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Chapter 1
Introduction

The theory of mechanism design originated in the mid 1930s with the work of
Lange[27], Lerner (28] and Hayek [20] on market socialism'. Further rigour
was added to their ideas by Arrow and Hurwicz (1]. Hurwicz extended them
to the general problem of mechanism design. An important aspect of mech-
anism design is asymmetric information. Information asymmetry typically
imposes constraints on the goals which can be attained. For example. in the
classic pure public goods problem, mechanisms that achieve truthful reve-
lation of private information are Pareto sub-optimal i.e. these mechanisms
lead to a welfare loss (see Hurwicz [24]). When can mechanism design lead
to no welfare loss is addressed here. The question that we address in the
three essays in this thesis is the following: Can we identify decision prob-
lems for which mechanisms can be designed where information shortages and
asymmetries do not impose any welfare loss. In other words, do there ex-
ists “interesting” incentive problems where the “first best” is attainable? We
provide a broadly affirmative answer to this question. We begin by discussing
some theoretical results on implementation relevant for this work. We also
give a brief sketch of the specific problems to be addressed in the next few

"The theory of market socialism deals with replicating the workings of a perfectly
competitive market through a decentralized planning process in which incomes can be
controlled.
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chapters.

1.1 Games and equilibrium concepts

To describe the mechanism design problem we first define a game in normal
form and the relevant equilibrium concepts. Formally, a non-cooperative
game in normal form is written as T = (N, {S;};en, {1;},en), where N =
{1,...,n} is the (finite) set of players, {S;} is the strategy set of plaver ;
and u; : [T}, S; — R is the payoff of player j2. Let S = [I}., S, and
S_; = Iliz; Si- A generic element of S_; is denoted by s_;. An equilibrium
concept E for the game I is a selection from S and is denoted by E(I')

DEFINITION 1.1.1 The strategy profile s* € S is a Nash equilibrium
of the game I if u;(s}, s7;) > u,(s;,s2;) for all 5; € S; and all j € N. The
set of Nash equilibria of I' is denoted by NE(T').

A Nash equilibrium has the property that it is a best response to it-
self. In other words, if a player believes that other players will play Nash
equilibrium strategies (corresponding to a particular Nash equilibrium). then
he is happy to play his Nash equilibrium strategy. This equilibrium notion

has some from a decisi h etic point of view (see
van Damme [39] and Mailath [29]). A more robust equilibrium notion is a

dominant strategy equilibrium which we describe below.

DEFINITION 1.1.2 The strategy s} € S; is said to be a dominant strat-
egy for player j € N if u;(sj,s-;) > u;(s;,s-;) for all s; € S, and all
s-; €S_;.

If a player has a dominant strategy then no matter what others play, he
has an incentive to play his dominant strategy. His beliefs about the strategic
choices of other players becomes irrelevant.

2R represents the real line.
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DEFINITION 1.1.3 The strategy profile s* € S is a dominant strategy
equilibrium of the game T if for each j € N, s} is a dominant strategy for
Jj- The set of dominant strategy equilibria of I' is denoted by DS(I')

Thus, the notion of dominant strategy equilibrium is very robust in the
sense that it makes very weak assumption about players’ behaviour. It is
worth mentioning that a game in strategic form may not have a dominant
strategy equilibrium. Further, a dominant strategy, if it exists, belongs to
the best response set of a player irrespective of what others play. Therefore.
a dominant strategy equilibrium is a Nash equilibrium i.e. DS(I') ¢ NE(T).

1.2 Dominant Strategy Implementation

A typical implementation problem involves a group of agents and a planner.
Each individual has a preference which is known only to him®. The planner
has to make a certain decision. However, his decision choice depends on the
private information of all agents. For example, his decision of whether or
not to build a bridge could depend on the value that each member of the
society places on the bridge. Therefore, the planner has to find a way to
elicit this privately held information. One way of solving this problem is to
design a game that gives individuals the incentive to reveal their information
truthfully. This forms the core of implementation theory.

We now try to develop a formal theory of implementation following Moore
[31] and Green, Mas-Colell and Whinston [16]. Consider a situation where
there are N = {1, ..., n} individuals or agents and a set of feasible outcomes
or decisions denoted by A. Let © = O, x-- - x O, be the set of possible states
of nature. In a given state, the profile of individuals’ preferences is given by
6= (6:,...,0,) € © where §; € ©; for all j € N. A social choice function
associates a decision f(6) to each § € © i.e. f:© — A. A mechanism
M = (S,T)isan n+1 tuple (S=S) x ... x Sp:T') where S; is the message
set (or strategy set) of player j € Nand I': S — A.

3Thi the so called incomplete information framework.
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DEFINITION 1.2.4 The mechanism M = (S,T') implements f in E(I')
if there exists an equilibrium strategy vector s*() = (si(6),...s;(0)) € S.
such that T'(s*(#)) = f(0) for all 6 € ©.

The natural question to ask in this context is the following: given a social
choice function f, does there exist a mechanism M = (S,T’) such that when
agents with preference profile 6 play the corresponding game, the unique
equilibrium outcome is f(6)? The answer to this question depends on the
extent of informational asymmetry across agents and the equilibrium con-
cept E(I') used in solving the problem. If each agent knows the preferences
of all other agents then we have a mechanism design problem under com-
plete information and the equilibrium concept that can be used is Nash
equilibrium. However, if each agent knows only his preference and has some
or no information about the preferences of the other agents then we have a

1 design e information. Under incom-
plete information it is not very meaningful to talk about Nash equilibrium
since the validity of the notion depends critically on the assumption that

under i

payoffs of all players are common knowledge to the players. The dominant
strategy equilibrium is a more appropriate equilibrium concept under incom-
plete information since truth-telling leads to a maximal payoff irrespective of
others’ strategies. The three essays in this thesis deal with mechanism design
problems under incomplete information with dominant strategy equilibrium
as the equilibrium concept. °

DEFINITION 1.2.5 The strategy profile s*(.) = (s}(.),...s5(.)) € Sis a
dominant strategy equilibrium of a mechanism M = (S.T) if, for all
J € N and for all §; € ©;,

U(T(3(05), 5-3).6,) 2 Us(L (s} 5-,).6,)
for all s € S; and for all s_; € S_;.

Given the notion of dominant strategy equilibrium of a mechanism. one
can now define dominant strategy implementability.
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DEFINITION 1.2.6 The mechanism M = (S,T) implements f in dom-
inant strategies if there exists a dominant strategy equilibrium of T, s*(.) =
(57(),---s3(.)) € S, such that I'(s*(6)) = f(6) foralld € ©.

What gives the implementation problem its bite is that the same M has
to cope with all profiles in ©. To identify whether a social choice function
f is implementable in E(T'), we need, in principle to consider all possible
mechanisms. Much of the complexity of mechanism design problem under
incomplete information is reduced by the “revelation principle”. The revela-
tion principle states that a planner can concentrate only on “direct revelation
mechanisms” where the game form is such that the strategy set of each indi-
vidual is his type space. The revelation principle has been used among others
by Gibbard [13], Green and Laffont [15], Dasgupta, Hammond and Maskin
[7] and Myerson [33]*.

DEFINITION 1.2.7 A direct revelation mechanism is a mechanism
in which S; = ©; for all j € N and I'(8) = f(6) for all § € ©.

To state the “revelation principle for dominant strategy implementation™ we
need the following definition.

DEFINITION 1.2.8 The social choice function f is truthfully imple-
table in domi strategies or domi strategy incentive
compatible or strategyproof if for all j € N and for all 9 €6,

U;(£(0),8;) > U;(£(6;,06-,),6;)
for all 6} € ©; and for all 6_; € l[;[] O.
The revelation principle for dominant strategy implementation states the

following: If a social choice function f is implementable in dominant strate-
gies then f is strategyproof. Due to the revelation principle, one can restrict

*Also sce Fudenberg and Tirole (11].
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attention to direct mechanisms which are strategyproof. All the essays in

this thesis use the notion of domi strategy impl ability. Therefore.

the mechanisms considered are all direct revelation mechanisms. We now

provide a brief survey of the main issues addressed in the thesis.

1.3 Main Issues

The notion of dominant strategy implementability, though very robust in
terms decision theoretic foundations, is impossible to achieve if domain of
preferences is unrestricted. With unrestricted domain of preferences we
have an impossibility result, better known in the literature as the Gibbard-
Satterthwaite Theorem. The theorem states the following: Suppose © in-
cludes all possible strict preference orderings over the finite set of alternatives
A. Then for |A| > 3, there is no social choice function f that can be truth-
fully implemented in dominant strategy equilibrium unless it is dictatorial®.
For a formal proof of this theorem see Gibbard [13] or Satterthwaite [35].
The Gibbard-Satterthwaite theorem holds for unrestricted domain of pref-
erences. There are however, environments where domain restrictions are
natural. One such natural restriction is quasi-linear preferences. In a quasi-
linear framework, the utility of an agent j € N is of the form v;(d;,6;) +¢;
where d; is an outcome or a decision and ¢; is his transfer. This is an im-
portant domain restriction where money can be thought of as the private
good and there exists a ibility of agents p ing each other via
monetary transfers. The literature on domi strategy impl ability
with quasi-linear preferences is vast. We mention some of the results on this

topic that are relevant for this thesis.

In a quasi-linear framework, a powerful result on dominant strategy im-
plementability with a finite set of decisions over which preferences are unre-
stricted, was established by Roberts [34]. However, in general we may have
other objectives over and above domi strategy impl ability like “ef-

5| A| represents the cardinality of A
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ficiency of decisions”. The following di: ion is in this

Groves (17) and Clarke (3] have discovered that for one important class of
social decision problems for which there is a class of mechanisms, popularly
known as “Groves” mechanism, that are dominant strategy incentive com-
patible. The most appealing problem of implementation in this context is
the non-excludable pure public goods problem. In this framework the set of
agents have preferences over two decisions- public goods and no public goods.
The preferences of each individual for the public good is private information.
The planner has to decide on whether or not to produce the public good
based on the preferences of the agents. The planners’ goal is to achieve effi-
ciency of decision i.e. the planner wants to maximise the total surplus of all
agents from the public decision in all states of the world. This is the clas-
sic “free-rider” problem where Groves mechanisms ensure dominant strategy

it ion and effici of d

In a Groves mechanism, the transfer of a particular agent is selected in
such a way that his payoff is the total surplus from the public decision in
all states plus a constant that depends on the announcements of all other
individuals. The transfer is strategyproof and achieves efficiency of decisions
because this transfer puts the planner’s optimization problem into the utility
function of each individual. Green and Laffont [14] has proved the unique-
ness of Groves mechanism in the public goods problems. Holmstrém [21]

has proved that if the domain of prefé in a quasi-li k is
smoothly connected, then Groves hani: are the only hani: that
are domi strategy i i ible and efficient in terms of the de-

cision. More recently Suijs [36] has proved that for finite decision problems
Groves mechanism are unique mechanisms that achieve efficiency of deci-
sions and strategyproofness provided the quasi-linear domain of preferences
is graph connected. These results suggest that for a very broad class of quasi-
linear p Groves hani: are the only i that achieve

efficiency of decision and strategyproofness.

The main drawback of Groves mechanism is that it is, in general, not
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balanced. This means that there are preference realizations where the sum
of transfers differ from zero. In the pure public goods problem Hurwicz (23],
Green and Laffont [15] and Walker [41] proved the budget imbalance of a
Groves scheme. The implication of budget imbalance is that Groves mech-
anisms are not Pareto-optimal. The damaging nature of budget imbalance
of Groves mechanism, in the public goods context, was analysed by Groves
and Ledyard [18]. They proposed, using a very simple model that an alter-
native procedure based on majority rule voting may lead to an allocation of
resources which is Pareto-superior to the one produced by Groves mechanism.

What can be done in the light of this difficulty? Different remedies for
dealing with this problem exists in the literature. Some of these are specified
below.

e We can search for Groves mechanism that generates a budget surplus
for the planner in every state. Mechanisms that ensure a budget surplus
for the planner are called feasible mechanisms. It is desirable that the
sum of Groves transfers is non-positive so that the planner can achieve
efficiency of decision and truth-telling in dominant strategies without
incurring a budget-deficit. This has been the most standard way out
of this problem in this literature.

‘We can look for a “second-best” Groves mechanisms. For example one
can try and identify the Groves transfer among the class of feasible
Groves transfers that minimizes the surplus for the planner in every
state. Moulin argued that the “pivotal” mechanism, belonging to the
Groves family of mechanisms, achieves this goal. In a pivotal mech-

anism, each agent is taxed to the extent of the exact cost. that his
presence imposes upon the rest of the agents. One obvious feature of
this mechanism is feasibility since the agents are always taxed and never
subsidized. Moulin [32] proved that in the non-excludable pure public
goods problem with finite set of decisions, for all profiles, no other fea-
sible strategyproof mechanism has a smaller budget surplus than the
pivotal mechanism. More recently, Deb and Seo [9] derived a closed
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form solution for the maximal surplus generated by pivotal mechanism
in the case of non-excludable binary public good. Their formula can

h with other

be used to compare pivotal

We can weaken the dominant strategy to Bayesian incentive compati-
bility and look for mechanisms that are Bayesian incentive compatible,
efficient in terms of decision and budget-balanced. A classic paper in
this direction is by d’Aspremont and Gerard-Varet [8]. This paper pro-
poses a mechanism which is now known as AGV mechanism. An AGV

hani. is a Groves is in expectations. In this mechanism

each agent is paid the expected value of the other agents’ surplus condi-
tional upon his own report. They prove that there exists AGV transfer

schemes that are balanced.

We can relax the efficiency assumption and look for mechanisms that
are dominant strategy incentive compatible and budget balancing (see
e.g. Gary-Bobo and Jaaidane [12]). One possible approach is the so
called “sampling” mechanism. The idea of a “sampling” mechanism
is to select a sample from the set of agents and give them the Groves
transfer. The surplus or deficit is distributed among the agents outside
the sample. Clearly, this strategy incenti
ible and budget balanci However, it is not efficient in terms of
the decision due to the sampling error. It is clear that under appropriate
assumptions, as the number of agents become large, the sampling error

is

becomes arbitrarily small.

We can add domain restrictions and look for first best implementable
decision problems. In other words, we can try to find dccision prob-
lems for which it is possible to find Pareto optimal or “fully efficient™
mechanisms. In the non-excludable public goods problem this has led
to partial success. Groves and Loeb [19] show that, with quadratic
preferences it is possible to find balanced Groves transfers. Laffont

and Maskin [25], by and di entiability of pref-
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erences, derive a necessary and sufficient condition for the existence of
balanced Groves mechani Tian [37] obtained a sufficient class of
pr for which bal 1 Groves hani exists. This class
includes, as a special case, the quadratic preferences derived by Groves
and Loeb. In all these results, on first best implementability for the
public goods problem, the decision set is not finite. For finite decision
problems, Suijs [36] shows that a “sequencing” problem is first best
implementable.

In this thesis, we adopt an approach similar to Suijs. We explore the possibil-
ity of identifying decision problems where the first best can be implemented.
Clearly, the non-excludable public good problem does not fall within this
class but we attempt to demonstrate nonetheless, that there are other inter-
esting incentive problems which have this property.

The ism design h is ingful as long as the agents agree
to voluntarily participate in the mechanism. An agent will want to partici-
pate in the mechanism if under all profiles, the payoff he receives is not less
than what he would have received if he did not participate. This condition
of acceptance or rejection by agents is captured by the individual rational-
ity condition. For example, if an agent has an outside option, independent

of his p within the hani: such that it gives him a utility of
zero, then individual rationality condition means that the utility of the agent,
by partici i in the i should be no less than zero. There can

be other ways of looking at the individual rationality condition. For exam-
ple, the outside option can be state dependent or it may not be zero for
all individuals. We do not go into such details and concentrate only on the
simplest of individual rationality condition-that with zero reservation utility
for all agents. With this definition of individual rationality in the pure pub-
lic goods problem, Green and Laffont [15] proved that Groves mechanisms
are individually rational under a sufficient condition on the transfer provided
there is no feasibility restriction. However, this condition results in huge
budget deficit for the planner. If there are n agents in the economy, then the
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sufficient condition on individual rationality requires that the budget deficit
be at least as large as (n — 1) times the total surplus in each state. Laffont
and Maskin (26] has proved that for pure public goods problem one cannot
find feasible Groves mechanism that satisfy individual rationality.

The broad conclusion that follows from this survey is that it is in general
not possible to find decision problems that are first best i.e. decision problems
that satisfy dominant strategy incentive compatibility, efficiency in terms of
decision and budget balancedness. Moreover, it is even more difficult to find
first best decision problems that satisfy individual rationality as well. In
the three essays we identify decision problems for which first best can be
achieved and we analyse the distinct nature of such decision problems. We
also address the individual rationality issue in this context and show that in
some special cases first best decision problems are also individually rational.
We now proceed to a more detailed discussion of the three essays.

1.4 Essay 1: Public Decisions

The first essay considers an economy with a public good and a private good
where agents have quasi-linear preferences. A public decision d; is a n x
1 vector and the utility of the jth agent from this decision is his private
valuation multiplied by the jth component of the vector d;, that is 0;dj;.
Here, 6; is the valuation for the public good to individual j € N and dj; is
the jth component of the ith public decision d;. In this framework. we first
derive the necessary and sufficient condition for first best implementability.
An important observation is made in this context. If the decision set satisfies

the dummy property i.c. there exists an individual for whom all decision lead
to the same utility, then a decision problem is always first best implementable.
The idea is quite simple-the dummy player absorbs the entire surplus or
deficit and hence balances the budget. This result is not quite interesting
and we rule out this possibility by assuming “symmetry”. Symmetry means
that if d; is a particular public decision then all possible permutations of the
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vector d; belongs to the decision set.

The first model of a public decision is a queueing model. The queueing
model is derived from a situation where there are n agents who have jobs to be
processed through a single machine. We can think of a computer server who
has to serve a set of individuals or agents. Each agent has a cost function
that depends on his completion time, i.e. the time he has to wait in the
queue and the time it takes to serve him. It is assumed that there is only one
server who needs one unit of time to serve any agent (homogeneous length of
time). The per period waiting cost of each individual is private information.
The decision problem for the server, who is the planner here, is to elicit this
private information for determining the efficient queue for serving the set of
individuals. The queueing model with at least three individuals is shown to
be first best implementable.

We illustrate the main idea behind this result in the case where there
are three individuals. Observe that efficiency implies that in every state the
individual who announces the highest cost is served first followed by the
individual who announces the second and lowest cost respectively. We claim
that if the individual who is served first pay the amount of the second highest
cost to the individual who goes last, then all individuals have the incentive to
reveal their information truthfully. There is a striking resemblance that this
scheme bears to the second price auction (see Vickrey [40]). In the auction,
the highest bidder pays an amount equal to the second highest bid to an
outsider (the seller). In the queueing model this amount is transferred to the
individual who gets the last position. It not only balances transfers in the
aggregate but also provides incentives for the individual who is served last.

The next situation is a particular class of decision problems called al-
lotment problems. In an allotment problem the sum of the elements of a
particular decision vector is unity. For example, if there are n individuals
and if the decision vector is @ = (a,...,ay), then =, oy = 1. A special
case of this problem is the decision vector of an indivisible good auction with-

out the possibility of no sale. For n = 3, the decision of an auction is a public
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decision problem consisting of all permutations of the vector a® = (1,0,0).
In the (1,0,0) case, it is possible to ensure truth-telling in dominant strate-
gies by giving the object to the highest bidder at a price which is equal to
the valuation of the second highest bidder. However, this transfer scheme is
not balanced because the payment of the highest bidder “leaks” out of the
system. In contrast consider an auction with the decision vector & = (%, 30
for n = 3. This can be thought of a special type of auction where efficiency
means that the highest bidder gets % of the good, the second highest bid-
der gets % and the lowest bidder does not get anything. Consider a transfer
scheme where the highest bidder pays } of the second highest bid to the low-
est bidder. This transfer scheme is balanced. The first part of this transfer
scheme is that the highest bidder pays the marginal loss incurred by the sec-
ond highest bidder. The margin being the difference between best decision
2 and the second best decision §. This part of the transfer is like the sec-
ond price auction a®, where the highest bidder pays the second highest bid
which is the marginal loss, i.e. 1 — 0 = 1, the second highest bidder incurs.
However, the payment of% of the second highest bid by the highest bidder
in & does not go to an outsider because unlike the auction a?, in &, there is
an incentive problem for the second and third position also. The amount of
money the lowest bidder receives is the marginal gain of the second bidder,
the margin being the difference between the second and third decision i.e.
1 —0 =1 By considering all possible deviations it is easy to check that
this transfer scheme for & is dominant strategy incentive compatible. The
important thing to observe is the appropriate “spread of incentives” that this
allotment problem gives rise to. The incentives are spread in such a way that
the individuals getting the better bundles can compensate the individuals
not getting the good bundles, such that the transfer is both incentive com-
patible as well as budget balanced. The appropriate “spread of incentives” is
captured by a combinatorial property which we call “Property T”. This sort
of spread is absent in the single good auction models. Consider a particular
decision vector and arrange them in a decreasing order. “Property T” is a
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combinatorial restriction on this set of ordered decisions. The example of the
decision @ for three agents, suggested above, satisfies “Property T” while a®
does not.

In this framework, we assume one property of the set of decisions that
gives a complete characterisation result. This property is called “non-trivial
range or NTR” property. An allotment problem satisfies the “NTR” property
if for all decisions there exists an open neighbourhood of states for which the
decision is efficient and strictly dominates all other decisions in the decision
set. For example, a symmetric allotment problem with decisions a® and &
violates the non-trivial range property because there is no open neighbour-
hood where & is strictly preferred to a®. The main result is that the class of
allotment problem satisfying “symmetry” and “NTR” property are first best
implementable if and only if they are “simple” and satisfy “Property T”. An
allotment problem is “simple” if it includes one and only one decision vector
and all its permutations in the set of decisions.

The final class of decisions generalizes the non-excludable pure public
goods problem by including the possibility of exclusion. In the classic public
goods problem, the public good, if produced, is enjoyed by all the agents. We
allow for the possibility of exclusion. Like the non-excludable public goods
case, each decision vector now has only two distinct elements, 0 and 1 where
0 is the case where the individual cannot enjoy the public goods and 1 the
case where the individual can enjoy the public good. We show that in this
model a public goods problem satisfying the “symmetry” property is first
best implementable if and only if we allow for full exclusion. In other words,
the public good is available to the set of individuals having non-negative
valuation. Individuals having negative valuation do not get the public good.
This implies that a public good problem is FB implementable if and only
if the possibility of exclusion transforms it into a private good. The if part
of this result is quite easy to establish. The converse is non-trivial because
we allow for all possible intermediate levels of exclusions. In this framework.
the reason for first best implementability of fully excludable public goods
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problem is different from that of allotment and queueing models. Here, it
is the full excludability aspect that drives the result, because the incentive
problem ceases to exist. In fact, it is easy to argue, in this context, that the
transfers are zero for all individuals and for all states.

Finally, the issue of individual rationality is addressed. It is proved that a
queueing model is not individually rational. The class of first best allotment
problem is individually rational under a sufficient restriction on the decision.
The fully excludable first best implementable public goods problem is also
individually rational.

1.5 Essay 2: Queueing Models

The second essay considers a generalization of the queueing model of the
previous essay. It focuses on the conditions that lead to first best imple-
mentability in the queueing framework. To do so, queueing models with
different cost structures are explored. Think of a computer server who has
to serve a set of individuals in a queue. The servers role is like the planner
who wants to minimise aggregate cost or find an efficient queue given the cost
parameters. As before, in all the queueing models considered in this essay,
it is assumed that the server needs one unit of time to serve an agent. The
individual’s waiting cost for all periods is private information. These costs
need not be linear. A special case of queueing model is the linear cost model
that was dealt with in the previous essay. We generalise the queueing model
by taking different cost structures. In this framework, individuals, in order to
reduce their own queueing cost, can announce their cost strategically. This
gives rise to a mechanism design problem for the server.

The unique feature of the queueing models we consider is that all agents
are served by the server. Therefore, once an individual is in the queue. he
cannot leave the queue and the server cannot throw him out of the queue.
This is necessary for first best implementability. There are a number of
papers that look at queucing models, where agents have the option of not
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joining the queue. Papers by Crés and Moulin [4], [5] explore the queucing
model in this framework. It is quite apparent from the structures of these
models that “full efficiency” or first best cannot be achieved. Therefore, they
compare the relative inefficiency of different mechanisms. They also focus on
le.

other nice properties of these mechanisms like group strategyproofness
whether these mechanisms are immune to group deviation or not.

The first model in this essay is a general queueing model. In this model a
complete characterization result is obtained by making minimal assumptions
about the cost vector of the agents. A cost vector of an agent is a row vector
with the kth element measuring the cost at the kth queue position. The
cost is assumed to be non-decreasing in queue positions. A combinatorial
property CP on the cost vector of each agent and the independence prop-
erty IP on group preferences are both necessary and sufficient for first best
implementability. Independence property is a restriction on the externality
that an agent can impose on the remaining set of agents. In other words,
IP means that if in some state agent j is served before agent [, then for all
queueing situations where agent i € N/{j, !} is eliminated, agent j continues
to be served before agent [. The cost vector must be such that, if agent
j is a predecessor of agent [, in some state, then j must continue to be a
predecessor of agent [, independent of the elimination of any i € N/{j.(}
from the queue. The elimination of an agent : € N, from the queue is a way
of measuring the externality agent i imposes on the remaining set of agents
in the queue with all individuals.

The second type of queueing models looks at agents with identical cost
functions. The form of the cost function is common knowledge. The cost
function is of the form g(6;)f(k). The first function depends on the cost
parameter 0; of an individual j € N. The second function f(k) depends
on the queueing position k € {1,...,n}. The parameter §; which is private
information. In this framework, the independence property or IP is satisfied
for all states. This class of separable cost queueing models is proved to be
first best implementable if and only if the queue dependent cost function
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f(k) satisfies CP. The class of separable cost queueing models satisfying
CP includes the polynomials of degree (n — 2) that are non-decreasing in
k. The queueing model, shown to be first best implementable in the first
essay, is a special case of this class of first best implementable queueing
models. Moreover, the class of queueing models with cost function of the form
01 97(6;) f(k) + B;(8;) with fP(.) satisfying CP and some restrictions on
g”(.) for all p=1,2,..., M, is shown to be first best implementable. We call
this type of queueing models the general first best implementable queueing
models. These results confirms the fact that there exists a fairly large class of
first best implementable queueing models. Finally, another type of queueing
model is introduced where, the cost is measured by the discounted value of the
benefit from the service. This model is called the discounted cost queueing
model and it violates CP at all but boundary preferences. Therefore, this
model is not first best implementable.

The results obtained from different queueing models highlight the impor-
tance of CP and IP for first best implementability of any queueing model.
The critical element for possibility results is the externality structure of the
first best implementable queueing models captured by IP. The IP condition
limits the externality that an individual imposes on the remaining set of in-
dividuals. To get a better understanding of the externality structure one can
compare the first best implementable queueing model with that of the clas-
sic pure public goods model. In the classic pure public goods problem with
non-excludability, an agent can, by changing his announcement, affect the
decisions of all other individuals. For example, in a state where the efficient
public decision is to produce the public good. an individual. by changing his
announcement strategically. can change the efficient decision to one where
no public good is produced. This will affect all individuals. It is this severe
externality that causes budget imbalance in the pure public goods model®.
In the queueing models it is necessary that the externality that can be im-
posed by an individual on the remaining set of individuals is less severe. In

3

ce Green and Laffont [15).




18 CHAPTER 1. INTRODUCTION

particular, if an individual has position k in the queue, then, by changing his

announcement he can affect individuals either in his predec

successor set. He cannot simultaneously affect both the predec
as the successor set of individuals. This type of externality, that results due
to IP, is less severe than the one in pure public goods problem.

Finally, the question of individual rationality is explored. In this con-
text, the gross benefit that an individual receives from the service plays an
important role. The queueing model in its most general form is not individ-
ually rational. The first best implementable separable cost queueing models
and the general first best impl ble class of ing models are proved
to be individually rational under sufficient restrictions on the benefit. The
general conclusion that we can arrive at is that with a sufficiently high gross

benefit from the service for all agents, a first best implementable queueing
model is also individual rational.

1.6 Essay 3: Sequencing Models

Sequencing models are a special type of queueing models which differ from
queueing models of the first two essays in two important ways:the model is
a continuous time model and different agents may differ in the amount of
time they require to be serviced. The framework followed in this essay is
the same as that in Suijs [36]. An example of a sequencing model is a large
multi-unit firm with each unit in need of the facility provided by a particular
repair and maintenance unit. On the occasions when a number of units of
the firm ask for this facility, each unit incurs a cost for the time it is down.
In this scenario, the firm’s role is that of a planner who has to serve the
units by forming a queue that minimises the total cost of waiting. Each unit

has a waiting cost which is private information and a servicing cost which is
common knowledge.
The sequencing model was studied as an incentive problem by Dolan

[10]. Dolan provided an incentive compatible but not budget balanced mech-
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anism. Suijs proved that if costs are linear, the sequencing model satisfies
first best implementability. Suijs conjectured that it is the linearity of the
cost function that is the driving force behind first best implementability. In
this essay, we generalize, the sequencing model to show that this is indeed
the case. The servicing cost function is restricted to be a sub-class of weakly
convex functions. Suijs’ sequencing model which looks at linear time cost
funetion is a special case of this class of sequencing models. For this class
of sequencing models we prove that if there are more than three units, first
best implementability is achieved if only if the time cost function is linear.
Linearity of the time cost function implies that the relative queue position
of any two units in a state is independent of the preferences of all other
units. It is this type of independence that is both necessary and sufficient
for first best implementability of sequencing models. The independence of
relative queue positions for linear cost queueing model is identical to the
independence property or IP defined for queueing models. Unlike discrete
time queueing models, where we have a fairly large class of first best im-
plementable queucing models, in the continuous time queueing models or
sequencing models, first best implementability can be achieved only for one
model-that with linear cost.






Chapter 2

Public Decisions

2.1 Introduction

A classical problem in the theory of incentives is the design of a scheme of
taxes and transfers which can solve the “free rider” problem in the provi-
sion of public goods. In the standard formulation , agents have quasi-linear
utility and their valuation for the public good is private information. The
planners objective is to construct a mechanism which will achieve efficiency.
The pioneering work of Groves [17] and Clarke [3] has established that there
exists a class of mechanisms, now called Groves mechanisms where all indi-
viduals have a dominant strategy to reveal their valuations; moreover, the
truth-telling outcome leads to an efficient amount of the public good being
produced'. Under relatively weak assumptions on the domain of preferences.

Groves mechanisms have been shown (Green and Laffont {14]. Holmstrém
[21] and more recently by Suijs (36]) to be the only ones which satisfy these
properties.

A difficulty with the Groves mechanisms is that they are not balanced.
There are preference realizations where aggregate transfers are non-zero.
This is an irksome problem not just because it entails a loss of overall of-

'See Green and Laffont [14] for a comprehensive account of these mechanisms and their

properties

21
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ficiency but also because it is no longer clear whether in these circumstances.
efficiency with regard to the public decision remains desirable. Groves and
Loeb [19] show that in the special case where the utility function is quadratic.
aggregate transfers are always zero. Tian [37] generalizes the class of pref-
erences where this property holds. However, Walker [41] shows that these
domains must be non-generic. There are other approaches to this balanced-
ness issue. Green and Laffont [15] (Chapter 9) demonstrates that the mag-
nitude of the budget imbalance vanishes asymptotically as the number of
agents become large, under appropriate “sampling” hypothesis. Gary-Bobo
and Jaaidane [12] constructs a random mechanism which is balanced and
induces truth-telling in dominant strategies but which is approximately effi-
cient. In the classic paper of d’Aspremont and Gerard-Varet (8], it is shown
that efficiency and budget balance can be reconciled provided the incentive

d strategy to Bayesian

compatibility requi is kened from
incentive compatibility. The inescapable conclusion from this body of work
is that the requirements of dominant strategies, generic domains, efficiency
and budget balance (and indeed, individual rationality) are mutually incom-
patible; however, it is possible to make trade-offs between one requirement
and the others. Makowski and Mezzeti (30}, provides a unified approach to
some of these tradeoffs.

In this essay, we reconsider this issue in a different perspective. We define
a more general class of problems which we call public decision problems
and show that there are members of this class for which all the objectives
discussed previously, can be reconciled. We believe that the possibility results
are of some interest in themselves. In addition. the approach vields some
insights into the question of why the public goods and other problems are

“insoluble”.

We illustrate the notion of a public decision problem by means of an
example in queueing. Suppose there are n individuals cach of whom wishes
to use a computer terminal for a unit period of time. Each individual has a

constant per unit time waiting cost which is private information. A public
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decision in this context is the order in which the individuals will be allowed

use. There is a significant sense in which decisions of this type differ from
public good decisions. In the latter case, all individuals are “affected” in the
same way; if the decision is whether or not to built a bridge. all individuals
are forced to consume its services if it is built but not if it isn’t. In contrast.
changes in decisions regarding queues could affect individuals in a variety of
ways. A change which affects an individual need not affect all individuals. For
example, if the positions of two individuals in the queue were interchanged.
then they would be the only individuals affected. Thus the nature of the
“externali imposed by a player on other players is not as severe as that
in a public good model. One of our main results is that efficient queueing
decisi can be impl d by means of balanced transfers. We illustrate

this possibility result by means of a simple example. Consider the case where
there are three individuals. Efficiency requires the individual announcing the
highest cost to be served first followed by the individual who announces the
second highest cost with the individual who announces the lowest cost being
served last. Consider the transfer scheme where the individual who is served
first compensates the individual who goes last by the amount which is the cost
announcement of the “middle” individual (who pays and receives nothing).
The mechanism is obviously balanced. It also bears resemblance two the
well-known second price auction (see Vickrey [40]). It is fairly easy to verify
that truth-telling is a dominant strategy for all individuals. This example is
presented in greater detail as Example 2.4.5.

Our basic objective is to characterize the class of public decision problems

where efficient public decisions can be attained by means of balanced trans-

fers (which we call first-best or FB implementable) and to show that there

are “interesting” problems which fall within this class. We have deliberately

chosen a model of linear utility functions to demonstrate our possibility re-
sults. We are thereby able to attribute these results to the structure of the
public decision problems rather than to domain restrictions such as quadratic
preferences. Our main results are as follows. \We identify a condition which
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is necessary and sufficient for FB implementability. We then apply this con-
dition to show that the queueing problem is FB implementable; we also use
it to characterize the class of public goods problems with excludability and
the class of allotment problems which are FB implementable. For the latter
results we also need to assume a symmetry condition in order to rule out triv-
ial possibilities and in the case of allotment problems, an assumption on the
range is also required. The results for the public goods problem are a trifle
disappointing- FB implementability is possible only when “full excludability™
is permitted. On the other hand, the results from the allotment problem are
far more positive. We show that an allotment problem is FB implementable
if and only if its associated matrix consists of all permutations of a single
vector which satisfies a certain combinatorial property. Finally, we consider
the question of public decision problems which are FB implementable and
also satisfy ex-post individual rationality. Here we show that although the
queueing problem cannot be FB implemented without violating individual
rationality, there is a sub-class of allotment problems which can. We provide
a sufficient condition for this property to hold.

A paper that is related to ours is Suijs [36]. That paper is primarily
concerned in extending the result in Holmstrdm [21] on the characterization
of domains where Groves transfers are unique in the class of mechanisms
which are efficient and satisfy dominant strategy incentive compatibility. The
author goes on to show that a problem which he calls the scheduling problem
which is similar to the queueing problem can be implemented by balanced
transfers. Our work formulates the issue he raises in a general framework:

and our results are therefore an extension and a refinement of his.

In section 2. we describe the model

This essay is organised as follow

and in section 3, we present general results relating to implementability and

first-best implementability. Section 4 is the heart of the essay and consists

of applying the general results of the previous section to the public goods.
queucing and allotment problems. Section 5 discusses the individual ratio-

nality condition while section 6 is the conclusion
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2.2 The Model

A public decision problem is a triple @ = (N, D, ©) where
e N is the initial segment of the n integers denoting the set of players.

e D = (dj;) is an n x M matrix whose entries are all non-negative. With
slight abuse of notation its ith column d; will be referred to as the ith
public decision.

e © C R. For any player j € N, 6; € © denotes the type of j. In
addition we shall assume that © is an interval.

The utility derived by individual j in state 6 with decision d; is given by
Us(di, t5;0;) = dsib; + t;

where t; is the transfer payment to individual j.

A vector § = (6y,...,6,) € O™ will be referred to as a profile or a state
of the world.

‘We illustrate our notion of public decision problem by means of three
examples.

EXAMPLE 2.2.1 The queueing problem is a triple Q% = (N,D?,R_)
where D® is the n x n! matrix whose columns are distinct permutations of the
vector {0,1,...,n — 1}. One interpretation of this formulation is as follows.
There are n users each of whom want access to a single computer terminal
for a unit time period. Users can only be served one at a time. A public
decision is the order in which users are served. If dj; = k. then the jth user
has to wait k periods in the ith public decision. Here, 6; < 0 denotes j's
waiting cost per time period. Thus, j’s utility from the ith public decision is
d,:0,.

EXAMPLE 2.2.2 An allotment problem is a triple O = (N.D4. R.)
where D* is a matrix whose elements lie between 0 and 1 and whose column
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sums are all 1. The n individuals wish to share a fixed amount of resource
and 6; > 0 denotes j’s unit valuation. A special case of this model is the case
where D4 is the n x n identity matrix. This is the case where an indivisible
commodity has to be allocated to one of the individuals.

EXAMPLE 2.2.3 A public good problem is a triple Q¢ = (N.D% R)
where D€ is a matrix whose elements are either 0 or 1. In the standard
pure public good case, the public good is either provided or not provided so
that D€ in this case is an n x 2 matrix with one column consisting entirely
of 0’s and the other one of 1’'s. We wish to include within our analysis
situations where individuals may be luded from the ption of the
public good. Thus, if the (j,7)th element of D is 0, then the jth individual
is excluded in the ith public decision, if it is 1, then she is included. In
this class of problems, individual j’s type is her valuation of the public good

which can either be positive or negative.

We now introduce some basic definitions.

Let Q be a public decision problem. The efficiency correspodence £q
associates a non-empty subset of the set of column vectors of D with every
profile § € ©" as follows:

a(0) = {d; € D | d; € argmazy_ d;i0;}
JEN

An efficient rule df, is a single valued selection from g that is for all
6 € O, dy(0) is a singleton and belongs to Lq(6).
We assume that for all j, 6; is private information for player j. The plan-
ner’s problem is to design a mechanism that will elicit this information
truthfully. Formally a mechanism M is a pair (d.t) where d : ©" — D and
t=(t;,....t,) : " > R".
Under M = (d, t) the utility of player j of type 6, who announces 6," is given
by

U;(d(85',0-5),t;(6',0_5).6;) = d,(6,'.6_,)6; + t;(6,".6_,)
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DEFINITION 2.2.9 A public decision problem Q = (N, D, ©) is imple-
mentable if there exists an efficient rule df, : ©¥ — D and a mechanism
M = (dj,t) such that for all j € N, for all (6,,6,') € 62, and for all
6_;eom !,

Uj(da(6),£5(0);65) = Us(dy(85',6-5), £5(65", 6—5); 65)

This definition says that for any given #_; individual j cannot benefit by
reporting anything other than his true type. In other words, truth-telling is
a dominant strategy for all players.

DEFINITION 2.2.10 A public decision problem Q@ = (N, D, 8) is first

best impl ble or FB impl ble if there exists a mechanism

M = (dg, t) which implements it and such that, for all § € 6", 3 t;(6) = 0.
JEN

Thus, a public decision problem is first-best implementable if, it can be
implemented in a manner such that aggregate transfers are zero in every state
of the world. In such problems, incomplete information does not impose any

welfare cost.

2.3 Preliminary Results

Our primary objective in this section is to characterize the class of first-best
implementable public decision problems. We also explore some implications
of these results. Our first result states that all public decision problems are
implementable. Moreover, the associated transfers must be of the so called

*Groves’ type.

DEFINITION 2.3.11 A mechanism M = (d.t) is a Groves mechanism, if
the transfer ¢; is of the form

t;(0) = Y di(0)8, +,(6-,) (2.3.1)
i#;
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PROPOSITION 2.3.1 Let Q = (N, D, ) be a public decision problem.
Then € is implementable uniquely by the class of Groves mechanisms.

REMARK 2.3.1 We only state this result as it follows directly from Holm-
strom (1979) where it is proved that for the domain that are “convex” the
only transfer schemes that ensures implementability are the Groves transfers
(see Theorem 2 in Holmstrém [21]). It is quite easy to check that the domain
of the public decision problems specified in this essay satisfy Holmstrom’s def-
inition of “convex” domains. Thus Groves mechanisms are versatile enough

to implement all public decision problems.

‘We now turn to the question of first-best implementability. It is clear that
not all public decision problems are FB implementable. The two properties
described below characterize the class of such public decision problems.

DEFINITION 2.3.12 The public decision problem 2 = (N, D, ©) satisfies
Property S if there exists an efficient rule d* and functions f; : ©"~! - R,
j,1 € N,j # [ such that for all § € O,

d;(0) = Z fin(0-1)
1#5

Property S requires the existence of an efficient decision rule which satisfies
a separability property.

To define the next property we introduce some more notation. Let S C
N/{j} and let 6_;,6" ; € ©"~'. Define 6,(S) = 6, if | ¢ S and 6,(S) = §," if
L€ Sand 6_;(S) = (6:(S5),...,6;-1(5).6,:1(S).. ... 6,.(S)) e O™!

DEFINITION 2.3.13 The public decision problem Q = (N.D. ©) satisfics
Property CA if 3 (~1)¥'d;(6,,6-,(S)) = 0 for all j € N. for all §, € © and
SCN
for all 6.6, € O™,
Property CA is similar to the Cubical Array Lemma in Walker [41]. It is

a restriction on the change in the decision of an individual when tvpe of all

other individual changes in a particular way.
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THEOREM 2.3.1 The following statements are equivalent

1. Q is FB implementable.

2. Q satisfies Property S.

3. Q satisfies Property CA.

PROOF: We first show that (1) = (2). Since Q is FB implementable.

there must exist a mechanism M = (d*, t) which is balanced and induces

truth-telling (where d* is an efficient rule). Applying Proposition 2.3.1 it

follows that there exists functions 7, : ©"' = R,j € N such that ¢;(6) =

‘§ d; ()6, + v;(6—;), for all 6. Since aggregate transfers are zero, we obtain
3

by summing both sides of the equation over the index j, that

> d5(0)6; = 3_F;(6-;) (2.32)
JEN jEN
where Fj(6_;) = —DL— Now consider the generic term d;(6)6; on the left

hand side of (23.2). It must be the case that this term does not depend
on some 6; (If it depends on all the §’s then (2.3.2) will be violated). There
are only three possibilities-(i)l # j, (ii) { = j and (iii) d;(6) = 2,(f) and
g\'z,(@)ﬂj = 0. Therefore, it must be the case that there exist functions
Jf’;l : O™ > Rforall j,l € N,j#1, hj : "' 5 R for all j € N and
2;: ©" — R with ng 2;(0)6; = 0 for all j € N such that

d;(6) = Zf,,(ﬁ )+ hi(0-5)/6; + 25(0) (2.3.3)

Since the possible values of d;(ﬁ) is finite (the matrix D has a finite number
of columns), it must be true that there exist functions f; : o' 5 R.
j.1 € N, 1 # j which take only a finite number of values and

ST Fu6-1) = 3 fit(0-1) — hy(6-,)/6,
i# 1#;
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Therefore,
d5(0) = 3_fu(6-0) + 2(6) (234)
15
where ZNz,-(G)BI = 0. Define d;*(6) = ¥ fu(f-1). Observe using the def-
5 i
inition and 3 2;(6)6; = 0 that 3 d;*(0)8; = ¥ d;(6);. Since d" is an
N N jeN
efficient rule, so is d**. Thus Q satisfies Property S (with respect to the
efficient decision rule d**).
We now show that (2) = (1). Let d* and f; be the efficient rule and

functions specified in the definition of Property S. Let M = (d*,t) be a

mechanisin where
4(60) = Sd; (0)0 — (n — 1) (0,61 (2.3.5)
I#5 I#5
It follows immediately from Proposition 2.3.1 that M induces truth-telling.
We only need to check that the transfers are balanced. From (2.3.5) we get
2 t(60)
JEN
=23 di(0)6 — (n~ 1)L fi;(0-;)0
ERES] 3 i#5
= (=D O~ (0~ DTT S (0-)6
5
= (n=1) £d;(0)6 ~ (n — 1)3di (6)6,

=0.
The equivalence of (2) and (3) is straightforward and its proof is omitted.
It is clear that if the function d; has separable form for all j = 1.....n. then

it must satisfy an appropriate restriction on the (n —1)th order cross-partial
derivative. The condition in Property CA is analogous of this derivative for
finite changes. []
REMARK 2.3.2 A subtle feature of Property S is that it only requires the
existence of an efficient rule which satisfies Property S. It does not require
all efficient rules to satisfy the separability result. It is easy to construct
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examples where some efficient rules satisfy the property but others do not.
The critical issue is the selection of an efficient rule when more than one gives
rise to the same level of surplus at a given profile. It is possible to design a
tie-breaking rule in a manner which destroy the separability property of the
efficient rule.

Are there public decision problems which satisfy Property S? We examine
this question in the case of Examples 2.2.1, 2.2.2 and 2.2.3 in the subsequent
section. In the remainder of this section, we make two points. The first is
that there is a relatively uninteresting class of public decisions which satisfy
Property S. The second, is that it is easy to construct non-trivial public
decision problems which satisfy Property S and which are not covered by
Examples 2.2.1, 2.2.2 and 2.2.3 nor by the class described in the previous

point.

DEFINITION 2.3.14 The public decision problem = (N, D, ©) satisfies
the dummy property if the matrix D has a constant row, that is there exists
j €N and a € R, such that djy =aforalli=1,2,..., M.

PROPOSITION 2.3.2 If a public decision problem satisfies the dummy
property, then it satisfies Property S.

PROOF: Let Q2 be a public decision problem that satisfies the dummy prop-
erty. Let j € N be such that dj; = a for all 7. It follows from the definition
of an efficient rule that

S d;(0)6 > Y ()6,

leN leN
for all decision rules d. That is
Td; (0)0 + ab; > T di(6)6, + ab;
1#] I#)

= Tdi(0)0 = T di(0)6.
[=7] [=3]



32 CHAPTER 2. PUBLIC DECISIONS

This implies that the efficient decision rule does not depend on 6,. That is
for all [ # j, there exists functions f; : ©"~' — R such that dj () = fi(6_;).
This immediately implies that Q satisfies Property S. [ ]

The intuition behind the FB impl ability of decision probl which
satisfy the dummy property is clear. Since the dummy player j gets the same

utility from all public decisions, his announcement has no bearing on the
choice of an efficient decision. The remaining players can design a mechanism
for themselves which induces them to reveal their types truthfully (this is
possible because of Proposition 2.3.1) and the aggregate transfer can be paid
to the dummy. Since the dummies role is entirely passive, he has no incentive
problems.

The dummy property assumption is obviously unsatisfactory. In order to
eliminate decision problems which satisfy this assumption from consideration
in the rest of the essay, we shall typically require decision problems to satisfy
a symmetry property.

DEFINITION 2.3.15 The public decision problem = (N, D, ©) satisfies

symmetry if the matrix D has the following property: Let § = (8y,...,d,)
be a column vector of N and let 0 : N — N be a 1 — 1 function. Then
b5 = (06(1), - - - 0(n)) is also a column vector in D.

The symmetry requires that all permutations of a column vector of the
matrix D are also column vectors in D. Under this assumption, all indi-
viduals are treated symmetrically. Note that unlike the usual anonymity
assumption, symmetry is a condition on the structure of the problem and
not based on any profile considerations. Clearly, symmetry rules out the
existence of a dummy player except, of course in the completely trivial case
where all players are dummies.

We now provide an example of an FB implementable decision problem. It
is not covered by the examples in the next section; nor it satisfies the dummy

property.

EXAMPLE 2.3.4 Q= (N,D,©) where |[N| = 3 and
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22111100
D=|(21211010
21120110

Observe that the problem is symmetric. We claim that Q satisfies Prop-
erty S. In particular, d;(6) = f;(6;,0m) + f;m(6;,0,) for all 6, for all j # | #
m # j where

mtosor={
(Here N = {j,{,m}). In view of the symmetry of the problem, it suffices

to verify by direct computation that the following relationships holds:

(i) d*(0) = (2,2,2) = 0, +6, > 0,6, + 63> 0,0, +6; >0

(i) d*(6) = (2,1,1) © 6, + 0, > 0,6, + 63> 0,0, +6; <0

(iii) d*(8) = (1,1,0) < 6, + 6, > 0,6, + 63 < 0,0, +6; <0

(iv) d°(8) = (0,0,0) < 6, + 6, <0, 6, + 03 <0, 6, + 63 < 0.
‘We omit the details of this calculations which are routine.

Other examples of a similar nature can be constructed. An interesting
question is the characterization of all symmetric decision problems which are
FB implementable. We do not pursue this matter but examine instead, the
less abstract question of whether there are instances of queueing problem.
allotment problems and public good problems which are FB implementable.

2.4 Applications

In this section, we consider the issue of FB implementability in the context
of the “economic” examples described in section 2.
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2.4.1 Queueing

In this subsection, we demonstrate a possibility result. Consider a queueing
problem Q9 = (N, D2, R_).

THEOREM 2.4.2 Q9 is FB implementable provided [N| > 3.

PROOF: We shall show that Q9 satisfies Property S. Forall SC N, j € §
and 6 € 6, let

(3, 5,0) = [{ € §/{3} |6 > 6;}1 + |{l € S/{s} | 6 = 6; and I < j}|

In other words, o(j, S, 6) is the number of individuals who have valuations
greater than 6; in the profile 6. It also includes those individuals with the
same valuation as j but with a lower index. For all § € ", j € N, let
d;(8) =n—0(j,N,0) — 1. It is clear that d" is an efficient decision rule. We
now construct the f functions specified in Property S. For all j,l € N and

6eom let
n—2-0(,N/{1},0-)

n-2

fu(0-) =
Observe that Vj € N,

) 0.0 - { SN 1 0> b=y <)
Therefore,

E] Sfu(6-1)

= (n = 0(j.N,) — 1)2=2GNO2D) _ 4 (; N, g) =2 NO-D

= (=oUNIN (1 — (5,N, ) — 2 + 0(j.N.6))

=(n~0(j.N,0) - 1) = &;(9).

Therefore, Property S is satisfied. L
It is easy to write an explicit formula for the transfers. For this purpose.
it will be convenient to consider the “inverse” of the order 0. that is given



2.4. APPLICATIONS 35

6 € ©" suppose u is a permutation such that
Out) 2 Ouiz) > ... 2 Oumy

Furthermore, if 6; = 6, and if j < { then o(j,N,8) < o({,N,6). Elementary
computations yield,
-1 n
tur) (0) = ;(Z—j;)&pm = qﬂ;‘(%wm;

j € N2 Since the 6;’s are all negative, the first term in the expression
on the RHS is a tax while the second term is a receipt. Thus, the u(r)th
person in the queue pays the amount rep d by the first i to
all individuals behind him in the queue and receives the amount represented
by the second expression from those who will be served before him.

EXAMPLE 2.4.5 Consider, the queueing model for three individuals i.e.
29 = (N = {1,2,3},D?,R_). Observe, from the above specification of
the transfer that t,)(0) = —6u), tuz)(f) = 0 and t,3)(0) = Ouz). We
start by showing that this transfer is dominant strategy incentive compati-
ble. Consider a state 6 = (6, 6,,63) where 0 > 6, > 6, > 6;. Here d*(9) =
(di(0) = 2,d3(8) = 1,d3(6) = 0) and (t,1(6) = —63,t2(0) = 0,t3(0) = 6,).
Individual 3 is of the lowest type. Hence he has the highest cost and con-
sequently receives the service immediately (i.e. d3(f) = 0) and pays 6. If
individual 3 announces 65 € (63, 6,), then d3(61,0,,05) = 1 and his transfer is
t3(6,, 62, 93) = 0. His benefit from this deviation is 83 —6; < 0. Alternatively,
if individual 3 announces 65 € (6;,0), then d5(6,,6,,05) = 2 and his transfer
is t3(61,602,03) = —6;. The benefit from this deviation is 265 — 6, — 6, < 0.
Thus, individual 3 has no incentive to deviate. We can apply similar argu-
ments to verify that neither of the individuals 2 nor 1 has any incentive to
deviate. Therefore, this transfer scheme is strategyproof. satisfies efficiency

and budget balancedness.

“Transfer are taken to be of the form given by equation 2.3.5. There arc other transfers
which will also work.
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REMARK 2.4.3 For [N| =4, t,)(8) = —.02) = $6u3)- tuz(8) = — 36,3,
tu3)(0) = 30u2) and tua)(0) = 1642 + u(a). In this case as well the indi-
viduals with the first two positions compensate the individuals with the last
two positions. We can easily verify that this transfer scheme is first best.

REMARK 2.4.4 In the case where [N| = 2, Q% is not FB implementable.
Suppose Property S were satisfied. It would follow immediately that d5(0) =
£;(8;) for some function f;. On the other hand we know that efficiency implies
that d;(6) = 0 whenever 6; < 6, and 1 whenever 6, > 6,. We therefore have

a contradiction.

2.4.2 Allotment Problems

Our objective in this section is to characterize completely, the class of al-
lotment problems which are FB implementable. Recall that an allotment
problem is a triple Q4 = (N, D4, R, ) where D* is a matrix whose elements
lie between 0 and 1 and whose column sums are all 1. We shall restrict atten-
tion to symmetric allotment problems only. In this case the matrix D# can
be written as D4 = ([&'],[a?],..., [@M]) where o*, k =1,...,M isann x 1
vector whose ith element, denoted by of, lies between 0 and 1 with 3=; of =1.
Thus D is the collection of all permutations of the vectors a',a?,...,aM.
We will assume, without loss of generality that af > of > ... > ak for all
k=1,..., M. We shall make a further assumption on the class of admissible

allotment problems.

DEFINITION 2.4.16 The allotment problem Q* = (N. D4 R.) satisfies
the non-trivial range (NTR) property. if for all ak.k = 1.... M. there
exists an open neighbourhood Ny C R such that. a* € Tqga(6) for all
6 € Ni.

All column vectors in D4 must be in the efficient correspondence associ-
ated with D* for values of 6 in some open neighbourhood of R”. in order
for an allotment problem to satisfy the NTR property. We will illustrate this
idea by the following example.
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EXAMPLE 2.4.6 Let Q% = (N = {1,2,3}.D* = ([a'],[@?]).R) where
a' = (0.50,0.30,0.20) and a? = (0.45,0.32,0.23). We claim that this allot-
ment problem does not satisfy the NTR property. To see this let # € R? and
suppose 6, > 6, > ;. Let €, = 6, — 6, and €, = 6, — 63. Observe that a?
is efficient at 6 only if —0.056; + 0.026, + 0.0363 > 0 which on simplification
yields,—0.02¢; — 0.03(¢; + €2) > 0. Since €;,€; > 0, this is possible only if
€ = € = 0, that is 6, = 6, = ;. Clearly, there does not exist an open
neighbourhood of valuations where o is efficient.

We introduce some further definitions

DEFINITION 2.4.17 An allotment problem Q4 = (N, D# R,) is simple
if DA = ([a)).

DEFINITION 2.4.18 A simple allotment problem Q4 = (N, D4 R,)
(where D# = [a]) satisfies Property T if 3 (—1)'_1(::;)a, =03
r=1

Thus, a simple allotment problem satisfies Property T if the vector o
whose permutations comprise the matrix D4, satisfies a certain combinatorial
property. We shall discuss this condition at greater length after the next
result.

THEOREM 2.4.3 Let 4 be a symmetric allotment problem satisfying
the NTR property. Then Q4 is FB implementable if and only if Q* is simple
and satisfies Property T.

PROOF: We first prove the necessity, i.e. we assume that Q* is symmetric,
satisfies NTR and is FB implementable. We will show that Q% is simple and
satisfies Property T.

STEP 1: We claim that Q" is simple. Suppose it is not. i.e. assume

D* = ([@'],...,[@]), M > 1. Let L be the minimum integer such that
it is not the case that a} = ... = a}!. Obviously L < n. For all integers
3(1) = sy, ice. the coefficient of 7 in the expansion (1+ )"
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r, 1< r < n- L let pu(r) € {1,...,M} be defined such. that. for all
Jj € u(r), Z al > Z of, k=1...,M. Define u(n — L) = u(1).

LEMMA 2.4.1 For all integers r, 1 < r < n — L, there exists j(r) € u(r)
net
such that r)::l(—l)"‘(';j‘)al;’(') =0.

PROOF: Pick a,b,c,d € Ry such that d > a > b > ¢ > 0. Define profiles
6,0 € R, as follows
0,=0,=0a,6=...0_y =051 =...=0,=c,0"=...,0,_,=dand
Op41' = ...=0,"=b. Forall S C N/{L}, define §(S) € R" in the usual
way, i.e. 0,(S) =a, 0;(S) =6, if j € Sand 6, if j & S.
Since 2# is FB implementable, we know from Theorem 3.2 that it must sat-
isfy Property S. Applying Property CA, we have NZ (—1)11d;,(8(S)) = 0.
Our objective is to compute on the LHS for spe;iic/\(/alues of a,b,c and d.
Let iy,...,4 < L be K distinct integers with K < L — 1. Let T! =
{T | 41,...,% € T and j € T/{i1,...,ix} = j > L}. In other words, T'
is the collection of sets T" with the property that the only integer in T less
than L is exactly {i1,...,4}. Observe that for all such sets T, dj(8(T)) =
Qa1 where @y, = ... = oM, by assumption Moreover, there are 2"~~!
such sets and it is easy to verify that ( 1)l = 0 (signs “alternate”

for different cardinalities). Therefore, ): ( 1)Td; (6(T)) = 0. Now let
T? be the collection of all subsets of N/(L} with the property that for all
T € T?, 1,...,L —1 € T. An immediate implication of this argument is
that 3 (=1)71d;(6(T)) = 0. Therefore, 3 (—1)7'd;(8(T)) = 0 and we
T¢T? TeT?

now restrict attention to evaluating the expression on the LHS

Let T € T with [T| = L — r — 1. Observe that ,(T) is the Lth highest
value amongst all valuations; thus d (6(T)) = a for some j = 1.....\/
Now pick k,p € {1,...,M} and note that

k- )E]af

=a(af —af) +ol(afy +.. +aly) = (@l +. . +aly)]
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Fel(@furi + o af) = (@i + .+ R
k L4r k L+r P
=(OtL—tl{)(ll-b)+(>_‘,lﬂx =z elb-o.
= =
By fixing (a — b) and increasing (b — c) sufficiently it is clear that the second
term in the expression above can be made to dominate the first, i.e. it is

possible to ensure that d*(6(T)) = o/ = j € pu(r) where [T| = L+r—1. The
number of the sets T € T with this cardinality is exactly ("'fl“). Therefore,

n-L e
Z DM 6() =5 (-1 (1) ek =0, .
€T r=1
LEMMA 2.4.2 40 =of® = ... = 4"V,

PROOF: Assume without loss of generality that L = 1. In the proof of
the previous Lemma, we found 6,6' € R™ such that d}(6(S)) = &} where
|S| = r. In view of the finiteness of the number of public decisions, we can
find an 7 neighbourhood of 6 and @ such that dj(8) = ol™ for all § € R"
where 8, € (6,(S) — 7,6;(S) +m), j = 1,2,...,n and |S| = r. In other
words, we can “perturb” the values of 6 and 6’ while ensuring that the same
public decisions are chosen at 8(S) for each S. Now we progressively decrease
the values of 63 from b to ¢ (these were defined in the proof of the previous
Lemma). Let 6} : [0,1] & R be defined as follows: 6;(t) = ¢+ (b — c)t where
t € [0,1]. Define 6*(S) as follows 65(S) = 65(t) if 2 € S and 6, if 2 ¢ S; for
all j ¢ 2, 64(S) = 0} if j € S and 6; if j € S. We wish to compute d}(6'(S))
for particular values of ¢.

Let S = {2}. Observe that for ¢ sufficiently close to 0. d;(6*(S)) = a]™

and for t sufficiently close to 1. dj(6'(S)) = a}®. As t increases from 0 to
1. let t;,...,t; be the values' of ¢ where dj(6'(S)) changes in value from
A to o to af? to ... to a]®. Let T be any coalition other than {2}

but which includes 2. By considering a suitable perturbation of # and 6'.
(as noted previously), we can ensure that d;(6'(T)) does not change value
at ty,..., ti. By applying Property CA for values of t on either side of #,

4The values t,, ..., tx can be defined as the infimum of appropriate subintervals of [0. 1
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and sufficiently close to it, we can deduce that a"“) = o', Applying this

argument repeatedly, we have oi") = o]®. By virtually identical arguments
J(l) 04,(2’ == DJL(n~1)_ -

An immediate consequence of Lemma 2. 4 2is that there exists an alloca-
tion vector, say a' with the property that E al > Z af forallr=1..... n
and forallk =1,..., M. Suppose D* = ([a‘] [a’] - ., [a™]). We claim that
Q4 violates NTR property. To see this, pick o* where k #1. Let 6 € R
and let 6;) > ... > (n). Then

n n
3 alfp — 3 ofbe
& &

we can deduce that a;

= 'Z):(a“ = af)(Bn-1) = Omy) + :I)_::(ﬂ,' = af)(Bn-2) ~ On-1)
+(af = of)(8n) — b)) 2 0.

Clearly there does not exist a neighbourhood where o* is efficient. Therefore
NTR is violated and Q4 must be simple.
Let D4 = ([a]). We show that Q4 must satisfy Property T. Let a > b >
¢ > 0. and define 6,6’ € R as follows: 6, = 6] = b; 0, = ... = 0, =
6, = ... =6, =a Let S C N/{1} and define §(S) € R" in the usual
way. Pick S such that |S| = r — 1. Clearly, there are (72}) such sets. In
the profile 8(S), there are exactly r — 1 valuations greater than b. Therefore,
d}(6(S)) = a,. Applying Property CA and Theorem 2.3.1, we have

(-S(0(5)) = (- n'( - ll)a —0
SCN/{1}
Thus, Property T is satisfied. This concludes the proof of the necessity part
of the Theorem. L]
Suppose that Q4 with D4 = ([a]) is a simple allotment problem satisfving
Property T. We show that Q4 is FB implementable. In order to do so. we
will show that Q* satisfies Property S and then apply Theorem 2.3.1
Let § € R" and let j,I € N with j # (. Define the set A;(6_;) = {m €
N/{j.l} | 0 > 6; or 6; = 6, and m < j}. The functions f,; : ©""' — R
are constructed as follows:
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for all 6 € R™. fu(6-0) = ¥ (-1 PSR ay = 2 where |4,(6-01
=r,r=1,....n—1.
We claim that there exists an efficient rule d* induced by Q* such that.
for all € R™ and j € N, dj(0) = ¥ fu(6—). Let d* be the following rule:
iZ
for all j € N and 6 € R", d;(0) = a, where [{m € N/{j} | 6m > 6, or
m=6,and m<j}|=r—1andr=1,2,...,n. We consider two cases.
Case 1: § € R" is such that d;(ﬁ) =a,r=12....n—1 Letl€[{me
N | 6,n > 6; or 6, = 6; and m < j}]. Observe that |4;(6_)| = — 1. For !
in the complement set, |A;(6_;)| = r. Therefore,
3 fiu(0-1)
=]
=1
=(r—1) Z[(_l)rfv 'LY%MT,% )

t(n—7) 2( 1)t

S el

= B 1 el o
Case 2: 6 € R" is such that d;(6) = an. Therefore,

> fiu(0-1)
#5
= (=) D )

=0 (e

R
|

-
(=07 (e
.. (from Property T).

I
? ﬁM

Thus, Property S is satisfied and Q# is FB implementable. L]

REMARK 2.4.5 We can use the function f;; and equation 2.3.5 to compute
a st of balanced transfers. Without loss of generality, let d5(6) = a,. This
means. there are exactly » — 1 individuals ahead of individual j. Hence n —
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individuals are after j under the efficient decision rule. Thus. in state 6,
0ay > ... 2 0-1) 2 0y = 6; 2 0r41) > ... > O(ny. Now it is easy to check
that
=1 n
tr)(0) = ¥ agflq = (n = D{ X 206 + 2 2-10q} 7 € {1.....n}. We
aFr =1 q=r¥1
can verify that the transfers add up to zero.

EXAMPLE 2.4.7 Consider, the simple allotment problem for three indi-
viduals 24 = (N = {1,2,3},D4,R,), where DA = (& = 2,4, = },a3 =
0]). Thus, the decision matrix is of the form

2/3 2/3 1/3 1/3 0 0
D*=|1/3 0 2/3 0 2/3 1/3
0o 1/3 0 2/3 1/3 2/3

where the columns are the decisions. Note that &; — 2a&; + a3 = 0 and
(z1 = %, 2o = 0). This simple allotment problem can be thought of as an auc-
tion with three individuals, where the bidder with the highest valuation gets
2 of the object. The bidder with the second highest valuation receives the re-
maining } of that object. The person with lowest bid gets nothing. Observe,
from the above specification of the transfer that ¢(1)(6) = —36(2), t(2)(6) = 0
and t(3)(6) = 36z). We start by showing, that this transfer is dominant
strategy incentive compatible. For proof, we consider a state 6 = (6,,6, 63).
where 6 > 6, > 05 > 0. Here d*(0) = (d;(6) = %,d3(0) = },d3(0) = 0) and
(1(0) = —36,.12(6) = 0,t3(6) = 16,). Individual 3 is of the lowest type in
state 6 and receives a transfer of 16,. If individual 3 announces 6y € (6.0,).
then d3(61,60,.05) = § and his transfer is t3(6,.62.03) = 0. His benefit from
this deviation is }(63 — 6,) < 0. Alternatively, if individual 3 announces
05 > 0,. then d3(6:,602,05) = 2 and his transfer is t3(6,.60,.05) = —16,. The
benefit from this deviation is }(263 — 6, — 61) < 0. Thus individual 3 has no

incentive to deviate. We can apply similar arguments to check that individ-

uals, 2 nor 1 has any incentive to deviate. Therefore, this transfer scheme is
strategyproof, satisfies efficiency of decision and budget balancedness
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For reasons, similar to the queueing model, this transfer scheme is strat-
egyproof. Under this transfer scheme, the individual with the highest valua-
tion pays a fraction of the second highest valuation to the person with lowest
valuation. The fraction to be paid is the incremental benefit, in terms of
decision, that the individual with highest valuation enjoys over and above
the individual with the second highest valuation. However, in the allotment
case, if the payment were to be as in the second price auction, to an out-
sider, then truth-telling would not be a dominant strategy in all states. An
incentive problem for the second and third position would remain. If this
money is paid to the individual with the lowest valuation, then the transfer
scheme becomes incentive compatible. The reason is that the incremental
benefit of the second individual over the third individual is the same as that
of the first individual, over the second individual. So, the person getting
the best decision (%) compensates the person getting the worst decision (0)
by paying 1 of the second highest valuation. This fraction } is the common
difference between any two neighbouring decisions. Once again, it is this
spread of incentives over different decisions that help in achieving first best
in this simple allotment problem.

For [N| = 3, an allotment problem satisfying a;j — a; = a; — a3 is
both necessary and i for FB impls bility. The dition means
that the diffe in neighbouring decisi is constant. This condition is

sufficient though not necessary for [N| > 3. The reason for this follows
from the fact that Property T for [N| > 3 is weaker than the constancy of
neighbouring decisions. The next example for [N| = 4 highlights this point

EXAMPLE 2.4.8 Consider, the simple allotment problem for four individ-
uals Q% = (N = {1.2.3.4},D* R.), where D* = ([&y = 3,4, = L.ay =
0,é4 = 0]). Note that &, — 3G, + 343 — &4 = 0 and (2 = }, 0).
Begin with the observation that § = &, —d # Go —ds =

zp = 0.

4. Thus. constancy
of neighbouring decisions is not necessary for Property T. The transfers are
101)(8) = =362, t(2)(6) = 0. 1(3)(0) = {602 and t(4)(6) = 62y We can verify.
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by considering deviations, that this budget balanced transfer is dominant
strategy incentive compatible. In this allotment problem, the highest type
individual pays a fraction of the second highest valuation. This amount split
equally as reward between the two individuals who get nothing. This frac-
tion, that is to be paid equally, is the difference in the best and the second
= 3{a1-a.}).
So, the two individuals not getting the good receive a fraction 3{a, — é,} of
the second highest valuation, as compensation for not getting G, amount of

best decisions i.e. &, —d,. Observe that G, — a3 = G2 — Gy

the good.

Thus, budget balancedness of allotment problems depends crucially on
the way the good is split. The first best implementable split of the good
is captured by Property T. We make several other observations which are
elementary consequences of Theorem 2.3.1.

(1) For |N| = 2, the FB implementable simple allotment problem means, the
decision matrix D is of the form DA = ([a] = [y, a2]), where oy + @2 = 1.

Moreover, Property T implies that &g — ap = 0. Solving for a; and ay, we

get a; = a; = 3. Thus, the only FB implementable allotment problem is
the one where D# = ([a] = [}, }]). Observe that this problem is trivially FB
implementable.

(2) In the case where |[N| = 3, the allotment vector must take the form
(3+¢€3,3—¢), where0< € < . So, for each ¢, we have FB implementable
simple allotment problem satisfying Property T with decision matrix of the
form D} = ([a(e)] = [} + ¢, 5.5 — €]). Observe that for € = 0. we have a
decision matrix that is trivially FB implementable. For all 0 < ¢ < { we
have non-trivial FB implementable allotment problems

(3) In the case where |N| = 4, all vectors a = (a;.q,.a3.a4) satisfving
M > > 03> a4 01 +az+ag+ag=1and a, - 30, + 303 — ag = 0 are
FB implementable. The decision matrix is of the form D(¢.8) = ([a(e.d)]

feoh = he— 26,3 = 3¢ 16.6]), where 0 < 6 < 4 and for cach  we can define
a fedmb]e range of € i.e. €(6). For example. €(0) € [},

and e(1) = {1}. Observe that with § = ¢(}) = +. D*({,
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is trivially FB implementable. For all § € [0,}), we have non-trivial FB
implementable allotment problems.

(4) D = ([2(n — 1)/n(n — 1),2(n — 2)/n(n — 1),...,2/n(n - 1),0]) for all
IN| > 2 is FB implementable. It is obvious that, D* = ([1/n,1/n, ..., 1/n])
is trivially FB implementable for all [N| > 2.

(5) The auction problem where D = ([1,0,...,0]) is not FB implementable.
(6) Finally, we note that the assumption of the NTR property is critical to
our characterization result. Let D4 = ([a]) be a FB implementable allot-
ment problem. Let B be another allotment vector with the property that o
majorizes 3 (i.e. 2 a; > 2 Bifor all 7 = 1,...n — 1). Now, consider the
augmented problem D" = ([a] [8)). It is not difficult to show that D4 will
be FB implementable as well.

2.4.3 Public Good Problems

Recall that a public good decision is one where © = R and the decision
matrix comprises of the elements which are either 0 or 1. Since we shall
impose the assumption of symmetry, the decision matrices under consid-
eration can be expressed as a collection of vectors with different column
sums. In other words, we can represent the typical decision matrix D¢ as

G = ([ki], [ka], ..., [ks]) where ky, ks, ..., k, are distinct integers lying be-
tween 0 and n and [k,] denotes the set of column vectors whose elements
are either 0 or 1 and whose sum is k,. Here, k, denotes the number of
individuals included; that is the vectors in the set [k,] represent situations
where exactly n — k;, individuals are excluded from the public good. Let
D9 = {[0].[1],...,[n — 1], [n]}.

DEFINITION 2.4.19 The public good decision problem 99 allows full
excludability if ¢ = (N, D9, R)

In the class of public good decision problems, that we consider. not all
subsets of individuals may be excludable. In the extreme case of the classical
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pure public good problem the only subset which can be excluded is the entire
set N. The polar opposite is the case of full excludability where a ubset
can be excluded. The next result states that this is the only symmetric
decision problem which is FB implementable.

THEOREM 2.4.4 Let Q€ be a symmetric public good decision problem.
If Q€ is FB implementable, it must allow full excludability. Conversely. if it
allows full excludability, then it is FB implementable.

PROOF: We first establish that if Q€ is symmetric and FB implementable,
then Q€ = Q9. In order to do so, we record a mathematical Lemma from
Walker [41].
The Cubical Array Lemma: Let F : ©® — R. Let S C N and let
6,0' € ©". Define §(S) € O™ where 6;(S) = 6; if j € S and 6,(S) = 6;'
if j € S. Then F can be written as F(6) = E h;(6_;) for all 6 € ©" for
some functions h; : ©*~! = R, if and only if ): (—1)I5IF(8(S)) = 0 for all
0,0’ € O

We omit the proof of this Lemma which is fairly straightforward. It
is clear that if the function F has a separable form, then it must satisfy
an appropriate restriction on the nth order cross-partial derivative. The
condition in the Lemma is the analogous of this derivative for finite changes.
‘That this condition is also sufficient for the separability of F, is also quite
intuitive.

Suppose Q€ # Q9. Assume w.l.o.g. that [k] ¢ DS where k is some integer
lying between 0 and n.
Step 1: k # 0,n.
Suppose k = n (The case where k = 0 can be treated analogously). Let t
integer less than n such that [t] € D®. Let 6 be such that

be the greates
6, > 0,5 =1.2....n Itis clear that &;(6) = 1 if and only if 6, is one of
the t highest values in the set {6;,...,6,}. We shall show by means of the
Cubical Array Lemma that this function cannot satisfy Property S
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We first consider the case where n is odd. Let m = (n +1)/2. Let
6,6' € ©" be such that

0>0,> ... >0, >00,>0m >0, >...>0,>6>0

For all S C N and j # m, let 6,(S) € © be such that 6;(S) = 0, if j € S
and 6; if j € S and 6(S) = Om = 6,,". Our objective is to compute

S (=1)1d;,(6(S)). Since d; is either 0 or 1 for all j, it follows from the
SCN7{m}
earlier observation that it is sufficient to consider only those sets S where 6,,

is greater than at least n — ¢t + 1 values in 6_,,(S). Let l € [n—t+1,n—1].
Suppose that 6,, is greater than exactly { values in 8_,,(S). Observe that
there are (";') such sets in S. Let [{j € {1,...,m— 1} | 6 > 6;(S)}| = ¢
and [{j € {m+1,...,n} |6 > 6;(S)}| =1, so that g+ r = L. The profile §
and @' have been picked in a manner such that |S| = ¢+ m+7 — 1. Observe

that [ is even if and only if ¢ + r is even. Therefore (—1)'! = (—1)m~{-!
Hence

T (-1)"ld;,(6(S))
SCn-{m}

n-1
= _1)ymHi-1(n-1
)
n—-1

= (=1)m! —1)¢(n?

Com _E, ()
= (=)™ 1(=1)""*(22%) (by a well-known identity)
# 0 (since n > t).

In the case where n is even, we can take m = n/2+1 and by constructi
similar profiles, obtain an almost identical expression as when n is odd. \

omit the details.

Step 2: k¢ {1,...,n—1}.

Suppose not, that is let [k] ¢ DC. In view of Step 1 and the assumption that
D€ has at least two columns, it follows that there exist integers ¢. r such that
0<t<k<r<nand [t,[f] € D®. In fact we can assume w.lo.g that
t and r are the greatest and smallest integers less than and greater than &
respectively which have this property. We shall also assume that either ¢ = (1
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or r # n. In case, t = 0 and r = n. we have the standard pure public goods
model where the impossibility result is well-known. We consider the case
where 3 n. The case where t # 0 is the symmetric analogue. Let L =r —¢
(observe that L > 2) and pick a > 0. Let 8 and 6 satisfy the following:

OG=6=...=6,_,=a
6, =...=6h1=(5/4— L)a
6, =(5/2—2L)x
é.:ézz..,:én=la

6, =...=6p, = (5-4L)a.

Observe that 0 > 6, > 6, > 6,. Let S C N and for all j # n, let 6,(S) = 6,
if j € S and 6; if j € S. Note that 6,(S) = 6, = 6,'. We now compute
d;,(6(S)) for various S C N.

(i) Since [r] € D€ and only r — 1 valuations are positive it will always be
efficient to exclude n unless 6, is one of the r highest values in (6(S)), that
is d;,(6(S)) =0 unless {r +1,...,n—1} C S.

(ii) Suppose j & S where j € {1,...,7 — 1}. Then, the aggregate surplus
obtained by selecting the appropriate element of [t] is 2ta. The maximum
surplus from selecting the appropriate element of [r] is (r —2)2a+a+ (5/2 —
2L)a. But

2ta — (r—2)2a—a—(5/2—2L)a = 2a(2 - L) —a— (5/2—2L)a = a/2 > 0.

(iii) Suppose |S| = N/{n}. Then it is efficient to include n. The aggregate
surplus from including n is (r — 1)2a + (5/2 — 2L)a and from excluding him
is 2ta. But

(r—1)2a + (5/2 = 2L)a — 2ta = 2a(L — 1)+ (5/2 = 2L)a = a/2 > 0

Arguments (i)-(iii) establish that d3(6(S)) = 1 if and only if 'S| =
IN/{n}|. Thus,

3 (=1)¥lEO(S) = (-1 #0

SCN/{n}
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Applying the Cubical Array Lemma, it follows that d;,(6(S)) does not satisfy
Property S, that is Q€ is not FB implementable. This establishes that for
FB implementability we need Q¢ = Q9.

The sufficiency part of the Theorem is straightforward. It is easy to verify
that an efficient decision rule associated with Q9 is given by :
Vj €N,

ey _ ) 16,20
40) = { 0 otherwise

But dj trivially satisfies Property S. In fact d* induces truth-telling in dom-
inant strategies without transfers. L]

In the case where full excludability is allowed, the public good acquires
the characteristic of a private good. Moreover, since there are only two
levels at which this good can be provided, it follows almost immediately
that an efficient rule is strategyproof. The converse is non-trivial because
we allow for all possible “intermediate levels” of excludability. There may
be technological reasons which may make it infeasible to exclude or include
some sets of individuals. We have briefly alluded to some of the situations
that we have in mind, in Section 2. Once decision problems of this nature
are considered, efficient rules become more complicated and the lack of FB

i bility cor: dingly harder to establish.

2.5 Individual Rationality

In this section consider the issue of individual rationality. In particular we try
to identify the sub-class of decision problems that are individually rational
within the class of FB implementable decision problems discussed earlier

DEFINITION 2.5.20 A mechanism M = (d.t) is individually rational
for a decision problem €, if for all j € N and for all § € ©".

U, (d;(6),1;(6),6,) > 0
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We are assuming that all individuals have an outside option which is
independent of their valuation and gives them a utility of zero. An individual
who does not get an ex-post utility of at least zero will refuse to participate
in the mechanism. We say that a decision is FB* implementable if it is
FB impl ble by a hanism which satisfies individual rationality. We
now examine whether the queueing, allotment and public goods problems

are FB® implementable.

THEOREM 2.5.5 For [N| > 3, Q2 is not FB® implementable.

PROOF: We know that Q9 is FB implementable only for [N| > 3. Recall
that the class of transfer that FB impl any decision bl Qis of
the form

t5(8) = 3_{d; (6) — (n — 1) f5(6-,)}61 + ;(6-;)
i#;

where 37, v;(6-;) = 0. Our first step is to show that if the transfer is of

the form
= 1)fi;(6-5)}6: (2.5.6)

t;(0) = >_{d; (6) —

i#5
then individual rationality is violated.
Using 2.5.6 the transfer in state 8 is of the form

1
Buia) =
2 -

-
tun(0) = 3 (2 i@ 25.7)
=t

where 0,1) = ...0un). We first show that the utility of the highest ty p(‘
individual in any state 6 is the highest. For this we define

AQ(r,r 4+ 1;0) =

Uiy (517 (0) £ur) (8), Oury) — Upstran) (dr41) (0): tua(r ) (8) - Buirey)-
After substituting the values of d5,(8) and t,,(6) from 2.5.7 and simplifving

we get

-1 R
)(H,.m = Ouiren) (2.5.8)

A9 e+ 1,0) = 1() n-
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Since O,(r) > Ou(r4+1), from 2.5.8 it is easy to check that AQ(r.r + 1:6) > 0
for all |N| > 3. Thus,
A%(1,730) = Un(r(d31)(0): ta (9), 0un)) — Unin (i) () tutr) (0), 8ur)) 2
for all 7 # 1.
Let state 6 be such that 6,1) = Ou2) = ... = Oun) < 0. The utility of
highest type individual is
U (5,011 (6), 81y (), 6ury) = 254601y < 0.
In view of A?(1,7;6) > 0, this proves that individual rationality is violated
when transfers are of the form 2.5.6.
Now we prove that Q9 is not FB* implementable. The additional term in
n
the general transfer function is (v1(6-1), ..., ¥a(6-n)) where 3 ~;(6_;) = 0.
F=)

\%
o

Now if there is some m € N such that y,(0_m) > 0, then there must exist
at least one | € n such that % (6-;) < 0 since _Z":x 7;(-;) = 0. Since the
utility of all individuals with the above speciﬁcati{)—;l of the state 6 is negative
without (v1(6-1), ..., ¥n(0-n)), the Ith individual will get a negative payoff.
This proves that Q2 is not FB" implementable. [ ]

We now turn to the allotment problems. We will show that there is
a sub-class of FB implementable allotment problems which are also FB*
implementable. Recall that for each FB implementable allotment problem
Q4 with decision matrix D* = [(a)], there exist an (n — 1) x 1 vector z =
(21,..-y2n-1), such that forallr =1,...,n—1,a, = (R —7)z, + (T — 1)2,_;.
The property that determines the suffici b-class of FB* impl able
allotment problems is a condition on this vector z.

DEFINITION 2.5.21 For |[N| > 3 a FB implementable allotment problem
QA satisfies Property Z if £(r) = 3 zg—7241 > 0° forallr € {1,2,...,n—2}.
=

THEOREM 2.5.6 For |[N| > 3, if Q4 satisfies Property Z then it is FB®

implementable.

k] Nn—g—1)!
*Recall that z, = 3 (~1)9~?[4=20=92 o, for all g € {1....n = 1}.
=
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PROOF: We assume transfers to be
1 n
t)(0) = 3 agbg — (n = {20 + 3 2016} (2.5.9)
aFr =1 g=r+
where 6(1) > ... > 6(,). We first show that Ug)(d®(a)(60).t(n)(6).6(n)) > 0 is

ffici for FB* impl bility of Q4.
To prove this step we define

A(r, 1+ 150) = Uy (d3) (0), 1) (6), 0r)) = Utrar)(diy11)(0). tir41)(0). Or ).

After substituting for d{,(f) and t(,(6) and simplifying, we have
AA(r,r + 1;0) = (n — 1)z,(6(r) — O(r+1))-Since z, > 0 and Oy > Ora)
for all {1,...,n} we have A“4(r,r + 1;8) > 0 for all . This means that
Utny (diny (8),t(n)(6), 6(n)) = O is sufficient for FB* impl bility. We now
show that this holds.

no1
Utn)(d{ny (8), () (8), 8m)) = 3_ (g — (n = 1)20)8q) + @nb(m) (2.5.10)
o=t
After simplification, the RHS of 2.5.10 reduces to
n-2
T 2r)(0) = b)) + (0 = 1)Z(O(n-1) — Om) + (1 = 1)F0(a)
=

where z = 371 2 /(n — 1) > 0.
Given Property Z holds, {6(;) — 8r+1) = 0}7=} and 6(») > 0 it follows that
Utny(dfy(8), t(ny(8), 6(my) > 0 for all 6. This proves the Theorem. =

We now provide some applications of this result.

PROPOSITION 2.5.3 In the case where |[N| = {3,4,5}. all FB imple-
mentable allotment problems satisfy Property Z and are therefore FB® im-
plementable.
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PROOF: Given a FB impl able allotment blem Q4 with D* = ([a])
and z, = )i:‘(—l)'-v[i%{;%%—”.h]a,, Property Z requires that 3(r) = )::1 20—
721 > 0 forall € {1,2,...n — 2}. To prove the Proposition we consider
each case (i.e. [N| =3, |N| =4 and |N| = 5) separately.

Case 1:|N| =3

For a FB implementable allotment problem Q4 with D4 = ([a,.a2.a3)),

z1 = % and 2 = 9. Given a; > a; > a3 it follows immediately that
21 — zp = 2522 > (0. Hence for [N| = 3, all FB implementable allotment

problems satisfy Property Z.

Case 2:[N| =4

For a FB impl able allotment problem Q4 with D4 = ([a, &z, @3, ay)),
=% n=%-Landn=a—a+% =% Givenay >0 > a3 > ag
it follows that z; — z; = 2592 > 0 and 2 + 2z, — 223 = @¥3a2=424 > . Thus
for [N| = 4 all FB implementable allotment problems satisfy Property Z.
Case 3:|N| =5

For a FB implementable allotment problem Q4 with

DA = ([a1,a2,03,a4,05)), 21 = &, 22 = QL — B, 23 =% — 2 + % and
z4 = §. Given g > az > a3 > a4 > a5 it follows that z; — z, = 21322 >0,
21+ 22 — 223 = ap — az > 0 and 2, + 2, + 23 — 324 = 2#2eaa=Sas > 0. Thus
for [N| = 5 all FB implementable allotment problems satisfy Property Z. m

wfg

EXAMPLE 2.5.9 Consider the simple allotment problem of Example 4.7
where Q* = (N = {1,2,3},D4, R,) where D" = ([&1 = .62 = .65 = 0])

2/3 2/3 1/3 1/3 0 0
D=1 1/3 0 2/3 0 2/3 1/3
0 1/3 0 2/3 1/3 2/3

Recall that the transfers are t(1)(6) = —36(2), t(2)(8) = 0 and t(3)(0) = 16.,
In this model,

Uiny(dyy(0), t1)(0). 81y) = 361y — 502 2 0,
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U (diz)(6), 12 (6), 812)) = 562) > 0 and
Uy (d5)(0), £(3)(0), 63)) = 36(2) > 0.

Clearly, the utility of all individuals in all states & € ©° is non-negative.
Hence, the allotment problem is FB* implementable.

Finally we give one example to show that for [N| > 5 there are FB
implementable allotment problems that fails to satisfy Property Z

EXAMPLE 2.5.10 Consider the following FB implementable allotment

problem Q4 for |[N| = 6 where (jo; = 2%, 0, = 28 a3 = 28 o, =
B a5 = 22 ag = 0]). Note that a; > az > a3 > oy > a5 > ag = 0,
ay+az+oaz+oy+as+os =1 and o) —5az+10a3 — 10as+5a5 —ag = 0. One

can easily calculate that (21 = 5,2 = 13,23 = 1o, 24 = 1o, 25 = 0).
Clearly, 2; + zp + 23 — 324 = 83514 = — 5. < 0. This FB implementable

allotment problem fails to satisfy Property Z.

One can construct many more examples of FB implementable allotment
problems that fail to satisfy Property Z for |N| > 5.

Finally, we show that the FB implementable public goods problem is also
FB* implementable.

THEOREM 2.5.7 Q¢ is FB* implementable.

PROOF: It follows almost immediately from our remark that (29 can be FB
implemented with zero transfers. Since all individual j is allowed access if
and only if §; > 0, we have U, (d;(0).,(0).6,) = d;(6)6, > 0. Thus Q9 is FB"

implementable. [

2.6 Conclusion

In this essay we have extended the classical public goods problern to the larger
class of public decision problems. We have shown that there exists members
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of this class where efficient outcomes can be obtained even when transfers
are restricted to be balanced. The class of such problems is narrow but this
is not surprising in view of the severity of the requirements imposed. One
issue which remains to be addressed is the role of the linearity assumption in
the possibility results. Do these results remain if for example we assume in
the queueing model that costs are convex in waiting time? The next chapter
deals with this question,






Chapter 3

Queueing Models

3.1 Introduction

This chapter develops and refines a line of research initiated in chapter two.
One of the most striking examples of a first best implementable public de-
cision is the queueing problem which is our concern in this chapter. In this
model there is a server who has to serve a finite set of individuals. The server
can serve one individual at a time. Thus, individuals have to wait in a queue.
Waiting in a queue is costly for each individual. The server’s objective is to
order the individuals in a queue efficiently so as to minimise the aggregate
waiting cost. If the cost of waiting in the queue is private information then
an individual, if asked, will announce his costs strategically so as to get his
job done as early as possible. Therefore, the principal in the queueing model
has an incentive problem under incomplete information.

In the previous chapter we saw that if waiting costs are linear. it is possible
to devise a scheme of balanced transfers that induce individuals to reveal
their private information and attain efficiency. Suijs [36] proves a similar
result in the context of his sequencing model. It is important to identify
the reason why a possibility result holds in this model in contrast to the
well-known impossibility result in the case of the public good model. In

the latter model, an individual, by changing his announcement. affects the

57
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payoff of all individuals. It is this severe nature of this externality that
leads to budget imbalance. In the first best implementable queueing model.
the externality that can be imposed by an individual is more subtle. An
individual with kth position in the queue, by changing his announcement can
affect the decision of either individuals who precede him in the queue or those
who succeed him. He cannot simul ly affect the decisi of both the
predecessor and the successor sets. Thus only the individuals getting the
first position and last position in the queue can affect all other individuals
by changing their announcements. This sort of externality is necessary for
finding a Groves transfer where the individuals served earlier compensates for
those served later in such a way that aggregate transfer is zero in all states.

Another important feature of any queueing model is that the incentive
problem is “spread over” the queue positions and this helps in finding a
balanced Groves transfer where the individuals being served “earlier” pay
money to the individuals receiving “late” service. For example, with three
individuals, a balanced Groves transfer in the queueing model is of the fol-
lowing type. The individual receiving the service first pays the waiting cost
of the individual who is served second in the queue and this money goes to
the individual who is served last. The first part of the transfer resembles
that of the transfer in second price auction where the highest bidder pays
the second highest bid. However, in the second price auction this money goes
to an outsider like the principal. In the queueing model there is an incentive
problem for all queue positions and so the payment of the second highest
cost to the individual in the third queue position more then compensates
him for the loss of getting the third queue position instead of the second
queue position.

We attempt to answer the following question: are there cost structures

more general than the linear case where the “first best™ can be attamed< \We
ry and sutficient

prove that for first best implementability it is both nece:
that preferences satisfy a certain combinatorial property and an indepen-
dence property. The first property is a restriction on individual preferences
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and the second property is a restriction on the externality that an individual
can impose on the remaining set of individuals. Preferences satisfy the inde-
pendence property if, an individual, by changing his announcement. cannot
change the relative queue positions of the remaining set of individuals. For
instance, if there are n individuals then the relative queue positions of any set
of (n—1) individuals are independent of the queue position of the individual
who is left out. This property captures the externality that an individual
can impose on the remaining set of individuals. In spite of these require-
ments, apparently quite strong, there exists a fairly large class of queueing
problems that are first best implementable. Given a broad class of first best
implementable queueing models one can then explore the possibility of in-
dividual rationality, i.e. whether individuals would be willing to participate
in the mechanism offered by the server. It can be shown that if the gross
benefit from the service for all individuals is sufficiently high, then first best
implementable queueing models satisfy individual rationality.

This chapter is organised as follows. In section two, the general queueing
model is formalised and results on its first best implementability are derived.
Section three deals with separable cost queueing models and its applications.
Section four formalises a general class of first best implementable queueing
problem. Section five is a discussion of discounted cost queueing model. The

concluding section seven is preceded by an exploration of the possibility of
individual rationality of first' best queueing models.

3.2 The General Model

Let N = {1.2,..., n} be the set of individuals and 6,(k) measure the cost
of waiting k periods in the queue for individual j where k& € {1.....n}
The type of individual j € N is the vector 6; = (6;(1).....6,(n)). Clearly.
0;(k) € R, for all j € N and for all k € {1,...,n}'. It is assumed that all
individuals dislike waiting i.e. 0 < 6,(1) < 6,(2) < ... < 6;(n). Let @ be the

"R, represents the non-negative orthant of R.
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largest domain satisfying this condition. For all j € N. 6, € ©, the utility of
each individual j is assumed to be quasi-linear and is of the form:

Uj(k, t;;0;) = v; — 0,(k) + ¢,

where v;(> 0) is the benefit derived by individual j from the service and t;
is the transfer that individual j receives.

The server’s aim is to achieve efficiency or minimise the aggregate cost.
A permutation ¢ = (0y,...,0,) of the set N represents a particular queue.
Thus, 0; = k indicates that individual j has the kth position in the queue.
Let X be the set of all possible permutations of N. Given a permutation or
a queue o = (01,...,0n)(€ L), the cost of any individual j € N is 6,(0;). A
state of the world is § = (6y,...,60,) € ©" where 6; is a 1 x n vector.

DEFINITION 3.2.22 Given a state 6, a queue 0* = (07,...,0;) is effi-
cient if 0* € argminsex T 0;(05)%
JEN

Efficiency in this context is an assignment problem that gives each in-

ion to exactly one

dividual exactly one queue position and each queue posi
individual in such a way that the aggregate cost is minimised®.

If the server knows § = (6y,...,0,) then he can calculate the efficient
queue. However, if 6; is private information for individual j, the server’s
problem then is to design a mechanism that will elicit this information
truthfully. Formally, a mechanism M is a pair (o, t) where 0 : ©® — ¥ and
t = (t1,...,ts) : ©® — R". This problem is called a general queueing
problem under incomplete information and is written as @ = (N, ©). Under
M = (o,t), given all others’ announcement 6_j, the utility of individual j of
type 6; when his announcement is 9_7' is given by
Uy(03(65',0-5). 1,(6,',0-3),0;) = v, — 0,(0,(6,',0-,)) + 1,(6,",6-,).

20bserve that there can be states with more than one efficient queue. So we have an
efficiency correspondence.

3This is a subtle optimization problem. An algorithm which computes efficiency is the
Hungarian method which can be found in Bapat and Raghavan (2].
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DEFINITION 3.2.23 Q = (N, ©) is implementable if there exists an
efficient rule* o* : @™ — T and a mechanism M = (0", t) such that for ali
j €N, for all (6;,6;') € ©2, and for all 6_; € O™,

U;(07(6),t;(6):65) > U;(05(65',0-5),t;(65'.6-,): 6,)

This definition says that for any given 6_;, individual j cannot benefit by
reporting anything other than his true type. In other words. truth-telling is
a dominant strategy for all individuals. Moreover, this truth-telling leads to

efficient queue.

DEFINITION 3.2.24 Q = (N, ©) is first best implementable or FB
implementable, if there exists a mechanism M = (o°. t) which implements
it and such that, for all 6 € &", T t,(6) = 0.

JEN

Thus, a queueing problem is first-best implementable if, it can be imple-
mented in a manner such that aggregate transfers are zero in every state of
the world. In such problems, incomplete information does not impose any
welfare cost. In the next section the question of FB implementability of the
general queueing model is analysed.

3.2.1 Characterization Results
In this sub-section the necessary and sufficient conditions relating to the FB
implementability of the general queueing model are derived. As a preliminary
step to the main results, some more definitions and notations are introduced
that will be extensively used in this section.

DEFINITION 3.2.25 A mechanism M = (g, t) is a Groves mechanism if
for all j € N, the transfer is of the form

£(8) = = >3- 01(07 (8)) + 7;(6-5) (3.2.1)
i#

“An efficient rule is a single valued selection from the efficiency correspondence



62 CHAPTER 3. QUEUEING MODELS

In a Groves mechanism the transfer of any individual ; € N in any
state 6 is the negative of minimum cost i.e. — ¥ 0i(07(8)) plus the cost
of individual j and a constant v;(6_;). The utility of individual ; with a
Groves transfer is his gross benefit v; less the minimum cost in state 6 plus
the constant. It is well known that such a transfer results in dominant
strategy incentive compatibility because the servers’ objective of minimising
the aggregate cost is now an objective of individual j as well and this is true

for all j € N.

According to a well known result of Holmstrém (see Holmstrém [21]),
decision problems with smoothly d d ins are impl; ableif and
only if the hanism is a Groves hanism. In more precise terms. convex

domains are smoothly connected (see Theorem (2) in Holmstrém [21]). It
can be easily checked that the domain under consideration in the general
queueing model satisfy Holmstrom’s definition of “convex” domains. Hence
it is implementable if and only if the mechanism is a Groves mechanism.
Let C(o*(0');0) = ZNBJ(G;(F)) where, as stated earlier, o"(#') is an
efficient queue for the a;:ounced state 6'. Thus, C(o*(); 0) is the minimum
aggregate cost with respect to the announced state 6’ when the actual state
is 6. For notational simplicity define C(8) = C(0°(6);8) to be the minimum
aggregate cost with respect to the actual state § when the announced state
is also 6.
REMARK 3.2.6 From the definition of efficiency it follows that for all
and ¢, C(6) < C(o°(8);6).
DEFINITION 3.2.26 Q = (N, ®) satisfies the Combinatorial Prop-
erty (or CP) if for all j € N, for all §; € ©,

i(—l)"”(:i:)gj(k):o 3.2.2)
k=1

This property is a combinatorial condition on the domain of preferences
The meaning of this property will become explicit from the following discus-
sion. For individual j with type 6; = (6;(1),...,60;(n)) define the first order
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difference at queue position k € {1,...,n—1} as A(1)6;(k) = 0,(k+1)—6,(k).
Thus, the first order difference at k represents the increase in queueing cost if
individual j is moved from kth position to (k + 1)th position. In particular.
the first order difference at queue position 1 is A(1)6;(1) = 6,(2) — 6,(1).
Similarly, the second order difference at queue position 1 is A%(1)8,(1) =
A(1)[A(1)6;(1)] = A(1)[6;(2) — 6;(1)] = 6;(3) — 26,(2) + 6;(1). One can sim-
ilarly derive A3(1)6,(1), A%(1)8;(1) and so on. It can be quite easily checked
from (3.2.2) that
n

Z(*U*"(ni 1)9;'(/6) =Am1(1)6;(1) = 0.

= k-1
Thus a type 6; of individual j satisfies CP if the (n — 1)th order difference
at queue position 1 is zero. CP is analogous to (n — 1)th order derivative at
queue position 1. CP implies and is implied by some kind of separability to
be discussed later in Proposition 3.2.4.

To define the next property one needs to introduce some more notations
and definitions. Consider a queueing model Q2. Define, by eliminating { € N,
the l-reduced queueing model of Q to be Qy_; = (N —1, ®). In any state
0_, € ©™7!, let 0*(6-;) be the efficient queue in Qy_;. In other words,

0% (0-1) € argminges(n-y Y 05(5;)
J#

where (N — 1) is the set of all possible permutations of {1,...,n — 1} and
&; is the position of individual j(3 I) in the particular queue & € (N — ).
In short, Qn_; is a l-reduced queueing model of (n — 1) individuals obtained
from Q by excluding [ € N.

For Q, define P(0*(6),j) = {p € N/{j} | 0;(8) > 0;(6)} to be the
predecessor set of individual j in state 8. In other words. under the efficient
queue o*(#) in state 6, P(c°(f).j) is the set of individuals receiving the
service before individual j. Similarly, for Qx ;. define P(c*(8_,).j) = {p €
N/{4,1} | 0;(6-1) > 0;(6-1)} to be the predecessor set of individual j in state
6_i. Under the efficient queue o*(6_,) in state 8_;, P(c*(6_;), ) is the set of
individuals receiving the service before individual j.
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DEFINITION 3.2.27 Q satisfies Independence Property (or IP) if for
all states § € ©", for all j € N, for all | € N/{j} and for all 6_, € "1,

P(a*(0),7) if L ¢ P(o"(6).5)

ddai { P(@*(0),)/1} i1 € Plo*(6).))

This property means that if in state 6, o;(6) = k. then o}(6_;) = k for
all I ¢ P(0*(6),5) and 0j(6—;) = k — 1 for all | € P(0°(6).j). Another
way of stating IP is the following: Consider  and a pair {;./} € N. If
a5(8) < o7 () in state 0, then o;(0_;) < o7 (6-;) for all i € N/{j.1}. If this
condition holds for all pair of individuals and for all states in Q then it is
easy to check that Q satisfies IP. This condition says that if individual j's
position in the queue is less than that of individual I in some state 6. then
J’s queue position must continue to remain less than that of I’s position in
all Qu_; that includes both j and I. This condition must hold for all pair
{7,1} € N and for all states § € ©". IP eliminates the possibility that an
individual ! € N/{j}, who is a predecessor (successor) of individual j in
state 6 is a successor (predecessor) of individual j in state 6_; for some i-
reduced queueing model Qx_; where i € N/{j,{}. Thus, IP guarantees that
the externality imposed by an individual (¢ in the above argument) is not
severe enough to change the relative queue position of the remaining set of
individuals.

The separability implied by the combinatorial property and the link be-
tween the combinatorial property (or CP) and the independence property (or
IP) is captured by the following Proposition and the explanation following
it.

PROPOSITION 3.2.4 Q = (N, ©) satisfies CP, if and only if for each
6; € © there exists a unique vector H; = {h;(1),...,hj(n — 1)} such that
for all k € {1,...,n},

0;(k) = (n — k)hy(k) + (k — D)hy(k - 1). (3.2.3)
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PROOF: Given a n x 1 vector of type for individual j € N. , € ® in Q
satisfying CP, we define a (n—1) x 1 vector H, = {h,(1).....h,(n—1)} such
that for all k € {1,....,n— 1},

L (k=1)!n—k-1)
hj(k)=§(—1)* %am (3.2.4)

First we check using (3.2.4) that for all k € {1,....n — 1}. (3.2.4) holds.
Then we check for k = n this condition holds only if Q satisfies CP

(n — k)h;(k) + (k — 1)h;(k - 1)

— (k) é(—l)" ﬁ%ﬁ%o )+ k=1 k}i:i(q)**'*‘gf;f:—‘e;r»

o (o e X CRAT
= 6;(k) (because (—1)*" + (—1)k=""1 = 0).

For k = n,

(n = k)h;(k) + (k — 1)h(k = 1)

= (n—1)hi(n—1)

= (=) E () )

n-1 ,
=z (*U"""'(T-‘f‘)z;(?r.zﬂj(f)

n-1
= n—1-r 0;(

S0 (e
= 6;(n) (from CP).

The last step not only proves the necessity of CP but also guarantees that
for 85, H; is unique.

To prove the other part of the Lemma it is easy to see that if 0,k =
(n — k)h;(k) + (k — 1)h;(k — 1) for all k = 1,...,n then

PSR IO
= £ DR G - Dy + (k= Diy(k = 1)}
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= (= D{E D s + B (-1 () k- 1)
=0. [ ]
Consider 2 and some state § where individual j € N gets the kth queue
position. Note that in state 8, out of the remaining (n — 1) individuals in
N/{j}, there are (n — k) individuals receiving the service after individual j
and there are (k — 1) individuals receiving the service before individual j.
Consider Qu_ for all { € N/{j}. Now if an individual ! receiving the service
after individual j, i.e. I & P(0*(6),7), were to be eliminated. then from IP
it follows that j retains the kth queue position in Qx_;. If. on the other
hand, an individual [ who was receiving the service before individual j. i.e.
1 € P(0*(8),), is eliminated from the queue then, from IP it follows that
the queue position of individual j changes from k in Q2 to (k—1) in Qn_,;. If
the vector H; in Proposition 3.2.4 replaces 6, for reduced queueing models
{Qn—i}1#;, the cost of kth queue position for individual j i.e. ;(k), in Q
for state @, can now be represented as the sum of costs in (n — 1) reduced
queueing models. Here individual j has cost hj(k) in (n — k) of the reduced
queueing models. These are reduced models Qn_; such that [ ¢ P(c*(6),7)
and total number of such reduced models is [N — [P(c°(6), j)U {j}]| = n—k.
Similarly, individual j has a cost of hj(k — 1) in (k — 1) of these models.
These are reduced models $2y_; such that I € P(0*(6),j) and total number
of such reduced models is |P(c*(6),7)| = k — 1. Observe that this will give
0;(k) = (n— k)h;(k)+ (k — 1)h;(k — 1) which follows from CP as established
in Proposition 3.2.4.

REMARK 3.2.7 Consider an individual j and a profile 6; € © satisfving
CP. From Proposition 3.2.4 it follows that there exists a unique vector H,
such that for all k € {1,...,n}, 6;(k) = (n — k)h;(k) + (k = 1)h,(k — 1).
Using 6;(1) < 6;(2) < ... < 6;(n) one obtains the following restriction on
the elements of H;. h;(1) < h;(r) < hj(n—1) forall7 € {2,.... n—2}. One
cannot comment on the ordering of the set of elements belonging to the set

{152, hyn = 2)}.
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REMARK 3.2.8 Consider Q2 and {6;,6,} € 62 such that 0;(k+1)—6,(k) >
Oi(k + 1) — 6i(k) for all k € {1,...,n}. Note that 6;(k + 1) — 6,(k) >
0i(k + 1) — 6,(k) implies that if in some state individuals j and [ are as-
signed queue positions k£ and k + 1, then it is more efficient to serve in-
dividual j ahead of individual ! because the marginal cost of shifting in-
dividual j from queue position k to queue position k + 1 is no less than
the same marginal cost for individual {. If this condition is true for all k
then 07(6;,61,6_;_1) < 07(0;,6:,0_;_,) for all 6_;_; € ©"~% One obvious
implication of this observation is that 05(65,00,6_,-1-,) < 07(6,.60.0_,1_.)
for all i € N/{j,1} and for all 6_;_,_; € ©"% Another useful impli-
cation is the following. Consider a state 6 where for all pairs {j.l}, if
0;(2) — 6;(1) > 6i(2) — 6,(1), then 6;(k + 1) — 6;(k) > 6,(k + 1) — 6,(k)
for all k € {2,...,n — 1}. In state 6, if for some pair {j,1}, 0;(0) < 0 (6)
then from the construction of state 6 it follows that o} (6—,) < o (6_;) for all
i € N/{j,1}. Therefore, in state 6, Q satisfies IP. This remark will be used
in some of the results to follow.

In the case of [N| = 3, it is possible to show that CP implies IP. Unfor-
tunately, for |N| > 3 this is no longer true.

PROPOSITION 3.2.5 Q = (N = {1,2,3},0) satisfies CP = Q satisfies
1P,

PROOF: 2 = (N = {1,2,3}, ©) satisfies CP implies that the second order
difference is zero. Thus A(1)8;(1) = 6,(2)—6;(1) = 6;(3)—6;(2) = A(1)6;(2)
for all j = 1,2,3. Therefore, for a pair of preferences {6;,6,} € ©?, if
6;(2) = 6;(1) > 61(2) — 6(1), then 6;(3) —6;(2) > 6,(3) — 6,(2). Using Remark
3.2.8 it immediately follows that 2 satisfies IP. L]

The next example is to show that for [N| > 3, there is no relationship
between CP and IP. Specifically, it shows that if Q satisfies CP, it may not
satisfy IP.

EXAMPLE 3.2.11 Consider the general queueing model for four individ-
uals, i.e. Q= (N = {1,2,3,4},0). Let the state 6 = (6,,6,,65,6,) be of the
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following form: 6; = (1,23,45,67), 6, = (3,12,27.48), 65 = (1,4,9,16) and
64 = (1,7,13,19). Here, 05(f) = j for all j = 1.2.3,4. We find that state §
satisfies CP i.e. forall j =1,2,3,4,

4
SV ()80 = ()o) - ()6, + ()6,3) - ()oy4) = 0

Now ider the {1}-reduced ing model Qn_; = ({2,3.4}.0).

In this reduced model we consider the first three elements of the vectors
65,03 and 04 Here 03(6_,) = 1, 05(6_1) = 3 and 0;(f_,) = 2. Therefore,

P(o (6 3) = (2,4} # P(o°(6),3)/{1} = {2} and P(o*(6-,).4) = {2} #
P(o*(6), /{1) = {2,3}. Thus for state 8, IP is violated.

THEOREM 3.2.8 Q = (N, ©) is FB implementable if only if it satisfies
CP and IP.

Before proving the Theorem a Lemma due to Walker [41] is stated below.
Consider two profiles § = (6y,...,60,) and ¢ = (6},...,6;). DefineforS C N,
a type 6;(S) =6; if j ¢ S and BJ(S) =0;if j € S. Thus for each S C N, we
have a state §(S) = (61(S), ..., 0.(5)).

LEMMA 3.2.3 Q is FB implementable only if for all (§,6') € ©" x O",
= (=)Flc(e(s)) = o.
SEN

It is quite easy to see why Lemma 3.2.3 is 'y for FB impl abil-

ity. Given the Groves transfer, balancedness requires that (n — 1)C(6) =

5 7;(6-;)%. For any two profiles 6 and 6’ one can now easily check that
N

;E:N( 1)8lc(9(8)) = (" op }: Z (—1)1Sly;(6-;(S)) = 0. It is quite clear
that if the function C has a separable form , then it must satisfy an appro-
priate restriction on the nth order cross partial derivative. The condition in
the Lemma is analogous of this derivative for finite changes.

PROOF OF THEOREM(3.2.8):

5Adding the Groves transfer of all individuals and setting it to zero gives this condition
This condition in a more general framework was derived by Holmstrém (22]
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Necessity: We prove the necessity part of the Theorem in two steps. In
the first step we prove that €2 is FB implementable only if it satisfies CP. In
the second step we prove that Q satisfying CP is FB implementable only if
it satisfies IP.

Step 1: We start with a given type for individual 1 (i.e. 6;) and construct
6_) and ¢'. Then we apply Lemma 3.2.3 to derive the result. Consider
individual 1 and any announcement 6; = (6,(1),...,6,(k)...., 8,(n)). Define
real numbers {€,€3,...,€,,0} such that 0 = ¢, < €2 < ... < €, and 0 <
8 < 6,(1). Consider two states § = (6,,..., 6,) and & = (6..... 6,) of
the following type: 8;(k) = 6;(k) + ke; and ;(k) = ¢, for all j € N and
for all k = 1,...,n. Therefore 6; = (61(1) + €;,61(2) +¢;,...,6:(n) + ne,)
and 6; = (8,0,...,0) for all j € N. Consider any two queue positions k
and k + 1 and any two individuals j and j + 1 with types 6; and 6,,,,
respectively. Note that from the construction of #, on the one hand, it
follows that if individual j gets the kth position and (j + 1)th individual
gets the (k + 1)th position, then the costs for these two positions add up to
{26, (k)+ke;j+(k+1)ej41 }. If, on the other hand, the positions of j and (j+1)
are interchanged then the costs add up to {26 (k)+ (k+1)e;+ke;41}. Clearly
the former cost exceeds the latter ® and holds for all k = 1,...,n — 1. Thus
the queue that minimises the aggregate cost requires that, o;(6) > o;,,(6)
for all j = 1,...,n — 1. This implies that the efficient queue in state 8 is
*(0) = (57(6) =n,...,0;(8) =n—j+1,...,00(6) = 1). In state & any
queue is efficient because the costs of all individuals are identical.

Now consider profiles 8(S) = (61(S), .. .,6n(S)) where 6;(S) =6, if j ¢ S
and 6;(S) = 6; if j € S. For all s € S, the efficient queue position is
behind all j & S, i.e. 0;(8(S)) € {n —|S|+1,...,n}. This is because the
queueing costs of all individuals j € S, in all queue positions strictly exceed
the queueing costs of all individual s € S. Moreover, given 6;, from the
construction of §_; and from the argument given for the efficient queue in
state 6 it follows that if {j,l} ¢ S and j <, then 05(6(5)) > 07 (6(S))

SThis is because from the construction it follows that €1 > ¢; forall j =1,...n ~ 1.
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Consider the sum ¥, (—1)IIC(6(S)). Observe first that, for all | €
Bl

N/{1} with type 6, if there exists m sets T, T™ of size |T!| ;[T

respectively with 7™ C N/{l} for all ﬁz = 1,...,m, for which individual

I’s position is k(€ {1,2,...,n}), then Z (- 1)’Tﬁ‘|9,(k) = 0. Therefore, the

sum 3 (—1)S1C(8(S)) is mdepcndent of all elements in the set of vectors
sen

{62, 6, }. Also observe that the terms containing 6 in %ZN(- 1)SIC(8(S))

is given by —n{ E 1)k- ’( )}9 = 0. Therefore, 3 (—1)'5/C(8(S)) is also
(N

independent of 0 AlI these observations imply that:

T (-DFICE(S) = ¥ (-1)16:(07(6:,6-1(9)))-

SCN SCN7{1)

For individual 1 with type 6, 05(6,,6-,(S)) = n — |S| for all S C N/{1}.
Thus

T (=1)¥161(a7(61,6-1(5)))
SCN/(I)

> (-1 V(756 (n = 1S

15I 0

= £ (e k+1)
k=1
A b

= "”"'7‘33(‘”* (A0

An application of Lemma 3.2.3 yields the result for individual 1. We can
obtain the same result for all j € N/{1}.

Step 2: For |N| = 3, 2 satisfying CP is FB implementable only if it satisfies
IP follows from Proposition 3.2.5. For  with |N| > 3, consider any two cost
vectors 8, = (61(1),...,0:(n)) and 6, = (85(1),...,02(n)) for individuals 1
and 2 respectively. Let z = maz[maz{A(1)0)(k)}xgn, maz{A(1)82(k)}izn).
Consider the real numbers {e3,...,€n,0} such that z < €3 < ... < ¢, and
0 € [0,min{6,(1),8,(1)}]. Define 6,(k) = ke; for all k € {1,....n} and for all
j € {3,...,n}. Also define @}(k) = 6 for all j € N and forall k € {1.....n}.

il [\1:
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From the construction it follows that A(1)8;(k) > maz{A(1)8;, A(1)8,(k)}
for all j € N/{1,2}. Now consider profiles 8(S) = (8;(S), ... ,0.(S)) where
0;(S) = 0; if j € S and 6,(S) = 0;if j € S. Forallse S', the efficient
queue position is behind all j ¢ S, ie. 03(6(S)) € {n— S|+ 1,...,n}.
This is because the queueing costs of all individuals j ¢ S, in all queue
positions strictly exceed the queueing costs of all individual s € S. From the
construction of {63,...,0,} it follows that for all {j,1} € N/{1,2} and for all
S € N/{j,1}, with j < I, 0;(65,61,0-;-4(S)) > 07(65,61,0-;_4(S)). Observe
that for all S € N/{1, 2}, individuals 1 and 2 are immediate neighbours with
any one of 1 and 2 having queue position n — |S| and the other having queue
position n — |S| — 1. If, on the one hand, 6;(n — |S| — 1) + 6(n — |S]) <
61(n—|S|)+682(n—|S| — 1) then o} (61, 62, 6_y_5(S)) < 03(81, 62, 0-,_5(5)). I,
on the other hand, 6, (n—|S|—1)+62(n—|S[) > 8;(n—|S|)+6;(n—|S|—1) then
01(61,62,0-1-2(S)) > 05(81,02,6_,_2(S)). Define, Z(k, k+1) = min{8; (k) +
03(k+1),0:(k+1)+62(k)} for all k € {1,...n—1}. Making use of the above
observations and the definition of Z(k, k + 1) we get

Z o) = S (2@ + 0 - 00 - o)
(3.2.5)
For © to be FB implementable it is necessary from Lemma 3.2.3 that the
RHS of equation (3.2.5) is zero for all {6;,0,} € 62 and satisfying CP. This
crucially depends on the terms with Z(k,k + 1) in the RHS of equation
(3.2.5). We claim that the RHS of (3.2.5) is zero if and only if either one
of the two following conditions is satisfied then 2 is FB implementable.

L Z(k,k+1) = 6,(k) + 0,(k +1) forall k € {1,....n ~ 1}
2. Z(kk+1)=6,(k+1) +6,(k) forall k € {1.....n - 1}.

We first prove the if part of this claim. If condition (1) holdsi.e. Z(k.k+1) =
61(k) + 65(k + 1) for all k # n, then by substituting (1) in (3.2.5) and
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simplifying it we get
Zvroes) = Z( Dl ‘(:"Z)M (1)6:(k)} = 0.

The last step follows from CP?. Similarly one can show that if condition (2)
holds then

Z( 1EIc@s) = Z( ke ’(k )(A(l 61 ()} =

To prove the only if part of this claim we first assume that the claim is
not true. This implies that there exists 8, and 6, for individuals 1 and 2 such
that
(1) A(1)6:(1) 2 A(1)8x(1),

(ii) 3 aset T C {2,3,...,n — 1} such that A(1)8(r) < A(1)8(r) for all
r€T and
(i1d) 3 p € {1,...,n —1}/T such that A(1)8,(p) > A(1)62(p).

Using conditions (z) — (i) in (3.2.5) and simplifying it we get
5= (0Pes) = S0 (0] waen -20e0) 620
SCN rer

From Lemma 3.2.3 we know that for FB implementability we need that
the RHS of (3.2.6) must be zero. Now if A(1)62(k) = a > 0 for all k €
{1,...,n — 1} then construct a profile 6, such that A(1)6,(k) = (2k + 1)b
with b € (525, 77)- Applying the same type of construction i.e. (2n+1)b <
€3 < ... < € and 8 € [0,min{0;,6;}] and defining 6, for all j € {3.....n}
and 6} for all j € N in the same way as before we get

ST (=)FIC(8(S)) = A(1)8a(n — 1) = A1)y (n— 1) = a — (2n = 1)b # 0.
SCN

If E( 1471 (:21)8(k) = 0, then :z::(fl)**‘(::?)w,(m1)—9,(k)):ﬂ
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If A(1)82(k) is not a constant for all k # n, then consider 8, such that
6,(k) = 0,(k) for all k € {1,...,n—2} and select {f5(n—1),0,(n)} in such a
way that @ = A(1)82(n — 1) > maz{A(1)82(k)}xzn-1- Again, define 6, such
that 8, (k) = ke, where maz{A(1)02(k)}kn-1 < € < @ Again by applying
the same type of construction we get

3 (-1)SIC(8(S)) = A1)by(n — 1) = A(1)Bi(n — 1) =a— €, #0.
SCN.

Therefore, for a preference satisfying condition (i) — (iii) and Lemma 3.2.3,
we can find a preference in its neighbourhood that fails to satisfy Lemma
3.2.3. Thus,  satisfying CP is FB implementable only if either (1) holds
or condition (2) holds. Since the selection of individuals 1 and 2 for the
above construction was arbitrary, it follows that Q satisfying CP is FB im-
plementable only if for all j # I,
either (a) 0;(k + 1) — 6;(k) > 6i(k + 1) — 6,(k) for all k # n
or () 0;(k +1) = 6;(k) < 6i(k + 1) — 6,(k) for all k # n.
This condition means that the descending order of {6,(2) — 6;(1)}}, de-
termines the efficient queue i.e. if 6;(2) — 6;(1) > 6,(2) — 6,(1) in some
state 0, then 07(0) < 07(6). Using Remark 3.2.8 we get 2 satisfies IP. The
logic is quite simple, if for example, 6,6, are such that 6;(k + 1) — 6;(k) >
6i(k +1) — 6,(k) for all k € {1,...,n — 1}, then individual j is served ahead
of individual [ for all eliminations of i € N/{j,!}. This proves Step 2.
Sufficiency: Consider the sum IZ hj(0;(6-1)) in state 6 for individual j € N.
From IP we get i
¥ hy(o35(6-1))
#;
= (n = 07(0)h;(0;(0) + (0;(6) — Dh;(05(6) = 1)
= 6,(0;(8)) (from condition (3.2.3) in Proposition 3.2.4).

Now consider a particular Groves mechanism M = (o°. ) where 4, (6.,) =
(n— 1)2; hi(0§ (6,)). Then it follows that

3]

PORAC
JEN
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=(n-1 = ¥ ko (6-5))
JEN iZ5
=(n—1) T {3 hi(o;(6-))}
JEN I#j
=(n-1) % 6;(05(0))
JEN
=(n—-1)C(6).
This implies that for all § € &, T i;() = —(n— 1)C(8) + £ 4,(6-,) = 0.
JEN JEN
[]
‘This section dealt with the restrictions required for FB implementability
of the general queueing model. The next few sections restrict the cost of each
individual to have a common functional form.

3.3 Separable Cost Models

In this section a class of queueing models, called separable cost queueing
models, are considered. For separable cost queueing models, 6;(k) satisfies
the following conditions:

1. 6;(k) = f(k)g(8;) for all j € N, for all k € {1,2,...,n} and for all
6; € ©. Here O is assumed to be an interval in R,.
2. g(8;) > 0 for all 6; € © and g(6;) is continuous and strictly increasing

in 6;.
3. Finally, f(k) > f(k—1) for allk € {2,...,n}.

The first condition multiplicatively separates the cost of each individual
for each position into two functions. The first function f depends on the
queue position. The second function g depends on the type (or cost parame-
ter i.e. 6;) of an individual. The second condition is a restriction on the type
function. The third condition restricts the queueing cost function f to be
non-decreasing in queue positions. The second and third conditions together
imply that 6;(k + 1) > 6;(k) for all k € {1,...,n — 1}. The cost parameter
(i.e. 6, for j € N) is private information.
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Each pair of functions (f, g) together with N and type space ©, defines a
separable cost queueing problem 2 = (N, 6, (f,g)). A major benefit of
such a specification is that the efficiency condition is completely transparent
in this context. For a ©, the queue o*(f) € T is efficient in state 6 if for
all j # 1,0, > 6, = 0;() < 0;(6). Ties can be broken in many ways.
A particular way of breaking ties, that will be followed in this paper, is to
consider the natural ordering i.e. if 6; = 6; and j < ! then 0;(0) < o7(0)°.
The next Proposition is related to IP of Q2.

PROPOSITION 3.3.6 Q satisfies IP.

PROOF: Consider = (N, 6, (f, ¢)) and an individual j € N with queue
position o7(6) in state 0. If | € P(0"(6),]) then 05(6-1) = 05(6) — 1 and
P(0*(6-1),5) = P(0°(6),7)/{l} in Qn-1 = (N = 1,0, (f,9)). This is because
individual ! is a predecessor of j in = (N, ©,(f,g)). Also and because
according to the definition of efficiency and the same tie breaking rule as-
sumption, individual j’s queue position with respect to all other individuals
N/{j,1} remains unchanged in Qn_i = (N=1,6,(f,9)). Recall that the def-
inition of efficiency for any separable cost queueing model €2 depends only on
the order of types of individuals. They remain invariant for the set of n — 1
individuals included in any Qx_; = (N/{},©, (f,9)). If, on the other hand,
1 € N/{P(0"(6),)Uj} then 0}(6_1) = 0;(6) and P(o*(0-1),5) = P(o*(6),5)
in Qu_y = (N —1(,0,(f,9)). This is because individual [ is a successor of
individual j in 2 = (N, ©, (f, g)) and according to the definition of efficiency,
individual j’s queue position with respect to all other individuals N/{j,}
remains unchanged in Qy_; = (N = 1,6, (f, 9))- [

8Note that the definition of efficient queue depends only on a pairwise comparison of
individual types. In other words, if 6, > 6, then for all 6_;_; € "2, 05(8) < 0 ()
Also note that given the domain specification, there are states for which more than one
ordering is efficient. So we have an efficiency correspondence for all such states. The tie
breaking rule guarantees that in all states where more than one ordering is efficient. the
decision picked is unique. Thus, a tie breaking rule guarantees a single valued selection of
ordering decision from the efficiency correspondence.



76 CHAPTER 3. QUEUEING MODELS

The remainder of this section will deal with the question of FB imple-
mentability of the class of separable cost queueing model. The combinatorial

property (or CP) is both necessary and suffici for FB impl. ability
of the class of separable cost queueing models. Note that @ = (N.©.(f.g))
satisfies CP if
s (32w o

k-1

k=1

REMARK 3.3.9 From condition (3.2.3) it follows that  satisfies CP, if
and only if there exists a unique vector H = {h(1),..., h(n — 1)} such that
forall k € {1,...,n},

f(k) = (n— k)h(K) + (k — Dh(k = 1) (33.7)

k 1 i
where h(k) = ¥ (—1)*-r&=De=k-D!r(1)  The other observation that fol-
1

Z F=Din-r)!
lows from condition (3.3.7) is

n n-1
S f(k)=n3" h(k) (3.3.8)
k=1 k=1

Condition (3.3.8) will be useful in deriving later results.

PROPOSITION 3.3.7 Q = (N,6,(f,9)) is FB implementable if and
only if the cost function satisfies CP.

PROOF: To prove the necessary part of the Proposition we first construct
two profiles and then apply Lemma 3.2.3. Let the two states § and 6’ be
of the following form: 6] > 6, > ... > 6, > 6, > 6, > ... > 6,. Now for
all § € N, we consider profiles 6(S) = (6,(S)..... 6,(S).....0,(S)) where
0;(S)=0;if j ¢ Sand §;(S) =6)if j€ S.

For all § € N/{1} with profiles (6,,6_,(S5)). 07(6,.6_,(S)) = N - |5]|
and for all S C N/{n} with profiles (8,,0_,(S)), 05(6,,.0_a(S)) = IS + 1.
Therefore,
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T (-1)SIC(6,6.4(8) = 5 (~)FI(%51) f(n - 1S1)g(6))
SCN/{1} 15|=0
and
_q\is, " = qyisi(n-t v
seiin TIICNO,0-0(8)) = ¥ (1) (1s)£UST+ 1)g(6y).
For all z; € {6,,...,0,,0},...,0,_,}, if the sets {m,, ..., my}, all subsets

of S/{j}, are such that o}(z;,6_;(m,)) = k, for all ¢ € {1..... p}, then
£ (=1)™ = 0. Therefore, 3 (~1)51C(z;,0,(S)) = 0.
9=1 SCN/{5}

Combining all these observations we get
no1
S(TDFICES) = {9(0r) - 9} T (<11 (1) S k).

Applying Lemma 3.2.3 and using g(6;) # ¢(6,) in the above equation we get

n-1 _
Sy ) =o (3:3.9)
= k-1

The sufficiency follows quite easily from Theorem 3.2.8. [

Consider a queueing model 2 = (N, 6, (£, ¢)). For convenience consider
the “inverse” of the queue o*. That is, given § € O, let 1 be a permutation
such that 6,1) > ... > fy(n). Furthermore, if g(6;) = g(6;) and j < I, then
j € P{o*(6),1). The explicit form of the transfer can be obtained from the
following condition:

k-1 n
tuwn(0) = 3 {(n=1)h(@) - f(@)}9(0ua) + 3 {(n—=1)h(g—1)— £(2)}9(bu(e))
a=1 g=k+1
(3.3.10)

=D

where h(g) = )j:](_l)v-rﬁﬂﬂu’—‘ﬁf(r) forallge {1,...,n—1}.

The existence of FB implementable €2 is already established in the previ-
ous chapter for f(k) = k. The question of the existence of other FB imple-
mentable separable cost queueing models is analysed in the next section
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3.3.1 Applications

In this section the existence of a fairly large class of FB implementable sepa-
rable cost queueing models is established. We start by defining a broad clas:
of queueing cost function.

DEFINITION 3.3.28 f7-2 s called a polynomial cost function of de-
gree n — 2 if

1 fo2(k) =5 aph?, for all k € {1,...,n).
=1
2. fa2(k) > fo-2(k - 1), forall k € {2,...,n}.

It is important to observe that the class of polynomial cost depends cru-
cially on the specification of the vector @ = (ai,...,an-2). Let Q22 =
(N, O, (f*~2,¢)) be a particular separable cost queueing model with polyno-
mial cost f2~2. Also let "2 be the class polynomial cost queueing models.
Observe that from Proposition 3.3.6 it follows that all polynomial cost queue-
ing models 2-2 € Q"2 satisfy IP. One can now introduce some special cases
of the class of polynomial cost queueing models. One such special case is the

factorial cost queueing model.

DEFINITION 3.3.29 f™ is called a factorial cost function of degree
mifforallme {1,...n-2},

f (k) = [K)m = k(k = 1)...(k—m+1).

Here m represents the queue position from which the fI™ is non-zero i.e.

k! ifk>m

ml(g) = | oy
1 (k) {0

otherwise.

One can easily verify that for all k € {2,...,n},

m(k —1)!

Sty — k- 1) = Te=m)t 20.
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Let Q™ = (N, ©, (™, g)) be a separable cost queueing model with factorial
cost of degree m < n — 2.
Another type of polynomial cost queueing model is the standard cost

queueing model.

DEFINITION 3.3.30 f™ is said to be a standard cost function of de-
gree m if for all m € {1,...n — 2}, f™(k) = k™.

One can easily that for all k € {2,...,n},
FrE) = fmk = 1) = (k™ k™ 2k — 1)+ ..+ (k—1)™'} > 0.

Let O™ = (N, ©, (f™, g)) be a separable cost queueing model with standard
queueing cost f™ of degree m < n—2. Notice that fI1l = f!i.e. factorial cost
function of degree one and standard cost function of degree one are identical.

REMARK 3.3.10 Following remarks can be made about the polynomial
cost fr-2,

1. By selecting appropriate values of a, for all p = 1,...,n — 2, one can
get factorial cost of any degree m < n — 2. For example, with |N| = 4,
a; =1and a; = ~1 we get f2(k) = k2 — k = k(k — 1) = f@(k). In
general, f;‘" is a factorial cost of degree m < n — 2 if a, = s(m, p) for
allp=1,...,m and a, = 0 otherwise. s(m,p) for all p = ..,m, are
Stirling number of the first kind®.

. A polynomial cost f;‘" is a standard cost of degree m if a,, = 1 and
a, =0 for all p # m.

)

THEOREM 3.3.9 7~2 € "2 is FB implementable.

°A Stirling number of the first kind, s(m, p), is defined as the coefficient of x7 in the
expansion of (z], = z(z ~1)...(z —p+1), i.e. [a], = 5 s(m,p)z¥. For further references
=
sce Tomescu and Melter [38].
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‘We state and prove two Lemma that will be used in proving Theorem
3.3.9.

LEMMA 3.3.4 QI is FB implementable.
PROOF: To prove this Lemma we will have to show that Qlm) satisfies CP.

From the definition of fI™, it follows that

7( l)k l(n l)f[m](k)

= L0 ()t

=[n = Upoa (-1 z - (S (I G = m) 4+ m)
=[n = 1n(-1" z (D)

+mfn = na (=)™ £ (1777
=0. [ ]

LEMMA 3.3.5 Q™ is FB implementable.

PROOF: To prove this Lemma we use the following mathematical identity
=3 S(m,q)lKl, (3:3.11)
q=1

where [kl = k(k —1)...(k — ¢+ 1) and S(m,g) are Stirling number of the
second kind'®.

104 Stirling number of the second kind S(m, g), is defined as the coefficient of [z], in
the expansion of 29, i.e., 29 = 2 S(m, g)[z),. Stirling number of the second kind are such
that S(m,1) = S(m,m) = 1. Moxeover these numbers are unimodal i.e. they satisfy one
of the following formulae:

1. 1=38(m,1) < S(m,2) <...< S(m,M(m)) > S(m,M(m) -1)...> S(m,m) =1
or
2. 1=5(m,1) < S(m,2) <...< S(m,M(m)—1) = S(m,M(m)) > ... > S(m.m) =
1
and M(m+ 1) = M(m) or M(m + 1) = M(m) + 1 where M(m) = maz{q | S(m.q) is
maximum; 1 < ¢ < m}. For a better understanding see Tomescu and Melter [38]
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From (3.3.11), it follows that
= (-1 () )

=1

T

n

= 3 (=113 )ZS(m q) f1l(k)

= X, S(m, q){z (=11 (321) F(k)}
= 0 (from Lemma 3.3.4). [}

PROOF OF THEOREM 3.3.9: To prove this Theorem we will have to
show that Q"‘2 satisfies CP. Given the form of the cost function we get

( l)k 1( )fﬂ 2(k
= (e :)(z a,f7(k)}

@
w..-

N z o z (=) (303) f2(R)}

= 0 (from Lemma 3.3.5). [}
The remaining part of this section deals with examples of different polyno-

mial cost queueing models with |N| = 4. The first two examples are factorial

cost queueing models of degree one and two. The third example is a standard

cost queueing model of degree two. The final example is a polynomial cost

queueing model of degree two.

EXAMPLE 3.3.12 Consider Q! = (N = {1,2,3,4},0, (f1!, g)) where
the queueing cost function is of the form fl(k) = k, for all k = 1,2,3,4.
Condition (3.3.7) gives hll(k) = )f:( 1)k 'iﬁ(r—‘%ﬂfﬂl( 7). Elementary
computation gives Hl = {al)(1) = 1 Alll(2) = &, hl(3) = $}.

Now consider a state 8 = (6y,0,, 63, 6,) such that 6, > 0, > 03 > 604. This
means that o} () = j, for all j = 1,2,3,4. We can see that for all j # [,

“(0.) = J if 05(0) < 07 (0)
o j=1 if}(8) > of (6).
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Consider the Groves transfer, as defined in condition (3.3.10). Computation
of the transfers give

= —{f1(2)9(82) + f11(3)9(65) + /1 (4)g(64)}
+(n — 1){AU(1)g(62) + AN (2)9(6a) + hl')(3)g(64)}
= —g(62) ~ 39(65),
1(6) = ~{/1(1)g(0)) + SM(Dg(6) + /U1 (4)(6)}
+(n = 1){h(1)g(61) + h(2)9(6s) + h(3)g(64)}
~39(63),
= —{fW(1)g(8:) + F1(2)g(62) + f1(4)9(64)}
+(n = 1){RW(1)g(8;) + A (2)g(62) + h1(3)g(64)}
=19(62),
ta(8) = —{£M(1)g(61) + f1}(2)g(6) + 111(3)9(63)}
+(n = 1){hU(1)g(81) + h(2)g(62) + k1 (3)g(63)}
= %y(%) +9(63)-
Note that ): t;(6) = 0. To write an explicit form of the transfers for each
state 6 € G COnSldEl‘ the “inverse” of the order *, suppose 4 is a permutation
such that
(1) 2 Ou2) 2 Ou) 2 Out)-
The transfers are
tu)(6) = —9(8u) — 3906um)>
tu@) () = =39(0u),
tu3)(8) = 39(6u) and
tu)(8) = 39(6u2) + 9(0u(3))- Observe that 2 tu) (0) =
The reason why these transfers are mcemlve compatible is intuitive. The

0.

individuals with first and second positions in the queue compensates the
individuals with third and last positions in the queue in such a way that
truth-telling is a dominant strategy for all the individuals. The amount that
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the first individual pays exceeds the amount paid by the second individual by
9(Bu(2)). So, by moving in the second position the first individual with type
8,,(1) cannot benefit because his reduction in payment will be g(6,2)) and his
increase in queueing cost will be g(6,(1)) (> g(6(2)))- Similarly, the individual
having second position in the queue cannot benefit by moving ahead in the
queue. In which case, he will have to pay g(6,(1)) more and his reduction
in cost will be g(6(2))(< g(fu(1))). One can, by applying similar arguments.
check that these transfers are dominant strategy incentive compatible for all

individuals.

EXAMPLE 3.3.13 Consider QO = (N = {1,2,3,4}, 8, (f, g)) where the
queueing cost function is of the form f2(k) = k(k — 1), for all k = 1,2,3,4.

m I .
Using condition (3.3.7) we get hld(r) = 3 (—1)“"%}”‘&).

r=1 : -
Elementary computation gives H? = {rl3(1) = 0, A%(2) = 1,r%(3) = 4}.
Consider a state § € ©* and 6,(1) > Ou2) > 6u3) = Ouq) . The transfers
are:
tu) (0) = —29(0u2)) — 39(6u3))-
tu(@(6) = —39(6ui3),
tu@)(0) = 9(0u2)) and

4
tu(4)(0) = 9(6u(2)) + 69(Bu(3)). Adding the transfers give 3= t,x)(8) = 0. By
(=)

considering deviations one can find that truth-telling is a dominant strategy
for all individuals.

Observe that the factorial cost of degree 1 is of the same form as the
standard cost of degree 1, i.e. flll(k) = f1(k) = k. An example of a standard
cost queueing model for [N| = 4 with m = 2 is given below.

EXAMPLE 3.3.14 Consider O? = (N = {1,2,3,4},0, (f2,g)) where the
queueing cost function is of the form f2(k) = k2, for all k = 1,2, 3.4. Observe
that from Proposition 3.3.5 it follows that

1 is the inverse of o* as defined in the previous example.
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(k) = k* = S(2,1)k + S(2,2)k(k - 1),

where {S(2,2),5(2,1)} are Stirling numbers of the second kind satisfying
S(2,1) = S(2,2) = 1'%

From condition (3.3.7) we know that h2(r) = ( pymorimtinemedl £2(r).
By substituting the factorial cost represemanon as explained above we ob-
serve that

h2(r) = R(r) + hA)(r). Thus, H? = {h2(1) = },h2(2) = ¥ h?(3) = ¥}.
For a state § € ©% with 6,1) > Ou(2) > Ou(3) > O,(4), the explicit form of the
transfers are:

tu)(8) = =39(8u2) — 39(6ua),

tu@)(8) = —19(6u),

tu(@)(6) = §9(u) and

tu)(0) = 39(Bu2) + 79(8u(»). Check that Z tury(0) = 0. With these
transfers it is clear that the individuals gemng first and second positions
in the queue compensate the individuals getting third and fourth positions
in the queue in such a way that truth-telling is a dominant strategy for all
individuals.

EXAMPLE 3.3.15 Consider 02 = (N = {1,2,3,4},6, (f2, g)) where the
queueing cost function is of the form f2(k) = aik+azk?, forall k = 1,2,3.4'3.
Observe that
2For m = 3, f3(k) = k* = S(3, 1)k + S(3,2)k(k — 1) + S(3,3)k(k — 1)(k — 2) where
5(3,1) = 5(3,3) = 1 and S(3,2) = 3. For other ms’ one can similarly represent standard
cost as a weighted sum of factorial costs of degrees {1,...,m} where the weights are
Stirling numbers of the second kind.
13Note that 22 = (N = {1,2,3,4},0,(f2,9)) is a polynomial cost queueing model if
f2(k +1) = f2(k) > 0 for all k = 1,2,3. Therefore one of the following conditions must
satisfied.
1y <0=a;+3a 20
2. @, =0=ay>0and

3 @ >0=a +7a20
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f2(k)

= a1 f}(k) + a2 f*(k)

= a; fU(k) + a2{S(2, 1) SU(k) + 5(2,2) f(k)}

= {a1 + az} f(k) + ap f (k).

From condition (3.3.7) we know that h2(k) = }i:‘(—l)“'%gﬁﬁff(r).

By substituting the factorial cost representati:)_n it is quite easy to observe

that A2(k) = {a, + ax}Al(k) + aphl?) (k) for all k =1,2,3.

Thus HZ2 = {h2(1) = }(a) +a2), R2(2) = Sa) + Lay, h2(3) = fa; + Lay).

Consider a state 8 € ©* and 0u(1) 2> Ou(2) 2 Ou(3) = Oua). Here the transfers

are:

tun)(8) = —(a1 + 3a2)9(Bu2) — 3(a1 + 7a2)9(B,s)),

tu@(0) = —3(a1 + 7a2)9(0u3)),

tu(3)(0) = (a1 + 3a2)g(6u(z) and

tu)(8) = 3(a1 + 3a2)9(8u) + (a1 + 7a2)g(8u))-

4
Adding up the transfers for all k = {1,2,3,4} gives 3 t,x)(8) =0.
[=

The analysis of the class of separable cost queueing models in this section
suggests the existence of a fairly large class of FB implementable separable
cost queueing models. This FB implementable class increases with the num-
ber of individuals. For example, factorial cost and standard cost queueing
models are of degree m < n—2. The class of polynomial cost queueing model
are also of degree n — 2. So degree of n — 2 plays an important role in FB
implementability of queueing models. This is because CP requires that the
(n—1)th order difference at queue position 1 must be zero. Thus polynomial
costs of degree more than n — 2 are not FB implementable.
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3.4 A General Class

A more general class of queueing models that are FB implementable is con-
sidered in this section. This class is defined by the following property.

DEFINITION 3.4.31 Q satisfies Property G if for all j € N and for all
k € {1,...,n}, 6;(k) satisfies the following conditions:

. 6;(k) = )’:d: £P(k)gP(6;) + B;(6;) for all j € N, for all k € {1,...,n}, for
=1
all6; € © and forallpe {1,..., M}.

)

. Forallp € {1,...,M}, gP(6;) > 0 forall 6; € © and g?(6;) is continuous
and strictly increasing in 6;.
. Forallpe {l,...,M}, fo(k) > f?(k — 1) for all k € {2,...,n} and
n
DGR rw =0

w

Let Q€ be the class of queueing models satisfying Property G. Observe that
a queueing model Q¢ € QF with M = 1 and g;(6;) = 0 for all §; € ©
and for all j € N, is a first best implementable separable cost queueing
model. In the next result it is proved that this class of queueing models is
FB implementable.

THEOREM 3.4.10 Q€ € Q€ is FB implementable.

PROOF: To prove this Theorem we first argue that QF € QF satisfies IP.
This follows from the fact that the efficient queue in any Q€ € Q€ depends
on the ordering of the types as was the case for separable cost queueing
models. Hence by following same arguments as in Proposition 3.3.6, one can
prove that Q€ € QF satisfies IP.

The next step is to specify a Groves transfer and show that Q¢ € Q¢
is balanced for all states # € ©". Observe that, for all p € {1.....] M}

n

t(»l)k"(:::)f’(k) = 0 implies from condition (3.3.7) that for all p €
£=1
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{1,..., M}, there exists a unique vector H? = {h?(1),..., hP(n — 1)} such
that for all k € {1,...,n}, fP(k) = (n — k)hP(k) + (k — 1)h?(k — 1). Given
QF € QF satisfy IP, by following the sufficiency argument in Proposition
3.3.7 we get that for all # € O™ and for all p € {1,...,M}, f7(0;(0)) =
3 h?(a5(6-1))-

1#5

Now consider a particular Groves mechanism M = (0°, t) where
M
%i(0=5) = 2_{Bu(6) + (n = 1) 3= g”()h (07 (6-;))} (3.4.12)
i#5 p=1

Then it follows that
4;(0-.
]gﬂ 45(0-5)

== 5 £ 2 OOREO) + (n-1) % 60,

JENp=11#;
= (-1 5 5 )L (000} +(n = 1) T 56)
JENp=1 1#5 JEN
= (= 1) S5 17(03(0)97(6;) + B;(6,)}.
JEN p=1
= (n—1)C(6).
This implies that for all 6 € O", T t;(8) = —(n — 1)C(8) + % 4;(6;) = 0.
JEN JEN

L]
One can easily verify the following results:

e QF € QF satisfies CP.

e The class of FB implementable separable cost queueing models is a
special case of €.

3.5 A Discounted Cost Model

In all the previous sections, the queueing models that were considered had
a cost specification that was increasing over time. Discounting is another
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standard way of evaluating costs or benefits which accrue over time. For
example, in repeated games, one way to analyse benefits of an individual
over time is to study the discounted payoff of the individual. Similarly. in
some bargaining models, the cost of delay is measured in terms of a constant
discount rate. One can think of many other situations where discounting is
a standard way of measuring the cost of delay. Therefore, another way of

d 1

specifying costs in a ing model is to i a in benefit from

the service over time. The general model specified in section two is general
enough to include this model as a special case in the following way.

DEFINITION 3.5.32 A queueing model Q¢ = (N, [0,1]) is called a dis-
counted cost model if for all j € N and for all k € {1,...,n}, 6;(k) =
(1 — 6%)v; where 6; € [0, 1].

The utility of an individual j in Q¢ is of the form U; (k, t;; 6;) = 65v;+t;. This
form of the utility is obtained by substituting 6;(k) = (1—65)v; in the general
queueing model. Here 6; € [0, 1] represents the type of individual j which is
private information. One can check that 6;(k + 1) — 6;(k) = 0;‘(1 —6;)v; >0
forall ke {1,...,n—1}.

It is quite easy to observe that for Q¢, the domain specified satisfies
Holmstrém’s definition of “convex domains” and hence can be implemented
only by Groves hani: For di ed cost ing models, CP means
that for all j € N, 6;(1 — 6;)" = 0 i.e. 6; € {0,1}. Thus for all 6; € (0,1)
and for all j € N, CP is not satisfied. The next Proposition looks at the
question of FB implementability of Q4.

PROPOSITION 3.5.8 Q¢ = (N, [0,1]) is not FB implementable.

PROOF: To prove this Proposition we will consider two states and apply
Lemma 3.2.3. Consider a particular individual m € N such that v, < v, for
all j € N/{m}. Let 6,, = 1, 6; = } for all j € N/{m} and 6, = 0 for all
j € N. Consider two states @ = (6y,...,0,) and § = (6),...,6,). Elementary
calculation yields 6%,(1 — O )vm < 6%(1 — 6;)v; for all k € {1..... n} and for
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all j € N/{m}. Therefore, n = 0},(8) > 0;(6) for all j € N/{m}. Now for

all S C N, we consider profiles 6(S) = (6:(S),...,6;(S),...,0a(S)) where

0,(S) = 6, ifj ¢ S and 6;(S) = & =0 f] € 5. Forall § C N/{m} with
(

profiles (Om,0-m(S)), o5 (0m, 0-m(S)) = n — |S|. Therefore,
T (=) ICn (0 O-(S)) = T 1)'5‘( 5)esha,,
SCN/{m}

For all z; € {92,...,0,.}/{9,,,), lf the sets {my,...,m,}, all subsets of
S € N/{j}, are such that o}(z;,6-;(m,)) = k, for all ¢ € {1,...,p}, then
¥ (=1)™ = 0. Therefore, ¥ (~1)1IC(z;,0_,(S)) = 0.
= SCNJU) R

Combining all these observations and the fact that 6; = 0 for all j € N
we get

= (=1)IC(8(3))
SCN
n-1
= Er e
=06 — )" = 5(5 - D" #0. L]
From the constructions in the previous Proposition it is easy to see that
if 6 is such that 8; € {0,1} for all j € N, then Q¢ is FB implementable.
Therefore discounted cost queueing model cannot be FB implemented simply

because it fails to satisfy CP. This result confirms the importance of CP as
a necessary condition for FB impl bility of any ing model.

3.6 Individual Rationality

This section deals with the identification of the sub-class of individually ratio-
nal queueing models within the class of FB implementable queueing models

discussed earlier.

DEFINITION 3.6.33 A mechanism M = (o, t) is individually rational
for a decision problem €, if for all j € N and for all 6 € OV,

Uy(d;(6),,(6),6;) 2 0
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This definition means that each individual has an outside option ind#-
pendent of his valuation which gives him a utility of zero. An individual will
refuse to participate in the mechanism if he does not get an ex-post utility
of at least zero.

A queueing problem is said to be FB* implementable if it is FB imple-
mentable by a mechanism which satisfies individual rationality.

PROPOSITION 3.6.9 Q = (N, ©) satisfying CP and IP is not FB* im-
plementable.

PROOF: Consider a state 6 satisfying CP and IP such that 6;(1) > v; for
all j € N. Clearly,
U;(05(6),t(6), 8;) — t;(6) = v; — 6;(03(6)) <0

for all j € N. Balancedness imply )_“&t](ﬂ) = 0. If tj(§) < O for some
j € S C N then Uj(;(6),t;(6),6;) <e() for all j € S and hence individual
rationality is not satisfied. So for all j € N, t;(8) > 0. Therefore, for
balancedness we need t;(f) = 0 for all j € N. If t;(§) = 0 for all j € N
then Uj;(03(6),t;(6),68;) < 0 for all j € N. Thus Q = (N, ©) is not FB*
implementable. [ ]

The general queueing model is not FB* implementable simply because
the cost of an individual can be so high as to exceed his benefit from the
service. However, for Q€ € € and separable cost queueing models where
an individual’s cost parameter 6; belongs to an interval © = [6, 8], one can
find sufficient condition under which FB® implementability can be achieved.
To establish this result for Q¢ € Q, consider §; > f;(6) for all 6 € © = [6.]
and for all j € N. Let 3 > f; and let » < v, for all j € N.

PROPOSITION 3:6.10 If QF € QF satisfies

n

M — n _
2 {0 - PO P} + B,
p=1 =1

then it is FB* implementable.



3.6. INDIVIDUAL RATIONALITY 91

PROOF: Consider Q€ € QF and also the Groves mechanism M with the
Groves transfer obtained from condition (3.4.12). Further we take an in-
dividual with queue position k € {1,...,n} in state 6. The utility of the
individual is given by

Uiy (K, Ly, Outiy)

= Uuk) — ,g?l FP(k) g (Buiry) = Butiy Buiin) + tuew (6)
G P}g‘ f7(k)g” (Buir) — p):l:‘ '};k FP(r)9? (Outr)) = Butry (Buii)
+n-1) {5 P Oum) + T #(a - D" Oua)}
p=1 <k o>k
> vy = £,00 £ )+ (-1 L@ wn -5
=i - £ 0@ £, )+ 22 £ 0@ £ 170 - 8 rom (339)
= (k) — ﬂ)::l(y"( —2=1g7(0)} E fr(r)-B

2= (£ 100 - 50 @) £ 70)+ )

v
=)

A similar result follows for the first best implementable separable cost

queueing model.

Corollary 3.6.1 If a FB implementable Q= (N,6,(f,9)) satisfies

9@ 3 f(N}
=1
then it is FB* implementable.
The prove of this corollary is immediate from the fact that a first best imple-

mentable separable cost queueing model is a special case of Q¢ with Af =1
and f;(0) = 0 for all 6, € © and for all j € N.
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From this section one can conclude that with a very general cost structure
one cannot FB* implement the queueing model. However, for the separable
cost queueing models and general FB implementable class of queueing models
one can find lower bounds on the benefit, sufficient for FB* implementability.

3.7 Conclusion

This chapter provides a complete characterization of FB implementability of
queueing models. For a queueing model to be first best implementable, it
is necessary and sufficient that the type vector of each individual satisfies a
certain combinatorial property called CP and that the externality that can
be imposed by an individual on the remaining set of individuals satisfies the
independence property. The class of queueing models analysed in this chap-
ter are implementable only by Groves mechanism. Therefore, the first best
lementability of a queueing problem reduces to the problem of finding
appropriate balanced Groves mechanism. The independence property allows
for a particular type of separability which matches the separability obtained
from the combinatorial property. This chapter identifies a fairly large class of
first best impl table queueing models. For complet , the question of
individual rationality of the FB implementable queueing models is analysed
in section six. The broad conclusion from this analysis is that if the benefit
derived by each individual from the service is sufficiently high, then a FB
implementable queueing model satisfies individual rationality.




Chapter 4

Sequencing Models

4.1 Introduction

In a sequencing model there is a large multi-unit firm with each unit in need
of the facility provided by a particular repair and maintenance unit. The unit
can service only one unit at any given time. Therefore, units which are not
attended to, incur a cost for the time they are down. In this framework, the
firm’s role is like that of a planner who wants to serve the units by forming
a queue that minimises the total cost of waiting. Each unit's cost parameter
is private information. The objective of the firm is to determine the order
in which the units are to be serviced. The presence of private information
implies that the firm has an incentive problem. The sequencing model as
an incentive problem was studied by Dolan [10]. He provided a mechanism
which was incentive compatible but not budget balancing. This model was
also analysed by Suijs [36] where he assumed costs to be linear over time.
He proved that under this assumption, it is possible to design a mechanism
satisfying truth-telling in dominant strategies, efficiency or aggregate cost
minimisation and budget-balancedness. He further conjectured that linearity
of the costs is crucial for this result.

In this chapter a more general class of cost functions is analysed. In
particular, this chapter identifies the class of cost functions that are necessary

93
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and sufficient for first best implementability among a particular sub-class of
weakly convex functions. The main result is that first best implementability
is achieved only if the cost function is linear in time. Thus, we prove the
Suijs conjecture for a broad class of models. If the cost function is lincar
then the queue position of any two units is independent of the preferences
revealed by the other units. It is this independence that is crucial for first
best impl ability. For non-li cost, ind d of this type is not

satisfied for all profiles.

This chapter is arranged in the following way: in section two, the model is
developed. Section three is the main section of this essay where, among other
things, the necessary and sufficient condition for first best implementability
is derived. Section four concludes the chapter.

4.2 The Model

Let N = {1,2,...,n} be the set of units of a multi-unit firm. Each unit
j € N have a cost parameter 6; € © which belongs to an interval in the non-
negative orthant R of the real line R and a servicing cost s; that belongs
to the positive orthant Ry of the real line. Let C(7;6;) = 6;F (1) + 05,
measure the cost of waiting 7(€ R.) periods in the queue for unit j € N
with cost parameter 6;. The server’s aim is to find an efficient queue i.e. a
queue that minimises the aggregate cost. By means of a permutation o of N
one can describe the position of each unit in the queue. Specifically, o; = k
indicates that unit j has the kth position in the queue. Given a permutation
or a queue 0 = (0y,...,0,) the cost of unit j € N is C(7(0;);6;). Let T
be the set of all possible permutations of N. For a particular queue o € T.
define P(0,7) = {p € N/{j} | 0; > 0,} to be the predecessor set of j. Given
a queue 0 € ¥ and a unit j,

C(S;(0);6;) = 6,F(S;(0)) + B (421
measures the cost of waiting in the queue for unit j where S;(0) = ¥ ~—
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5.

The following assumptions are made about the cost function F in (4.2.1).
ASSUMPTION 1 F'(r) > 0and F"(r) >0 forall 7 € Ry,.
For all real numbers {a, b} with a > b, define the function f as follows:

Fla+b+z)- F(b+z)

Fla+b+z)—F(a+1) (42.2)

f(z) =
ASSUMPTION 2 The function f(z) is non-decreasing in z € R,.

The first assumption restricts F' to be twice differentiable with positive
first derivative and non-negative second derivative. Observe that if F”(r) = 0
for all 7 i.e if the function is linear, then from (4.2.2) it follows that f(z) = H
Therefore, f'(z) = 0 for all z > 0. It is not difficult to argue the converse
i.e. if f/(z) = 0 for all z > 0, then the function F is linear. For f'(z) > 0, it
is necessary that the function F is strictly convex. In the class of strictly
convex functions, functions of the form F(7) = a,7" for all real number r > 2,
satisfies Assumptions 1 and 2 provided a, > 0. If the cost function F is a
polynomial of the form F(r) = Z a;7', then F satisfies Assumptions 1 and
2 with some restrictions on the co—eﬁicxents {a1,as,...,ax}. For example, if
k=2ie. F*(r) =ag+a;7+ay7? then F* satisfies Assumptions 1 and 2 for
alla; > 0and az > 0. For k = 3ie. F*(r) =ao+ a7 +apr? + ag73, F**
satisfies Assumptions 1 and 2 if and only if a; > 0, a3 > 0 and 2a > 3aa3.
Let F be the class of cost function satisfying Assumptions 1 and 2. Observe
that F is a sub-class of weakly convex F functions.

The utility of unit j € N with cost parameter 6, is given by

Uj(0j,t5:60;) = v; = C(S,(0):6;) + ¢,

where v; is the benefit derived by unit j from the service and t; is the transfer

that it receives.
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For a given s = (s1,...,5,), let 6 = (6,,...,0,_1,6;,0,41,...,0,) be a
state of the world or a profile and let (8}, 6_;) be another profile of the form
(6, .. ,,6_,_1,9;,0]“,...‘6‘,,) where both 6 and (0;,9,1) belong to ©". Con-
sider the problem of the server whose objective is to minimise the aggregate
cost of waiting in the queue. A queue o*, given s, is efficient or minimises

aggregate waiting cost if

0* € argmingex Y C(S;(0); 6;).

JEN
Throughout this analysis the servicing time vector s = (sy,. .., s,) is assumed
to be common knowledge. If the server also knows 6 = (6y,...,6,) then he

can calculate the efficient queue and service the units accordingly. However,
as 0; is private information to unit j, the server’s problem then is to design
a mechanism that will elicit this information truthfully. Formally, a mech-
anism M is a pair (o,t) where 0 : ©" - S and t = (ty,...,t,) : ©" = R™
A sequencing problem under incomplete information is written as Q =
(N, F, ©) where N is the number of units of a firm in need of the facility, F’
represents the cost of each unit of the firm which takes identical functional
form for all units j € N and © is the type space of each unit representing
the cost parameter. Under M = (o, t), given all others’ announcement 6_,,
the utility of unit j of type 6; when its announcement is ;' is given by

Us(0;(85',6-3), (65", 6-5),6) = v; = C(S;(0(65',6-5)):6;) + ;(6,".6-,).
DEFINITION 4.2.34 A sequencing problem Q = (N, F,©) is said to be
implementable if there exists an efficient rule o* : ©® — £ and a mecha-
nism M = (o*,t) such that for all j € N, for all (6,.6,) € ©% and for all
6_, et

U (05(0).,(8):6;) = U, (03(6,".6-,).4,(6,'.6_,):6,)
This definition says that for any given #_,. unit j cannot benefit by reporting
anything other than it’s true type. In other words. truth-telling is a dominant
strategy for all units. Moreover, implementability also means that in cach

state the queue selected is an efficient one.
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DEFINITION 4.2.35 A sequencing problem Q = (N, F, ©) is first best
1 ble or FB impl able if there exists a mechanism M =
(o*,t) which implements it and such that, for all 8 € ©", ¥ t;(8) = 0.
jEN

Thus, a sequencing problem is first-best implementable if, it can be im-
plemented in a manner such that aggregate transfers are zero in every state
of the world. In such problems, incomplete information does not impose any
welfare cost.

Define the minimum cost function C : O™ x ©™ — R. For a state §' with

announcement 6,
C(a"(8):6') = 3 Ci(Sj(05(6)):67)
JEN
where 0*(0) € argmingex ¥ C;(S;(0);6;). For simplicity of notation let
€N

C(6) = C(0°(8);6). In other words, C(6) represents the minimum cost when
announced state 6 is also the true state.

DEFINITION 4.2.36 A mechanism M = (o, t) is a Groves mechanism if,
for all j € N and for all § € O™,

t;(6) = —C(6) + C;(S;(0*(6)); 65) + 1;(0-5) (4.2.3)

In a Groves mechanism the transfer of any unit j € N in any state 6 is
the negative of minimum cost C () plus the cost of unit j and a constant

the minimum cost in state 6 plus the constant. It is well known that such
a transfer results in dominant strategy incentive compatibility because the
servers’ objective of minimising the aggregate cost is now an objective of unit
J as well and this is true for all j € N.

7;(6-;). The utility of unit j with a Groves transfer is its benefit v, less

REMARK 4.2.11 A sequencing model € is implementable if and only if
the mechanism is a Groves mechanism. This result is not new in the literature

because under relatively weak assumptions on the domain of preferences.
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Groves mechanisms have been shown (by Green and Laffont [14], Holmstrom
[22] and more recently by Suijs [36]) to be the only class that satisfies the
implementability condition. The domain of any sequencing model with F €
F satisfies Holmstrom’s definition of “convex” domains and Suijs’ definition
of “graph connected” domains. Thus it follows from Theorem 2 of Holmstrém
and Theorem 3.2 of Suijs that sequencing models are implemented uniquely
by Groves mechanism.

The main difficulty with Groves mechanisms are that they are not bal-
anced for a broad class of public decision problems. The question of whether
or not Groves hanism can be FB impl d for sec ing models is

addressed in the next section.

4.3 Main Result

In this section the primary objective is to look at the question of first best
implementability of a particular class of sequencing models. Let QF be the
class of sequencing models with the cost function F' € F. The main objective
in this section is to completely characterize the class of sequencing models
Q€. In order to pursue this goal, the analysis that follows in the next few
paragraphs is necessary.

In a sequencing model with non-linear cost function, it is quite difficult
to find an algorithm for calculating the efficient queue. However, if costs
are linear, there exists an easy algorithm to calculate the efficient queue.
Consider the sequencing model Q¢ = (N, F¥,©) € QF, where |[N| > 3 and
FL is linear. Consider a particular queue o = (o1,...,0,) with j and [ as
immediate neighbours! in the queue with j preceding lie. oy = o; + 1. If
their positions are interchanged, then the total cost changes by an amount
{61s; — 0;5,} regardless of their positions compared to all other units. This
interchange will lead to a reduction in cost if {6;5,—6;5:} > 0 and will lead to
" TUnits j and I are said to be immediate neighbours in a queue 0 = (1.....0a) i
o; = k implies that either oy =k +1loror =k —1.
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an increase in cost if {f;s; — 65} < 0. Using this observation it is now quite
easy to see that for any given s = (sy,...,s,) and any given state § € ©, the
efficient queue can be obtained by consldermg the urgency index u, = g*
for all j € N. In particular, given s and 8, 0*(f) € X is efficient if and
only if for all j # I, u; > w <= 0;(6) < 07(6). Ties can be broken by
considering the natural ordering i.e. if u; = u then 0}(6) < o7 (8) if j < {2
Consider two units j and ! and assume without loss of generality u; > w.
Then unit j will always stay ahead of unit ! independent of the preferences
announced by all other units. Linearity implies that the queue position of
any two units j and ! is independ of the prefe d by all
other units. Suijs [36] conjectured that it is this independence that drives
first best implementability in Q.

In non-linear cost models, the primary hurdle is to obtain an algorithm
for finding efficient queue. The assumptions made about the cost function,

in the previous section, is primarily to reduce the difficulties, that one may
encounter, while calculating the efficient queue in a sequencing model with
non-linear cost. The following observation can be made about the efficient
queue of any sequencing model * € Q¢/{Qr}.

OBSERVATIONS:

1. If s; < s; and 6; > 6, with at least one strict inequality, then o;(6) <
o7 (6) for all 0_;_; € ©"~2 and for all given s_;_. The proof of this
observation follows quite easily from the fact that F € F/{FL} is
weakly convex.

2. Let s; < s1, 0; < 0, and 6;F (s + s; + 51) + O F (s + s1) > O F (s + 55 +
s1) + 0;F(s + s;). The third inequality means the following: If a set
of units P C N/{j,1} with s = Z s, are served before units j and (.

then it is more efficient to serve ] before unit [ (i.e. 0y = 0, +1). Now

consider a set P such that P c P C N/{j,l} and $ s> If
PEP

2See Curiel, Pederzoli and Tijs [6].
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the set of units P are served before units j and [, then serving unit )
before unit { will continue to remain more efficient simply because from
Assumption (2) and the above inequalities we know that

ﬁ( F(s+s]+sl)rF(s+s,)< F(3+s;+8) = F(§+s;)

9 SF(sts;+s)—Fls+s) = F(s+s,+s)— FG+s)

for all 0 < s < 5. Note that the first two inequalities i.e. s; < s and
6; < 8, is crucial for this argument to go through.

THEOREM 4.3.11 For [N| > 3, Q* € Q is first best implementable if
and only if Q* = QF.

Before going into the proof of this Theorem, a Lemma (due to Walker [41])
is stated. For this Lemma, some more notations are introduced. Consider
two profiles 8 = (6y,...,60,) and &' = (6}, ...,0,). Define for S C N, a type
0;(S) = 6; if j ¢ S and 6;(S) = 6} if j € S. Therefore, for each S C N, a
state 6(S) is of the form (6:(S),.-.,0.(S))-

LEMMA 4.3.6 Q is FB implementable only if for all (6,6') € ©" x ™
T (=1FlC(8(8) = 0.

SN

Given the form of the transfer (4.2.3), balancedness requires that the mini-
mum aggregate cost is (n — 1) type separable i.e. (n—1)C(8) = ¥ 7;(6-;)-

JEN
Thus it follows that for any two profiles # and ¢, ¥ (-1)IC(6(S)) =
SN

("+‘),§« SgN(~1)ls‘%(9,,»(5)) = 0. It is quite clear that if the function C
has a separable form , then it must satisfy an appropriate restriction on the
nth order cross partial derivative. The condition in Lemma 4.3.6 is analogous

with this derivative for finite changes.

PROOF OF THEOREM 4.3.11: For the sufficiency part of the The-
orem see Suijs (36]. To prove the necessity part of the Theorem we start
by assuming that the claim in the Theorem is false i.e. there exists a first
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best implementable * € Q€/{Q"} with the cost function F(# F*). From
Assumption 2, we know that there exists 0 < oy < 2 < 3 such that

_ F(az+as)—F(az) _ Flaitas+as)-F(ai+az) — .
(0, 03) = Herted=rag < Flartartan Flaisan = W(@1,02,0).

Consider any set of real numbers {ay,as,...,an} satisfying a3 < as <
. < ap. Let the servicing time vector s = (5, = 01,82 = a2 = 2,83 =
Q3,84 = Qu, ..., 50 = ). Consider {82, B3} € © x © satisfying By < B3 and
W(ag, a3) < (ﬂ;)/{ﬂ;} < @(&‘,02,03) Consider real numbers & and € =
1/ such that &% = [F*( ): ;) — F*(31))/[F*(s2) — F*(1)]. Using o, B, &, €
we construct two profiles § a.nd ¢’ such that 8 = (6, = £,0; = 32,03 = s, 0y =
ba=€)and & = (0, = ¢,05 = fs,05 = B, 04 = &,...,0, = £)°. Now
for each S C N, consider the profile 8(S) = (61(S),..-,65(S),---,6a(S))
where 0,;(5) =0, if j ¢ S and 6;(S) =6;ifj € S.

The following observations can be made about any state 6(S). Units
having a very high cost parameter of Z are served before units 2 and 3 and
the units having a very low cost parameter of ¢ are served after units 2 and
3in 0*(6(S5)). Let X(8(S)) C N/{2,3} be a set such that 6,(S) = £ for all
j € X(6(S)) and E(8(S)) C N/{2,3} be another set such that 6;(S) = ¢
for all j € E(6(S)). For all pairs {j,{} € X(6(S)), 0;(8(S)) < 07(8(S5))
if j < I. The reason follows quite easily from Observation 1. Note that
8;(S) = 6,(S) = % and j < ! implies that s; < 5. By the same reasoning
it follows that for all pairs {j,1} € E(8(S)), 0;(0(S)) < o7 (8(S)) if j < L.
From the construction of 3, and Bs it follows that in a state 8(S) such that
X(0(S)) = ¢, 03(62,03,0-2-3(S)) = 1 < 03(8;,63,0-2-3(5)) = 2. Observe
that there is only one state where X(8(S)) = ¢-the state with § = {1}.
From the constructions of 3, 33 and states 6 and 6’ and from Observation 2 it
follows that for all states 6(S) other than with S = {1}. 03(8(S)) < 05(8(5))-
Therefore, for all states where X (8(S)) # o. 03(6(S)) < 03(8(S)). Thus
if |X(6(S))| = k, then 03(8(S)) = k + 1 and 03(6(S)) = k + 2 for all

3For |N| = 3, this construction is 8 = (6, = £,6, = 82,0 = B3) and 6" = (6 = .6, =
83,05 = ).
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ke{l,...,n—2}.
Using the above observations and applying Lemma 4.3.6 on 6 and ¢’ for
the servicing vector s and after simplification we get
S)EN(—I)'S‘C(Q(S)) = Bo[F*(a2) — F*(az+a3)]+ B[ F* (a2 +03) — F* (a3)] > 0.
Therefore, Lemma 4.3.6 is violated. This is a contradiction. [
We now give an explicit form of the Groves transfer that first best im-
plements QF = (N, F£, ©) with FL(r) = ao + a17 for all 7 € Ry. One of
the reasons we do so is because this is not provided in Suijs [36]. Consider
the sequencing model Q%. Define, by eliminating I € N, the l-reduced se-
quencing model of QF to be %_, = (N—I, F¥,©). In any state§_, € "',
let o*(8_;) be the efficient queue in Q%_,. In other words,

0°(6-1) € argmingesv-n 3 0;(5;)
J#

where £(N — 1) is the set of all possible permutations of {1,...,n — 1} and
5; is the position of unit j(# 1) in the particular queue & € (N — 1). In
short, Q%_, is a l-reduced sequencing model of (n — 1) units obtained from
QL by excluding | € N. For Q%_,, define P(0*(6-)),5) = {p € N/{j,{} |
0;(61) > 05(6-1)} to be the predecessor set of unit j in state 6_,%. Under the
efficient queue o*(8-,) in state 6_;, P(c°(01),7) is the set of units receiving
the service before unit j.

Consider a hanism M that impl QL. The transfer must be of
the form (4.2.3) for all j € N and for all 8 € ©". For FB implementability
we need

(n—=1)C(0) = > v;(6-;) (4.3.4)
JEN

for all 6 € ©".
Now we want to find a function v; such that condition (4.3.4) is satisfied.
Let p(r) C P(0*(6—s,7) such that |p(r)| = r. Define z,, : ©*' — R and
“Recall that for QF, P(c"(8),7) = {p € N/{j} | 0} (6) > 0}(6)} is the predecessor set
of unit j in state 6. In other words, under the efficient queue o*(6) in state 8, P(o"(6).j)
is the set of units receiving the service before unit ;.
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h; : ©""! = R as follows:
for all j € N, for all  # j, for all 7 € {1,...,n — 1} and for all §_, € &},

2j,(021) = > { X sq+s5)
Pr=1)CP(e°(0-1).5) g€p(r—1)

hy(0-1) = i(_l)m—r%)i

where a;(ﬁ,,) =m € {1,...,n—1}. We first show that ¥ hi(6-) =
=]

25r(6-1)

S;(0*(8)). This can be done by considering two cases.

Case (1): o;(6) # n. Here we can have two sub-cases- the first possibility
being that the excluded unit  is not a predecessor of j in state 6. The second
possibility being that the unit excluded is a predecessor of j in state 6. In
the first sub-case observe that

T hi(6-0)
1gP@(0).)
-y B(Lyymrlometmenr o )
1P (0)5) =1 [CEICA
m 1 '
:(n_mzilvn—riﬂ#f‘_‘ﬂ; po > sq+ S5}
) (=1 =) w—l)gm'(nﬁ&e»(r—n o)

From the urgency index criterion for finding the efficient queue in Qb it
follows that for all I g P(c*(6),j), the predecessor set of unit j in Qk_,is
P(c"(6-1),7) = P(a*(8),7)-

Therefore,
1 = hi(0-0)
1gP(a"(0).7)
m —m)!(m—r)!
= Eynrasplgel 2 (T st}
r=1 plr=1)CP(o°(8).4) g€p(r—1)
In the second sub-case observe that
3 hy(0-)
LeP(a7(6).0)

(oo mminee- 1 (g )

leP(o™(8)y) T=1
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m=1 Vo —

=T (et -r) B {2 st s
r=1 pr=1)CP(a°(8).5) q€p(r-1)

The last step follows from the following relation

2(6-1) = (m —1) > { Y se+s}

gl
teP(a*(0).5) p(r=1)CP(0°(6).1) q€p(r—1)
Therefore,
2) T hi(6-)
1eP(a(0).0)
m=1 e
=% (-t {5 s +si)
r=1 Pir=1)CP(o"(6).J) g€p(r-1)
Adding (1) and (2) we get
¥ hy(6-1)
%’
m=1 .
=T (-ymria-nespleer 5 {2 st
r=1 p(r=1)CP(o"(8).5) g€p(r-1)
=+ z { z SV + Sj )
P(m=1)CP(o*(8).5) gep(m=1)
S+ 85}

= =
9€P(a"(8).)
The last step follows from p(m — 1) = P(0*(6),j). Thus lg hy(6-) =
2]
S;(0*(6))-
Case (2): 0;(8) =
Here | € P(c*(6), 7), for all | # j. Therefore, it follows that

T hy(0-)
1gP((0)9)

n-1

= —1(n=m-1)!(m-r}

=% (—1yrort el T { T sgts})
P(r=1)CP(e*(6).5) q€p(r=1)

r=1
={X s1+s} = 55(o°(0)).

1#5
Define, 71 (6-1) = ;25 + a;h(0-1). Therefore, from elementary calculation it
follows that & h ( ) = ag + 015;(0" (8)) = FX(S,(0°(9))-
Now (ons:der a mechanism M* with ; = 7; such that for all j € N and for
allg_,, 7;(0-,) = (n— l)gJM( _;)0:. Here,
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(60—
50
=(n-1) T ¥ h0-,)8
E

€N (£
=(=1) % % hy(6-06;

JENIZG
=(n-1) ])ejN{an + a,S;(0°(6))}6; (from :);e:, h;(6-1) = a0 + a15;(0°(9)))
= (n— 1)C(6). Thus, the mechanism M"* satisfies condition (4.3.4).
The construction of ; will be more explicit from the next example.

EXAMPLE 4.3.16 Consider Q¢ = (N = {1,2,3,4}, F£,©). Therefore,
FL(7) = ag + a7 for all 7 > 0. Let %‘l > ff > f—:‘ > f—:. Given the servicing
time vector s = (s1, S2, 83, S4), it is easy to verify using Observation 1 that
for the profile 6 = (61,6,,63,64), 05(6) = j for all j € N. This follows from
the urgency index definition of efficiency. Using the form of h; we get
(1)ha(61,85,63) = ha(61,0,04) = h(61,63,64) = §51.
(2)ha(61,82,05) = ha(61,0,04) = 3(s1 + s2) — §51 and hy(6z,63,6) = §s2.
(8)h3(61,02,05) = (51 + 52+ 83) — (51 + 83) — 3(s2 + 53) + § 53,
h3(62,83,64) = %(32 +83) = %53 and h3(6),63,60s) = %(s. +83) — %5&
(4)ha(61,02,04) = (51 + 52+ 54) — 3(51+ 54) — 3(s2+ 54) + 54,
hg(81,83,04) = (51 + 53+ 54) — L(51 + 5a) — 3(s3 + 54) + 54,
ha(02,03,04) = (s2 + 53+ 84) — 3(52 + 84) — 5(53 + 84) + §54.
Elementary calculation gives ¥ h;(0_;) = S;(0*(6)) for all j € N. Now
i#

we can define }.1_,(0,,) = % +a,h;(0-;) and check that
S hs(0-0) = ao + @1 5;(6) = F(S,(0)).
J#l
Now it is quite easy to check that 3 £;(6) = 0.
E=)

The result derived in this chapter confirms Suijs conjecture that linearity
is crucial for a sequencing model to be first best implementable when the
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cost function is restricted to a sub-class of weakly convex functions. In any
sequencing situation, there are a finite set of decisions. The decisions are
the set of all possible permutation of the finite set of the number of units.
Each permutation represents a queue. One can make a comparative study
of the sequencing model Q¥ with that of the classic incentive problem of
non-excludable public goods where the set of decisions is also finite. In the
public goods problem the decision is whether or not to produce the public
good. The public goods problem is not first best implementable because the
budget balancedness condition cannot be satisfied in all states of the world.
The reason for budget imbalance is the externality that an individual can
impose on the remaining set of individuals. Here, an individual, by changing
his announcement can change the decision of all other individuals. While,
for 2L, the externality that can be imposed by a unit on the remaining set
of units is more subtle. If a unit is allotted a position k in the queue in some
state, then by changing its cost parameter the unit can either change the
cost of the units served before it (i.e. its predecessor set) or the cost of the
units served after it (i.e. its successor set). The unit cannot simultaneously
affect both the predecessor and the successor sets. This sort of externality,
which is certainly less severe than the externality in public goods problem,
is crucial for first best implementability of sequencing models.

4.4 Conclusion

In this chapter a necessary and sufficient condition for FB implementability
for a class of sequencing models is derived. It has been shown that for
first best implementability, it is both necessary and sufficient that the cost
function is linear. A natural question which arises from our analysis is the
following: are the two assumptions on the cost function necessary for our
characterization result? We intend to answer this question in future research.
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