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INTRODUCTION

In this thesis we shall present an equivari ! of the d

with local i and use this to develop an obstruction theory for

equivariant fibrations. The work is inspired by a remark of tom Dieck [2] which says that
a sensible translation of the classical obstruction theory to equivariant fibrations uses

h 1! with local

(meaning ‘should use’) equi

The equivariant singular cohomology of lliman [9] is unsuitable for obstruction
theory for equivariant sections of an equivariant fibration. The difficulty lies in
connecting the obstruction cochains which arise from different fixed point sets, and the
situation becomes no better even if we work with the Bredon cohomology [1]. Explicitly,
if (B, A)is a G-complex pair, and p : E — B is a G-fibration with fibre F, and if ¢ is
an equivariant section ovei B" |J A, then, for two (n+1)-cells o and of of B, the
values cy(0), ¢ ¢(u') of the obstruction cochain ¢, lie in different groups. In fact we
do not have a coefficient system M such that both c,(o) and ¢ é(a') belong to the

same group M(G/Gg), even in the case when Gg

G , , as there is no canonical
-

isomorphism between 7n(Fg) and wn(F ).

The main problem of the thesis is to extend the local cohomology of Steenrod
[18], [20] to the category of G-spaces where G is a compact group, so that the resulting
cohomology fits well into equivariant obstruction theory. We construct for a G-space X
cohomology H5(X , M), where M is a suitable equivariant local coefficients system on X.
The cohomology satisfies all the equivariant Eilenberg-Steenrod axioms. and can also be
described in terms of the equivariant cellular structure when X is a G-CW-complex

Morcover, it reduces to the Steenrod cohomology with classical local coefficients system



[20] when G is trivial, and to the equivariant singular ! th

coefficient system of Iliman [9] when M is simple in certain sense and X is G-path

connected. The key idea behind the construction of our cohomology lies in generalizing

the classical fundamental groupoid to the equivari d 1 id of a G-space.
The equivariant fundamental groupoid reduces to the classical fundamental groupoid
when the group is trivial, and is the basis of the definition of a local coefficients system

of our

on a G-space. The local nature of this ns i reflects the
cohomology theory with that of Iliman. Whereas our coefficients system depends heavily

system of Illman is

on the space with which it is iated, the

independent of the space.

We then build up an obstruction theory for equi i section of G-fibrati.
using our cohomology, when G is finite. This is accomplished by allowing the classical
obstruction theory to dominate on each fixed point set X", and then piecing them
together over the whole of X in a natural way. Note that if G is finite, then each X"
inherits an ordinary CW structure from the equivariant CW structure of X {13]. This is
the basis of our obstruction theory. It scems that some kind of global description of the
obstruction cochain, like that c(;sidered by Whitehead [20], is necessary to tackle the

general case when G is compact.

Recently Mgller [16] has built up an obstruction theory for a G-fibration by

constructing certain groups for G-complexes which he calls the Bredon cohomology
. : . owever,
groups with local coefficients, where G is finite. But—unfortunately. these groups do not
AMA TReve fove
G

form i funct. }y they do not proyide an equivariant

>

cohomology theory with local coefficients. However, if the coefficients system is simple,

do
then the Mgller groups reduce to the Bredon cohomology groups. The present work was
A



done independently without any knowledge of the work of Mgller. In our approach, we
have been able to present an equivariant singular cohomology theory with local

ffici and an equivari cellular iption of the theory. There are also other

q homology theories available in the li namely [14], tom

Ace & wit alle
Dieck [2], Kozlowski [10], Willson [22], May [15], etc., but A A R e

Sov ouvr Puavbiae, Re Cawne TR do mot dead DR eqmivaviant loeal Coeffic
be-used_for et theory for at vart Hibrati

As application of our obstruction theory we present the enumeration of regular

classes of i ions of the projective space P into R2", and of the lens

space L3™! into R4™2. We also consider the enumeration problem for immersions of
the Grassman manifold G, (R"*) into R2". It may be noted that unlike the non-
equivariant theory our computations avoids twisted coefficients. Moreover, our

enumeration theorem for P*, improves a result of Larmore and Rigdon [11].

The thesis is divided into five chapters, each of these is subdivided into sections.

. are numbered ively in each section, and are variously

labeled as definition, remark, lemma, proposition, theorem, or corollary.

Chapter 1 begins with the problem of attaching local coefficients on a G-space X.
We introduce the concept of the equivariant fundamental groupoid M(X , G), and define

an equivariant local coefficients system M on X as a functor from II(X , G) to the

catrgory of abelian groups. Next, we i equivariant groups for G-

spaces with local coefficients system. In Chapter 2, we show that the resulting

cohomology satisfies the equivariant of the Eilenberg-Steenrod axioms. Chapter
3 concerns the notion of cup product in the equivariant cohomology with lodal coefficients

system, which makes the cohomology a graded ring. Then we give a cellular description



of the cohomology groups for a G-CW-complex. In Chapter 4 we develop an obstruction

theory for equivariant sections of G ions, when the group is fini

e. We measure

in ing equivariant sections as clements of cohomology groups with

local coefficients system, and study their properties. In Chapter 5 we turn to the

of regular h classes of i i as i d above.



CHAPTER 1

CONSTRUCTION OF EQUIVARIANT SINGULAR
COHOMOLOGY
WITH LOCAL COEFFICIENTS SYSTEM

1.0. Introduction.

In this chapter we shall introduce local coefficients system on a space with

compact group action, and define singular Bredon-lllman cohomology with local

coefficients system.
Throughout this chapter all spaces will be compactly generated, and G will be a

compact group. We shall consider only closed subgroups of G. More generally, we may

suppose, as in lllman [9], that any sub of G ing in our di ion arises from

a fixed orbit type family for G. Recall that an orbit type family (or an isotropy family, in
the language of tom Dieck [2]) is a collection & of closed subgroups of G such that if
H € ¥ and K is conjugate to H, then K € ¥ also. However, note that there will be no
loss of generality if we base our arguments on the orbit type family consisting of all

closed subgroups of G.

1.1. Equivariant fundamental groupoid.
111, DEFINITION. Let X be a G-space. Then define a category
Y X =35(X,G) in the following way. The objects of the category are G-

maps  xyy: G/H — X, and a morphism from x,,:G/H — X o y,c : G/K — X isa
H H (3

pair (a,w), where a:G/H—G/K is a G-map and w:G/H x [— X is a G-

homotopy from xy to ygo a. The composition of morphisms (a, , w;) : X,y — ¥c and
H o ¥y ; L)Xy Yk



(a2 w2) vy —= 2 is

iven by (a0 a , w) : Xy — 2, where w: G/H x 1 — X is

wi(gH , 2t) 0<t<1/2
w(gH ,t) = {
wa(ay(gH) , 2t—1) 1/2<¢ <1

Yt WOIW Le

The composition is  well-defined . and associative, and the morphism

iU te
(idg 1 » ©) * Xy —> Xpq With the constant homotopy ¢ is the identityaf Gr Fansing @ T Auctiah
4y emsvelemle  gven v Refikon V3 Lelen.
Two morphisms (a; , wy), (@3 , wp) : Xy — Yy are equivalent if there exists a G-

homotopy j : G/H x 1 — G/K from a, to a,, and a G-homotopy k : G/H x I x I — X
from w, to w, such that
k(gH , 0, t) = x,y(gH), and k(gH ,1,t) = ycoi(gH , ).

(If G is finite, then a; = a, and j = constant homotopy.)

The equi relation is ible with the ition defined above.
We shall denote the equivalence class of a morphism (e , w) by [ar , w].

1.1.2. REMARKS. If X is a point, then "X reduces to the orbit category Og,

whose objects are homogeneous spaces G/H and morphisms are G maps between them.

Let 5y : Og — TOP (category of spaces) be the fixed point sets system of
Elmendorf [7]. Explicitly, nx is a functor such that 1,(G/H) = X", and, for a G-map
o : G/H — G/K given by a subconjugacy relation g"'Hg C K, ny(a) : XX —s X" is left
translation by g.

Recall that, since G is compact and H is closed, we have a canonical
homeomorphism a : Mapg(G/H , X) — X" given by a(f) = f(eH), with inverse given by,

a7l(x)(gH) = gx. Therefore, we may identify an object x,y: G/H — X in X with a



point xf; = xy(eH) in X". Then, if a:G/H— G/K is a morphism in Og and
Yk :G/K—X is an object in 3 X, the point in X" which corresponds to
yko @:G/H— X is given by yxo a(eH) = nx(a)-yc(eK). Thus a morphism
(a,w):xy — yk in TX corresponds to a path (o, w) in X" from x{; to ny () vk
Moreover, if two morphisms (a,w;), (az,w;):Xy— Yk are equivalent, then
(@, wy) is freely homotopic to (o, , w,) along the path t —s yjcoj(eH , t).

1.1.3. DEFINITION. For a G-space X, we define the equivariant fundamental
groupoid TIX = I(X , G) to be the quotient category of 3 X under the equivalence
defined above.

Thus objects of NIX are the same as those of "X, and a morphism x4 — ¥ is
an equivalence class [a , w] where (o , w) : Xjy —* Yy is a morphism in 3°X.

1.1.4. REMARK. Although we call IIX ‘fundamental groupoid’, it is not a

groupoid in the categorical sense. Here a morphism may not be invertible. However, if G

d L w] i Xy — Xy is invertible, with

is compact. then any

1,w o(ad xidp)l, where &' is the inverse homotopy

inverse [

w'(gH , t) = w(gH , 1—t). Note that in this case any G-map a:G/H —G/H is a
homeomorphism.

The category is also known as ‘discrete fundamental category’ in the literature
(2}, (12).

If G is trivial, then NX reduces to the classical fundamental groupoid of X.
Again, if G is finite, then for a fixed H, the objects x,, together with morphisms

Xpy = Yy consisting of pairs (idg,y, . [w]), where [w] is a G-homotopy class rel G/H x 1



of G-homotopies w:G/H x I—s X such that wy = X,y and w, = y, constitute a
subcategory of TIX which is precisely the fundamental groupoid of X",

If X is a point, then IIX reduces to the homotopy category hOg of orbits G/H
and G-homotopy classes of G-maps between them.

1.1.5. DEFINITION. We define a functor & :IX — hOg by sending
X4 ¢ G/H —» X to G/H, and sending [a , w] to the homotopy class [a] of a.

Then a G-map f: X — Y defines a functor IIf : IX — MY in the following
way.

Nf(x,y : G/H —» X) = foxy,
Nf([a , ] : xy —» ¥i) = [a , fow] : foxy —s foyc.

This functor has the property that ®ollf = &.

1 LEMMA. A G-homotopy h:f=f induces a natural equivalence

: If — IIf.

Proof. Define
by (k2 G/H — X) = [idg 1y - holxy x idy)] : foxyy — foxy.

Then, it is necessary to verify that for any morphism [a, w]: X} — ¥ in IIX, the

M A
g is

(e
Bl G

fla, ] if'a,w)

foy ——————————— f'oy,
o b (vi) 2



Write  (a, ¥3) = (idg i » ho(yk x idy)) © (a , fow)

and (@, ¥2) = (a, ffow) o (idg py » ho(xy x id))
where
fow(gH , 2s) = h(w(gH , 2s), 0), 0<s< %
¥i(gH , ) = {
ho(yk x idy)(a(gH) , 25—1) = h(yioa(gH) , 2s—1), % <s<1
ho(xy x idp)(gH , 25) = h(xy(gH) , 25), o<s<}
Va(gH ,s) = {
flow(gh , 2s—1) = h(w(gH , 2s—1), 1), % <s<1l

Then (a,t,) becomes equivalent to (a,¥,) in view
5:G/H x I— G/K, and k : G/H x I x | — Y given by
i(gH , t) = a(gh)
h(w(gh , 25(1—t)) , 2st),
k(gH ,s,t) = {
h(w(gH , 1-2t(1—s)) , 2s(1—t) +2t—1),

‘Therefore, h# is a natural transformation.

The inverse of hy, h'#: ' — IIf, is given by

of the G-homotopies

= o

h;‘ng) = lidg » h'o(x)y x idy)] where h' is the inverse homotopy of h. O

1.2. Equivariant local coefficients system.

1.2.1. DEFINITION. An equivariant local coefficients system of abelian groups (or

simply, an equivariant local system) on a G-space X is a contravariant functor M from

IIX to the category Ab of abelian groups.

If G is trivial, then M becomes the classical local coefficients system on X.
o

1.2.2. EXAMPLE. Let X be a G-space and n > 1. Then define a contravariant



functor M : 3°X — Ab by setting M(x,;) = xn(X", x[)) for an object x,, in 3" X, where
xfy= xy(eH) € X", and setting
M(a, w) = (o, W)l oma(nx(a)
for a morphism (o, w) : X,y — yic in 3_X. Here (&, w) is the path in X" from x{ to
ykoa(eH), which is induced by (e , w), and
(o, why s 7a(XM, x[) — 7a(X", ycoa(eH))

is the ing induced i i and

Talnx(@)) : 7a(XX, [ — ma(XH , 1x(0)¥1

is the homomorphism induced by ny(a) (see 1.1.2).

We shall show that if (@, , w;), (@3 , w3) : Xy — Yic are equivalent morphisms
in X, then M(a,, w;) = M(ay, w;). For this purpose, suppose that we have G-
homotopies j:co; ~a; and k:w, = w, such that k(gH,O0 ) = xu(gH), and
k(gH , 1,t) = yycoj(gH , t). Then o(t) = k(eH , 1 ,t) is a path in X" from y,oa,(eH)
to yyoay(eH), and

nxlen) : (XX, yl) — (XM, yycoa(eH)
is freely homotopic to ny(as): (XX, yl) — (X", ycoay(eH) along o. Therefore,
Tn(nx(a2)) = deomn(nyx(e)) : Ta(XX, ylg — 7n(X", yc0as(eH)). Again, the path
(ay, w;) is freely homotopic to the path (ay;w,) along . Therefore
(ar s @i = (0, wollooy s wn(XM, yicoay(eH)) — mn(XM, x{). Consequently, we
have
M(ay , wi) = oy, wy)il omn(ix(a1))
= (a3, wall goromn(ix(a1))

= (az, wllomn(ny(@)) - = M(ay, ws).



Thus the functor M passes onto the quotient IIX and defines an equivariant local system
M: IX — Ab.
1.2.3. EXAMPLE. Suppose that p: E— X is a G-fibration, that is, a G-map

having equivariant homotopy lifting property with respect to G-spaces. Then, for every

imple fibre, then there

H C G, p": E" — X" is an ordinary fibration. If each p" has n-:
is an equivariant local system xn(%) on X defined as follows.

For each object X,y : G/H —» X in X, set xa(%F)(x,y) = In((pH.)-l(X:.g)), and for
2 morphism [a, w]: xy — yi in 0X, set

Ta(F)la , w]) = 7a(r(a , w) Long(a))
where ne(a) = (PX) 1(yld — (M) L(nx(a)-y{J is the left translation induced by a, and
e, w) s (MY 1(xf) — (P Unx(a)-y}) is the homotopy equivalence obtained by
translating fibres of p* along the path (a , w) (see [20], p. 185).

The functor xo(F) is well-defined, because if (o, , w,) is equivalent to (&, , ws)
with G-homotopies j:a; = a; and k:w, = w, then 7(,, k) longGy), te€l,
constitute a homotopy from T{a, , w,) long(a;) to T(ay , wy) Leng(ay), and therefore
Ta(F)ay » wi]) = 7a(F)(az , ws))-

1.3. Simple equivariant local system.

1.3.1. DEFINITION. An equivariant local system M : IX —+ Ab is simple if M
is independent of paths in the sense that M([a , w,]) = M([a , w,]) whenever [a , w,] and
[er , w] are morphisms in TX with the same source and target which are mapped under

@ onto the same morphism of orbits [a] in hOg.

For example, if M, is a contravariant coefficient system of Illman [9], which is a



contravariant functor Mg : hOg — Ab, then M = Mgo® : IX — Ab is a simple

equivariant local system on X. Conversely we have

1.3.2. PROPOSITION. If M is a simple equivariant local system on a G-path
connected space X, then there exists a contravariant coefficient system M, such that, for
every morphism [a , w] : xpy — ¢ in X, M([a, w]) = My([al).

Note that X is G-path connected if each fixed point set X" is path connected.

Proof. Construct M, in the following way. Choose for each H € G a point
xfy€ X" by means of a choice function x, and let x,; : G/H — X be the corresponding
G-map xy(gll) = g-x{;. Then define Mo(G/H) = M(Xpy). 9 Coma M- 4 , e tei

Mo Carn) = (0T, T Tuviak

Next choose for a G-map a : G/H — G/K a path oq in X" from xp(ell) to
xioa(e). Such a path gives a morphism (idg,y, » wa) : Xpy — Xk 0@ in 5 X such that
(idg/m » wa) = 7a, where wa :G/H x 1— X is a G-homotopy from xj to xoa.
Again, a determines a morphism (a , c) : Xc0a — Xy in "X, where ¢ : G/H x I — X
is given by c(gll,t) = xcoa(ghH). Thus we have a  morphism
[a,cl o lidg p» wal: Xpy —* X in MX. Define

Mo(la]) = M([a , ¢] o [idg /py » wal)-

To see that Mg([a]) is well-defined, first note that it is independent of the choice
of wqy (that is, 04), since M is simple. Next, suppose that j: a ~ a' is a G-homotopy
G/H x I — G/K. Let o be the path in X" from xycoa(eH) to xcoa’(cH) given by
7(t) = xcoi(el . ). Then o ) =04 + o is a path in X" from x,y(cH) to xcoa’(cH).
As before, . gives a morphism (idg y, - wo,) 1 xy = xcoa’ in T X such that

(idg gy un,) =0 Let e :G/H x I — X be given by c'(gH , t) = x,coa’(gH). Then



we have a morphism
fa’ ' o lidgp + w sl:xm — i
in MIX.
Let
(a1 €) o (idg p + wa) = (a, w) and (a’ , &) o (g g > w p) = (o L "),

where w, w': G/H x I —s X are given by

walgH,2s), 0<s<l

u(gH,s):{
xgo a(gH), L<s<i
<s<}

o (g, 2, 0
MgH ) { 2

xio a'(gh), ’f <s< 1
We shall show that (o, w) is equivalent to (a, w'). This will prove that Mo([e]) is
well-defined. For this purpose, consider a path o; in X" from xp(eH) to xcoje(eH),
which is the product of the path 7o and a path in X" from xoa(ell) to X, ojy(eH)

along . Then we have a morphism (idg y , @j,) Xy — Xkojy  in X, where

(idg g » w5

5 Tl Let, for each t € I, ¢y : G/H x I — X be the constant G-homotopy

cy(gH , 8) = X 0jp(gH). Then
G » €0) : ot — Xic and G » e¢) © (idg > @5,) F X — X

are morphisms in X Let g+ ) © (idgp + wj5,) = (e » k) where ke : G/H x 1— X

is given by
w; (gH , 25), 0555%
k(g ,s) = { & d
xcoduel),  b<s<i



Let k:G/H x I x I — X be defined by k(gH,s,t) = k(g .s). Then (a, ko) is
equivalent to (a’.k,) by the G-homotopies j and k. Moreover it is easy to see that
(a, w) is equivalent to (a, ko) and (a', ') is equivalent to (a’, k,). Thus (a, w)is
equivalent to (a’, w’). This completes the construction of Mg : hOg — Ab. Clearly we
have M([e , w]) = Mg([a]) for every morphism [a , w] : X,y —> y in IIX. O

1.3.3. REMARK. The functor M, is independent of the choice function x up to
equivalence. If M{:hOg—+ Ab is another functor obtained by -a different choice

function y, then there is a natural equivalence T : Mg — M} .

Proof. For each object G/H in hOg, choose a path uy, in X" from y{, to x{; This
determines a morphism [idg yy , wyl : Yp — Xy in 11X so that  (idg s wp) = Uy
Then define

T(G/N) = M(lidg /y » wl) : Mo(G/H) — M{(G/H).

This is well-defined, since M is simple. Clearly this is an isomorphism with inverse given

by M([idg y; + wi)) where wijis the inverse homotopy of wyy.

Now for a morphism [a] : G/H — G/K in hOg construct, as in the proof of 1.3.2
a morphism [a,w]:xy—+xk and a morphism [a,w’]:yy—syx so that
Mo([a]) = M(la , w]) and Mi([a]) = M(lo, w')). Then [a, w] o [idg py » wul and
lidg » wl @ [a, '] are both morphisms from y, to xc. Since
®([er, w] o [idg g » wl) = P(lidg i > wic] © [or , w']) and M is simple, we have

T(G/H) o Mo([a]) = M((idg /py » wnl) © M([e , «])
= M(la, w] o lidg p » @)

= M(lidg i » wgl © [o, ')



= M([a, w']) o M(lidg x + wk])

= Mp(la]) o T(G/K)
showing that T is a natural transformation. O

1.4. Homomorphism and pull back.

We now introduce the notion of homomorphim between equivariant local
systems, and define pull back of an equivariant local system by an equivariant map.

1.4.1. DEFINITION. A homomorphism F: M —s N between equivariant local
systems M and N on X is a natural transformation between the functors.

If F is a natural equivalence, then it is called an isomorphism.

Recall from 1.1.5 that a G-map f:X— Y induces a covariant functor
nf: 0X — MY.

1.4.2. DEFINITION. If f: X — Y is G-map and M is an equivariant local
system on Y, then we define the pull back of M by f, denoted by f*M, to be the
equivariant local system MolIf on X.

It follows from 1.1.6 that a G-homotopy f=f' induces an isomorphism
M — *M.

Again, if M and N are equivariant local systems on X and F: M — N is a
homomorphism, then a G-map f: Y — X induces a homomorphism f*F : f*M — £*N

defined by

((*F)(x,4 : G/H — Y) = F(foxy) : M(fox,y) — N(foxyy).

To see this note that if [a,w]:xy— ¥k is a morphism in MY, then




0o , w]) = [a , fow] : fox, —» oy, is a morphism in NX. Therefore, since F is
natural, we have F(foxy) o M([a , fow]) = N([a , fow]) o F(foyk); in other words,
*F(xy) © PM([a, w]) = *N(la , w]) o FF(vx). Thus F:F*M—f*Nis a

homomorphism. We shall call f*F the pull back of F by .
1.5. Equivariant cohomology.

Let Ap, be the the standard n-simplex,
An={(xﬂ»x|w--xn)e R“‘“-f:ox-_ 1,%20
iS
We shall denote the vertices of A, by do, dy, --- dn, and the j-th face operator by eh,
where eh: A, —An, § =0,1,---,n,is defined by

eh(Xo Xy 5 s Xpo1) = (X0 Xz s s

100X, 4 Xp )

Let H be a sub of G. A standard equivari implex of type H is the G-

space An x G/H, where G acts trivially on the first factor.

Let X be a G-space. Then an equivariant singular n-simplex of type H in X is a
G-map 0:AnxG/H—X. The  equivariant  singular  (n—1)-simplex
oD =00 (ch xidgpy) i Apy x G/H—+X is called the jth face of o. If
o : Ap x G/H — X is an equivariant singular n-simplex in X, then oy will denote the
G-map G/H — X defined by o(gH) = o(dg , gH). Let M be an equivariant local

system on X.

1.5.1. DEFINITION. We define C3(X ; M) to be the group of all functions ¢

1 0 :Anpx G/H— X such that

defined on  equivari singular

(o) € M(oyy).

16



1.5.2. LEMMA. If u:Aq—s Ap is a singular  q-simplex in An, and
5 An x G/H — X is an equivariant singular n-simplex in X, then there is an equivariant
singular q-simplex o(u) : &g X G/H —+ X in X, and a morphism o(u)x : 7y —> o(uly in
x.

Proof. Define a(u) to be o o (u x idgy), and o(u), to be [idg,yy , al where
a:G/H x 1— X is the G-map given by

agH , t) = o((1—t)-dg + t-u(do) , gH). O
Then o(ch) : Apy x G/H—s X is the j-th face ¢@ of 0. Note that of = o,

O e L T N e

1.5.3. DEFINITION. We define homomorphism
§:CH(X ; M) — CFT(X s M)
by
at1
(Ee)(0) = M)A + 3 (=1ee D),
=
where o is an equivariant singular (n+1)-simplex in X.

These homomorphisms & have the property 5§08 = 0. Thus we have a cochain
complex Cg(X ; M) = {cg(x iM), 6}.

1.5.4. Let 0:Ap x G/H—X and o' : Aq x G/H' — X be two equivariant
singular n-simplexes in X. Consider Ap x G/H and Aq x G/H' as trivial bundles over
An, and suppose that h: Ap x G/H — Aq x G/H' is a fibre preserving G-map such
that o = o' o h. In this case we say that o and o’ are compatible under h.

% The map h induces a G-map k : G/H — G/H’ given by

h(gH) = pz © h(dg . gl).



where p, is the projection onto the second factor. Then o = o' o h implies that
oy = a:‘,o h. Therefore, if p:G/H x I — X is the constant homotopy from oy to
a;p T, then we have a morphism [h , g] : o‘H—~a:‘, in MX. We shall denote this
induced morphism by h,.

1.5.5. DEFINITION. We define SA(X ; M) to be the subgroup of C&(X ; M)

consisting of all functions c such that if ¢ and o' are equivariant singular n-simplexes in

M(h.)(e(")-

X which are compatible under h, then ¢(o

1.5.6. PROPOSITION. Ifc € SI(X ; M), then &c € SFH1(X ; M).

Proof. Let o : Apyq x G/H— X and o’ : Ay 4y x G/H' — X be equivariant

singular simplexes which are compatible under h: A, 4y x G/H — Apyy x G/H', and
hy:oy— aL‘,be the morphism induced by h. Then, for each j = 0, 1, ---, n+1, the G-

map h:Apyy X G/H— Apy,; x G/H'  determines  fibre  preserving  G-map
W An x G/H — Ap x G/H' by restricting h to the j-th face. Then the j-th faces 0@
and /9 are compatible under hi. Clearly, the induced morphism bk : o — o;‘{) is

identical with h, if j > 0.

1.5.7. LEMMA. For j = 0, the morphisms h% o 0@ and (%) o h, from oy to

a.’f,“) are equal, and therefore M(h2 o 0$?) = M(c4® o h,).

Proof. First note that, by definition,

b 0 0 = %, 4% o lidg py » @] = [h° . ¥], where
a(gH , 2s), 0<s<1/2
v(gH ,s) = {
#O(gH , 25—1), 1/2<s <1,



@ oh, =[d_,,a' o0, ul=[,¢] where

and ol

W(gH , 25), 0<s<1/2

W'(gH . 5) ={ .
o'(h(gH), 2s—1), 1/2<s< 1.

Here o , ' are defined as in the proof of 1.5.2, and p , u° are the constant G-homotopies
as defined in 1.5.4.

Next, define ofy: G/H— X by of(gH) = o((1—t)-d; +t-do , gH). Similarly
define v:,z G/H' —+ X by replacing o by o' and H by H'. Then, we have the following

morphisms
1)

5 t . tmt "o —
[ldG/H,u].aH—~aH,[h,y]AvH—ooH,,[ldG/H,,a]vH, L

where ot : G/H x I — X is given by
at(gH , s) = a((s—st)-d, + (1—s+st)-dg , gH),
It : G/H — G/H' is given by
hi(gH) = p; o h((1—t)-d, + t-do , gH),
#t:G/H x I — X is the constant homotopy

wigh , ) = ali(gH) = o7ty '(gl),

and o't : G/H' x
a't(gH’ | s) = o'((1—t+st)-d, + (t—st)-dg , gH').
Let [idG/H, ,a] o [t p') e fidg . o'l = [ht, k'], where

K :G/HxI—Xis

l(gH 45), 0<s<1/4
k‘(sH.s)‘{ pt(gH 1), 1/a<s<1/2
"(n‘(gu) 2s—1), 1/ Ped s



Now define j : G/H x 1 — G/H' by
j(gH , t) = p; o h((1—t)-d; + t-do, gH),
andk:G/H x I x | — X by k(gH , s, t) = k'(gH , s). Then
k(gH ,0,t) = a'(gH , 0) = o(dy , gH) = oyy(gH),

KeH, 1,1) = aY(hi(gh) , 1) = o'(d, , hi(gH)) = o/ obieh) = o/Poi(eH , .
Note that for t =0, /% = aﬁ,‘” and fid s a°] is identity, and so the composition
lidg s o] o [, u'] o [idgy , o] is precisely equal to [h° , ¥]. Similarly for ¢ =1,
the above composition reduces to [h , %']. This shows that (h°, %) is equivalent to

(B, ¢'). This completes the proof of the lemma. 0O

1.5.8. Completion of the proof of Proposition 1.5.6.
M) = M(n) © M) (") + T (-1 M(h)(c(o’P))
= M(e{?) o M(h2)(e(o" ) + 3 (0 Mo Xe(a'®))
= M(‘,gﬂ))(c(‘,lo)» +j§o (—1)‘ C(‘,(.i)) = (bc)(o),
since ¢ € SE(X; M). O

We have proved that Sg(X ; M) = {S(X ; M), 6} is a cochain complex.
'G' G

1.5.9. DEFINITION. If A is a G-subspace of X, then Sg(X, A ;M) is the
subcomplex of Sg(X ; M) consisting of all functions which kill equivariant singular

simplexes in A.

1.5.10. DEFINITION. We define the Bredon-Iiis singular with local
coefficients by

HY(X ; M) = HNSg(X ; M)), HE(X, A ;M) =H"Sg(X,A;M)).



1.5.11. Let L? be the category whose objects are (X, A ; M), where (X, A)is a
pair of Gespaces and M is an equivariant local system on X. A morphism
6= (1, 82): (X, A; M)—s (Y ,B;N) consists of a G-map ¢, (X, A)—(Y,B)
and a homomorphism ¢ : $,"N — M of local systems on X. The composition of two
morphisms

6:(X,A;M)— (Y,B;N) and ¢:(Y,B;N)—(Z,C;L)
is given by w = (w, , W), where w; = ¥; © ¢, and for any object x in X

Wo(xpy 1 G/H — X) = $2(xp1) © ¥2($1 © xpy) = 1" ¥y Lxy) — M(xp)-

A morphism ¢ = (#;,82):(X; M) — (Y ;N) induces a cochain map
#  Co(Y i N) — Cg(X ;M)  defined as  follows. If < €CE(Y;N) and
¢ B x G/H— X, then $¥()(0) = d2(an)(c(: © 0))-

1.5.12. PROPOSITION. 6% : Cg(Y 5 N) — Cg(X ; M) is a cochain map.

Proof. Let ¢ € CI(Y ; N) and 0 : Ay x G/H — X. Then, since ¢, is natural,

T Rl e (Mg)(0$?) = ($100)”

587()(e) = M(@$?) ")) +:§1(—nj¢“(c)(o°’)
= M(@$?) 620N el: © 7)) +J_"§I(Alf #2(e @) 0 eP))
= 4a(04) 8NN © I +;'§(—1)“ Balo) el 0 D))
= 42(04) N(($,00Y NS5 © )N +:§l(—n‘ (81 0 D))

= ¢a(0p) 8(e)($100) = $"F1(8())(0). O



1.5.13. PROPOSITION. ¥fc € SE(Y ; N), then q)#(c) € SZX;: M).

Proof. Let o and o' be equivariant singular n-simplexes in X compatible under h

with induced morphism h, = [h , p]: oy — u;,, Then
MG E)) = M) © d2(o? Neld © o)

= ¢a(op) o N([F , 6, 0 ul)(c(d) o o'))= ¢2(op)(c(¢) © @) = +*(e)o)
since ¢, is natural and ¢ € S3(Y ; N). O

Thus we have a cochain map % : Sg(Y ; N) — Sg(X ; M). This cochain map
induces a homomorphism  ¢* : H(Y ; N) —s H5(X ; M). Similarly a morphism
$é:(X,A;M)—s (Y, B; N)induces homomorphism

¢* i HE(Y ,B; N) — HE(X , A5 M),

We have now all the ne 'y P! i to lude that there is a sequence
of contravariant functors HY from £? to the category of abelian groups. It may be noted
that these functors reduce to the equivariant singular cohomology functors with
contravariant coefficients system of Iliman [9] when M is simple (in fact, this follows from
a cochain isomorphism which may be constructed using 1.3.2), and to the singular
cohomology functors with classical local coefficients system of Steenrod [20] when G is

trivial.

1.5.14. REMARK. The equivari h 1! with local i may be

treated in the same way using a covariant functor from IIX to the category of abelian

groups.



CHAPTER 2

PROPERTIES OF COHOMOLOGY
WITH
LOCAL COEFFICIENTS SYSTEM

2.0. Introduction.

In this chapter we prove that the sequence of functors Hj : £2 —s Ab introduced

in Chapter 1 satisfy equivariant anal

of Eilenb. St d axioms.

As before, we assume G to be a compact group and all spaces to be compactly

generated.

2.1. Exactness axiom.

Let (X, A ; M) be an object in £% and i : A — X be the inclusion map. Then

(A;i*M) is an object g1k

ich we shall write as (A ; M). We have inclu

morphisms

A ;M) — (X;M) and j: (X; M) — (X, A;M)in £2, which give

to a short exact sequence of cochain complexes

il i*
00— Sg(X, A:M)— Sg(X ; M) — S5(A ; M) — 0.

induce the following sequence of cohomology groups.

n-1
..... g lA AT nax .

\nL HE(X : \ni—. HE(A : M) —



&

2.1.1. THEOREM. #f (X , A ; M) is an object in 22 and i, j are the inclusions a:

described above, then the sequence

--—vH""(A-M)‘E HY(X A'M)LH"(X~M)L HL(A s M) —s oo
A (X, A 30X A

is exact and natural with respect to the morphisms in £%. O

2.2. Homotopy axiom.

We now prove the homotopy axiom for equivariant cohomology with local
system.

Notation. In this section we shall write a homotopy X x [—Y as I x X —Y
for a technical advantage.

2.2.1. DEFINITION. Two morphisms ¢, ¥ :(X,A;M)— (Y ,B;N) are
homotopic in 27 if there is a morphism

A:(IxX,IxA;p*M)—(Y,B;N)

such that Aoig=¢ and Xoi, = ¢, where p:1x X—+ X is the projection, and
fo,i: (X, A;M)—s (I x X,Ix A;p*M) are given by the obvious inclusions
(X,A)—(Ix X,IxA) and the identity natural transformation Ep*M = M,
k=0,1

IFA = (A, Ag), then A, s (I x X, 1x A) — (Y, B) is a G-homotopy from ¢,
to ¥, and Ay : A,*N —» p*M is a homomorphism such that ig*A; = @5 : é*N—M
and i,*A, = ¥ : ¥,"N — M.

2.2.2. Let Thy;:8pyy — X An 0<isn, be the linear singular (n+1)
simplexes in I x Ap defined by setting

Thaa(d) = (0.4))if0 <j < i, and Thpa(d) = (1.diy) if i+l <j <n+l

24



Then, if ¢ : An x G/H—+ X is an equivariant singular n-simplex in X, denote the

equivariant singular (n+1)-simplex

(idy x 0)o (thyy X idg ) : Dagy X G/H— T x X

by  7hii(0), 0<i<n Then rhy,(o)y:G/H—1xX satisfies the relation

Thi1(@)u(gH) = (0, oyy(gH)) for each i.

2.2.3. DEFINITION. We define a homomorphism

D: CZH (I x X ; p*M) —» C(X 5 M)

as follows. For ¢ € CZYX(1 x X ; p*M) and o :

A x G/H— X,

D(e)(e) = iﬂ(—l)i (rhya(@)

The definition makes sense, because

(The1(9) € P*M(7hy1(0)y) = M(poThyy (o)) = M(ay).

‘We shall show that

2.2.4 D& +6D = i,#

#

(s

Let wh:Ap—1x An, 0 <i<n+1, be the linear singular n-simplexes in

Ix Ap defined by setting

wh(d)) = (0,4d))if0 < < i—1 and wh(d)) = (1,d)ifi<j<n.

‘We shall need the following identities.

(id] x eh) o 7h?

] i+1
ehi1 n

2.2.5 hire
(Gdy x eh?) o 7h

Let <€ CHY(IxX;p*M) and

9
k3

i+l =j<n+1

IA 1,

2<i+2<j<n+l.

ALy x G/H— X

be



equivariant singular (n+1)-simplex in X. Then,

+1
D" (e)(o) = :'§0<~1)' ") (rhpa(o)

o 5 g & +2 N B £

=3 D P ME 2 @) () ) +E (1) <z @D}
SN ©) ori (0)

= D MO 20 e(rhaa@) )}

+ S =Y ()P + MR ()8 (724 2(0) )
0<j<i-1<n

2 GRS (o))
o<iZn+1 0<i<n+1

s (0}

+25 i+2§j5n+2( )T e(Thga(e)™)
nt1 "

o Z (=1) ‘M(rn+2(v)(°))c((idl x 0)o(rhys X idg)o(0qy X idG,H))

+0<j;:7_)<"(—1)i+j o(idy x 0)o(th 4z X idgp)olehia X idgm)
+ P*M(79,,(0){?”) c((id x 0)o(19, , x idg p1)0(2, , x id ))
n+2()% 1 n+2 o/m)o(eng2 G/H

0 .;..“ o(Gidp x @)o(rhys X idg )o(chys x idg /)

= <~;n+1 <(Gdp x @)o(rhyp x idg )oleniy X idg )

+2<i+22<‘,j<"+2 —1)"™M e((idy x @)o(rhyy X idg p)olehya X idg /)
= igl(vl)i M(porh,,(o)$?) c((idl x o)o((id) x €Q4y) o Thi, x idG/H))

O<j2_‘:_! <"(—1)=+ic((;dl e e xdG/H))

+ M(pordy (e)$?) c((idl x a)o(wlyy x idG/H))
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+ o(idy-x o)o(wh 4y x idg )
0<iz§:n+l ( L . G/H)

= T (idy x o)o(witl x idg )
Ot ( 1 n+1 G/H)
i+ (o h 1 i :
+ (=)' ¢((dy x o)o((idy x e} ,) o 7 x idg ) )
2Si+2}S:J'S"+2 ( 1 1 n+1 n+1 G/H. )
by 2.2.5. From the definition of porh 4 ()i as given in Lemma 1.3.2 it is easy to see

that

pothya(e)ls” = {

Therefore,

DEFe)(a) = 55 (= 1) Mo tidy x ) o (75}, x idg 1)
=1

o (i )Nl
o <j_}:4$“(—1) Jc((ldl x e P)o(rh}, x |dG/H))

+ <((idy x a)o(wh 4y % idg ) — o (idy x o)o(wit) x idg )
ogizg:n.u (( 1 X 9 (hes X idaym) 05i§n+1 (( fHGEE G/H)

i+ G-1) i i
+ T, (=) ¢ (idy x ey o (r x idg /) )-
2<i2Si<nt2 (64 1 X o)

‘The third line of the above sum equals

e((Gidy x @)0(wQ4y x idg /) = (i) x 0)o(whtE x g ) = i#(e)o) — i (e)o).
Now changing the index i to i+1 on the first and the second line of the above sum, and
the index j to j+1 in the fourth line of the sum, we see that the sum of the first, second
and the fourth lines in the above sum equals

)

), & i () -+
— M(os )'Eo(—l)' (Tpgale ) — °<'§i§n(-l)' Y e(rhgale



- 5% (=0 e(rhyy (6P
2<i+2 <541 <n+2

14 n n+l ;. i +
= - m@®) 5":0<—1>' rharte®) = £ T 0 e
2 120 =
= — &"D(c)(o)-
Therefore D 6™ 4 5°D = i — ¥,

2.2.6. PROPOSITION. If ¢ € SB(I x X ; p*M) then D(c) € SZ(X ; M).

X bl

Proof. Let ¢ and o' be two equivari singular n-si in
under h: Ap x G/H— Ap x G/H'. Now the G-map h determines unique fibre
preserving G-map hi: A4y x G/H— Any, x G/H' such that
G xlia oy ) idG/N,)ohiy for each 0 <i<n. Then, since
o = o'oh, Thy,(0) = Thyq(c')obl, which means that, the equivariant singular (n+1)-
simplexes 74,4 ,(¢) and 44 (o") are compatible under h'. Now if ' : G/H x I—1 x X
is the constant G-homotopy on 7h,1(0)y, then u = pou' : G/H x I — X is the
constant G-homotopy on oy, since porhyy(o)y = oy, Moreover, as hi = [h', 4T,

hy = (i , 4], and p*M = Mollp, we have

p*M(hi,) = MoTIp((ht , &]) = M((I', pop']) = M([b , u]) = M(h).
Then,
MO )D(EX0") = 35 (=1 Miba)etrhya(o'D)
2

I

35 (=1 p* M )e(rhya(e")
i

= £ (-1 etrhalon = Dieo,

as ¢ € SEF(I x X ; p*M). Thus D(c) € SB(X ; M). O



We get by some standard the following theorem.

2.2.7. THEOREM. If ¢, ¢ : (X, A; M) — (Y , B ; N) are homotopic morphisms
in 22, then
¢* = ¢* : HY(Y ,B; N)— HY(X,A; M)

for all n.
2.3. Excision axiom.

In this section we shall prove the excision theorem for equivariant cohomology
with local coefficients system. For a fixed subgroup H of G let II(Ap , H) be the category
whose objects are G-maps x4y : G/H — Ap x G/H such that
p2oxy = id : G/H — G/H. Then x,,(gH) = (x , gH) where x € Ap and x is determined
by x = pjoxy(eH). Thus objects in T(Ap , H) can be identified with the points in Ap.
A morphism from x,y to yy in N(An, H) is an equivalence class [w] of G-homotopies
w:G/H x I — Ap x G/H from xiy to yy, such that p,ow is the constant G-homotopy

of id : G/H — G/H. Two such G-h jes w and ' are equi if there exists a

G-homotopy k : G/H x I x I—» A, x G/H from w to «' such that

k(gH , 0, t) = x(gH) and k(gH , 1, t) = y, (gH) 5
for gH € G/H and p,ok, is the constant G-homotopy of id : G/H — G/H. Then it is
easy to see that the morphisms in I(A, , H) from x,, to y,, may be identified with
homotopy classes of paths in Ap between points corresponding to x,; and yy. Since Ap is

contractible, between any two objects in I(Ap , H) there exists a unique morphism.

We now have a functor J: (An, H) — I(Ap x G/H) defined as follows.

I(xp4) = xpy, and, for [w]: xpy —> ¥py; I(@]) = [idgyyy » w]. This is well-defined because

if [w] = [w'] then lidg - @l = lidg py + ')

29



Let N be an equivariant local system on Aq x G/H, and N = NoJ. The functor
N assigns to each x € Aq a group N(x) so that the groups of different points of A are
connected by uniquely defined isomorphisms. Put in a different way, N determines a
transitive system of groups {ﬁ(x)} in the sense of Eilenberg-Steentod [6,p.17).
Therefore, there exists a group Ny, (the direct limit group) which is uniquely isomorphic
to each N(x) under the projection qx : Ny —s N(x) so that
23.1 axy © ax = ay,

where ay,y : N(x) —» N(y) is induced by the homotopy class of paths from y to x.

By an equivariant linear g-simplex in Aq x G/H, we shall mean an equivariant
simplex of the form w = u x idg/y : Aq X G/H —» &n x G/H where u: Aq—s An is
a linear q-simplex in An. Then the objects wy; and wiy? in II(Ap , H) are identified with
the points u(do) and u(d) respectively. Also if [u(do) , u(dy)] denotes the unique
morphism in T(Aq , H) from u(do) to u(d,), then it is easy to see from the definition of
W that 3([u(d) » u(d,)]) = W. Then it follows from 2.3.1
232 NWE) = N({udo) , u(d)]) = ducag)*Tutay)”

Let L&(An x G/H ; N) be the group of all functions ¢ which are defined on the
st of  equivariant  linear  qgsimplexes w =uxidg,, such  that
o(w) € N(wyy) = N(u(do)). Then L¥(An x G/H;N) is a cochain complex with the
coboundary as defined below.

Let ¢ € L&(Anx G/H;N) and w =uxidg,, be an equivariant linear
(a + 1ysimplex in Ap x G/H. Then define

se)w) = Nw)e® x idg ) + :i':'l(—n‘ «® x idg )

Let L%Ap; Ny,) be the group of ordinary cochains defined on linear g-simplexes
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u: Aq — Aq with values in the constant coeflicient group Ny,. Define a homomorphism
A%: LE(An x G/H s N) — LA ;s Ny)

by A%(c)(u) = q;}(%) c(u x idg ), for < € L3(An x G/H ; N) and u: Aq — Aq. Then

A* is a cochain map. This can be seen as follows. For c¢ € L(Aq x G/H ; N) and

uilgyy — Ao

s = 2T 179 = E -1 3o

a+1
S (O}

= > (-Valy @ xidgp)

= uO)(do) Gl

% 0] : q+1 5 " N
= diay < x idg ) + _zl(An’ Gikaere? x idg )

¢ |
e i O @ x i Cre) 1y ¢l (O3
= Gy N X 1)) o0 x g + T (1) dggyee? x idg )
= q;l(%)(ﬁ“(c)(u x idG/H)) = 29159 ) (),
since u9(dg) = u(dy), if j > 0 and u¥(dg) = u(d,), if j = 0 and 2.3.2 holds. Therefore
A* is a cochain map. The cochain map A* is actually an isomorphism. To see this, define
(A1 L%an 3 N) — LE(An x G/H; N)
by
O ) % idg ) = ayqap ()
for ' € LYAn;Ny) and uxidgy: Aq x G/H— Aq x G/H a linear q-simplex-
Then (A*) ! is the inverse of A*.
Recall that we have a subdivision chain map sd, and a cochain homotopy R,
where
549 LY An s Nyy) — LYAn; Nyy) and R : LYA0; Ny) — L9403 §y)

satisfy &
2.3.3 SR+ R 6§ =id—sd

These induce homomorphisms
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509 : L&(An x G/H ; N) — LE(8n x G/H 3 N)

and R9: LY(Aq x G/H; N) — LE “Y(An x G/H ; N)
defined respectively by 5% = (A% !0 sd? o A9 and R® = (A% lo R o A% Then sd
is a cochain map. Now applying A and A"l to both sides of 2.3.3 we get
2.3.4 SR+ R6=id—sd

We now define homomorphisms sd” : C3(X ; M) —» CJ(X i M) in the following
way. Let o:ApxG/H—X be an  equivariant  n-simplex, and
o# : G(X ; M) —+ C(An x G/H ; N) C LY(An x G/H; N) be the cochain map
induced by o, where N = oM. Then define sd" by

sd(e)o) = 37 (e*(©))lin X idg
where in: Apn— Ap is the identity map. This is well-defined because,
2" (o¥(e))(in x idg /) belongs to
*M((in % idg ) = M(@o(in X idg ) = M(op)-
Similarly define homomorphisms R" : C3(X ; M) — CE1(X ; M) by
RM)(r) = RO (@)ina X gk

where 7:Ap; x G/H— X is an equivariant (n—1)-simplex. Then sd is again a
cochain map. To verify this, let o : Apyq X G/H—+ X be an equivariant singular
(n+1)-simplex and ¢ € C(X ; M). Then, as o™ and 5 are cochain maps
™ (8Me)(o) = " (0¥ (B X Mgp) = 5" (6" (Ning1 * idg )
= §"sa" (d#(c))(i"+1 x idg )

= 0"M((ingq * |dG/H)(°))(sd" @ eni®

1% idG/H))
+2 (=17 50" (@ # ()8, x g n)-
Now let us calculate the term
sd" (o#(c))(|"+]x idg )
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We have by definition of sd",

2" (@ # ()8, x idg ) = 5" (@ g1 x idg 1)

. o
i sdo)
U e ()

2 (e* ©)En(ehg1))

q;
eht1(do)
where  sdn: La(An41 5 Ny) — La(Ap4 5 Ny) is the subdivision chain map and

N = o*M. But sdn(ehy) = sdno ( ;|+,)#(i,.)A Since sd is natural, we get

sdno (¢hy1)glin) = (hy)go sdnlin)y

where sd in the right hand side of the above equality is the subdivision map
n: Ln(An i Np) — La(Bni Np), N =0"M. But  sda(in) = ) & us,  where
s : Ap— Ap are the lincar injections onto the the n-simplexes of the barycentric
subdivision of An, and the signs are chosen according to the matching of the orientations,
and ug(dg) = bn, by being the barycentre of An. Thus,

2" (0% ()69, x idg ) = a;
€n1(d

A (@FEN( T + dhprous)
o) s

=a (5 £ A (eF@ehgro us)

a o) F

-1

# f
= Bt (&4 0 us x idg/y))
RIS ey on’ Qoo on

oF (10 us x idg )

(2 + q
ehy1de) T h41(us(do))

1 o# -
e L G (o e)us X idg q))
qe’,.ﬂ(ao)(; 25 St RIS sy

= xlosamor((e D) (e))(in x idg )

= 20D # ()i x idgp)-



The last but one step follows by considering the transitive subsystem corresponding to the
points of the j-th face of Ay ;. Therefore,

sd"+1(6%)(0) = 6"sd" (ﬂ#(c))(i"+l )

= 0" M((ip 1 xidg/ )N (7 ()R x idg 1)

+ T (H @& g p0)
= M(e$?) (¥ (e))(in x idg 1) + TV (D) * (€))in x idgype)
o

= M(0$?) sd(e)(=) +J§0(—n‘ sd(e)(eD) = 6" sd"(e)(0).
Thus we have proved that sd is a cochain map.
Next we shall show that

2.3.5 S"IR 4 R"FI6M = id — sd™
Let o : Ay x G/H— X be an equivariant n-simplex in X and ¢ € CJ(X ; M). Then
o#(c) € L(An x G/H ; 0*M) and so

571 Ro¥ () € LA(An x G/H ; 0*M).
We claim that
2.3.6 571 R0 ™ (0))(in x idg ) = 6" RPc)(@).
This holds because
571 RR(e)(0) = M(o57) RN ) + }":l(—n’ R0 P)

5

— M) B (0O )iy x idg/n) +,>n:,(_”J T (0D # () g x dgyp)

= M(c{?) R (6% (c))(e] 0 in.g X idg ) + )":l(—l)‘ L idg /1)
i
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= 0*M((inxidg ) R0 ¥ ())inoehx id )+ )":)(41)’ B (o™ (0))(inoch xidg 1)
%5

= *M((inxidg i) B (eF ()G idG,H)+ng(—l)j o * )G9 x idgp0)
=1 E"(a#(c))(i.. x idg -
Now we have by 2.3.4
LR * () + R % () = o (o) — @neF (o).
#

Therefore by evaluating on (in X idgy), and using 2.3.6 and the fact that o” is a

cochain map, we get
61 RY)(@) + R"FHE(N@) = (o) — 5(e)(o)-

Therefore 2.3.5 holds.

We shall now show that the cochain map sd and the homomorphism R pass onto
the subcomplex Sg(X ; M).

2.3.7. PROPOSITION. (i) sd"(S%(X ; M)) C S3(X ; M),

(ii) R"(SE(X ; M)) € STXX ; M).

Proof. Recall that sdq is the subdivision chain map on the chain group
Ln(Ap 5 Ny) of linear n-simplexes with coefficients in the group Ny, and, as mentioned
before, sdn(in) = 3 + uj, where uj: Aqg— Ap are the linear injections onto the n-
simplexes of the :)arycenlric subdivision of Ap, so that uj(da) = by which is the
barycentre of Ap.

Now let ¢ € S3(X ; M), and o, o' be two equivariant n-simplexes of type H and
H' respectively in X compatible under h: Ap x G/H — Ap x G/H', and hy : oy — o},
be the morphism induced by h. Then the G-map h determines fibre preserving G-maps

hj: An x G/H — An x G/H' such that



ho(u; x idg ) = (0 X id_ oh.
Since ¢ = o'oh we have then o(y;) = a'(u)ohy, where o(u;) = go(u; x idg ). In
other words, the equivariant n-simplexes o(u;) and o(u;) are compatible under h;, and
therefore
J g
M(hy, )(e(o"(w)) = e(a(u;).
We shall need the following lemma.
P !
2.3.8. LEMMA. M(hy) © ab, g = ab,. a,® M(hj,)-

Note that here Gy, 4, = 9, Gy + Where

g, : Njy— N(do) = M(a}4), ap, = Ny — R(bn) = M(o(ujn),
and similarly for af, | 4 using o’

Proof. As described before, the equivariant simplexes o and o' determine
transitive systems of groups N and N’ respectively so that, for x € Aq,

N(x) = 0*M(x,,) = M(cox,) and N'(x) = a"M(xH,) =] M(u'oxH,),
where xy(gH) = (x, gH) and x_,(gH') = (x, gH'). Again if o : 1 — Ay is a path from
xtoy, and w:G/H x I — X and ' : G/R’ x I — X are given respectively by

w(gh ,t) = o(a(t), gH) and W'(gh’ 1) = o'(a(t) , gil’),
then we have morphisms
M(idgy » ) : R(y) — N(x) and M(id W) : N'(y) — K(x).

Since ¢ ans o are compatible under h: Ay x G/H — Aq x G/1i', there is a
homomorphism from N’ to N. To see this, first define, for each x € Ap, a G-map
hx:G/H— G/H' by Tix(gH)=psoh(x,gh), and note that we have
soxyy = o'ox ,ohx. Next define jix : G/H x 1— X to be the constant G-homotopy on
goxy = a’oxH,oK,. Then we have a morphism hy, = [hy, ;1,]:uexH—va'oxH,.
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which induces a homomorphism M(hy) : N/(x) — N(x).

These homorphisms constitute a matural transformation N’ — N, because the
morphisms

(idG/H, ,w') o (Bx,ux) and (hy, py) o (idgyy, w):oox, — a'oyH, in I X are

quivalent under the G-h

§:G/H x1—G/H' and k:G/H x I x1—X

given by
3(gH , t) = pz o h(a(t) , gH)
w(gh , 2st), 0<s<1/2
k(gH,s,t) = {
W'(i(gH , 1), 2 + 2t — 25t —1), 1/2<s< L.

Note that k is continuous, since o = o'oh.

Thus we have proved that

Mhys) @ M(lid oo D = Mlidgpy » w]) © Mibys)
and the lemma follows from this by taking x = dg and y = bn. Then M([lidg 4y » w])

becomes ap,, g, and M(lid . w')) becomes qp, | g; O

/H

2.3.9. Completion of the proof of Proposition i
Using the above information, one computes
M(h )sd™(e)(") = M(hy (X050 2)(o # ())(in x idg )
= M(h)o ah Mo F(@)sdalin))

= M(h)o alyOM@FON T £ w)
:

S :
Son MG 4,© Atag(e" ™ Oy x id )

1#

= z,; + M(ha)o ap, go (0" ()uj x idG/H,))
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= 2 2 ny. 0,0 Mibj (el (0)

= by dp 32 £ (o))

= g, ? as "#(C)(uj x idg /)
= 94,° q;'l" ( Zj: =+ ”#(C)(uj kil
=g, (T £ GBI

= ag, (0¥ () (sAnlin))

= agsamex (e¥ () (in))

(losaeA) (e ())(in x idg /)
= 5% F (©))in x i) = sd™(N).

Thus sd(c)(¢) € SB(X ; M) and the proof of Part (i) is complete.

Part (ii) can be proved similarly, by writing Rp.1(in.1) = 3 + vj, where
Vit Bp— Ay are linear simplexes. O :

Let AU be a family of G-subsets of X such that

X = U{JmU, ue <u}.

An equivariant singular n-simplex ¢: A, x G/H— X is said to be U-small if image
of o is contained in some member of U. Let SA(X ; M ; AU) denote the group of all
functions ¢ defined on equivariant n-simplexes ¢ which are U-small such that
o(0) € M(ayy) and M(hy)c(a') = (o) whenever o and o' are U-small simplexes of type
H and H’ respectively, compatible under h: A x G/H —» Ap x G/H'. Since faces of a
AU-small simplex are again U-small, these groups with the coboundary 4 defined as in

1.5.3 lead us to a cochain complex
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SG(X.A=M;m={sgtx.A:M;cu),.s}
for a pair of G-spaces.

2.3.10. PROPOSITION. The inclusion map

a:Sg(X, A M)—Sg(X, A M;U)
is a cochain homotopy equivalence.

Proof. An equivariant n-simplex o : Ap X G/H — X determines an ordinary n-
cimplex ¥ : Ap— X where 7(x) = o(x , ¢H). Then one can find integer m such that
(4" @) = 3 a %\, where a, € 0"My, = N, and 7, are U-small n-simplexes in X.
Here (sdn)™  denotes the iteration of the subdivision _chain  map
sdp : Cn(X 5 Njy) — Ca(X i Nyy), m times. Let oy : Ba X G/H— X  be given by
y(x gH) = g7 (x). Then oy are. U-small. Let m(c) be the smallest integer such that

each oy is U-small.

Let o and 7 be respectively equivariant n and (n—1)-simplexes in X. Now define
homomorphisms

a:sg(x,A;M;m—.sg(x,A;M)maD:sg(x,A;M)—.sg-‘(x,A;M)

by setting
o m(o)-1 i
BEOE) = d™O@@) + M) X () o R} )
i=m(o o )

o m(a)-1 - .
+5 0 T e o R
o i=m(@")
for ¢ € SA(X, A;M;U) and

m(r)1
D(c)(r) = ,):D (sd)' o R(e)(7),
i=

39



for ¢ € SB(X , A ; M), where (sd)° = id. Then 4D + D § = id — B. This can be seen
as follows. We have,
SD(ENe) = MeSWDe(e ™) + T (-1 (Do)

&

(0]
m(o )1 5
7L, e e REED):

(0). 2
( )-1
= e ("E, e o mee ) +,
On the other hand, by 2.3.5 we have
m(o)-1 . m(a)-1 v
DiscHo) =" et o Rigexe) =5 (o0 o c = sd(0) = SREN()
( ot
"8 o) = a*e) - "2 6 ReN)
— (o) = ")) =" E Bty RENo)
=0
'"( )1

=) = M Oe) = L (MO R )

*,)i:,“”' (e RN}

‘Therefore,
(o)-1
(5D + D 6)(e)o) = (o) — ()" e)o) — M) R sy o R
i=m(o )

m(o)-1 i I
—E(—l)’ o <sd)'eR(c)(a‘”)

i=m(o¥

= () — AENO)-
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The homomorphism 3 is a cochain map. For we have
§Dc + Déc=c—pc
or 5§D+ D6ébc=bc— féc
that is, 6D 6c = bc — B bc.
Now & fic = 6c — 6 De'— 6 D dc = bc — bc + f 8c = f bc. Therefore, 6 =56
Since a is a cochain map, a # and § a are both cochain maps. Therefore, as o § = id

and B « = B, B is a homotopy inverse of a. This completes the proof. O
By a standard argument we get

2.3.11. THEOREM. Let (X , A ; M) be an object in L7 and U be an open G-subset
of X such that U C SntA. Then the inclusion i:(X — U, A — U;M)— (X, A: M)
induces isomorphism
i HR(X, A M) — HE(X = U, A —U;M)

for all n.
2.4. Dimension axiom.

In this section we shall show that equivariant cohomology with local coefficients
satisfies dimension axiom.

9.4.1. THEOREM. If M is an equivariant local system on G/H, then
o, ifn #0
HY(G/H ; M) = {
M(idgpahif n = 0.
Proof. Let ¥ be the set of equivariant simplexes wn : An x G/H — G/1i of type
H given by wn(x,gH)=gH for n3>0. Consider the cochain complex
D(G/H ; M) = {n"(c/n i M), .s}‘ where D"(G/H ; M) is the group of all functions ¢

defined on {wp) such that ¢(wn) € M((wn)yy) and & is given as follows. First note that for
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wn € E (@n)yy: G/H—G/H is id:G/H—+G/H, and the j-th face W = w s
0 <j < n. Define §": D™(G/H ; M) — D" T} (G/H ; M) by
PN ens) = Mg ) + 5. (<1 e (o
Since (wpp 1) ¢ (@ng 1 — (@S = (a)y is identity, § takes the form
(N wngr) = J,f_: (=1 e(wn.
This means 6" =0 if n =0 or even, and 6" is an isomorphism if n is odd.

Consequently,

0, ifn#0

H"(D(G/H ; M)) = {
M(idg)rif n = 0.
Therefore the proof of the theorem will be complete if we show that the cochain complex
SG(G/H ; M) is isomorphic to D(G/H ; M).
Define o : S3(G/H ; M) —» D"(G/H ; M) as follows.
a"(c)(wn) = c(wn) € M((wn)) = M(idg /)
n+1 :

for c € SB(G/H ; M). Note that o™+ (6c)(wni1) = Sc(wnia) = ‘);0 (—1) e(wn) and

n+1 n+1 &
5(a"c)wayr) = 2 (—1) a"clwn) = T (1) c(wp)- Thus « § = & &, and hence &
i=0

is a cochain map.

Next we define homomorphisms A" : D"(G/H ; M) — SE(G/H ; M) in the
following way. Let o : Ap x G/K —» G/H be an equivariant n-simplex. Define a G-map
h(e): An x G/K — Ap x G/H by

h(o)x , gK) = (x, o(x , gK))-
Then o = wnoh(c), and therefore o and wq are compatible under h(c), and we have a
morphism h(e) : 7 — (wn)yy. Now define

B"(e)0) = M(h(a)x)(c(wn))
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for ¢ € D(G/H ; M). Then 8 is well-defined. For, let

o:Anx G/K—G/H and ¢':Anx G/K' — G/H

be equivari i ible under the fibre preserving G-map
k:An x G/K — Ap x G/K', where as in Chapter 1, An X G/K and Ap x G/K' are
considered as trivial bundles over A. Let ky = [k, p#l: o, — a:(, be the morphism in
[(G/H) induced by k . Here i : G/K x 1 —+ G/H is the constant G-homotopy from oy
to a! o K. As before, we have 2 morphism h(o')s = [h(a") , u']: o} — (wn)y, where
h(e") : G/K' — G/H is the G-map

h{@')(aK") = pao h(e')(dq , aK') = P3(do > #'(do » aK") = o'(do , aK') = ol (aK'),
and u' :G/K' x 1 — G/H is the constant G-homotopy from alsto (ol © h(a").
Then, h(0)s = h(¢’)x © ke To see this, recall that by our law of composition

B(@")s ke = [h(e") o K, 9] = [0 o & , 9] = o+ ¥1 = [h0), ¥,

where ¥ : G/K x 1 — G/H is given by

gk , 20), 0<t<1/2
Y(gK , t) = { i
W(K(gK),2t — 1), 1/2<t<1

o (8K), 0<t<1/2
{ o) (K (EK)), 221
But vr:( ,o & = oy. Therefore, ¥ is the constant G-homotopy from oy to (wn)y © h(0).
Thus [h{c) , ¥] = h(c). Therefore,
M(k)(B(e)(e") = Mky) © M(h(a")s)(c(wn)) = M(h(e") © ka)e(wn)
= M(h(c)s)e(wn) = B(c)(9). Consequently, B(c) € SH(G/H ; M).
Next, note that g isa cochain map. This can be seen easily in the following

way. First note that if o: 84, X G/K — G/H is an equivariant simplex, then the
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morphism h(c(®), 0 08 : o — (wa)y is given by

(B @), 1) o [dg i - al = [0, ¥l
where  u°:G/KxI1—G/H is p°(gK.t) = oD(gK), for Al tEL
a:G/K xI—GfH is the G-map a(gK,t)=o((1 —t)do+t-dy ,gK) and

¥:G/K x 1— G/H is given by
a(gK , 2t), 0<t<1/2

v(gK , t) = {

WO@EK, 20— 1), 1/2<t<L
We claim that h(@ @), 0 08 = (w4 1)i> o h(@)s = h(o)s. Now

(wap D) © h(o)y = lidg s 0" @ Lo » 1) = [owc ¥
where ol :G/Hx1—G/H is al(gh,t)=gH, for  all t€ I, and
¢’ : G/K x I — G/H is given by

p(gK , 2t), 0<t<1/2
(K, 1) = {
o(oy(eK), 2t — 1), 1/2<t <1
The proof of the fact h(s<®), o 6% = h(0), is exactly similar to the proof of Lemma
157 (one has just to replace o' by wpyy and h by h(c)). Also observe that
h(o)e = h(eW), if j > 0. Then for ¢ € D(G/H ; M) and ¢ : Anyy x G/K —G/H,
we have
n+1 .
o) = M@®) A7) + 3 (=1 e D)
=1
ax1 \
= M) M O))elwn) + (=1 Mo D)) e(wn)
=
n+1 %
= M(h(o)s)(c(wn)) + _Zl (—1) M(h(9)4)(c(wn))
=
n+1 -
= M@ T, (=1 elwn)
=1
= M(b(0)s) 8"c(wpiy) = BN (o).
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This proves the fact that f is a cochain map.
The cochain map 4 is the inverse of a. For
8 a(c)(e) = M(h(a)y)(a(c)(wn)) = M(h(o))(c(wn)) = c(o),
as o and wp, ate compatible under h(c). Also
a Bc)(wn) = A(c)wn) = M(h(wn)s) c(wa) = c(wn),

since h(wn)s = id. This completes the proof of dimension axiom. O

2.5. Other properties.

‘We mention here that the equivari h ! with local i system
is additive. We may also deduce the Mayer-Vietoris exact sequence for this cohomology
theory.

2.5.1. THEOREM. Let X bea G-space and A be a G-subspace of X. Let M
be an equivariant local system on X. Suppose that X is the union of a family of mutually
disjoint open G-subspaces {xa} with Aq = A (| Xo» and that Mg = M | Xq. Then

HA(X, A5 M) = Il HY(Xa , Aa s Ma)-

The proof is obtained by using the standard properties of direct products.

2.5.2. THEOREM. Let X be a G-space with an equivariant local system M on it,
and X,,X; be G-subspaces with X = IntX, U IntX,. Then, the following Mayer-
Vietoris sequence is exact.

S HEY(X, N Xz 3 M) — HE(X ; M) — HE(X, s M) & HY(Xy 5 M) — -
The proof follows immediately from Theorem 2.3.11 and the Barratt lemma

(5, p-2).



CHAPTER 3

CELLULAR DESCRIPTION
OF THE COHOMOLOGY

3.0. Introduction.

In this chapter we introduce the notion of cup product in the equivariant

logy with local ients system, which makes it a graded ring. We also give a

cellular description of the cohomology groups.
3.1. CUP PRODUCT.

As in Chapter 1, G will be a compact group, and by a subgroup of G we shall
mean a closed subgroup.

Let X be a G-space and M an equivariant local system of commutative rings
with  identity on X. For 7 €CZ(X;M) and p€ CE(X;M), define,
7 U p e CEFIUX ; M) as follows.

= 7 (o(ap)) M(a(Ba)+) (1 (¢(Ba))):

whete @ :Apyqx G/H—sX s an equivariant (p + q)simplex in X,

G

ap X idgpyt Ap x G/H—+Apyqx G/H is the equivariant front p-face, and
Ba xidgp: Bq X G/H—+Apyqx G/H is the cquivariant back qeface. Then,
(7 U p) (o) € M(oy)-

Clearly, this product is bilinear. The product is also associative. This can be seen
as follows. Let n € Ci5(X;M), and o: A, o, x G/H—X be any cquivariant
(b + a + r)-simplex. Then, observe that

(0 0 (apq X idgplap) = 7(ap). (o © (Bagr X idg))(Be) = o(Fe)



(0 o (oppq X idgm))(Ba) = (¢ © (Bair X idg )N @a)s
and (0 © (ap4q X igm))(Badu = o(Basrdn:
Also, note that the morphism o(Be)s i oy —* (Bl is equal to the composition of the
morphisms (B gqr)x : o1 — 9(Bg4o)n and
(0 © (Baye X Mg B)s : 0By — (7 © (Baae X W) Bdn>
and that the morphism
(0 © (@ptq X 1GNP : 7(@p 4ol — (0 © (apyq X idgm)Bakn
is the same as o(Bqc)+- Using the above information, we get
((r U #) U n)(@) = (7 U 1) (a(apyq)) M(e(B)x) n(a(Be))
= r((eo(@ptqXidgmNep) M(solapq® idg /1)) (Ba)e) #l(@ 0 (@piq X idg n))(Ba)
M(o(Br)s) n(a(Br))
= r(0(ap)) M(0(Bay ) )Bl(@ © (Baye X idg ))(@a))
M(0(Bgqr)s) © MU(@ © (Bagr X idgn))(Br)e) 1((@ © (Bayr X idgm)(Br)
= 7(0(ap)) M(0(Bar)s) (i 0 M@ © (Bgye X idg )
= r(o(ap)) M(a(Bqyr)e) (1 © M@ (Batr))
= (r U (p U n)o)-
This shows that the product is associative.
Let Iy € C3(X ; M) denote the O-cochain, which assigns to every object xyy in
X, 1 € M(xy)- Then it is clear that I is the identity for the above product. Standard

argument shows that the product U and the coboundary 8 are related as follows.

3.1.1. PROPOSITION. If r € CB(X ; M) and p € CE(X 3 M), then

s(rum=6rup+(—1PTUbp



3.1.2. PROPOSITION. If 7 € S%(X ; M) and p € SE(X ; M), then

U pesETUX; M)

Proof. Let o :8p4q%x G/H—X, o' Bpyq % G/H' — X be equivariant
(p + q)-simplexes in X compatible under the G-map
hilBpyqx G/H— Byyqx G/H"
Then o = o' o h. The G-map h determines fibre preserving G-maps
h(a): Ap x G/H — Bp X G/H' and h(8): Aq X G/H — Bq % G/H'
by restricting h, respectively on the front p-face and back q-face of Apyq X G/H, so that
(ap xid ) o hla) = ho (ap x idg )

and (Bq x idG/H,) o h(B) = h o (Bq x idgn)-
Here, as mentioned before, for any n An x G/H and An x G/H' are considered as trivial
bundles over An. Then,

o'(ap) o h(e) = &' o (ap x idG/H,) o h(a) = o' o h o (ap x idg,y) = o(ap)

o'(Ba) o h(B) =o' o (Baxid_ ) o h(P) = o' o h o (Bq xidgp) = o(Ba)
Thus the equivariant p-simplexes o(ap) and o'(ap) are compatible under the G-map
h(a), and the equivariant g-simplexes o(q) and o'(Bq) are compatible under the G-map

h(B). Therefore,

313 M(h(a)y) 7(o'(ap)) = T(o(ap)) and M(h(F).) u(0'(Bq)) = p(a(Ba))-

Now observe that o(aply = oy, and a'(ao)H, = 0;,, and that the morphism
h(a)e = [h{8) , val: olaply— o'ap),y s eaual  to  the morphism
hy = [0 ,¥]:0q— vL,. Moreover, the morphism o'(8q)« © hs is equal  to the

morphism h(8)s © @(Ba)s - The proof of this fact is similar to the proof of Lemma 1.5.7.

‘Therefore,

M )(r U )(e") = M(h) (7(o"(a5) M(o"(Ba)a) (o' Ba)
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= M(h(a),) (o' (ap)) M(e"(Ba)s © hi) 5" (Ba))
= r(o(ap)) M(W(B)s © a(Ba)s) 1(e'(Ba))

= r(o(ap)) M(c(Ba)s) © M(h(B)s) #(o"(Ba))
7(a(ap)) M(a(Ba)s) #(e(Ba)) = (7 U p)(9)-

This shows that 7 U g € SET9(X ; M). O

I

I

Now Proposition 3.1.1 implies that, for 7 € S3(X ; M) and p € S3(X ; M), the
coboundary satisfies
s(rum=srup+ (-1 TUs
Thus, @ S3(X 3 M) is a graded ring with identity, the cocycle @ZE(X ; M) is a subring
and the coboundary ©BE(X ; M) is a two sided ideal in @28(X 3 M). Consequently, by
passing onto the quotient, & HZ(X ; M) becomes a graded ring with unity, where the
product
HY(X ; M) U HE(X 3 M) — HEHX ; M)
is given by ] U [i] = [7 U p). This defines the cup product in cohomology.
For any G-subspace A of X, and T € SB(X; M), s €SYX,A;M), the
product + U s € S5Y(X , A5 M). Thus we may define the cup product,
HE(X 5 M) U HI(X , A 5 M) — HEFOX, A5 M)
in the usual way.

3.2. Cellular description.

In this section we generalize a theorem of Milnor to equivariant cohomology with
local coefficients system and prove some propertics of the cohomology following
Whitchead [20]. Finally, we use a spectral sequence argument to give a cellular

description of the equivariant cohomology groups.



3.2.1. LEMMA. #f (X;X,,Xs) is a G-CW-complex triad, then we can find a

G-open set X} D X, and a G-homotopy H: X x 1 — X satisfying

(i) Ho = Idy , (i) H is stationary on X, (iii) Hy(X}) C Xy, (iv) H(X, x 1) € Xa-

Proof (cf. [19] Lemma 7.4, p.100). Let Xi! = X, and H™}: X x 1— X be the
stationary G-homotopy. Suppose that we have already constructed for each k,
—1<k<n, a Gopen neighbourhood X¥ of X, in the (k + l)-skeleton (X, Xi)k4y
with XX () (X, X,)x = X¥1, and a G-homotopy H¥ : X x I — X satisfying

(a) B = HXL, (b) HX is stationary on (X, X)), (c) HE(XY) € X,

(d) H¥(X; x I) C X,

Let the equivariant (n + 1)-cells of (X , X,) be {ei‘,“ iy € r} and let 51 be
the characteristic map of ¢J*%. In D™*?, let D¥! = {x e D"l x| < 1/2}. Then
p"+1_ DI+ s an open neighbourhood of S which can be contracted onto S" :

Define K:D" "1 x 1— D" by
(1 + t)x lIxll <
K(x,t) = {

e Il >

(&)

e

n+1

xeD" el

E‘l_

Now let
1 .
uptt = {r';“(y LeHy) s /Nyl gHy) € XY
(v, gHy) € (D"F = DEFY) x G/Hy .
Clearly UT*! is a G-open subset of ¢J*?, so if we take X{ = XU U UtFL then
by i 1 1 ’)‘Er 5 i
XD is a G-open neighbourhood of X, in (X, Xi)a41 With XPN (X, X))o = XT1 We

define H": (X, Xy)ppq X 1 — X by



H(x) X € (X, X))n
H(x,l):{ e g
HY UG Ky, U, gHy)) x =157 (v . gHy),
(v, gHy) € D"F1 x G/Hy, 1e L

Then H" is continuous and satisfies H} = HI™} on (X, X,)n41, 50 we can extend to X

with HY = HL. Clearly (a), (b), (c) are satisfied. H" also satisfies (d), since H™? does.
Thus we can construct X¥, HX, for all k > —1 by induction.
m

Now we take X| :Ky ‘x'.‘; then X! is open because Xi(eJ = X' NeY

for all m, 7. We define H: X x I — X by

H™ (x , (r4+1)(x(t—1)+1)) A<ty xex
H(x,t) = {
H(x,1) t=1,x € (X, X))

Then H is continuous, Ho = H3 = idy; also H is stationary on X;, Hy(X}) C X, and

H(X,xI)CX,. O

PROPOSITION. For any G-CW-complex triad (X ; X, , X2), the inclusion

3.
i:(Xy, X, N Xz 5 M) — (X, X, 5 M) induces isomorphism

it HR(X, Xp 5 M) = HE(X, , X3 N X, 5 M),
where M is an equivariant local system on X.

Proof. Given any G-CW-complex triad (X ;X;,X,) we choose a G-open

neighbourhood X! of X, and a G-homotopy H as in Lemma 3.2.1. Let r = Hy. Then

£ X): (X5, XN Xa) — (X1, X1 N X2) is a G-homotopy inverse of

51 (X, Xy N Xp) — (X1, XI N X2); so we have that (r | X4)* is an isomorphism. Since

r = idy, we see that
3 M)

s HE(X X 0 M) — HE(X O
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is identity. Moreover, i'* : H{(X , X3 M) — HE(X!, X{ N Xz 5 M) is an isomorphism
by excision, since X —X, is a G-open subset of X; and thus
Xx=XUX-X,)c IntX} U IntX,. Since i'* o r* = (r | X))* o i*, it follows that i
is also an isomorphism. O
Following a standard argument, we get a relative Mayer-Vietotis exact sequence
for a triad (cf. 2.5.2).
3.2.3. PROPOSITION. I (X ; X, , X;) is 3 G-CW-complex triad and X3 is a G-
subset of X; (| X, M an equivariant local system on X, then there is an exact sequence
S HEMX, N X2s Xas M)S HEX, X5 3 M) Eug(x, L X3; M) ® BY(Xz . X33 M)
AHEX, Xz, Xa 3 M)
where ax  y) = i{(x) — i3(y), B(x) = (3(x) , i1(x)) and & is the composite
HE(X NX; 5 Xs s M)al HE(X; , XiNX2 5 M) -I_I HE(X . Xz5 M)J—: HY(X , X35 M)
Here iy, iz, iz, ias d1, and 3, are inclusions
i (X N X2 s X3) — (X35 X3), 22 (XN Xz 5 X3) — (X2, X3)
ig 1 (X; s X3) — (X, X3), iq: (X2, Xg) — (X, Xs).
Bt (X, X N Xg) — (X, X)) 3 (X Xa) — (X, Xa),
and A, is the coboundary for the triple (Xy , Xy (1 Xz, X3)-
We shall need a slight variant of the Mayer-Vietoris exact sequence of

Proposition 3.2.3.



3.2.4. THEOREM. Let (X X, . X,) be a G-CW-complex triad and X3 a G-subset
of X, M an equivariant local system on X. Then we have the following exact sequence
...... SHY(X , Xg 3 M) = HE(Xy , X NXs s M) @ HY(X, » X2 X35 M)
S HI(X, (1 Xa s Xy (1 Xz (1 Xg 8 M) = HETHX, Xg s MY =2 oo s
Proof. Apply Proposition 3.2.3 for the triad (X 3 X!, Xy with X{ =X, UXs,
X4 = X, U X3 and observe that XN X4 = (X, N X2) U X3 Also notice that
HE(X, X33 M) = HE(X , Xa (X5 3 M), HE(XS, Xg 5 M) = HE(Xa, X2NXa 3 M)
and HE(XiﬂXLXﬁM)zHE(XnﬂXzyxuﬂxzﬂxa:M)
by Proposition 3.2.2. O
fy rz N
3.2.5. DEFINITION. Let M, «—— My e— Mg e— be an inverse system of
abelian groups and homomorphisms. Let M ="°r_?lM,,, and d:M—M be the

endomorphism given by

%

d(x; 5 X2 1 X35 = (%, — fu(x2) » X2 — f2(%3) >
Then Ker d is called the inverse limit of the inverse system {Mp}, anditis denoted by
lim Mp. Moreover, Coker d = M | d(M) is called the derived functor of the inverse limit

functor and it is denoted by lim‘ M.

The generalization of Milnor’s theorem to equivariant cohomology with local

coefficients asserts



3.2.6. THEOREM. Let (X,A) be a relative G-CW-complex, and let

be an increasing sequence of  G-subcomplexes such

{(x.. JA):n =
that ..o—lju Xn = X. Let M be an equivariant local system on X. Then there is an exact
sequénce

0— lip! HE'(Xa, A M) -2 HY(X, A5 M)ﬁ. lijm H(Xn . A5 M) — 0
in which B is induced by the inclusion (Xn . A ; M) C (X, A;M).

Proof. (cf. Whitehead [20], p.273). Let R¥ be the set of non-negative real
numbers which is given the structure of a G-CW-complex, where the vertices are the
non-negative integers and l-cells are the closed intervals [n , n+1] with trival G-action.
Let L :..O—L(jo Xnx[n.n+1], so that (L,AxRY) is a G-subcomplex of
(X x RY,A xR") and the restriction to (L,A x R*) of the projection of
X xRT,AxRY) on the first factor is a G-homotopy equivalence
pi(L,A xRY)— (X,A) Let

L, =U Xy x (2i,2i41], and Ly = U Xgiyy x [2 +1,2i+2].
i>o So

A =L N(AxRY), 1,2

Then, as in 3.2.4, we have the following exact Mayer-Vietoris sequence

Ay e
CE TN L AL, L A NA, s M) - HAL, A x RY 5§

a M) @ HY )9 ya M
S HE(L, Ay M) @ HE(L, , Ap s M) = HG(L MLy, Ay N Az s M)~
where M = p*M. But the additivty property implies that

HE(L, , A, ; M) :igo HY (X, A3 M) and HE(Lp,As: M) = Eo HE (X400 > A3 M),

so that

= s
HL(L, . A, : M) & HE(L,y, Ay 5 M) = 1'10 HE(Xn, A5 M),
=
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while
HY (L A N A W) = ] #3040,
Under these i i the hi Aq» induced by the appropriate inclusions,

to the

d of 3.2.5. Now the above exact sequence induces a
short exact sequence v
0 —» Coker Aqy — HA(L , A x R ; M) —+ Ker Aq —+ 0.
The middle group can be identified with HX(X , A ; M) and the end groups with the
appropriate lim! and lim. This completes the proof. O
Let (X, A) be a relative G-CW-complex, M an equivariant local system on X.
Let Xp be the n-keleton of (X ,.A), and {E3} be the equivariant n-cells of (X , A). Let
ha : (An X G/Hqg , Aq x G/Ha) — (Xn » Xp-3)
denote the characteristic map of EY. Then Mq = h% M is an equivariant local system
on Ap x G/Hg.
3.2.7. THEOREM. The homomorphisms
HE(Xn + Xpg s M) — HE(An x G/Ha , An x G/Ha ; Ma)
induced by the characteristic maps ho represent the former group as direct product.
Proof. Let Fq = {ba(bn , gHa) : gHa € G/Hg}, where by is the barycentre of
An, and F = |JFq. Let U= Xn — F. Then U is a G-subset of Xn and X, is a G-
deformation retract of U. Therefore we have isomorphism
it : HY(Xn, Ui M) — HE(Xn , Xy s M)-
Let V = Xp — Xp.y, W = V() U; then X is the union of the relatively G-open sets U,
V and therefore we have isomorphism i3 :H&(Xp , U ; M) — HE(V . W ; M). Finally,

lt Vg =t EB. Wq=VaMU. By the additivity Theorem 2.5.1, the
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homomérphisms
i& t HY(V, Wi M) — HE(Va , Wa 3 M)
represent the former group as direct product. The homomorphisms
HY(Xn , Xp3 3 M) — HE(An x G/Hg , Ap x G/Hg 5 Ma)
HY(Xn, U; M) — HE(An x G/Hqa , An—{bn} X G/Hq ; Ma)
HE(V, W ; M) — BE(Int Ap x G/Hg , (Int An—{ba}) x G/Hqa ; Ma)
induced by hq, define homomorphisms
hy : HE(Xn ) Xpg s M) — IJ HY(An x G/Hqg , Aq x G/Hq ; Ma)
hy : HE(Xn , U s M) — n H&(An x G/Hg , An—{bn} x G/Hq ; Ma)
hy: HE(V, W3 M) — I H&(Int Ap x G/Hg , (Int Ap—{bn}) x G/Hg 5 Mg).

The map

hg | Int ApxG/Hg : (90t Ap x G/Hg , (30t Ap—{ba}) x G/Ha) — (Va , Wa)
is a homeomorphism which induces isomorphism in the cohomology. Therefore we get an
isomorphism

hy: 1;1 HY(Va , Wa s M) — ];1 HE(It Apx G/Hg , (It Ap—{ba}) x G/Hq ; Ma).
Let

51+ [[HE(AnxG/Har, Ar-(on} xG/Ho s Ma)— [THY(AnxG/Ha , AnxG/HaiMa)
be induced by appropriate inclusions. Similarly we have the homomorphism j, from

1;[ H&(An x G/Ha , Ap—{bn} x G/Hq4 5 Mq)
to I.,] HE(nt Ap x G/Hq , (3Int Ap—{bn}) x G/Hq : Mq),
induced by appropriate inclusions. Let
izH?;(V,\'V;M)—o];[Hg(Va . Wq s M)

be the homomorphism induced by i,. Then we have the following commutativity

relations : (a) hy = hy o i, (b) hy 0 i = js © ha, (€) j; © hy = hy o i,. Since J,. jo. iy,



iz. i, and h, are isomorphisms, 5o is h,. This completes the proof of the theorem. o

3.9.8. COROLLARY. If Xp is the n-skeleton of the relative G-CW- complex

(X, A) and M an equivariant local system on X, then
HY(Xa.Xqq:M) =0ifa#mn,

and BB(Xn , Xog i M) can be identified with the group of all functions c which assigns to
each equivariant n-cell o : An X G/H — X of (X, A) an element c(c) € M(a,,) such that
if o and o' are two equivariant n-cells of type H and H' respectively compatible under a fibre
preserving G-map h : Ap x G/H — An X G/H' then M(hy) c(a') = c(o)-

Proof. We have by Theorem 3.2.7

HL(Xn, Xop s M) = 1;[ HY(An x G/Hg , An x G/Ha i Ma)

where the product is taken over all equivariant n-cells E§ of (X , A), and Mq = o M,
4 being the characteristic map of E§. Let An = {x € An:x; = 0 for some j > 0} be
the union of all faces of Ay, except one. Set

A = Ap x G/Hq, A% = Ap x G/Ha and Ag = An x G/Hq.
Then, we have the following long exact sequence of cohomology groups for the triple
(AR, AR AR)

L HENAR . AT ML HENAR L AT Ma) D HENAT AR M)

2 uy(A% . AT Ma) ~ -

where i* and j* are induced by the inclusions
i: (A, AR Ma) C (AR, AR 3 Ma)
and §:(AS, AS :Ma) C (AF, AR 1 Ma)-

Now, the map (I x AZ .1 x AR ;p*Ma) — (A%, A 1 Ma), given by



(t,(x,gHa))— ((1 —)x + tdy.gHq), x € Ap, and the identity homomorphism
between equivariant local systems,  provide a homotopy equivalence between
(AZ, AZ;Mga) and (do x G/Hq ,do x G/Hq ; Mg) in 2% This means that
HL(AS , AR ; Mg) = 0 for all g, and, by the above exact sequence,
HEIY(AL, AZ; Mo) L HY(AT | A s Ma)
is an isomorphism. Note further that the homomorphism
HENAZ , AZ 5 Mg) — HE((An — do) x G/Hg , (An — do) X G/Ha i Ma)
induced by the inclusion i
((An — do) x G/Hq , (An — do) X G/Hq ; Mg) C (AR, AR ; Ma)

is an isomorphism by excision. , there is a i i of

(Ap — do) x G/Hg onto e3(An.;) x G/Hg, which takes (Ap — do) x G/Hg into
e3(Ap.1) x G/Ha, where ed: A, — Ap is the 0-th-face map. This provides a G-
homotopy equivalence, and hence
HE ((An — do) x G/Hg , (An — do) x G/Hg ; Ma) = HY (AL, , A%, 5 Ma)-
Consequently, HY(AZ , AJ ; Mq) = HE1(AZ, , AZ,; Mg) for n > 0. Now,
HYAn x G/Hq , An x G/Ha 5 Ma) = HY(AS , AR s Mq)
= HE' (A%, ARy s Ma)

14

HENAG L AG s Ma)

HE™(AS s Ma)

HE"(G/Hg ; Mg) = 0, if q#n.
This proves that H&(Xn,Xp, ;M) =0, if q#n, n>0, and, for n=0,
H&(Xn , Xp_y i M) reduces to 1;[ HY(G/Hqg ; M), the product being taken over all

equivariant O-cells. Therefore, by Theorem 2.4.1, H(Xn . Xp.y 3 Ab) = 0, if q # 0. The



second part follows from the following fact
2(A . AT ; Ma) = HY(G/Ha s Ma) = o& Mlidg/n,) = MUZadu,)-
This completes the proof. O

_ As a consequence, we get

3.2.9. COROLLARY. If q < n < m, then H§(Xm , Xn i M) = 0. ifq>m >n,
then HE(Xm , Xa; M) =0.

3.2.10. PROPOSITION. ¥ q <, then H&(X , Xn; M) =0.

This follows exactly as in [20], from Corollary 3.2.9 and Theorem e 5L

Now, we are in a position to give a cellular description of the cohomology groups.

Let (X, A) be a relative G-CW-complex and M an equivariant local system on
X. Consider the filtration
A:X,,cxocx.c-~»cxnc - CX
of the space X by its skeleta. Then, for the pair (Xp,Xpq), we have the following
exact sequence.

< HEFIXp Xy M) HEFO(Xp s M) HEF (X 4 s M) 2 HEF T (X, Xy s M) -

Set  EPY = HEXp, Xpp 3 M), and pP9 = &YX, s M) These provide a

bigraded exact couple, where the homomorphisms of the exact couple are the

and hi

homomorphisms induced by the

Thus, we have a spectral sequence {(E, ,d')}, where bidegree of d' is (r,1—r) and

at: 29—+ EPF19 s the coboundary operator of the triple (Xp4y Xp . )
e 0 HPFHI XLy Xp s M)

Therefore, we have a decreasing filtration
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BX, A5 M) =300 230 S Sl o
Note that, by Proposition 3.2.10 HE(X , Xa; M) =0, and hence, by cohomology exact
sequence for the triple (X , Xn , A), it follows that
MY Ker [ (X, A5 M) — HE(Xa, A3 M) ] =0
The above spectral sequence converges to the bigraded module § HE(X, A5 M)
associated to the graded module H5(X , A ; M) with the filtration as described above.

Thus, EZO =~ 179/3°F19 L Consequently, we get

3.2.11. THEOREM. Let (X , A) be a relative G-CW-complex and M an equivariant
local system on % Let CP(X,A; M) =H3(Xp . Xpq13 M) and
5:CP(X, A3 M)— CPFA(X, A 3 M) be the coboundary operator o s BN
Then C(X , A ; M) = {(_:"(x LASM), 6} is a cochain complex and

HE(X, A M) = H*(C(X , A M)).
Proof. C(X,A;M) is clearly a cochain complex. We have seen that
H(Xp, Xpq ;M) =0, if n#p. This implies Ef%=0 it q#0,

EPO =CP(X,A; M), d'=

Therefore, ~E3%=0 if aq#0, and
ES® = HP(G(X , A ; M)). By induction, we have EP9=0 if q#0, and
EPC = ES® = HP(C(X, A3 M)) if r>2 This implies that, E83' = 0 if q # 0, and
E%® = HP(C(X , A ; M)). Since, ES5' = 3Py gPHLaL G follows that, 3% = ot

ifq # 0. Now,

HY(C(X , A3 M) = E3Y = RO

I70 — Ker [ HY(X, A 3 M) — HE(Xp 1 - A5 M)]= HG(X, A M),

since HS(Xpq+ A3 M) =0, by Corollary 3.2.9. Thus,



H™(C(X , A 5 M) = HE(X , A5 M).

This completes the proof. O

Finally, we prove a uni theorem quivari logy on

the category of relative G-CW-complex with equivariant local system.

Let 2% be the subcategory of £? consisting of relative G-CW-complex with
equivariant local systems. We have the following uniqueness theorem on the subcategory
22, (f. (3

3.2.12. THEOREM. ifh = {h%) and k = {k%} are additive cohomology theories on
L2 satisfying all the axioms, and if % :h—sk is a natural transformation such that for
every object (GfH ;M) in L2, $(G/H ;M) is an isomorphism, then

BX, A M) hX, A5 M) —KUX, A M)
is an isomorphism for every object (X , A ; M) in 2.

Proof. Let us first prove the theorem for finite dimensional relative G-CW-
complex. So, assume that h and k are additive cohomology theorics on the category of
finite dimensional relative G-CW-complex with equivariant local systems, and
& :h—k isa natural transformation such that, for every object (G/H ; M),

S(G/H ; M) : h*(G/H ; M) — k*(G/H ; M)
is an isomorphism. We want to prove that, for every object (X, A s M),

B(X,A ;M) h (X, A M) — KX, A3 M)

is an isomorphism, where (X , A) is a finite di ional relative G-CW. lex. By the
exact sequence for (X , A ; M) and five lemma, it is sufficient to consider the case when

Ais empty. We have
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(X Xpy 3 M) = [T DEG/Ha s M),
and K9 (Xn » Xpp s M) = 1;1 k"G /Ha s M),
the product being taken over all equivariant n-cells. By hypothesis, there is a natural
isomorphism
h™(G/Hg s M) = K(G/Ha 3 M)-
Therefore, h%(Xn , Xp.y s M) = k%Xn , Xpy 5 M). Now & induces maps between

cohomology exact sequences of (Xn s Xp.y 3 M),

e B Xy s M) — h(Xn s Xpg s M) — b s M) — KXy s M) — -

lS % 5 %

v v v

kO (X § M) — K (Xn s Xpg § M) — k(X s M) — K(Xpoy s M) — -

Also, note that  h*(Xo ; M) = k*(Xo ; M). It follows, inductively, using five lemma,
that, B(Xn; M) : h%(Xn ; M) = k%Xn ; M). Since X is finite dimensional, we get
(X ; M) : h9(X ; M) = kX ; M).
Now,. we use Milnor’s construction to prove the theorem for arbitrary

relative G-CW- complexes with equivariant local system. Let (X, A ; M) be any object
in 22. As in the proof of Theorem 3.2.6, let L_:ljo Xp % [n,n+1] so that
(L,AxRY) is a G-subcomplex of (X xRY, A xRY). Let p:L—+X be the
restriction of the projection map X x R — X, and M = p*M. Then,
p:(L,A xR M) — (X, A M)

is a homotopy equivalence in £%. As before, set

L, = U Xy x (2, 2i+1] and Ly =U Xopipy x [2i+1, 242}
1 i30 2i ] o iS50 2i+1



Then, Ly L, =U X; x {i} and L, UL, = L. Note that Lj, L, and L, L, are
izo
disjoint union of finite dimensional relative G-CW complexes and (L L,, L) is a

proper triad, so, we have a Mayer-Vietoris exact sequence for it. Now, suppose that & is

between theories h and k satisfying the conditions

a natural
of the theorem. Then, % induces maps between Mayer-Vietoris exact sequences and we

have the following commutative diagram.
o h9N(L, VA M)@hN(Ly, Ay M) h9 (L, MLg, A N Az M)=h%(L, A xRV ;M)

! | |

kI (Ly Ay s M)OKO T (L, A M) =k (L MLy, Ay N A2 M) k(L A x RY M)~

Then from the first part of the proof and five lemma we get
% :hL,A x RY ;M) =~ k%L, A x RT ; M),
and hence

B(X,A;M):h* (X, A; M) =KX, A M),

aspisa equi . This the proof of the theorem. O



CHAPTER 4

OBSTRUCTION THEORY FOR
G-FIBRATION

4.0. Introduction.

Having obtained a suitable equivari. with local i system,

we are now in a position to build up an obstruction theory for equivariant sections of G-
fibrations, where G is a finite group. In this chapter, we measure obstructions for

extending equivariant sections of a G-fibrati as certain el of the

cohomology groups with local coefficients system and study their properties.

4.1. Lifting extension problem.

Throughout this chapter we shall assume that G is finite. In this case any G-
CW-complex X becomes in a natural way a CW-complex with cellular G-action, and each

XH inherits a CW structure with n-skeleton X5 = X" (] Xp such that equivariant cells

o :Ap x G/H—X ijecti to ivari; cells & :Anp— XY
under the assignment o(x , gH) = g- ¥ (x).

Let p:E—B be a G-fibration. Then, for every subgroup H of G,
pH:EH — BH is an ordinary fibration, where p" = p|E". Assume that each
pH: EY — B has path connected base space and fibre. We consider the following

problem.
Let (X , A) be a G-connected (that is, (X", AM) is connected for every subgroup

H of G) relative G-CW-complex. and ¢ : X — B, f: A— E be equivariant maps

such that pof = 6| A. In this case we say that f is an equivariant partial Ii

ing of



4. Then the lifting extension problem consists of finding an equivariant map
$:X—+E such that pow =¢ and ¢ |A = f We shall follow a stepwise extension
process, which is similar to the Bredon’s method [1] of extending equivariant maps. The

main point of difference is that, while in Bredon's obstruction theory the coefficients for

the obstruction lie in a fixed generic jent system ined by the y groups
of the fixed point sets of the target space), in the present case the coefficients form an

equivariant local system.
Let o:Ag x G/H— X be an equivariant O-cell of (X, A). Choose a point
y € (pH) 1(#0(do , €H)) and define f(o(do , H)) = y. Then extend f over the orbit by

f(o(do , gH)) = g-y- In this way f can be ded equivariantly over the O-skeleton X,

of (X,A), and we get a partial lifting wo:Xo—+ E. Next suppose that
o: A, x G/H — X is an equivariant l-cell of (X , A). Consider the non-equivariant cell
% : A, — X" corresponding to ¢, defined by F(x) = o(x , eH). Since fibre of p™ is 0-
connected, we can extend ¢4 over the image of ¥, as in the non-equivariant case (20],
and then extend it over the orbit as above. The partial liftings for the 1-cells of (X , A)
fit together to define an equivariant partial lifting ¥, : X, — E extending vo.

Thus we have proved

4.1.1. THEOREM. Let p:E—+ B be a G-fibration such that for every H, the
fibration pH: EH —+ B has path connected base space and fibre. Let (X, A) be a
relative G-CW-complex pair, which is G-connected, and let ¢ : X —+ B be an equivariant
map. Then, any equivariant partial lifting f: A—+E of ¢ can be extended to an

equivariant partial lifting %, : X, — E of ¢.

Suppose, in general, that a lifting f is already given over Xn. We then consider



the problem of extending f over X4, n > 1. Assume that the fibre of pH:EH — BH
is n-simple for each subgroup H of G. Then, as described in Example 1.2.3, we have an
equivariant local system xn(3) on the G-space B. This induces an equivariant local
system ¢*xn(F) on X by ¢. Let 0 : A4y x G/H — X be an equivariant (n + 1)-cell of
(X, A), and 7 : Agyy — X", F(x) = o(x , eH), represent the corresponding (n + 1)-
cell of (XM, AM). Then, as in [20], 10 [Any, defines a partial cross-section
Kyy : Apyy — Wy of the fibration gy : Wiy — Aqyy induced by ¢" 0 F. Since Apyy
is contractible, q, is fibre homotopically trivial, and therefore Wy has the same
homotopy type as the fibre (a3) (do). Hence ki represents a uniquely defined element
"Ff)(o) of
(@) (o)) = 7@ (8 0 o(do , eH))) = ¢° Ta(F)on)-
Thus we have a function <" V() defined on equivariant (n + 1)-cells
o (Bpy1 X G/, Ay x G/H) — (Xpgy » Xo)
of (X, A) such that c"*1(1)(0) € ¢*xn(F)(on)-
4.1.2. PROPOSITION. The cochain <"*(f) belongs to
CHIX, A s ¢ xa(F)) = HE ' (Xog1 + Xa s ¢ 7a(F)-

Proof. Suppose o :Apyy X G/H—X and p:An,; x G/K— X are two
equivariant (n + 1)-cells of (X, A) compatible under the fibre preserving G-map
h:Apgs X G/H— Aqyy x G/K. Then the induced morphism

hy = [0, pul: oy — Pi
gives a homomorphism

$*an(F)ha) : ¢ 7n(F) oK) — ¢ *n(F)on)-
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Recall that
S ra(FNor) = 7(BNS 0 pi) = Tl (@ © 2"} = Tal(PFT (@ © p(do , KN
where (¢ © py)! denotes the point in B corresponding to the G-map & o pyc- Now, since
(T, 4 o u) represents the constant loop at (¢ © on)s (B , 6 o ) = id, and therefore
#* ra(F)(he) = 7alr(B , & 0 gy 0 1g(B) = wale(B)
where
2e(B) : (KT o p(dy » K) — (BHF (8 0 odo €M),
as pg oh = oy. Now, as g =poh and G is finite, we have nx(h) o 7 = 7. For,
ax(B) 0 F(x) = ax(B) o plx , eK) = o(x , B(eH))
= p(x , Tix(eH)) = p © h(x , eH) = a(x , eH) =F(x),
where Fix : G/H —+ G/K is the G-map ix(gH) = pao h(x , gH) and h = hy, as G is
finite. Consequently, since fisa G-map,
& (BB = Fae(BNAE 0 F | Bpya]) = [e(B) o 0 F | Apgal
= (M 0 ix(B) 0F | Apgal = M 0 T | oyl = "FHOXO)-

This completes the proof of 4.1.2. O

We call the cochain <"*(f) the ivari jon to ding the

equivariant partial lifting f.

4.1.3. PROPOSITION. The G-map f can be extended to an equivariant partial

lifting over Xpq.q if and only if M =o0.

Proof. Suppose f has an extension over Xp . Let
o (Bpgpy X G/H, Apyy x G/H) — KXoy Xn)
be an equivariant (n + 1)-cell E"F of (X, A). Let f . E"! —+ E be an extension of

f1E™. Then oo | Agyy x G/H has the extension f' 0 0 : Aqyy X G/H — E, and



therefore 0% | Ay, has an extension (") o0& :a,,,; — EY. Conscquently.

Apyy— Wy has an extension kiy: Apqqy — Wy Therefore, by definition of
(g, it follows that <" T(f)(o) = 0.

n+1 gnH1

Conversely, suppose that ¢"*1(f)(o) = 0 for every equivariant (n + 1)-cell
of (X , A) with characteristic map

i (Bppy X G/H, Ay x G/H) — (Xp gy » Xn)-
Then kyy has an extension kjy: Ayypy — Wy, As described in [20], we can find an
extension of | F(A,,,) to a partial lifting over ¥(Aq4;)- Then we can extend f
equivariantly over the orbit. Patching together the extensions over each equivariant cell

we get an equivariant partial lifting over X, ;. This completes the proof of proposition
n+1 P

£ Bl e |

Recall that, since G is finite, for any G-space X the classical fundamental

groupoid of each fixed point set X" is a subcategory of I1X. Thus any equivariant local

system M on X induces an ordinary local coefficients system My, on X" by restricting M

to the fundamental groupoid of X*.

If (X,A) is a relative G-CW-complex and A C X C X, C === C X is the
filtration of X by skeleta, then, for any subgroup H of G, (X", A") is a relative CW-
complex with the filtration AH ¢ X5 ¢ X' ¢ --- ¢ X" by its skeleta. For any
equivariant local system M on X, we have

HYXH, AM M) = BRExM, At M),
where C(X", AH ; My,) is the cochain complex

COxH L A My = {CPOH, AR ML) = HPXE L XEL S M) )

HP(XE , XKL, s M) — HPFUXH, | L X 5 M,y) being the coboundary operator of
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the triple (XEy, , XB | XEL). Recall further that, HP(XE , XE; ¢ My) can be identified
with the group of all functions ¢, defined on p-cells of (X™,A"™) such that
(@) € My(3(dy)) for any pcell & : Ap —s X". Now given a cochain
c € CY(X,A; M) = HE(Xn, Xpp 5 M),
define a cochain ¢y € C™(XH, AH; My,) = HP(XK , X} 5 M), for every subgroup H,
as follows. Let & : (An , Ap) — (XK, XH 1) be any n-cell of (X", AY) and
o1 (A x G/H, Ap x G/H) — (Xa, Xnq)
the corresponding equivariant n-cell of (X, A). Then set ¢, (¥} = c(o ). This makes seuse,
because M;4((dg)) = M(cy,). These non-equivariant cochains {CH}, as H runs over
subgroups of G are related as follows. Let
o:Apx G/H—X and 7:0qx G/K— X
be equivariant ncells of (X,A) compatible under a fibre preserving G-map
h:Ap x G/H — Ap x G/K. Then we have a morphism
M(h,) : M(r) — M(o})-
The corresponding non-equivariant cells ¥ and 7 are respectively cells of the fixed point
subcomplexes X" and X¥, and we have ny () o ¥ = &, as ¢ = 7 o h and G is finite.
Since o and T are compatible under h, we get M(hy)(ck(¥)) = cpy(¥). Moreover, if b

denotes the coboundary 6c € C"F1(X, A ; M) then by = &y, cpy.

The above observation can be used to show that the obstruction cochain is a

cocycle.

4.1.4. PROPOSITION. 6 <"*1(f) =

Proof. Let 7 (Bpgo X G/H, Apyp x G/H) — (Xpyz s Xpgy) be an

equivariant (n + 2)-cell of (X . A). and ¥ be the corresponding non-equivariant (n + 2)-
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cell of (XH, AH). Then from the definition of the equivariant obstruction cochain it is

casy to see that c"Fi(f)y is precisely equal to <"T1(M), which is the non-equivariant

obstruction cochain to extending the partial lifting ' of @' over X[l,,. Therefore

5 M) (r) = (6 "FHOLE) = b "THNF) = 0. a5 by MHYHY = 0. This

n+1

shows that c<"F(f) is a cocycle. O

4.1.5. PROPOSITION. If £, are equivariant partial liftings over Xn which are

vertically G-homotopic (rel A) then <"¥(f) = <"+ (f').

Proof. Since f and ' are vertically G-homotopic (rel A), then, for each
equivariant cell & : (Apyy X G/H, Agyy x G/H) — (Xppy > Xn) of (X, A), the cross-
sections of the fibration ay : Wy, — Ay defined respectively by o & | Ay, and
() 0@ | Ay, are vertically homotopic. In particular they are homotopic, and,
tchar the olnehte meimied b s ol 0 by e aeheine o M) i o o

equal. Since this is true for every equivariant cell @, we get M = M) O

4.1.6. PROPOSITION. If ¢ : (X', A') — (X , A) is an equivariant cellular map
and f = fo¢|Xh: Xh—s E, then "T1(F') = o ().

Proof. Let o :An.; x G/H—Xhy, be an ecquivariant (n + D-cell of
(X', A", and ¥:A,,; — XN, be the corresponding non-equivariant cell. Now
MUY (o) is by definition equal to <"FH(IH)(F), where " FL(PH) s the non-
equivariant obstruction to extending ' over X{¥j'). Therefore, by the corresponding
result for the non-equivariant case, we get

o) = @) = @HF @)

= "y 0 )

My 0 a)= o MH()e). O

Lot G0

Xn—E be equivariant partial liftings of o. and let



A:Xpy X I—E be a vertical G-homotopy (rel A) between fo | Xpy and £ | Xq
These maps fit together to define an equivariant partial lifting
F:XpxiUXp, x—E
of & op;, where p,:X x1— X is the projection onto the first factor. Then we
define the equivariant difference cochain of fo . f, with respect to A to be the cochain
d™(fy . £, 3 A) € CN(X, A3 8% 7n(F)) = HE(Xn s Xy 3 6 7a(F))
such that for every equivariant n-cell o of (X , A)
df , £, s V(@) = (=D "FHF) @ x i),
where o x i denotes the (n + 1)-cell of X x I corresponding to the n-cell o. If X is
tead of

stationary so that fo | Xpq =f; | Xp,. then we write d"(fy,f;)

d"(fo , £, 3 A). We shall also write d™(f, , f; 5 A) simply as d"(F), when there is no chance
of confusion.

It follows from the Proposition 4.1.3

4.1.7. PROPOSITION. The G-map A:X,, x| —s E can be extended to a
vertical G-homotopy X : Xp x1 — E between T, and f, if and only if d™(F) = 0.

4.1.8. PROPOSITION. The coboundary of d™(F) is given by

5d"(F) = "Fi(fy) — " HH(G).

Proof. Let o : (A 4y x G/H, Ay, x G/H) — (X, 41+ Xn) be an equivariant
(n + 1)cell of (X, A), and & be the corresponding non-equivariant (n + 1)-cell of
(X", AM). Then, as in 4.1.4

§ d"(F)(o) = (6 d"(F)) (¥) =

i dP(F)(@) = HUEN@) — " THAHE)
= "F1(f,)(0) — "F1(fy)(o), by the property of the non-equivariant difference cochain

[20]. This proves the result. O



4.1.9. PROPOSITION. I fy: Xn— E is an equivariant partial lifting of ¢,
A:Xpq x I —E a vertical G-homotopy of fo | Xp-y to a G-map o Xgq — E, and
d€Ch(X,A; ¢ Tn(F)), then a can be extended o an equivariant partial lifting
f,:Xn—E of ¢ such that d°(°,f';2) = d.

Proof. Let o (An X G/H » dn % G/H) — (Xn, Xp.3) be an equivariant n-cel
of (X.A), and & be the corresponding non-equivariant n-cell of (XM, AY). Now
i : xH — EY is a partial lifting of oM and AP : XH ) x I — EM is a vertical homotopy
of t5|XH, toamap oM : X, — EY. Let

dyy € COXM L AN 8t mn(F)y) = HOOKE XHy 1 6% mal(F)n)

be the cochain, defined as before, by dyy(¥) = d(r) for any n-cell 7 of (X", AM), 7 being
the corresponding equivariant n-cell of (X , A). Then by the corresponding result for non-
equivariant case [20], we can extend oM to a partial lifting f,(H) : X§ — E" of " such
that dRy(f, fy(H) 5 AY) = dyy, where n( L G (H) ;M) s the non-equivariant
difference cochain. Now define f; on the image of & by f,(H), and then define over the
orbit equivariantly. Define f, for every equivariant n-cell in this way. Then, for any
equivariant n-cell 7 : Ap x G/H — Xa,
dO(fe 4 £y 5 A7) = (o » 5 Mp(F) = RIS, LD 5 AH)(F) = dy(F) = d(7)-
Thus d"(f, , f;;A) =d. O
We can prove a result similar to 4.1.6 in this situation also.

4.1.10. PROPOSITION. Let ¢ : (X' = A'D —+ (X, A) be a cellular G-map and let
F:XpxiUZXqy x1— E be an equivariant partial lifting of ¢ © py. Let
Fl:XhxiUXpyxI—E

be the composition F! = F o (v x id) | (Xhx T U Xhq x 1). Then, d™F) = ¢ #d"(F),



AL11. PROPOSITION. Let f,:Xa— E be an equivariant partial lifting of ¢.
SNt O0D Bpeitali=olh el Spiatnislicdls (O vertical G-
homotopies between the restrictions to Xp.y of fo and f,, and of f and f,, respectively.

Let Mgyt Xy x 1— B be the G-homotopy of fy and Ty defined by Aoy and App. Then,

d(fy . £ 3 Aaz) = d"(fo s fi 3 dm) + A", L f2 5 Aia)-

Proof. Let 7 : (An x G/H , An x G/H) — (Xn Xp.1) be an equivariant n-cell
of (X , A), and 7 be the corresponding non-equivariant n-cell of (XH, AY). Then, by the
properties of non-equivariant difference cochain, we have

d(fo s 1 3 Ao )(7) + dP(fy L B3 A7)

— ang 8 aB)E) + a5 )

= a5 ) = d (s 2 5 Aez)T)
This proves the result. O

4.1.12. PROPOSITION. The cochain <"¥1(f) is a coboundary if and only if the G-
map €] Xpy can be extended to an equivariant partial lifting Xy —FE of &

Proof. Let ' : X, 4, — E be an extensi

2 of f|Xpy,and 8 =f|Xn Then,
5an(, ) = "TAE) — HHO: bt o) =

. since 0 has an extension ', and so

Mgy = 6(— d™(f, 0)). Conversely, let My = 5d with d € C"(X, A ¢*ma(F)):
Then, by Proposition 4.1.9, there exists a G-map 6 : Xn— E which is an equivariant
partial lifting of ¢, and an extension of f]Xp., such that d™(f,0) = —d. Then,
Shigy . mile L a8 Thenio, has an extension, and hence

£ Xp.1 has an extension to an equivariant partial lifting ' : Xpyq — E-



4.2. Primary obstruction.

Let p:E—B be a G-fibration such that, for every subgroup H of G.
pH: EM — B has 0-connected base space and (n— 1)-connected fibre (here n > 15 but
if n = 1, then we assume that the fibre is l-simple). Let (X, A) bea G-connected
relative G-CW complex. Let ¢: X —s B be a G-map, and f: A — E_be an equivariant

partial lifting of ¢, i.e. p o f = ¢ | A. Then we have

4.2.1. THEOREM. The G-map f can be extended to an equivariant partial lifting
¥n:Xn— Eof ¢. If ¥ and Wl are two such liftings. then ¥§ | Xoy and ¥h 1 Xpa

are vertically G-homotopic (rel A), and <" +1(y) ~ <"+ (¢h).

Proof. We have seen in Theorem 4.1.1 that f can be extended over X,. Suppose

4o : Xe — E is an extension of f to an equivariant lifting of ¢ (1 St <n —1). Then

() € CHUX, A5 ¥ xi(F)), and, since fibre is (n — 1)-connected, we have

*1(g,) = 0. Hence y can be extended over X, . We proceed inductively to prove the
first part of the theorem.

Let %2 , ¥4 : Xn —> E be extensions of f. Then we can apply the result already

proved, to the relative G-CW-complex (Xn x 1. A x I Xn x i), and the equivariant

lifting F' defined over A x IU Xa xi by ¥2, v& and the stationary homotopy

YQ|A =1, to deduce the i of an equivari partial  lifting
F:Xpy x 1UXn x [ — E extending F'. But this extension just defines a vertical G-
homotopy (rel A) between ¥ | Xp.y and i | Xqy-

The second part follows from the fact that

san(ul, whi F) = FIER) — TR

This completes the proof. O



By Theorem 4.2.1 the obstruction cocyecle <"¥1(yy), for all possible equivariant
partial  liftings v  extending f. lie in a single cohomology class
A" = ") € HEFY(X, A 5 6% 7(F)). The class 1" FX(1) is called the equivariant
primary obstruction to extending f. If A is empty then 7"+ € HEY (X ; ¢*7a(9)) is

called the equivariant primary obstruction to lifting ¢.
As a consequence of the results proved above we have

4.2.2. THEOREM. (i) The G-map f can be extended to an equivariant partial lifting
Yn41? Xnps — E of ¢ if and only if 1" () = 0.

(i) i g: (X', A') — (X, A) is an equivariant cellular map and : A — E is an
equivariant partial lifting of ¢ : X —s B, then f o g | A’ : A" — E is an equivariant partial
lifting of ¢ o g, and

T o g | A = g* 1 TN € HFFUX' L A g7 8% mn(T)).

4.23. THEOREM (Extension). Suppose that, for every subgroup H,

pH 2 EY — BY has q-simple fibre, and

HIYU(X , A 5 6" 7q(F)) = 0, whenever n+1 < q < dim (X , A).
Then f can be extended to an equivariant lifting 4 :X —E of ¢ if and only if
TP = o.

Proof. If f is extendible, then +"F(f) = 0. Conversely, suppose that
7" F1(f) = 0. Let tn : Xn —s E be an extension of . Then ¢"*1(yy) is a coboundary.
Hence, by Proposition 4.1.11, #n | X,.; has an extension 44 : Xy, — E. Then we
can  define inductively a sequence of G-maps ¥q:Xq— E such that
Yq41 | Xqi1 = ¥q | Xqy for all g > n + 1. For suppose ¥q: Xq — E is an extension

of f. Then, since HIPLUX Az 0" mq(F)) = 0. <@ l(yq) is a coboundary, and.

-



therefore g | Xq; has an extension ¥qy;:Xqy; — E- A G-map ¢v: X —Eis

then defined by ¢ | Xq = ¥q41 | Xq for allq > n + 1. This completes the proof. O

Let o, %, : X — E be equivariant liftings of ¢ which agree on A. Then,
there is a vertical G-homotopy A:Xp; x I—E (rel A) between ¥o|Xp; and
%1 1 Xpy- Let ¥h=vo|Xn and ] = ¢, | Xa. Since ¥p and ¢} have extensions

over X, their obstructions vanish. Therefore, by F it 4.1.9, their

cochain  d" = d"(¢h, ¥}; A) is a cocycle. In fact, d" corresponds, under the
isomorphism

C(X, A5 6*Ta(F) — C" X x I, X x TUA xI;p," 6" xn(F)),

to  the i to i the quivari partial  lifting
F:XnxiUXpy x1—E of ¢ 0p,, defined by the maps 45, ¥} and X It follows
that, the cohomology class 6™ , ¥,) of d" depends only on ¥, and ¥, and not on the
G-homotopy A. The class 6"(¥o , %) € HE(X , A ; ¢*mn(%F)) is called the equivariant

primary difference of the liftings %o and ;.

The p ies of the equivariant primary difference 8™(t , ¥,) can

be deduced from our previous results.

4.2.4. PROPOSITION. (i) The G-maps o | Xa, %1 | Xn are vertically G-
homotopic (rel A) if and only if 8"(¥g , ¥,) = 0.
(ii) If $o. %, and , are equivariant liftings of ¢ agreeing on A, then
™o s ¥2) = 8"(Wo . ¥1) + 8"(¥y, ¥2)-
(iii) #f g: (X', A") — (X, A) is a cellular G-map, then

Mo 0 g, ¥y 0 8) = g 8"(¥o, vy) € HGX', A5 g% 6™ ma(F)).
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42.5. THEOREM (ilomotopy). Suppose that, for every subgroup H,
pH : EH — B has q-simple fibre and
HY(X, A ; ¢*7q(F)) = 0, whenever n+1 < q <1+ dim (X , A).

Then two equivariant liftings o % : X —E of &:X—+B which agree on A, are

vertically G-homotopic (rel A) if and only if §™¥o , ¥1)

Proof. Define F: X x i|JA x |— Eby
F(x,t) = %o(x) = ¥,(x), x € A
F(x, 0) = ¥o(x)

} xex.
F(x, 1) = ¥1(x)

Then we can extend F to an equivariant partial lifting Fy of ¢ o p; over (X x Tn and

") € et

(X x1,Ax1;p,"¢"7a(F)
Coriponds b S0y 9} € HE(E (B 0] Bnder e iosiop i

HY(X, A5 6" () = HEPIX x 1, A x 15 pi "¢ n(F))
induced by the obvious isomorphism on the cochain level. Then the theorem follows from
Theorem 4.2.3 by applying it to the G-map F. O

4.2.6. THEOREM (Classification). Suppose that

() for every subgroup H the fibre of pH:EM—B" is q-simple for
n+l1 < q < 1+ dim (X, A),

(1) HY(X , A5 6*mq(F)) = 0, whenever n+1 < q < 1+ dim (X, A),

1) HEYI(X , A 67 mq(F)) = 0, whenever n+1 < a < dim (X, A)-

Let ¥o:X—+E be an equivariant lifting of ¢:X —+B. Then the correspondence
4§ — 6"(o . %) sets up a bijection between the set of vertical G-homotopy classes
(rel A) of equivariant liftings of &, which agree with o on A, and the group

HY(X , Az 6" ma(F)):

=
S



Proof. For a lifting ¢ of ¢ such that ¢ |A = vo|A, let 8(¢) denote

§"(wo » ¥). By Theorem 4.2.5, if ¥, and v are liftings of & extending ¥ | A, then

@, is vertically G-homotopic to v, (relA) if and only il
0 = 6"y » 3) = 8™(o » ¥2) — 6o » ¥1) = 8(¥5) — 6(%,). Therefore & is a one-
one map.

Let £ € HY(X , A ¢*mn(F)) and deC(X,A;6*xn(F)) be a

ng ¥ : Xn— E such that

representative cocycle. There is an equivariant partial li
¢ 1 Xq.y = o | Xpg and d"(g | Xn, ¥) =d.
Now, 0= 6d=6d"o | Xa,¥) = ") — "Fyo | Xa) = ") as
%o | Xn has the extension . Therefore ¢ has an extension over X, 4,- Now if
q >n + 1, then
HIFYX | Xa ; 67 7a(F) = HETH(X, A5 ¢ nq(F)) = 0.

By Theorem 4.2.3 + has an extension ,:X — E and clearly §"(o, %)) = the
cohomology class of d. Thus £ = 6(3,). Hence every class can be realized. This

n theorem. O

completes the proof of the class



CHAPTER 5

ENUMERATION OF REGULAR HOMOTOPY
CLASSES OF IMMERSIONS

5.0. Introduction.

In this final chapter we consider a problem of entirely different nature. Here we
consider three enumeration problems of regular homotopy classes of immersions. The
results are obtained by revitalizing an old technique, the primary classification theorem
for sections of fibrations, in the equivariant setting. These involve application of the
classification Theorem 4.2.6, and computations of equivariant cohomology of certain
spaces with free group action and with simple equivariant local system.

5.1. Real projective space P".

We consider immersions of the real projective space P in R2" (n > 1). Let
Va(R2")  be the Stiefel manifold of n-frames in R2", and, for a manifold X of
dimension n, let E(X) — X be the bundle associated to the tangent bundle of X with
fibre Va(R2"). Let [P" C R2"] denote the set of regular homotopy classes of
immersions of P" into R2". Then, according to Hirsch [8], [P" C R2"] corresponds

bijectively with the set of vertical homotopy classes of sections of E(P") —s P".
Note that P" is the orbit space of a free action of Z; on S". Then the bundle
E(S") —» S" becomes a Z,-fibration, where the action of Z, on E(S") is given by

(=D (xivy . vn)

—ig o

o

this action, S" is a Z,-complex with one equivariant cell in cach dimension k, 0 < k < n

v } € Va(R2"), and that on S" is the antipodal action. Note that with



The bundle E(P")— P" is obtained from E(S")—S" by passing onto the
quotient. Therefore, the vertical homotopy classes of sections of E(P") — P" arein

a 1-1 correspondence with the vertical Z. classes of Z.

quivariant sections of
E(S") — S".
Since Va(R2") is (n — 1)-connected, fibre of E(S") — S" is q-simple for all q

and therfore we have an equivariant local system 7n(%) on S” induced by E(S") — S".

Let us now calculate the equivariant cohomology H3 (S : 7n(¥)). First note
that, as action of Z, on S" is free, the objects of the fundamental groupoid N(S" , Z,)
can be identified with points of S™ and, for any two objects x and y, morphisms from x to
y are given by (id , [w]) and (—id , [w']), where id in the first component is actually
idz,/{l)‘ Note that (id , [w]) corresponds to the homotopy class of paths in S" from x to
y, whereas (—id , [w']) corresponds to the homotopy class of paths from x to —y.
Therefore the local coefficients system xn(%) is simple and assigns to each point the

group Tn(Vn(R2™). Let M denote a generic coefficient system determined by n(%).

Case 1. When n is even.

In this case n(Vn(RZ") = Z and M(Z,/{1}) = Z has a natural Z,-module

structure given by :

T M(idzz/(”) :Z—+2Z and — id = M(— idZ-,/(l}) :Z— 2.

Thus in this case H3 (S" ; 7a(%)) is isomorphic to the classical equivar

nt cohomology
of S™ with coefficients in the Z,-module Z. Let us denote the generators of the cellular
2 2

chain group C,(S") corresponding to the two k-cells by ey and e, and let ep* and



ec* be the generators of the cochain group CX(S":Z) which are dual to e and e
& 8 « X

K(Sh; Z) —s €K*I(SN 5 Z)  is given by

respectively. Then the coboundary & :
SR(e*) = et} + (—D)K*1 ef, ] Let E*(S"; Z) denote the subcomplex of C*(S";Z)
consisting of cochains which are equivariant with respect to Zy-action. Then, a cochain c
of €K(S";Z) belongs to EX(S";Z) if and only if c((—1)ei) = (—1) c(e), or
c(ef) = (1) c(eg)- Thus, EX(S";Z) is Z with generator ex® — eg*, and
&% | EX(S"; Z) is multiplication by 2 if k is even, and itis 0 if k is odd. It follows
then, H3,(S": wn(F) = Z.

Case 2. When n is odd.

In this case mn(Vn(R2") = Z,. Thus M is the trivial Z,-module Z,. Now
arguments similar to those in case 1, show that in this case

eK(S"; Z,) = 2,82, EXGS":iZ,) =1,,

and 6% = 0 for all k. Thus, H} (S"; #n(¥)) = Z,.

Thus, all the conditions of Theorem 4.2.6 are satisfied, and we obtain

5.1.1. THEOREM. /f n is even, then [P C R?"] = Z, and if n is odd, n > 1, then
[P"C R =1Z,.

It may be noted that the case n = 1 is the theorem of Whitney [21] which says
that [S} C R2] = Z, and that Theorem 5.1.1 gives a mild improvement of a result of

Larmore and Rigdon [11].
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5.2. Lens space L3"1.

Here we consider the ion of regular classes of i ions of
the lens space L3"! into R*™2.

The lens space LZ™1 is the space of orbits S2"1/Z, of the cyclic group
Z, =Z/pZ (p an odd prime) acting freely on §21  C" by the action

K- (20, 2n1) = (W20, Whzey) with w=exp (2xi/p). The CW-

of §2™1 ible with this action is given by the cells,
2% = {z €821 7 =0 forj >k, arg (z) = 2n/p},

2KHL — {z cls2salt

=0 forj >k, 2xr/p < arg (z,) < 21(r+l)/p}.
s e cells
the boundaries are given by,

2

-1
B8(e?*) = ):O Gt B(e2XFY) = 2% — 2%, (rmod p), (see Dold ({4])-

This provides a Zp-CW-complex structure on $271 with one equivariant cell in each
dimension q = 0,1, -, 2n—1, the action being w - e =etyy-

The situation here is similiar to that considered in the first problem. Here also,
the local coefficients system 7pq.1(F) induced on S2"1 by the Zp-fibration
E(52"1) — S2™1 is simple, where the Zp-action on E($2™1) is induced by the Zp-
action on S2"1 and determines the trivial Zp-module Z, . Therefore we have

E2n2(s201 7,) = E2NS2N2,) = 2,

and the coboundary 6272 = 0. Consequently, H%’;‘(s“" 5 Ton1(F) =2y

Now proceeding as before we obtain
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: o o
5.2.1. THEOREM. [L3"' CR*"2]=12,.
5.3. Grassmann manifold Gy (R"*%).

In this last section we extend Theorem 5.1.1 by considering the enumeration of

regular classes of i ions of the G ifold G (R"X) in R27K.
Recall that the Grassmann manifold G, (R"*) of unoriented k-planes consists of all k-
planes in R"* passing through the origin. Let G (R"**) be the Grassmann manifold
of oriented k-planes in R°*%. Then Gy (R"*¥) is simply connected and a two fold
covering of Gy(R"'¥). If X € G (R™*) then —X denotes the same plane with
opposite orientation. The mapping A : G (R™*%) — G (R"TX) given by A(X) = —X
ROHR

is a homeomorphism, in fact an analytic diffeomorphism. Thus Gy ( ) is a Z,-space

and Gy (R"*) = T (R"™¥)/Z,. Ponuryagin [17] has determined a cellular structure

of Gy(R"**) which may be described as follows. A k-symbol & is'a monotone integer

valued function on the set {1,2,--, K} such that 0< o <oy < Sopm

where o, = o(i). We shall write o =0 and 04, = n. To each such k-symbol

6 = (04,02, ,0y) one can associate two subsets e(0), and e(o)_ of GR(REHS)

such that A(e(c);) = e(0)_, Ale(0)_) = e(e)y, and e(o)y Ne(o)_ = 0. The
oi+i

union e(0)y Ue(c)_ consists of k-planes X such that dim (XOR' ") =

m(o)

K
1,2, -,k The subset e(c)y is homeomorphic to R where m(s) = 3 ;.
=1

The boundary (@) — e(0); = o(9)_ — e(¢)_ is the union of cells e(r)y Ue(r)_

where 7 runs over the symbols obtained from ¢ by replacing one o; by o;—1 1 <i <k,

provided the function thus defined is d ing and gative. The cellular

boundary is given as follows. For a k-symbol & = (0, , 02, -, o) define
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s(o,i) = o; + i+ k and t(o i)

oy forj <i
{ 1<j<k

o, forj > i.

where

Then

t(o,i
Be(0y 1 02+ s T4 = e I){e(al,u.l,- R RSN 5 1Y

+ (—l)s(o") e(oy,02, "'-"H-"i"lv"-+1v“'-‘7k)-} and

1o i)

x
Oe(ay, 024 1 OK)= = ):l(*l) (01, 05y TG T Tk
i

(o i)

+ (—1) ). where only the meaningful

(015 20 O Ti— 1T Tk
symbols appear on the right hand side. Let e(oy, 00, oK )Y  (Tesp-
e(0y, T, 20 )L)  denote  the dual  of e(g,,05, 0,0 )y (resp
(@1, @3+ » @) )- Then it is easy to see that the the cellular coboundary is given by
Se(ay 4 0202 OW)E

(=1 i*

Ko
il(ﬁl)“" 1) {e(a, e A

O SRR S S I SRR .ak),} and

3

o ,i)*
Se(oy» 0z s o) =30 (~1) {elor o, s aip ot oo )T

.
o R e L0 01 G e 20N fs Where, as before, only the

meaningful symbols appear on the right hand side, and, for a k-symbol

o =(01,02, k)



s(o, i) =o;+i+k+1and (e i)

oy forj<i
where w = { 1<j<k
o+l forj >i.
We now consider the ion of regular classes of i ions of

Gy(R"¥) in R2"K. As before, let E(G(R"T*)) — Gy (R"**) be the bundle
e L
E@ (R")) — Gy (R"T¥) is a Z,-fibration, where &, (R"F¥) is equipped with a Z,-
CW-complex structure provided by the Zj-equivariant CW-complex structure on
G (R™*) as described above. Now arguments similar to the first two cases show that
there is a  1-1  correspondence  between [G(R" ) C R"]  and
H'{;(EK(R"“) ; %i(%)). It may be noted here that since 7, (F) is simple, it induces a

Z,-module M, where M is the Z,-module Z, in case nk is even, and M is the trivial Z,-

module Z; in case nk is odd. Let us denote the generators e(n—1,n, -, m)} of
e (G (RN s M by ™1 and the generators e(n,n,---,m)%  of
« + +
€™ (G, (R™%); M) by e¥. Then procecding as in the first case we see that if nk is
even then
EPRL(G (R 5 M) = E™(G (R 5 M) = Z,
EPK-1(E, (R"FK) s M) is generated by <1 —e™ 1, and EPK(G (R"TF) M) is
K + (3
generated by e'_;_" — e _ It follows from the formula of coboundary map that

Skt — ety = (1M1 + (=1 - .

Therefore,



8 ERL(G(RPHR) M) — EPR(G (R™H4) 5 M)

is the zero hisnif—n-+ k is-odd-and iplication-by 2-if-n—+k-is-even.

Similarly, if nk is odd then
EPRL(T, R 5 M) = BTG R M) = s,
and the coboundary map
G4 Enk-x(ak(ﬂn+k) M) E"k(akmnﬂ) M)

is the zero homomorphism.
As a consequence we obtain

“R
5.3.1. THEOREM. If nt—k is odd then [G(R"*)C R*™] =12, and

ne 0y
nt—k is even then [G (R"T%) € R2™| = Z4.
It may be noted that Theorem 5.1.1 follows from Theorem 5.3.1 when k = 1,
Thak  Thesvews 53 I ogreen WITR & Hpeciak Senss e{ [

Yrove W et of PeHO T )

if
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