, the exisiting theoretical literature does
not appear to deal with the problem of minimum wage legislations. To the best
of our knowledge, ours is the only work that deals with the problem in a non-
cooperative framework, where bargaining takes place over both employment
and wages.

The rest of the chapter is organized as follows. In section 9.2, we set up the
model. We then go on to discuss existence and uniqueness of equilibrium, as

well as the various comparative statics results. Section 5.3 concludes.

3See Admati and Perry (1987), Fernandez and Glazer (1991), Haller (1988), Holden(1988)
and Rubinstein (1985).

“See Shaked and Sutton (1984).

*See Horn and Wolinsky (1988), Jun (1989) and Ben-Porath (1989).
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5.2 The Model

We begin by introducing some notations and definitions. Let X(N) be the
production function of the employer, where N denotes the level of employment
and X the level of output. We normalize the price of output to one.

The minimum wage level fixed by the government is denoted by w, where
w is strictly positive. It is not an alternative wage that the workers can obtain
elsewhere. In fact we assume that the alternative wage available to the workers
is zero.® In the context of developing countries, the presence of large scale
unemployment implies that such an assumption is quite realistic, and i1s more

than just a simplifying device. The discount factors of the management and

the union are denoted by 6, and &, respectively, where 0 < é;,6, < 1.
We make the following assumptions on X (N), the production function.

Assumption 1. The production function X(N) is twice differentiable,

strictly increasing and strictly concave in the level of employment N.
Assumption 2. X(0) =0, X'(0) = oo, X'(00) = 0.

It is easy to check that assumption 2 implies that the production function
X(N) intersects wN at some positive employment level, N. The assumption
that X’(0) = oo is, however, not crucial for our analysis. It merely ensures that
X(N) and wN intersect for all possible positive wage levels, however high.

We assume that both the players are risk neutral and that the workers have
zero disutility of effort. This allows us to represent the utility functions of the
two parties by the present discounted value of the payoffs accruing to them.

6Towards the end of this section we briefly discuss the case where the alternative wage can

be positive.
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The utility function” of the union is assumed to be utilitarian, i.e. a sum of
the payoffs of the employed workers. Since the alternative wage 18 zero, we
need concern ourselves only with the wage bill of the employed workers. The
management is a residual claimant.

The structure of the bargaining game is as follows. The management and
the union bargain over the wage and employment level at which production will
take place. At time ¢ = 0, the management offers a wage-employment vector
(w,N) to the union. Immediately, the union decides whether to accept the
offer, or reject it. If accepted, the offer is implemented and production takes
place at the offered wage level w and employment level N. So the union obtains
wN and the management obtains X(N) — wN. The game ends here and we
assume that production takes place only once at the agrred vector.® If the union
rejects the offer, then the game moves to the next time period. At time ¢t =1,
the union offers a wage-employment vector (w,N) to the management, which
again can be either accepted or rejected. If accepted, the offer is implemented
and the present discounted value of the management’s payoff is §;(X(N)—wN)
and that of the union is §;wN. If rejected, the game moves to time t = 2, where
it is again the management’s turn to make an offer.

Offers continue to alternate in the above manner so that at every even
time-period it is the management’s turn to make an offer and at every odd
time-period it is the union’s turn to make an offer. If, in the course of the

game, neither of the parties ever accepts an offer, both the parties obtain a
payoff of zero.

“Let L be the number of labourers who form the union. We assume that L > N so that
some labourers will never get employed by the firm. If a labourer is not employed by the firm,
then the outside (alternative) wage rate he can get is wg, where wp < w. The objective of the
union is to maximize wN + (L — N)wg where at a wage w > w, N people are employed by the
firm, and the remaining labour force are employed outside the firm at the wage rate wy. Since

we are in the case where wp = 0, the objective of the union is to maximize wiN .
®An alternative formulation could be to assume that once an offer is agreed upon, production

takes place at every period, though only at the agreed upon levels of employment and wage.

However, the two formulations are essentially similar, and our formulation possesses the virtue

of simplicity.
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Clearly, the payoff of the employer can be written as follows:

{ 6T-[X(N) — wN) if bargaining ends in finite time T,
U, =

_ (5.2.1)
0 otherwise.
And the union’s payoff can be expressed as:
"y — §T-'wN if bargr:tin,ing ends in finite time T, (5.2.2)
0 otherwise.

The equilibrium concept used is that of the subgame perfect Nash equilib-
Aum. Since the formal definition of subgame perfect Nash equilibrium in a
bargaining context is quite standard (see e.g. Rubinstein (1982)); we omit it.
In what follows in the chapter, instead of writing subgame perfect equilibrium
all the time, sometimes we will simply write ‘equilibrium’ instead.

Before we begin our formal analysis let us introduce one more piece of
notation. Define N(w) as follows:

w = X'(N(w)). (5.2.3)

Clearly, N(w) is the profit maximizing level of employment for the firm in the
competitive case i.e. in the absence of any bargaining.

We begin by introducing two dynamic reaction® functions, d,(w;, N,) and
dy(wq, N3). These define the optimum offers of the union and the employer
respectively, when they look only one period ahead. The interesting fact is that
the (unique) intersection of these two functions defines the (unique) subgame
perfect equilibrium of the infinite horizon game.

The function d;(w;, N1) can be motivated as follows. Suppose it is the
union’s turn to make an offer, and it is known that in case of disagreement, the
employer and the union would agree to implement the wage-employment vector
(wy, Np) in the next period. Then di(wy, N;) defines the wage-employment
bundle which maximizes the union’s payoff subject to the constraint that the
employer obtains at least X(N;) — w1V, discounted to the present period.

9This is exactly as in Rubinstein (1982).
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Thus d,(w;, N;) = (w2, N;) where (wq, N7)

Maximizes wiN
such that w
and X(N) —wN

IV

w

5,[X (V) — wiN,] > 0, (5.2.4)

IV

provided the feasible set is non-empty. Otherwise, (w,, N;) = (1, 0).

The maximum occurs at (w*, N*) where w* = w and N* is the maximum
N such that X(N) — wN = 61[X(N1) — wy Ny]. (See Figure 5.1)

The formal proof follows from Lemma, 9.1, the statement and proof of which
has been relegated to the Appendix. The argument is as follows: let N (w) be
the maximum N such that X(N) —wN = §[X(N,) - wy N;]. If the union
were constrained to offer the wage level w*, the union will offer the minimum
feasible payoff §;[X(N;) — w1 V1] to the management. Since the unjon is, in
effect, the residual claimant to the surplus after paying of the management, it
moves to the highest possible level of employment (and hence output) which
by definition is ﬁ(w‘). Moreover, if w* > w, then the union can reduce the
wage level, w, and increase the level of employment, N, thereby increasing his
payoff, as the amount to be paid out to the management remains the same,

The function d(w,, N3) defines the optimum response of the employer to
the symmetric problem.

Therefore, we can similarly define dy(w,, N,) = (w1, N;) where (w,, Ny)

Maximizes X(N)—-wN
such that w w,
and wN > §w,N,, (5.2.5)

Y

provided the feasible set is non-empty. Otherwise, (w;, N;) = (w,0).

The solution in this case looks as follows (see figure 5.2):

Case 1. If §,w,N, < wN(w), then w* = w and N* = N(w).

Case 2. If 5w, N, > wN(w), then w* = w and N* satisfies wN* = §,w,N,.
(See Figure 5.2)

The formal proof follows from Lemma 5.9 which has been stated and proved
in the Appendix.
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We consider the two cases briefly. In case 1, since dwyN; < wN(w), the
management chooses (w, N(w)) which gives the management it’s unconstrained
maximum profits. For case 2, the argument is similar to that for d;. Here it is
the management who is the residual claimant, and thus tries to maximize the
aggregate surplus.

Note that both the dynamic reaction functions involve set ting the wage level
equal to the minimum wage. This suggests (following Rubinstein (1982)) that
the equilibrium wage level will also equal the minimum wage level as both the
parties are interested in setting wage at that level. Proposition 5.1 shows that
this intuition is indeed correct. This fact will have important consequences for
our comparative statics results as well. The discussion of that, however, must
be postponed till we derive Proposition 5.2.

Taking advantage of the above mentioned property we now define two new
functions D,;(N;) and Dy(N,) as follows:

D,(N;) = dy(w, N,), (5.2.6)
DE(NI) - dg(E,Ng). {52?)

The rationale behind introducing these functions is as follows. From our
earlier argument it is clear that d;(w;, N;) must be of the form (w, N;). Thus
D,(N,) and D;(N,) intersect at some N; and N, if and only if d,(w,,N;) and
d2(w3, N2) intersect at (w,N;) and (w,N;). It is therefore enough to focus
on the D;(N;) functions. Moreover, these lend themselves to diagrammatic
representations that are useful for our analysis.

The shape of these two functions are demonstrated in figure 5.3. (The
shapes follow from observations 5.1 to 5.6 given in the Appendix.) From the
diagram it is easy to see that D, and D, has a unique intersection, which is de-
fined by the following two equations, D,D,(N;) = N, and D,(N,;) = N;. From
our earlier argument this implies that d,(d,(w, N;)) = Ny and dy(w, Ny) = N,.
Consider the solutions to the following functional equations:

X(Nz) —wN, EI[X(NI) — whN,], (5.2.8)
N, 6, N,, (5.2.9)
s.t. N2 > N(w). (5.2.10)



Bargaining under Minimum Wage Regulation 91

Let N,(w) and N3(w) solve the two functional equations. It is clear that the
intersection of D; and D, coincides with N;(w) and N,(w) whenever N;(w) >
N(w). Otherwise, the intersection of D; and D; occurs at N; = N(w) and
N; = D(N(w))-

We now prove that this intersection of D; and D, in fact defines the unique
subgame perfect equilibrium of this game. Our proof is on the lines of the proof
in Binmore (1986). This proves that any equilibrium outcome involves setting
the wage level equal to the minimum wage level. This is somewhat surprising
as in case of departures from competitive conditions, we usually find that none
of the first best conditions hold. Here the result follows as both the parties

have an interest in setting the wage level equal to w.

Proposition 5.1 If N, and N, denotes the intersection of D, and D,, then
the unique subgame perfect outcome involves the management making an offer

of (w,N;) at time 0 and the union accepting the offer.

The formal proof of this proposition is in the Appendix. Here, we provide
an intuitive sketch of the argument. To begin with note'® that (w, N;) can
indeed be supported as a subgame perfect equilibrium with the help of the
following strategies for the two parties.

The employer’s strategy is to offer (w, N;) whenever it is his turn to make
an offer and to accept an offer if and only if the offered wage-employment vector
yields him at least as much as 6;[X(N;) — wV,].

The union’s strategy is to offer (w, N;) whenever it is his turn to make an
offer and to accept an offer if and only if the payoff accruing to him is greater
than or equal to d,wNN,.

The argument of the proof of uniqueness (formal proof in Appendix) is as
follows. First we show that at any subgame perfect equilibrium the manage-
ment receives a payoff equal to X(N;) — wNN; and the union receives a payoff
equal to wN;. Consider the maximum payoff that the management can obtain
in any subgame perfect equilibrium. This is nothing but the competitive level

of profits. Denote this by A. Clearly at any subgame where the union is the

10There are certain technicalities which will be resolved in the formal proof in the Appendix.
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proposer, the union will offer at most §; A to the management. The union in
the process obtains at least B (say). Next consider any subgame where the
management 18 the proposer. Obviously, the management must offer at least
62 B (if it has any reasonable hope of acceptance) to the union and itself obtain
at most say A, in the process. Arguing in this manner we can show that in
the limit the management receives a payoff of at most X (N1) — wN,; and the
union receives at least w/N;. It is easy to visualize what is going on in terms
of figure 5.3. Note that from our earlier discussion the payoffs A, B,--- cor-
respond to offers of the form (w,N). Thus corresponding to A4, B, A;,--- we
obtain a sequence of the form N° N!, N2 .... From figure 5.3 it is easy to see
that this converges to the intersection of D, and D,. Note that at each step
we use the fact that the subgame perfect strategies of a game remain subgame
perfect for any subgame. We can employ a symmetric argument to show that
the management’s payoff is at least X(N;) — w/NV; and the union’s payoff is at
most w/V;. This proves our contention that the management receives a payoff
equal to X(N;) — wN; and the union receives a payoff equal to wN,. We then
use this to show that there can be no delay in equilibrium and that the vector
at which equilibrium occurs is precisely (w, N;).

We next look at some comparative statics results of our model. The com-
parative statics results relating to the discount factors can be derived from
figure 5.3. As the discount factor of the union increases, the kink in D, shifts
downwards and the slope of the positively sloped section also decreases. Both
these effects causes the equilibrium level of employment to increase (except
when the intersection occurs in the vertical part of D, and continue to do so
even afterwards).

Whereas, for an increase in the discount factor of the employer, D, shifts
downwards, though always remaining above the 45° line. This leads to a de-
crease in the equilibrium level of employment when the union is the first mover.
If the employer is the first mover, then the equilibrium level of employment de-
clines only if the intersection of D, and D, is in the positively sloped section of
D,. Since all equilibria involve w = w, an increase in equilibrium employment
implies a lower payoff for the management and a higher payoff for the union,
though output itself is going to increase.
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Next, we consider the effect of an increase in the minimum stipulated wage.
Clearly, as the minimum wage level increases we can restrict attention to one
of the three situations:

(a) The equilibrium is originally on the positively sloped section of D, and
remains so as w I1Nncreases.

(b) The equilibrium is originally on the vertical section of D, however as
w increases we move to the positively sloped section of D.

(c) The equilibrium is originally on the vertically sloped section of the D,
and remains so as w 1ncreases.

It is easy to check that the equilibrium employment and the employers pay-
off decreases as the minimum stipulated wage increases. The proof involves
straightforward differentiation of the solution to the two functional equations
(5.8) and (5.9) subject to (5.10), whenever Ni(w) > N(w) (otherwise use
N; = N(w) and differentiate) and has been omitted. We then come to the
all important question of the impact of a change in the minimum wage level
on the income of the workers. Proposition 5.2 is the heart of this chapter and

provides a sufficient condition for the income of the union to be decreasing in

the minimum wage w.

Proposition 5.2 If the marginal product of labour is inelastic, then the equi-

librium payoff of the union is non-increasing in w.

Proof.
Clearly, the marginal product of labour is X‘(IN). Let e be the elasticity of
marginal product of labour. So e = —x,‘?rﬂ} dJﬁIN} = —%. Clearly, e < 1if

and only if NX’(N) is non-decreasing in N, i.e. NX (N)+ X'(N) = 0.
Case 1. Let w be such that Ny(w) > N(w). So the union’s payoff is
_ﬁl(m) and

d 3 dﬁl(l.”_) i
Emﬂ(m) I T Ny(w)
= Ny(w) (T ) + 1]

XMy — w — §:6,(X/(N1(w)) — w)
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So ZwN,(w) <0 if

_ w(l — 6,5,) Sy
X (58 — y — §,6,(X"(Ny(w)) — )

e if X/(PW) > 5 5, X/(N, (w)).

It is easy to check that the above condition is satisfied whenever N X’ (N)
18 non-decreasing.

Case 2. Let w be such that Ny (w) < N(w). So equilibrium is attained
at employment level N (w). In this region the union’s equilibrium payoff is
wN(w). Now fﬁ_ugN(m) = m;‘iN(m} + N(w) = x':!:T{@} + N(w).

If NX'(N) is non-decreasing in N, then NX (V) + X'(N) > 0 VN ie.
%"y + N <0 VN. In particular, - By + N(w) < 0. »

To see that the sufficient condition is not vacuous, it is enough to note that
this condition is satisfied for the production function X(N) = N 7, whenever
N > 1.

Note that this is the same condition as that for a competitive firm when
there is no bargaining. The level of employment under the bargaining setup is,
however, different from that under the competitive outcome. Even so we find
that the same sufficient condition prevails. The intuition is as follows. Note
that despite bargaining over both employment and wages, it is in the interest
of both parties to set the wage level equal to w. This, however, implies that
following an increase in the level of the minimum wage, a reduction in the level
of employment is called for. Given the concavity of the production function and
the fact that the level of employment is higher under bargaining (compared to
the competitive outcome), this implies that reducing the level of employment
1s less costly (in terms of output) under the bargaining outcome. Thus any
increase in the minimum wage will tend to have a more severe effect in terms of
employment under the bargaining outcome. Thus the sufficient condition for
the competitive case will be sufficient in this case as well. Hence the result.

Finally, notice that in this chapter we restrict attention to the case where
the alternative wage (i.e. the outside option) of the workers is zero. Thus it

is natural to ask whether our results depend on this assumption. Our investi.
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gations (not reported in this chapter) suggest that as long as the level of the
available alternative wage is not too high (compared to the minimum wage),
our results are not affected. We still obtain uniqueness of equilibrium. More
importantly, a version of Proposition 2.2 still goes through. The sufficient con-
dition, though, is more complicated and involves the alternative wage as well.
Another interesting feature is that even in this case, the union can only affect
either employment or wage levels, but not both. Depending on the parameter
values, the outcome involves either the competitive wage or the competitive

employment levels.

5.3 Conclusion

The argument in this chapter demonstrates the pitfalls involved in an indis-
criminate increase of the level of minimum wages. We show that even in the
presence of unionized workers it 1s possible that an increase in minimum wages
leads to a decline in the income of the workers. Such an increase also reduces
the income of the management besides causing a reduction in the level of em-
ployment and hence output.

Thus from a policy point of view an increase in the minimum wage is not
always in the best interest of the workers, especially if the marginal product
curve of labour is inelastic. In that case the government may have to resort
to other measures, namely, increasing the bargaining power of the workers.
However, even in this case the effort may prove futile, if the increase is small
enough and the management is strong enough.

Finally, notice that though our chapter is restricted to management-union
interactions, the basic framework of variable surplus bargaining is likely to have
a wider application. For instance, consider the problem where there are two
agents who possess two different factors of production needed to produce some
economic good. They want to form a firm for the production of the good.

Clearly, we can employ a similar framework to analyse the division of surplus
in this case.
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5.4 Appendix

Lemma 5.1 Consider the problem :

Mazimize wiV
such thatw > w and X(N)—wN > K
where 0 < K < X(N(w)) —whN(w) . (5.4.11)

The mazimum occurs at (w*,N*) where w* = w and N* is mazimum N s.t.

X(N)—-wN =K.

Proof.

(See figure 5.1) Since wN is a continuous function over a compact feasible

set (easy to check), the maximum exists. Let the maximum be attained a

(w*, N*). Then N* = N(w") where J N(w) = Max N s.t. X(N)— wN = K
If N* > N(w*), then we contradict the second feasibility constraint.

If N* < N(w*), then w*N* < w*N(w*). So wN can be increased through
an increase in N*.

So N* = N(w*).
Next we show that w = w.
Suppose w* > w. Observe that N(w) > N(w*). 1

So wN(w) = X(N(w))-
> X(N(w*)) -
= w'N(w"). (5.4.12)
So the union’s payoff can be increased. m

In figure 5.2, 6,[X(N,) — w; V;] represents a value of K.

As X(N(w)) — wN(w) = K, so X(N(w)) — w *N(w) < K ie K + w* N(w) > X(N(w)).
If N(w) < N (w*) then from the concavity of X (N) and from the definition of N it follows

that L.H.S. increases more than R.H.S. when N(w) is replaced by N(w*). So we can’t have
equality.
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Lemma 5.2 Let the management solve the problem:

Mazimize X(N)—wN
s.t. w =2 w
and wN > K where0< K <wN (5.4.13)

Let (w*,N*) be the vector which solves this mazimization problem. Then the

solution 1s as follows.
Case 1. If K < wN(w), then w* = w and N* = N(w).
Case 2. If K > wN(w) then w* = w and N* is such that wN* = K.

Proof. (See figure 5.2)
Case 1. Since K < wN(w) the management chooses (w, N(w)) which gives
the management it’s unconstrained maximum profits.
Case 2. Here (w,N(w)) is not feasible. Let N* be such that K = wN®*.
We will show that w and this N* solves the maximization problem. Clearly
N* > N(w).

Now w* = w for, if w* > w then w* can be decreased and employment
chosen at N* such that the union still receives K. The management will never
give more than K. So, if w* > w, then w* can be decreased to w with the

union still getting K. Now the management’s payoff will be higher as X(N)
has increased.

Next we show that N = N*.

For any N < N*, X(N) is less compared to X(N*) while the payoff of the
worker remains the same, so the payoff of the management is reduced.

Again if N > N*, then from the concavity of X(NN) the closer we move to

N(w) the higher is X(IN) — wN (which denotes the management’s payoff for
N > N*). So payoff can be increased.

So the solution is w* = w and employment at N*. =

In figure 5.2, K, and K, correspond to different levels of §;w, N, for Case 1
and Case 2 respectively.

Now we establish the shape of the two functions, D,(N;) and D,(N,),
through a series of observations. (See figure 5.3)

Observation 5.1. D,(NV;) is strictly decreasing in the level of employment
N,, for N; € [0, N(w)].
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As N, increases, we find that §,[X(N;) — wNN;], the payoff to be given to
the management, increases. Thus at the previous level of employment it is
not possible to satisfy the management’s demands, and N; must be reduced.
Observation 5.2 follows from a similar argument.

Observation 5.2. D,(N,) is strictly increasing in N, for N; € [N(w), N].
Observation 5.3. D,(N) > N, VN € [N(w),N)

It i1s easy to see why. For N € [N(w), N), the management’s current period
payoff is more than the discounted value of his next period payoff. Hence N
can be increased by the union.

Observation 5.4. For a fixed N, € (0,N), D,(N,) is decreasing in §,.

As 6, increases, for the earlier value of N; the management obtains less than

the discounted value of his next period payoff, so N; must be decreased.
Observation 5.5. For

N(w)

2

N; <

3 D:(N:) = N(w)

and for

N(w)
62
This follows straightaway from the definition of d,, as does observation 5.6.

N; > y D2(N32) = 6;N,.

Observation 5.6. Slope of D, is §;. As §; increases, the slope increases.

Existence of equilibrium.

We will show that the strategies mentioned in the text constitutes an equi-
librium. Note that if the intersection of the curves occurs at their positively
sloped sections, then 6,[X(N;) — wN;] = [X(N;) — wN,] and §,wN; = wN;.
Here the proof is easy. So we focus on the situation where the intersection

occurs on the vertical part of d,, i.e. where
N] = N(t_ﬂ_) and 621H_FN1 < ENI (54.14)

First we check player 1’s strategy. Consider his offer. Since player 1’s payoff
18 maximized at N(w) and it is being accepted he cannot gain by offering

anything else. Now we look at his acceptance decision. Suppose he rejects
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some offer where he gets more than §,[X(/N;) — wNV;]. Then he gets at most
61[X (V1) — wV,] if he makes an acceptable offer next period. Otherwise he
gets at most 67[X (N;) — wN;] if he makes an unacceptable offer next period.
Player 1 can deviate only if 6,[X(N;) — wN,] > [X(N,) — wV,].

However we know that [X(N;) — wiN,] = §,[X(N;) —wN,] =
61[X(N2) — wN,] < [X(N1) — wN,] for §; < 1. So the management should
accept 8;[X(N;) — wVy].

Consider player 2’s offer. If he offers anything that gives player 1 more
than what player 1 is willing to accept now, then player 2 loses by definition
of d,. If he offers anything that gives player 1 less than what player 1 is
willing to accept, then player 1 rejects and player 2 gets atmost §,wN(w) if
player 2 makes an acceptable offer next period. So player 2 offers less only if
brwN(w) > wN; = 6wN, > wN(w) as N2 > N(w). This contradicts equation
(5.4.14).

Consider player 2’s acceptance-rejection decision. He accepts any offer
which yields him a payoff less than or equal to what he gets from é;wN,,if
he rejects he gets at most §3wN,,or by making an unacceptable offer he gets
63wN(w). Player 2 can gain only if 2wN(w) > §,wN,, = §,wN, > wN(w) as
Nz > N(w). This contradicts equation (5.4.14).

Similarly accepting an offer which gives him strictly less than é,wN, cannot
be best because by rejecting he can do better. =

We proceed to the proof of uniqueness of equilibrium; the line of proof
follows Binmore (1986).

Uniqueness of equilibrium.

We start with a series of claims.

Claim 1. In any equilibrium of a game where the union is the first mover, the
union cannot get anything less than his payoff from the vector d,(w, N(w)).
Proof. If the union offers (w, D;(w, N(w))), the management should accept
as he cannot get any higher payoff than that from (w, N(w)) tomorrow. (Note
that assumption 4 is needed here).

Claim 2. In any equilibrium of a game where the management is first mover,

the management cannot get anything with a higher payoff than that from
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dady(w, N(w)).

Proof. We use the property that equilibrium strategies for a game re-
main equilibrium strategies for any subgame of the game. If in an equilib-
rium (at time 0) the management (player 1) gets more than what he gets
from (w, D;dy(w, N(w))), then the union must be getting a payoff less than
62(wD,(w, N(w))] from definition of D;. However the union knows (from claim
1) that in any subgame starting at time 1, he can get at least as much payoff
as that from d;(w, N(w)). So he will reject the offer.

Claim 3. In any equilibrium of a game where union is the first mover, the
union gets at least as much as that of the bundle d,d,d, (w, N(w)).

Proof. Follows from claim 2 as before.

Continuing, we can get sequences {z;}°>, and {vi}3Z2o such that z, =
N(w),yo = D1(w, N(w)), and z; = D;(w, yi-1),wi = Di(w, z;) for 1 > 1.

Also the union, if he is the first mover gets at least as much as that of (w, y,.)
for each n > 0, and the management, if he is the first mover gets a payoff less
than equal to that from (w, z,.) for each n > 0.

Now we prove the rest of the uniqueness argument. We start with the
following two cases.

Case 1. Let X% > D, (w, N(w)). Clearly z; = N(w) and y; = D;(w, N(w)),
Vi > 0. Since N; = N(w), N; = D;(w, N(w)) our claim goes through.

Case 2. Let ™ < D)(w,N(w)). Now N; > N(w) = zo and N, =
Dy (w, N1) > Dy(w, N(w)) = Dy (w,z0) = yo as D, is strictly increasing for
N € [N(w),N]. Again z; = Dy(w, Yo) > N(w) = zo since Dy(N) is strictly in-
creasing for N € [N(w), N]. Similarly z; = D,(w, Yo) < Dy(w, N;) = N;. Also
1 = Dy(w,z,) > Dy(w, z0) as D; is strictly increasing on [N(w), N]. Further
1 = Di(w,z,) < Dy(w,N,) = N, as D, is increasing to the right of N(w). So

To <z < N, (5.4.15)

and
Yo <t < Nj- (54*16)

We now prove that if for some n,

Ig < Ty*=" < Ty = Nl (5.4.17)
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and

Yo<th <+ <ya <N, (5.4.18)

where z; = Dy(w, yi-1) and y; = D;(w, z;), then

Ig< Iy "< Tn < Tnt+l < Nl (5419)

and

Yo <Y1 <+ < Yp < Ypp1 < Ns. (5.4.20)

Now Zn1 = Da(w,yn) > Dy(w, Yn-1) = z,, as D, is increasing. Also y,,; =
Dy (w, Zn4+1) > D1(w, 2,) = y, as Dy(N) is increasing for N € [N(w), N]. Also
Tnyl = Dz(ﬂ: yn) < N; and Yn+1 = Di(w, In+1) < N;. So {Ii} and {yi} are
Increasing sequences bounded above by N, and N, respectively. So {z;} =T <
Ny and {yi} = ¥ < N,. Also {Dy(w,z;)} = Dy(w,Z) from continuity of D,
ie. {yi} = Di(w,7)i.e. ¥ = Dy(w,Z). Similarly 7 = Dy(w,y). However this
1s only true if T = N,, ¥ = N,.

Now, very similar to the above derivation, we build sequences {a,}%,
and {b.}32, such that ¢y = N, b = Dy(w,N), a, = D(w, b.—1) and
bn = Dy(w, an). The union if he is the first mover, always gets a payoff less than
or equal to what he gets from (w,a,), for each n > 0, and the management if
he is the first mover always gets a payoff which is greater than than equal to
what he gets from (w, b, ), for each n > 0. Now, {a,} — N, and {bn} — Nj.

Combining the two derivations with the two different pairs of sequences, it
is the case that in any equilibrium where the management is the first mover,
the management must get X(N;) — wN; and the union must get wN;. Now,
1t follows from standard Rubinstein (1982) techniques that there cannot be
any delay in bargaining; this implies that the equilibrium is the unique vector
(w, Ny). | e
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