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Chapter 1

Introduction

Neyman and Scotl (1948) were the first to point out that the method of
maximum likelihood [ails to provide eflicient estimates when the number of
parameters grows with the sample size n. Consider the following examples

introduced by them:

Ezample 1.1 Let { X; } be a sequence of independent random vectors in
IR?, components X;; ol X; being independent normal with mean p; and

variance o2, [lere o?

is the parameter of interest. It is easy to sce thal the
maximum likelihood estimate for o? is not even consistent. It is also known
[see Lindsay (1980), Pfanzagl (1982), van der Vaart (1987)] that if p > 2,

the maximum partial likelihood estimate based on X;; — X; is efficient.

Lzample 1.2 This is similar to Example 1.1 except that the components
of X; being independent normal with mean p and variance o?. Here p is
the parameter of interest. It can be shown that the maximum likelihood
estimate [ is consistent and asymptotically normal provided p > 3 and
n~!' 3% o} is bounded away from zero, but it is not efficient. For p = 1,
Bickel and Klaassen (1986), and for general p, van der Vaart (1987) show

how an efficient, asymptotically normal estimate can be constructed.

Lindsay (1980) and Bickel and Klaassen (1986) provide an extremely
uscful general discussion of such problems. See also van der Vaart (1987,
1988).

A little reflection shows in most problems of this type the m.l.c. of the
parameter of interest (0) will be inconsistent as in Example 1.1. How-
ever, it is not easy to construct examples where this can be demonstrated

mathermatically. The following is a new class of such examples.
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Zzample 1.3 Let Xy, Xz,..., X, be independent random variables with
X, ~ f(-,0, &) where the function f is given by

£(2,0,€) = A(0,€) exp{0(2) + ¢z}
for any real number z and (0, ¢) in 2, where
0= {(0,6) : [ exp{0%(=) + €x}dz < o0}

and the real valued function 3 is strictly convex or strictly concave.

Ilere one can show that the m.l.e. 8 is inconsistent. The details of the

verification are given in Chapter 2.

The construction of efficient estimates in Examples 1.1 and 1.2 follow
quite diflerent routes. In the following pages we develop a general theory. for
constructing eflicient estimates which is applicable to both these examples.
However the eflicient estimate constructed this way for Example 1.2 would
differ from those in Bickel and Klaassen (1986) and van der Vaart (1987).

We first formulate a general model. For this purpose we shall use the
following notations. Let © be an open subset of IR with compact closure
©, £ a compact metric space and § the set of all Borel probability mea-
sures on 5. The requirement of compact closure of © can be dropped when
0 is a location parameter, as in Example 1.2, and, more generally, when
there is a uniformly consistent estimate of 0. Note that G is weakly com-
pact. Equip @ with the Euclidean metric topology and § with the weak
topology. Let (S, S) be an arbitrary measurable space. let IF, denote the
cmpirical distribution function (e.d.f.) or the empirical probability measure
based on n observations of a random variable. In particular, for n elements

1,625+, én from 5, denote JFn(, &1, €2, €n) by Ga-

Model I : Let { X; } be a sequence of independent random variables taking
values in (5, §) with the distributon of X; given by Pa,¢,0, € ©,& €

(The probability measure Py is assumed to be well defined for 0, € 6,

£ € £.) The object is to estimate the so-called structural parameter 0,.

In Model I, also called the fixed set-up model by Bickel and Klaassen

(1986), invariance of the estimation problem under permutations suggests
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-estriction to the symmetric, i.e., permutation invariant, sub-o-field of $”.
If one restricts [[} Po, ¢, to this sub-o-field, [[} Ps, ¢, can be replaced by

1 »
i > I P

n!
set of all permutations xof {1,2,-,n} 1

and one would expect, heuristically, on the basis of the analogy between

simple random sampling with and without replacement, that Model I can

be approximated by the following:

Model II : Let { X; } be a sequence of i.i.d. random variables taking values

in (S, §) with common distribution Py, c, where for A € S,
Popa,(4) = [ Py e(A)dG.(8)-

Model I, which is often called the mixed or mixture set up, was first
proposed in the present context by Kiefer and Wolfowitz (1956). As pointed
out by Bickel and Klaassen (1986), an analogous idea underlies Robbins’s
development of empirical Bayes methods to solve compound decision prob-
lems. A mathematical justification in the latter context is provided by
Hannan and Robbins (1955) and Hannan and Huang (1972).

The heuristic argument leading to Model II from Model I can be made
rigorous in our problem if the error of approximation in Lj-norm of the
symmetrized measures in Model T and Model II (with G = G,,) tends to
zero.  Unfortunately, it is easy to show that this is not true. Iowever,
the approximation can be verified directly for the special class of estimates
which Bickel and Klaassen (1986) called “regular”. The following definition
gives the notion of regularity and efficiency in a suitably modified form that

ensures uniformity.

Definition 1.1 (i) Regularity : An estimate T, of 0, is called
(a) regular in Model I if there is o7 : © X § — IR* continuous s.t.

L(V(Tn = 0,) 07" (00, Ga) | T Po,e.) => L(N(0,1))
1
uniformly on compact subsets of @ x 5%
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and (b) regular in Model II if there is or : © x § — IR* continuous s.t.

LVn(Tn = 0,) 07" (05, Go) | 17, c,) == L(N(0,1))

uniformly on compact subsets of @ x G.
(ii) Efficiency : Among the regular estimates in a particular model any
one for which the asymptotic variance is minimum is called an efficient

estimate in the relevant model.

As pointed out by Bickel and Klaassen (1986) if T, is regular in Model 1
and eflicient in Model 11, then it is efficient in Model I. Thus it is enough
to discuss efliciency problems in Model 1L

In a thesis, van der Vaart (1987, pp 103-104) has pointed out that this
formulation of efficiency is not wholly satisfactory, see in this connection
our Remark 5.4.

The estimates introduced by Neyman and Scott (1948) which are ana-
loguous to Huber’s M-cstimates and referred to as Cy-estimates by Kumon
and Amari (1984) are regular both in Model I and Model II.

These estimates are defined as a solution of

dov(Xi,0) =0 (1.1)

with the function ¥ satisfying certain regularity conditions. More precisely,
to ensure uniform asymptotic normality we strengthen the conditions given

in Amari and Kumon (1988) as follows :

Definition 1.2 Any Borel measurable map % from S x © to IR is called a
Cy-kernel il
(i) for each z in S, ¥(z,-) is continuously differentiable on @, with
the derivative given by the function ¥'(z,-) and both %(z,-) and
3'(z,-) have continuous extensions on &,
(i) f4(,0)dPse =0 V(0,¢),

(i) sup Ly (-0)2a}¥* (-, 0)dPs e — 0 as @ — oo
(1,6)cHxs
and (iv) (a) J¥'(-,0)dP%e # 0 V(0,€)
and (b) sup [ sup |#/(-,0)|dPe < co.
[t =

0.6)c6x57 o
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Civen any Ci-kernel 4, an estimate 7, which is, uniformly on compact
subsets of @ x &, both y/r-consistent for 0, and a solution of (1.1) with

probability tending to one, is called a Cy-estimate corresponding Lo .

A briel motivation behind the C)-estimates and thier asymptotic prop-
erties are given in Chapter 2.

For a fixed G,, according to semiparametric theory, there is a function
$(-,+, Go) (vide (3.20)-(3.22)) along with an estimate 7,(G,) which solves

>o%(X,0,G,) =0 (1.2)
with probability tending to one and is eflicient at (0,,G,), provided certain
regularity conditions holds. If G, is unknown, a natural thing to do is to

solve

3o B(X,,0,80) =0 (19)

where G, is a consistent estimate of G,.

Using a heuristic Taylor series expansion of the L.ILS. of (1.3) w.r.l. 0
and G, one can show that (1.3) provides an efficient estimate if G, is either
an ni-consistent estimate or a istent estimate independent of the X;’s,
% is a “nice” function of (6, G) and

/w(<,0,G)dP5.GA =0 V(6,G,G") (1.4)

holds, which is very similar to condition (ii) of Definition 1.2 and plays a
similar role.

For the mixture models (1.4) always holds, but unfortunately, in general,
it is very difficult to prove the existence of an n<-consistent estimate of G,.

In our original work done before the publication of Schick (1986), we
were able to resolve the problem only for the examples of Chapters 6 and
7, with stronger regularity conditions than in the present version.

However, the requirement of ni-consistency of G, can be dropped by
the following idea of Bickel (1982) and Schick (1986), who show how, in
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effect, one can use an independent estimate of G,. Thus instead of (1.3)
one solves

1[1()(.»0 Gmi) + L P(Xi,0,Gn2) = (1.5)

=ny+1

i ME

where c;,.,,r;,,, are consistent estimates of G,, Gny is independent of
X1, X2, .

n—mny — oco.

,Xn, and Gy is independent of X, 41,..., X, and n; — oo,

1t is clear that such a method will also provide an ellicient estimate
in a general semiparametric problem if a condition like (1.4) holds. This
equation can be shown to hold quite generally in models satislying Bickel’s
Condi

on C (vide Remark 3.6) or models considered in Hasminskii and
Ibragimov (1983, §3). It scems that our construction of this sort is a part
of the folklore of the subject. Certainly a streamlined version of it, using
one-step discretized Newton-Raphson methods, seems implicit in Bickel’s
construction of adaptive estimates in orthogonal cases and has appeared
recently in an explicit form in Schick (1986, pp 1142, 1144) who also points
out the importance of (1.4). Sce also van der Vaart (1987), who intro-
duces (1.3) but abandons it in favour of the alternative one-step discretized
method. We have given in Chapter 4 both our original version, in which
one solves (1.5) leading to an intuitively plausible estimate but requiring
stronger conditions as well as the streamlined discretized version of Schick
(1986) in which estimates are less easy to interpret.

The corresponding results of Model I are summerized in Chapter 5.°
The main new feature is that a preliminary randomisation over indices is
needed before applying the techniques of Chapter 4. The assumptions for
Chapter 5 are not stronger than those for Chapter 4.

In Chapter 5 we also indicate briefly (vide Remark 5.6) how the results
of Chapters 4 and 5 can be modified, when the dimension of X; changes
with i. Such problems were also first posed by Neyman and Scott (1948).
Recent, references are Lindsay (1982), Kumon and Amari (1984) and Amari
and Kumon (1985), who show how one can get better lower bounds for
asymptotic variance of certain proper subclasses of Cy-estimates. Our treat-

ment is quite different in that instead of considering proper subclasses of
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Cj-estimates we extend the class to a suitably modified class of regular
estimates.

The main conditions that are hard to check are those imposed on ¥. In
the discretized version, ) must be continuous in # & G and in the other
version, one needs also something like differentiability in 8. In our problem,
as well as, other semiparametric problems, it is not clear how to check this
or even whether such conditions are expected to hold in general. This point
is illustrated with an example in Chapter 9. For our problem this can be
checked in two special cases illustrated by Examples 1.1 and 1.2, where one
either has a special factorization of the density or § and G are orthogonal
in the sense of semiparametric theory. This two cases are discussed in
Chapter 6.

It turns out that the conditions on 9, can also be checked (via results
on compacl operators acting on a Banach space) if one has in addition
independent observations with distribution G. This allow us to provide
a direct application of the results in Chapter 4 to the following problem
solved in a different way in Hasminskii and Ibragimov (1983, §3). Suppose
one has a channel in which 0 is the input, £ is the noise and X is the
observable output. In such a case X will have the distribution in Model II.
But while the ¢ associated with a particular X will be unknown, one can
get independent observations to study directly the distribution of noise.
In other words one has in addition to X;’s, independent observations ¥;’s
which are i.i.d. with distribution G%. This problem is solved in Chapter 7.

The results of a simulation study of the grand mean X, the m.l.e. § and

our estimate () is included in Chapter 8.



Chapter 2

More on Inconsistency and Ci-estimates

In this chapter, we shall prove the inconsistency of the m.l.e. 0 in
Example 1.3, that of the Bayes estimates in Example 1.1 and give a brief
motivation behind the C)-estimates.

Assume that Py¢’s (equivalently, P ¢’s) are dominated by a o-finite
measure 1 on (S, S) with the corresponding density function denoted by f.
(The formal statement is given in the next chapter.)

For the time being, let us restrict our attention to Model I or the fixed
set-up.

Note that, under easy regularity condition on f, one can get, for any 0
in ©, an m.l.e. é‘(ﬂ) (= é(X,-,ﬂ)) for &, which is a “smooth” solution of

-l% log{f(X:,0,¢)} =0fori=1,2,---,n. (2.1)

The m.l.e. § will then be a solution of

> 2 logl/(X,,0,E(0))} =0. (22)

FFor the special case of IExample 1.3,

9 It 0 = 9 log A(0

50 og f(2,0,¢) = () + 55 o8 (0,€)
= P(z) — Loe(¥(X1))

4 = ()= mr(0,8) (say)

and gg log f(2,0,6) = z+ a%xog A(0,€)

= z— Epe(Xy)
= z—p2(0,€) (say)

V(z,0,€).  (2.3)

From (2.1)-(2.3), we get that the m.Le. 0 of 0 is a solution of
(X = wa(0,6(X:,00)} =0 (2.4)
i=1
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where for any 6 in © and 1 < i < n, £(X;,0) solves
Xi— ma(0,€) = 0.

Let us assume that 4 is continuous. Using the propertics of exponential
families one can easily gel simple regularity conditions on A guaranteeing
the continuity of (z,0) > u,(0, &(=,0)) and the tightness of {Psg : (0,G) &
© x G} so that 0 is consistent only if, for any € > 0,

II

10100, €066, 8)) = 2 3 (0, £, 0)) T2 0 (0, {6 hacicn). (25)

1o
nia

From relations (2.4) and (2.5), we get that 0 is consistent only if
[N 13 : I, Poes .
2o W(X) = 2 3o m(0,€(X:,0) N0 V(0 {Ehsiza). (26)
i= =
Assume that B ¢(u1(0, £(X1,0))) is finite for all (0, £). Then, from (2.6)
with & = ¢ and SLLN, we get
Loe(¥(X1)) = Eoe(u1(0, £(X1,0))) V(0,8).
Therefore, by completeness of X; and continuity of ¥ and (0, £(-,9)),
¥(z) = m(0,é(=,0)) V(z,0). (2.7)
Again, by definition of £,
z = u2(0,&(2,0)) ¥(=,0). (28)
From (2.7) and (2.8) it follows that there exists (0, ¢) such that
¥ (12(0, €)) = (0, )- (2.9)

But by definition of y,’s, L.H.S. of (2.9) = ¥(Es¢(X,)) and R.H.S. of
(2.9) = Boe($(X2)-
This contradicts the fact that ¥ is srtictly concave (convex) and X; is

non-degenarate. O



Later, in Chapter 4, we shall exihibit a consistent estimate for 6 in
Ixample 1.3 under general regularity conditions. However, we don’t know
whether our recipe for consistent estimates work for this example.

Let us now consider Example 1.1. We know that the ordinary m.l.c. is
inconsistent. What happens if we introduce a prior 7(x) for the nuisance
parameters such that p;’s are i.i.d. with common density m(x), integrate
oul g;’s and then maximise with respect to ¢? This is often done by the
Baysians. We show, for reasonably “smooth” priors, that intregrating out
i’s gives no better result as far as consistency is concerned, unless we take
(i) = constant, the improper noninformative prior for this problem.

The integrated likelihood is of the form L = [T, L;, with
o 1 I

o ()
.

where X; = L3¥_, X;; and S? = ©F_,(Xy; — X:)? and our estimate solves
the equation
dlog L

-

o

do
é{(’f")(%) (k-1)

1
J%5 e mr R () dpy o
PSP (=) | [ (K= e R )y 1y
v J% b m T ) da o
(2.10)

But (2.10) is of the form
S (X00) = 0 (2.11)

i=1
where 0 = o2, so that we have, according to Kumon and Amari (1984), a
Co-estimate.

Note the following result containing a sufficient condition for inconsis-

tency of Cg-estimates.

10



Proposition 2.1 Let 0 be a Co-estimate. Assume that there is a point
(0,€) and a > 0 such that
(3) Lo,e(¥(X1,0)) # 0
and (ii) (a) for any z in S, ¥(z,-) is a conlinuous funclion on
[0 — a0+«
and (b) there is h in Ly(Po¢) such that

[9(2,0)] < h(x) V(z,0') € S x [0 - a,0+ a.
Then there is no consistent solution to (2.11) at (0,¢€).

Proof : By the uniform strong law of large numbers,
S L'/'(X‘-ﬂ) = Fog($(X1,01)] > 0 ae[ L) (2.12)

00 -a,01al n =
Also, by condition (ii) and DCT, Eg¢(¥1(X;,0)) is continuous on
10— @,0 + a]. lence for a suitable neighbourhood N of 0 contained in
[0 — &, 0+ al, B ¢(¥(X1,")) is non-zero and have the same sign. Therefore,
in view of relation (2.12), with probability one, 2 S, %(X,-) is bounded
away from zero on N, for all sufficiently large n. This completes the proof.
[}
The following corollary gives conditions on the prior 7 guarantecing

inconsistency of the Bayes estimates in Example 1.1.

Corollary 2.1.1 Consider Ezample 1.1 where § = o® and & = pu.
Assume that m satisfies the property that the function ¢x(z,0) :=
Ero2((X1 — )| Xy = @) is continuous in o and for any compact subset
C of IR*, it is dominated by ap l ial. Then litions (i)-(ii) of the
proposition holds with = 53 — $20 4 kB (X, — p)?|X,) — 1 where

5% = 3k (2~ %) and & = | L,:. z;, unless m = constant.

Proof : Let m and ¥ be as given in the statement of the result. Then one
can easily check condition (i) of Proposition 2.1 for ¥.

We are now going to check condition (i) for it for any prior = which is
not a constant. Suppose that condition (i) does not hold.
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Then

o (K1 — w)?1%)

o3

1
Epro2{ ~}=0 V(o). (2.13)
Fix any o in 2%, By condition (i) and completeness of X;, equation
(2.13) reduces to the following:

For any z in IR,

1 > 1
o8 o {(X1— )X =2} = -
or,
1 [ 2 VE ki 1o VEk ki
2 _ V& dy = _/ (2 n)
o3 /;oc(x 2 Ve ) du 0 J)ooo Vama" "
7 (u)dp
or,
T A e T
PE —c0
= a() (say). (2.14)
We can rewrite (2.14) as
a"(z) =0

the general solution of which is of the form a(z) = cz -+ d. Since we must
have a(z) > 0, ¢ = 0 and hence a(z) is constant. It is well-known and can
be proved using Laplace Transform that this implies that 7 (x) = constant.
This is a contradiction to the choice of . [m]

Remark 2.1 One can easily check the condition of the corollary for the
2

normal prior of the form m(u) = ﬁekf?’ for some 7 > 0. For Cauchy

prior m(1) = 7ty or more generally for bounded priors satisfying the

additional condition that for u € [~6,6], 7(z — u) 2 ;1 for all z where p

denotes a polynomial, one can check the condition as follows :

oo A (2 — p)e S5 r(w)d
telz,e) = BB oufe W wllds

_hop?
I% j,C:;e A () dp

12




5 (@ = m)e 5 ) dp

12, e S ()

p(z,0)
= —2—= (say).
a.0) (say)
Therelore, the continuity of ¢, in o will follow from boundedness of 7.
Again

o) = [T (= T ) du

&
= [T wte (e — wdu [Putting u =z — ]
oo

In

-
ku,“p/w w2e” 527 du [By boundedness of 7| (2.15)
and q(=,0) /m M e ()
= [T e Sin(a — u)du
-
3 ku? 3 ku? 1
/_56:”7”(:7 w)du > (./_,5 ) (216)

In view of relations (2.15) and (2.16), the conditions of the corollary

v

holds for the given prior . m]

Remark 2.2 Intuitively the reason for the inconsistency is that we are spec-
ifying the joint distribution of n parameters, so that the magnitude of
“prior information” is comparable to the information in the observations.
Ilence it is not possible for observations eventually to dominate the prior
and direct the posterior to converge towards the true o. This is similar
to the infinite-cell multinomial where typically Bayes estimates are incon-
sistent (vide I'reedman (1963)). See also Diaconis and Freedman (1986)
for delicate examples involving unknown symmetric distribution around an

unknown location parameter.

Remark 2.8 Professor James O. Berger had wondered whether consistency
would be achieved if we take m to be a Cauchy prior, which has long
tails. We have seen in Remark 2.1 that consistent Bayes estimation is still

impossible.
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Remark 2.4 Professor Peter Bickel had wanted to know if a conjugate prior
for p; with mean A and variance 72 and Empirical Bayes estimation of A
and 7% will lead to a consistent empirical Bayes estimate of o?. We note
the following.

In this case, the log-likelihood function is of the form

. .
RGN ISICEE ST

i=1 i=1

Clearly, A =X.
We shall now obtain o% and 72, as follows.
First observe that for any o® > 0, the m.lLe. 72(02) can be obtained by

the formula

Fi(o?) = Iyr (X—X)*—2 fo<o?< YR, (X-X)?
0 otherwise.
One can then maximise the log-likelihood evaluated at A = X and
7% = 72(0?) to get
o 1 i
2 - - N2
i n(k —1) ;1 g
and 72 = 72(a?), 1.,
g o_ | T -X)P - e <ETR (X -X)?
0 otherwise.

Thus the empirical Bayes estimate is consistent. This may mean a
similar result would be obtained il instead of i.i.d. u;’s we take a hicrarchical
prior, or, a special case of that, exchangeable u;’s. Intuitively, it seems this
may be so because the amount of information in such a prior is less than

the amount of information in i.i.d’s.

We shall now discuss the Cj-cstimates. First note that in view of rela-
tions (2.1)-(2.2), the m.l.c. is a Cy-estimate. Proposition 2.1 gives sullicient
conditions for inconsistency of Cop-estimates but these conditions are not

necessary. A set of sufficient conditions for consistency of Cp-estimates at
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some point (0, {£x}nz1) are conditions (i)-(ii) and (iv) of Definition 1.2 with
© replaced by a compact subset C of © containing 0.

Following Neyman and Scott (1948), Kumon and Amari (1984) has
defined C\-estimates as the subclass of Co-estimates which are asymptoti-
cally normal on © x 5. In Chapters 4 and 5, we shall prove that under easy
regularity conditions on f, the Cj-estimates are regular both in Model T
and Model II (vide Example 4.1 and Remark 5.1).
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Chapter 3

Notations and Preliminaries

In this chapter, we shall introduce some notations and give some pre-
liminary assumptions, definitions and results in a form applicable to any
semiparametric family involving (8, G). See in this connection Remark 4.7
in next chapter.

T'o start with let us introduce some notations which will be used later
in appropriate situations :

(1) Let (X,d) be a metric space. For any x in X and posilive number 6,
we shall use the symbol B(z,68) to denote the open ball of radius § around

the point x. In symbols,
B(z,6) :={y€ X :d(z,y) <6} Vze€ X V§>0.

(2) If X is a Banach space, we shall denote the unit sphere around the
point zero by S(X). In symbols,

S(X):={z€ X :|z|| =1}.

(3) For any real-valued function ¢ on X x Y, we shall denote the
extended real-valued functions sup ¢(-,y) and ;25 #(y) by ¢(-Y) and
vevy 3
¢(+Y), respectively. In symbols,

é(z,Y) = i\élyqﬁ(z,y) and ¢(z,Y) := ylg{' ¢(z,y) for all z € X.

Similar nolations are used for the functions sup ¢(z,-), inl(,d)(z, 2) ete..
z€X =€

(1) For any function ¢ : © — IR which is differentiable on ©, we shall
denote the function Z¢ by ¢'. In symbols,

#0) = %q&(ﬂ), for all 8 in ©.
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(5) Let X1, X,..., X, be topological spaces one of which, say X;,, isa
closed subsel of the real line. Let X = [, X;. Let r, be a positive integer.

Define {si}1cic,n by
{ ro if i=1,
o=

0  otherwise
Jori=1,2,--- ,m.
Let Cyyng,oo 0 (X) be the set of all continuous functions ¢ from X lo

IR such that for any | < j < r,, ;’ ¢ ezists on int(X) with a continuous

K}
extension on X.

Remark 3.1 For the special case where X1, Xz, ..., X are compact, define
from Cy, s, o (X) to IR* by

LI P

Nllason, e =

7 Bllaup for all ¢ in Cy, s, (X)-

Then one can easily show that

[/
and (i) (Cu,.

is a norm on C,, ..

o (X)
is a Banach space.

o

o [ Loy,

In practice, we take X to be @ or @x G or 3 x O x G or S3 xS, x O x §
where S is a compact metric space (vide Model III of Chapter 7), with

obvious choice of 7, and r, = 1,2.

(6) For any probability space (Q, 4, P) we shall denote the space of
all square integrable functions whose ezpectations are zero by LI(P). In
symbols,

Ly(P) = {¢ € Ly(P) : Ep($) = 0}.
. P, | L dP
Convention : If P << Q, L(P) = La(35), L5(P) = Li(5)-

We shall need the following useful definition.

Definition 3.1 Let (Y, p) be a metric space. Let ¢ be a continuous map from
© x G to Y. Call a Y-valued statistic T, a uniformly consistent estimate

17



of $(0,,G,) in Model I (¢(0,,G,) in Model II) if for any compact subset
©, of ©, ¢ >0 and 0 < § < 1, there is N, > 1 such that for all n > N,,

b (T Pone) ({p(Tr $(0,, G.) > €}) < 6
(00{€} 1 2i<n)€OnXE™ i1

( sup P o, ({p(Tn, $(00,Go)) > €}) < 6).
(00.G0)€6x G

As a special case of the above definition, we can define the notions of
uniformly consistent estimates of 0,, G,, or (0,,G,) in Model 1 and 0,,G, or
(0,,G,) in Model II.

Convention : Throughout the following discussion we shall abbreviate the
phrase in Model I (11) by (1) ((11)).

Consider the following generalisation of the Glivenko-Cantelli Lemma.
Proposition 3.1 Let X, X,,.
random vectors in IRP, with X; having the distribution function F;, then,

. X,,... be a sequence of independent

for any € > 0,
sup  Progaeess (n(s X1y Xaro o1 Xn) = 237 Billaup > €}) — 0

{Fi}i_,€7" nia
as 1 — oo, where F denotes the set of all (probability) distribution functions
on IP.

One can prove this by an easy modification of the argument in Loéve
(1963,p. 20).

As a corollary to Proposition 3.1, we shall now prove, using Robbin’s
method (Robbins (1964)), the existence of a uniformly consistent estimate
of (0, G.,) in Model T and (0,,G,) in Model IL.

For this purpose, we shall need the following assumption.

A1) For cach n > 1,P} and P}, are identifiable families in (0,G,) and
F M

(0,G), respectively, where
Pyo= {J] Poe: (0,{&}izicn) €O x 57}
i
and P}y = {Ppe:(0,G) € 6 x G}.

Let us now state the corollary.



Corollary 3.1.1 If (i) (S,S) = (IR?, B(IR®)), (ii) Psa’s are dominated by
the Lebesgue measure and (iii) (0,G) v F(-,0,G) is continuous, where for
any (0,G) € Ox G, F(-,0,G) denote the distribution funclion corresponding
to Py and the topology on ¥, as considered in Proposition 3.1, is generated

by the sup-norm, then under tion (A1) the following holds.

There is a statistic (0,,G,) which is a uniformly consistent estimate of
(0,,G,) in Model I and (0,,G,) in Model II.

Proof : One uses an idea implicit in Robbins (1964).
Fix n > 1. Define

an (s, 0,6) = sup (v, 2) = F(9,0,G)] for 2 € 1", (0,G) € © < §
then
(i) an: (IR" x & x G,B(IRP™ x @ x G)) — (IR, B(IR)) is measurcable
and (ii) for each z € IRP", aq(z;-,-) € C(O x §).
Therefore, the st

D

{(%,0,G) : an(2,0,G) = sup  an(z,0',G")}
[GRDECRY
is measurable.
So, by von-Neumann selection theorem [vide Theorem 7.2 of Partha-
sarathy (1972, p. 69)], there is a Borel-measurable map (0n, G') from IRP®
to O x g salisfying

an(2,0n (), Gn(2)) an(2,0,G)

= inf

(6,G)eéxG
outside a Lebesgue-null set.

Therefore, an(X1, Xz, -+, Xn, 0n(X1, X2, -+, Xn), Ga(X1, X2, -+, X))

{ an((X1, X2y, Xn),00,G,) in Model T o)

an((X1, X2, +,Xn),0,,G,) in Model 11

outside a Lebesgue-null set.



But by Proposition 3.1
I17

L P 5 5
—""* 0 uniformly on © x &

an((X1, X2, 0, X0n), 06, G) in Model 1
and

an((X1, X2y, Xn), 00, Go) "

> 0 uniformly on 6 x G in Model 11

(3-2)
From (3.1),(3.2) and condition (ii), |F(-,0n, Gn) = F(, 00, Gp)llaup —> O
in Model 1 and [|F(,0n,Gp) — ¥(-,00,Go)|lsup — O
uniformly on @ x § in Model II.

Let us now observe that assumption (A1) and condition (iii) together

uniformly on © x &'

imply that the inverse map F'(-,0,G) > (0,G) is well-defined and compact-

ness of @ x § implies that it is continuous. The rest is easy. =]

Remark 9.2 Note that the boundedness of © is needed only to prove the

continuity of the inverse map F(-,0,G) — (0,G).

Remark 3.3 1t is interesting to note that the null set of Corollary 3.1.1 can
be dropped in the following manner. First note that the compactness of
O x G and continuity of a,(z, -, ") for all z together imply that the z-sections
of D are compact. Next apply Corollary 3 of Maitra and Rao (1975) to get
the required selection. Sce also Theorem 4.4.3 of Srivastava (1982, p. 106).

Convention : For any k > 1 such that © := @ N[k, k + 1] # 0, we shall
use the notation (§,(k), Gn(k)) to denote the minimum distance estimates

considered in Corollary 3.1.1 for the models

PRt

i

{ﬁ Py, : (0,{&}1<i<n) € B x 5"}
and Pl = {Pig:(0,G) € Bx x G}

The following result shows that we can drop the condition of compact-
ness of © at the cost of the condition of existence of a uniformly consistent

estimate of 0,.

Corollary 3.1.2 Consider Model I and Model II, as defined in Chapter 1,
with the only exception that © is allowed to be unbounded. Assume (A1). If
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conditions (i)-(iii) of Corollary 8.1.1 hold and there is an estimate of T, of
0, which is uniformly consistent in Model I (II), then there is a uniformly
(On([T0))s (Ga(ITn))) ©f (95,C) in Model 1

consistent estimate (0n,G) :
((0,,G,) in Model 11).

Proof : Let ©, be a given compact subset of the ©. Let 0 < § < 1 and
¢ > 0 be given. We want to show that there is N > 1 such that for all
n>N,

sup 1L Poe) ({[6n — 0] + d(Gn, G) > €}) < 6
(0{E 1 ien)COux 5 i

( sup  Pr({l0n— 0| +d(Gn G) > €}) < 6).
(d,(-‘)EQ,.xg;

(3.3)

Fix an 7 in the open interval (0,0.5). Using uniform consistency of 7},

choose and fix Np > 1 such that for any n > No,*

sup (IT Poe) {ITn — 0l > m}) < 6/2
(0.{&}1<isn)€60x E" 2y (3.4)
( sup  Pic({|Ta— 0| >n}) <6/2).

(6,G)EB. %G
Let us now observe that by compactness of ©,, there are integers k and
i
L with 1 > 1, such that @, € |J Ox—j1-
i=1
Define

I3
li=min{l >1:3k€ Z 36, C | Osjui}. (3.5)
5

Lo
Then, there is a unique integer k, such that ©, C |J @k, —j41-

i=1
Using Corollary 3.1.1 choose and fix Ny > 1 such that for any n > Ny,

(T Poe) ({1bn (ks — 5+ 1) — 01+

sup sup

1S5Sl (6,{€}12ign)€O0XER (2
A(Galky =5 +1),G) > }) <6/8 (3

(sup  sup  Pyo({l0nlko =i +1) = 01+

1<5<k (6,G)€6LXG

(ko — 7 +1),G) > ¢}) < §/8).
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Let N = Ny V N,.

Then, lor all n > N,

L.ILS. of (3.3)

(I Po.c) ({10 = 0] -+ d(Gn, G) > })

sup
(6,{6:}1<i<n) €O % 5"

k4 e B o (IT Po.c) T & (10] = 1 = n,[0) + 1+ m)})
T )
+J:u(ﬂ.(s.h::.{;se,,xsn(,g, Po) ({10a((0) = 2+ 7) — 0|
Fd(Gn((0] = 2+ 1), Gn) > €})
(3.6)

< sup ([T 0e) (ITn — 0] > m) +4.6/8

P
(0.{€Hi<icn)€@0xE

(= sup  PPo({lfn — 0]+ d(Gn,G) > &})

(0,6)cO,xG
(3.5) 5
< sup  Pra({Tn ¢ ((0) — 1 —n,[0] -+ 1 +n)})

(0,6)cO.xG

30 sup  Pra({10a((0) - 2 +5) - 0|

7=0(0.6)€€, %G
+d(Gn((0] — 2 +5),G) > c})

(3.6)
< sup  Pra({{Tn — 0| > n}) +4.6/8)

(0. BuxG .
(3.4)
< 6/246/2=6

proving (3.3). o

Remark 3.4 In view of Remark 3.3, we can drop the condition (ii) from

Corollaries 3.1.1 and 3.1.2.

‘We shall also need the following definitions.

Definition 8.2 Call an estimate T}, of 0, a uniformly \/n-consistent estimale

of 0, in Model I (11) if for any compact subscel ©, of © the lamily of laws
{L(W/(Tn = 0)| T] Pros) : (00, {&}15i2n) € O0 x E%,n > 1}
=t
H{L(/n(T, — 0,)|P5 c,) ¢ (0,,G,) € ©, x G,n > 1})
is tight.
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Definition 3.8 Let 1), be an estimate of §, and let ¥ be a Borel-measurcable

map from S™ x @ to Ii2. Consider the equation
V((X1, Xz, +, Xn),0) = 0. (3.7

(a) Call T;, a y/n-consistent solution of (8.7) in Model I (II) if for any
(0‘,,{5.).<,<,|] € 0, x 5" ((0,,G,) € 9, x G) the following hold.
o II Py,¢,)(Tn solves (3.7)) = 1+ o(1)
i
(Pﬁ . (Tn solves (3.7)) = 1 +0(1))
and (i) T, is a y/n-consistent estimate of 0, in Model I (II).
(b) Call T, a uniformly v/n-consistent solulion of (3.7) in Model I (II)
il for any compact subset @, of @, condition (a) holds uniformly on
0, x 5" (0, x §).

Definition 8.4 Call an estimale T, of 0, regular (I) ((I1)), or, morc
accurately, uniformly asymptotically normal in Model I (II)with asymptotic
variance o% [in short, UAN (I) ((II)) with AV o%], where o7 is a continuous
function from @ x § to I?, if

PI(H Po, &) ({V(Ts = 0,) < z}) = P(z o7 (00, Ga))

sup
(00, {€}1<icn)EO, X" zuz

( sup S“PIPp a,({\/n(T = 0,) < z}) — P(z 0" (0, Go))|)
(0,,G,)EO,x G zER

» 0 as n - oo, for any compact subset @, of ©.

Note that

1) As expected, for any concept defined through Definitions 3.1-3.4, the
Model I-version is stronger than the Model II-version.

Lel us now slate and prove two auxiliary results followed by a gen-
eralised version of the Lindeberg-Feller central limit thcorem where the
convergence is uniform in sup-norm. We shall need the last result in the

proof of our basic result Lemma 4.1.
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Lemma 3.2 Let A be a pty set. Consider the following two famili
of probability measures on (IR, B(IR)).

Po = {Pu(ra):a€An>1}
and P = {P(a):ac A}
Assume that the following conditions hold.
(i) P s tight,
(i) IP is tight as well as uniformly absolutely continuous with respect
to the Lebesgue measure
and (iii) for any bounded continuous function g from IR to IR
suk|/g(~)d}’n(~,a) - /g(~)dP(~,a)j — 0 as n - oco.
ac ’
Then,
sup sup [Fu(,a) — F(z,a)| — 0 as n — oo (3.8)
aEA zel
where F,(-,a) and F(-,a) denote the distribulion functions corresponding
to Pa(-,a) and P(-, ), respectively.
Proof : Let us first show that for any z in IR,
sup | Fu(z,0) — F(z, )] — 0 as n — co. (3.9)
aEA
Let ¢ > 0 be given. Using uniform absolute continuity of IP choose and
fix § > 0 such that
sup |[F(z+6,0) — F(z— 6,a)| < ¢/4 (3.10)
€.
Define g : IR — IR by
1 ify<z—6
gly) =4 =¥ ifx—6<y<z+46
0 otherwise.
Clearly, ¢ is a bounded continuous function from Ii? to 2. Therefore
by condition (iii), there is n;, > 1 such that for all n > ny,

supl [ 9()aPa( ) = [9()aP(0)] < e/1. (3.11)
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Therefore, for n > n,y,
LILS. of (3.9) = sup|Fa(z,0) = F(z,0)|
= supl [1can(IaPa(20) = [ 1om(IP ()]
= supl [{(cwa() —90)}dPA( )
— [Uem() = 9()}aP(, )
+ [ 9()aPa(0) = [ 9P, )]
supl [ 1) = 90N )]
supl [ 11can() = 9() P, @)] 1 /4

i‘é‘;‘f By @) dPa(- )] + /4 + /4 (3.12)

(3.11)
<

(3.10)
<

where

he) 0 ifly—z>6
h(y) =
N 6—"2"5;11 otherwise.

Clearly, h is also a bounded continuous function from IR to I?. Ilence,

by condition (iii), let us choose and fix an n, > 1 such that for all n > n,,

i\éy|/h(~)d}’,.(-,a) - /h(-)dp(-,an < ¢/4. (3.13)
Let n, = n; V ny. Then for any n > n,,
(3.12) y
L.ALS. of (3.9) £ igx\/h(-)d!’"(-,u) - [ n(yarc, @)

—Fi\g[[ R()dP(-, )] + ¢/2
Rt "2‘ @19 e/4+e€/4+e/2=¢

proving (3.9).
Let us now prove relation (3.8) from relation (3.9).
Using tightness of 1P, and IP, choose and fix K > 0 such that

sup sup Fp(—K,a) < €/4, sup F(—K,a) < ¢/4,
n21 €A A

3.14
inf inf {1 - Fa(K,0)} < ¢/4 and jpf{l— F(K,a)} < /4. (19

25



Then,

sup sup |[Fu(z,a) — F(=z,a)|

Q€A (z|>K
< sup sup |Fu(z,a) — F(z,a)| + sup sup |Fy(z, ) — F(z,a)|
acA z<-K acA 22K
<  max{sup sup F,(— K, &),sup F(—K, a)}
€A n21 acA
4 max[sup sup{l — F.(K,a)},sup{1 — F(K,
max(sup sup{ (K, @)},sup{ (K, )}
(3.14)
< €/4+¢€/4=¢/2. (3.15)
Using uniform absolute continuity of I” and compactness of [~ K, ]|

choose and fix m > 1 such that

sup. sup |1 (i 1y @) — F(zi,0)| < /4 (3.16)
ACA i=0,8,,2m -1 A
where z; = —K + % = (52)K for i = 0,1,---,2m.

Using (3.9) choose and fix N > 1 such that n > N implies
sup  sup |Fn(zi, @) — F(zi, a)| < €/4. (3.17)
Q€A i=0,1,-,2m
Then, for n > N,
sup sup |Fa(s,a) — F(z, a)|
€A [z|<K

sup _sup |Fu(zi,a) = F(z, o)
€A i=0,1,,2m

IA

dsup  sup B (zis1, @) — F(z @)
a€A §i=0,1,,2m—1

3.16) and (3.17
AR CID 4 4 ) = ¢/2. (3.18)
From (3.15) and (3.18) it follows that, for any n > N,

s Fo(z,0) — F(z,0a)| <

sup sup|Fu(z:0) = Ple,a)| < ¢

proving (3.8). o

Lemna 3.3 (Theorem 7 of Ibragimov and Hasminskit (1981, p. 365)). Let
A, IPo and IP be as in Lemma 8.2. Assume that the following conditions
hold.
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(i) P is tight
i) s itz _ itz g p - -
and (ii) :l(l]/;l/c AP (z, @) /c dP(z, )| — 0 as n — oo.

Then, for any bounded continuous function g from IR to IR
sux|/y(1)dl’,,(z,a} - /g(:)dl’(z,cxﬂ 0 as n — oco.
aE.

A proof of this result is given in Ibragimov and Hasminskii (1981,
pp 365-366).

Proposition 3.4 Let A be a non-empty set. For each o in A, let
{Xn(a)}nz1 be a sequence of independent randowm veriables with mean zero
and finite variance. For each o in A and n > 1, define Sa(a) and sn(a) by

S ~ V@) = | 55 Ves(Ctta)

37 Xi(a) and s

and denote the probability distribution functions induced by Xn(o) and
5(0)/5n(0) by Gn(-,a) and Fa(- ), respectively. If
) ;25‘11’1‘12’\[[/ 22dG(z,a)] > 0

d (1i) sup lims / 234G (2, )] — 0 as K
and (i) suplimsupl [ 2"dGa(z,a)] - 0 as I = o0

- 1E&
where G, i= —~ > Gy, for all n > 1, then
(=Tt

sup sup |Fu(z, @) — 8(z)| = 0 as n — oo.
a€EA zER °

Proof : For any a in A, let P,(-, @) stand for the probability measure corre-
sponding to the distribution F,(-, ). Then condition (i), which is common
to both Lemmas 3.2 and 3.3, follows from the definition of /%,(-, «)’s. Next,
condition (ii) of Lemma 3.3 follows from conditions (i)-(ii) of the proposi-
tion and the definition of F,(-, a)’s by an application of a uniform version
of the prool of Theorem 2.7.2 of Billingsley (1979, pp 310-312). Again,
IP being a singleton containing the standard normal probability measure,
condition (ii) of Lemma 3.2 holds for it. The proposition follows by an
application of Lemma 3.3 followed by Lemma 3.2. m]

Note that
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2) Instead of assuming the obvious uniform version of the Lindeberg’s
condition, we are assuming a stronger but more ecasily verifiable pair of

conditions, viz., conditions (i) and (ii).
We shall need one more definition.
Definition 8.5 We shall call a function ¥ : S X & x § — IR a kernel if
¥(-,0,G) € Ly(Psc) for all (6,G) in © x G, and denote the set of all kernels
by K.
Convention : Given any two kernels ¥,%' such that
¥(-,0,G) = ¢'(-,0,G) ae.[Pog| V(0,G),
we shall call each a version of the other one.
Consider the following assumption
(A2) There is a o-linite measure u on (S, S) such that
06 < uV(0,G) € O x g.
Define f: @ x G — L} (u) by
dPye 5
1(20,6) == S V(0,G) € 6 x . (3.19)
m
Note that
3) In available semiparametric literatures, (A2) is always assumed. So,

we shall assume it for the remaining part of the thesis, with the only
exception of Chapter 7 where this condition will be dropped.

4) For the special case of the mixture models, (A2) is equivalent to
Py << pV(0,6) €O x E.
Convention : For £ € £, we shall use the notations f(-,0,6¢) and f(-,0,¢),
interchangeably, where §; denote the point mass at {{}.

From the general semiparametric theory, the 0-score sy : SxOx G — IR
should be defined by
_ ['(=,0,G)

56(2,0,G) == f({,‘o',’"r;‘j' 1(s.0.c)>0)(7) V(2,0,G) € S x O x G.  (3.20)
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Under the following assumption s, is well-defined and belongs to K.

(A8) (a) For cach (¢,G) € S x G, f(=,-,G) € Ci(6)
and (b) [ U 4ldu() < 00 V(0,G) € 6 x G.

In passing, we remark that, (A3) will be assumed to hold throughout
the remaining part of the thesis.

Let us now observe that f has an obvious extension on @ x M, where M
denotes the set of all signed measures on 5. Let us denote this extension
also by f.

(7) From now on, we shall denote by A the estension of the likelihood
ratio statistic defined by

A(z,0,G,0', M) : F@0.G) G)) 1(s¢.6.6)>0) ()

Jor all (z,0,G,0',M) € SxO x GxOx M.

Consider M, := {M € M : M(5) =0}.
For any (0,G) € @ x G, define

Mog = {ME M,:A(~0,G,0,M) € L3(Psc) and
[ 1tt0r=01 S (0, M)dw() = 0}
and Ny = {¢ € L}(Posg) : IM € M4 such that

b =A(-,0,G,0,M) ae. [Poc]}. (3.21)

The elements of the space Ny may be thought of as the ‘directional

scores’ with respect to small variations in G.

Remark 8.5 Under assumptions (A2)-(A3), for each (0,G) € © x G, the
closed linear subspace of L3(f(+,0,G)) obtained by taking the closure of the
linear span of s4(+,0,G) and Ny, gives our tangent space Ty at (0,G),
which is isometric to that considered in Schick (1986) and is the same as
that considered in Lindsay (1980), Bickel(1982), Bickel and Klaassen (1986)
or van der Vaart (1987).
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Following the above authors, let us now define an optimal kernel (3)
and the information (1) by

P(0,G) = Projyy {se(,0,G)}

100,G) 16 (2 0, )ILais0.0n

We shall now establish (1.4) for the general semiparametric models as

} v(0,G). (3.22)

well as the mixture models under different regularity conditions. Let us

now write down these coditions in the form of two assumptions.
(GA4) § ZE8Mdu() < oo for all (0,G,M) € 6 x G x M,.

(A4) Yor any 0 € ©,(G,G") — [P(-,0,G)f(-0,G")du(") is a continuous
map from § x § to I2.

We are now in a position to state the lollowing result.

Lemma 3.5 Consider (a) an arbilrary semiparametric model where (A2),
(A8) and (GA4) hold or (b) a mizture model where (A2)-(A4) hold. In
either case,

{ #,0,6)7(,0,6)du() = 0 (0,6, &). (3.23)

Proof : Let us start with the following observation which is an obvious

consequence of the fact that 9 is a kernel.
J/ B(0,G) [ (-0,G)du(-) =0 VY(0,G). (3.24)
So, it remains to show
[ #,0,6)1(,0,6" = G)du() = 0V(0,G, &). (3.25)
For the general semiparametric models use (GA4) to conclude that
A(~0,G,0,G' — G) € Nog V(0,G,G"). Then (3.25) follows from the fact
that 9 (-,0,G) € Nie V(0,G).
For the mixture models, let us observe that, for any (0,G,¢) with
(0,G) € 6 x G and ¢ € L3(G), A(-,0,G,0,$dG) € Ny proving
/1}(<,0,G)f(-,0,¢dG)du(~) =0 (3.26)
for all (0,G,¢) with (0,G) € @ x § and ¢ € L§(G).
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Now for any o-finite measure v on (£, B(&)), let g, denote the set of
all probability density functions with respect to v those are bounded and
bounded away from zero. For any g € g,, let G denote the corresponding
probability measure and denote the set of all such G’s by G,,, i.e.,

G, ={G:g€g,}.

Let us now consider (0,G,G') € 6 x § x §. Define v = %",

Case I: G,G' € G,. Let g,¢' be versions of 4, 9¢" which belong to g,. Put
¢ - ¥,¢ in (3.26). By an casy algebra onc can show that f(-,0,$dG) =
J(0,G" — G), so that (3.25) holds for the given point (0,G,G").

Case II: G,G' arbitrary. Let g,¢' be any two versions of 4% and 4G,

respectively. One can get two sequences {gn}n>1 and {g',}nz>1 of func-
tions in g, such that ||g. — ¢gllz,) — O and l¢', — ¢'llz,v) — O. Clearly
this implies that G, =2 G and G', =% G'. Again by Case I, (3.25) holds
for (8,Gn,G",), for any n > 1. Hence by assumption (A4), (3.25) holds for
(0,G,G"). o

Remark 3.6 Note that Lemma 3.5(a) holds for general semiparametric mod-
els satisfying Bickel’s Condition C, i.e., semiparametric models with the
space G of nuisance parameters G convex and the density function f affine
in G, with the additional condition that § is compact. The corresponding
result for the orthogonal case was noted by Bickel (1982), vide his remark

before Conditions C and §°.
In order that (1.2) makes sense, let us make the following assumption
which is a local version of (Al).

(A5) 1(0,G) > O for all (0,G) in © x G.

For the next two chapters, we recall Definition 3.5 and introduce the

following notations.
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(8) Let K* :={ € K : Po({[$(-,0,G)| > 0}) > 0V(0,G)}. We shall
denote by J the function from @ x G x K* to It defined by,
_ Uv(,0,6)1'(,0,G)du()]?

¥ (0,G) /(- 0,G)du()]
Jor all (0,G,9) € © x G x K*. ’

(9) Let K** := {4 € K* : J(0,G, %) > 0V(0,G)}. We shall denote by
V' the function from © x G x K** to IR defined by

J(0.G,¥) :

V(0,G,%) == 1/J(0,G,%)
Jor all (0,G,4) € O x G x K**.

Note that

5) Obviously, assumption (A5) implies % € K** and J(0,G,%) = I(0,G)
v(0,G).

(10) We shall denote the Prohorov metric on G by d. In other words,
the metric d is defined as follows :

Let p denote ‘the metric on 5. For any € > 0 and A C &, let A° denote
the set {€ € A:p(€,A) < ¢}. We can now define d by the formula
d(G1,Gs) = inf{e > 0: Gy (A) < G2(A%) + ¢ and G3(A) < G1(A°) + ¢,

for all A in B(5)}
for all G1,G2 € G.
Later we shall need an estimate of the distribution function based, say,

only on X;’s 7 odd, or only on X;’s © even. This is formalised below.

(11) Let (A, A), (B, B) be two measurable spaces. For each n > 1, let
$n be a measurable map from (A, A)" to (B,B). For each n > 1, we shall
define two more measurable maps from (A, A)™ to (13, B) by the relalion

S ({aithicicn) = S(a-n/z)({@i}igicn,ioaa)
and ¢l ({aiticisn) = Spnsai({@iticicn,ieven )

Jor all {a;}1<icn € A™.
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Chapter 4
Mixture Models

In this chapter, we shall state and prove one auxiliary result and two
main results in the mixture model. The auxiliary result will give conditions
on the density function f and a kernel ¢ (vide Definition 3.5) so that there
exists an estimate T, (%) of 0,, which is a uniformly \/n-consistent solution
(1) of

3 h(X:,0,GE)+ 30 w(X:,0,G7 (4.1)
P i

(vide Defiinition 3.3) where G, is a uniformly consistent (II) estimate of G,
(vide Definition 3.1) and GE and G¢ are obtained from G, using even and
odd numbered observations, respectively (formal definition is given in (11)
of Chapter 3). Further conditions on 3, guaranteeing uniform asymptotic
normality (1I) (vide Definition 3.4) of such estimate Tn()’s, are also given.

The two main results will prove the optimality of, respectively, Schick’s
and our estimate under the assumption that a simpler version of the con-
ditions mentioned in the last paragraph hold for f and the optimal kernel
% (vide relations (3.20)-(3.22)).

Before stating the auxiliary result, let us note the following assumption.

(B1) (8) There is a uniformly yfi-consistent (I1) estimate Uy of 0, (vide
Definition 3.2)

and (b) there is a uniformly consistent (1I) estimate G, of G, (vide Defi-
nition 3.1).

Let us now give a rigorous definition of our estimate T (9).

Definition 4.1 For any kernel 1, we shall define the estimate Tn(¢) as a
solution of (4.1) which is nearest to Uy, if there is a solution of (4.1) lying
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in (U, — logn/y/n,U, + logn/y/n) and equal to U, otherwise. This can be

done in a way that ensures measurability.

Let ¥ be a kernel. Fix (0,,G,) in © x §. Define a stochastic process
D,, indexed by 0 as follows.
Du(0) = —— Z {#(X,0,GE) — (X, 0,,Go)
i odd
(0= 0,) [ $(05,Go) 1,00, Go)du()}
Z {(X:,0,82) — $(Xi,00,Go)

iSen

0= 00) [ (0, Go) (-0, Go)du()} (4:2)

N

for all 0 in ©.

Consider the following conditions.

) [(ACL GG =10, 611 (00 Gudeu() — 0

as  — 0,, where sy is the kernel defined by equation (3.20).

(i) There is 6%, > 0 such that
(a) J9*(0,G)f(-,0,,Go)du(") < oo
V(0,G) € B(0:,6{))c,) x B(Go,60))s,)
’ 2 -
and (), tim [ (5(20,G) = %100, GY S (00, Go)dn() =
(ili) Assumption (B1)(b) holds with a choice of Gy, so that for any ¢ > 0
and € > 0,
sup  Ppe (VA [ #(50,8:)7(,0,G)du()| > ) = 0
(0:10-0,1e/ V)
as n — co.
(iv) (2) There is &2 > 0 such that for all z in § and G in

B(Go,625,),
¥(2,-,G) € C(B(0,,6%.)),
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() (100, Go)f (100, Go)du(-) < oo (This condition follows
from condition (ii)(a) but is given separately [or ease in later
references.)

and (c) J (06, Go)S'(+ 00, Go)du(") # 0.
(v) There is 6%, > 0 and A(+,0,,Gs) € Li(f(+ 00, Go)) such that
[%(0',G) = (0, G)| < 10" — 0] A(-, 05, Cs)
for all 0,0" in B(0,,8”,) and G in B(0,,6{s,)-
Clearly, one can, without loss of generality, assume
birle, = ke, = 600, = bo(say).

Let 6, be as above. For any condition C among (i)-(v), let UC denote
the condition that C, with 0,,0,0' replaced by 0,0',0" and G,, G replaced
by G,G", holds uniformly with respect to 0,0',0" in 13(0,,6,) and G,G" in
B(G,,6,)-

In addition to U(i)-U(v), we shall need the following condition.

U Loz ¥? (5, 0,G) f (0, G)du()]

su — 0
(0.G)EB(60,60) % B(G 0,6,) J(0,G,v¥)

U(vi)(a)
as K — oo

and (b) (0,G) = J(0,G, ) is continuous, where J is the function defined
in (8) of Chapter 3.

Note that, becuase of compactness of G, one can without loss of gen-
erality assume that the number 6, considered in U(i)-U(vi) depends only
on 0,.

We can now state the auxiliary result.

Lemuna 4.1 Assume (B1). Fiz (0,,G,) in © x G. Let 3y be a kernel. Let
D, be as defined in the relation (4.2). Also, whenever it makes sense, let
T, () be the estimate defined in Definition 4.1. We can draw the following

conclusions.

35



(1) If conditions (i)-(iii) hold, then for all ¢ > 0 and ¢ > 0
sup PP e ({|Da(0)] > €}) — 0 as n — co.
(10-001<e/ v/}
(I1) 1If conditions (i)-(iv) hold, then

(A) for any sequence {ca} increasing to infinity,
i . (En) — 1 as n— oo

where I, denotes the event that there is a solution of
(4.1) lying inside the interval (6, — cn//n, 0, + cn/\/n)
and (B) under assumption (B1)(a), Ta(4) is a \/n-consistent
solution (II) of (4.1).
(111) If conditions (i)-(v) hold, then
(A) for any ¢ > 0 and € > O,

P,

sup | Du(0)] > ¢}) — 0 as n — oo
{0:10—00|<e//n}

and (B) under assumption (B1)(a)
sup | Py, 6, ({VR(Ta () = 00) < 23) = @(2/V (00, Go, ¥))]
— 0 as n — oo, where V' is the function defined in (9)
of Chapter 8.

(IV) For any conclusion C among (I)-(1ll) , let UC denote the conclusion
that C holds uniformly with respect to (0,,G,) in compact subsets
of © x G. Then U(I), U(II) and U(III)(A) hold if the relevant con-
ditions among U(i)-U(v) hold whereas U(ILL)(B) holds if condilions
U(5)-U(vi) hold.

Proof : (1) For any 6 € ©, define,

Di(0) = ii{w(x.,o,éfpw(x;,a,,c,,)

+(0 = 0) [ B0, Go) 1 (0., Go) ()}
and D, (0)

D, (0) — Dni(0).
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Fix ¢ > 0 and ¢ > 0.

It is enough to show that,

sup Py, ({IDm(0)] > €/2}) — 0
{6:16—8,|<c/\/n} (4_3)
and sup PP ({IDma(0)] > ¢/2}) — 0.
(:0-aoi<e/ /)

We shall only show that,

sup  Pg g, ({IDni(0)] > €/2}) — 0. (4.4)
(0:0-0,1c/ V)

The other statement will follow by a symmetrical argument.
Now, for any sequence {0,} such that |0, — 0, < ¢/\/% Vn,
15D (0,)| Xiy 1 < i < my7 even)
D ([ (2,0 ) (2,00, Go) (@) + 0
(00— 0) [ $(2,05,Go) (2,00, Go) du(=)}

[Since % is a kernel.]

@ —(’:/#(a" ~0,)
[/(¢(1,0n,@f) — Y(z,0,, Ga)}{/(z’a"’c(;’: : ;o()I: 0,,G,)} du(z)
+ [ w0, G LB S0 G _ pia g, 6 aua)
+opp . (1)-

Therefore, by conditions (i), (i) and assumption (131), for any 1 > 0,

PEL( [Eey.c, (Dar(0)|X:, 1 < 4 < n,i even)| > n}) — 0.
(4.5)
Let us also observe that, for any sequence {0,} such that

|0, — 0,] < c/y/nVn,

sup
{6:10=80|<e//m}

Varg, ,(Dn1(0n)|Xi,1 <1 < n,7 even)
[L’nﬁﬂ f{w(z,ﬂn,@f) — (2,05, Go) Y2 (2, 0, Go)dpu(z).
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Therefore, by uniform continuity of ¥ and uniform consistency of Gn
(and hence GF), we get for any > 0,
P,l!’llv sup Varg, ,(Dn1(0)|X:,1 < i < n,i even) > n}) — 0.
{0:6—00]<c//n}
(4.6)
From (4.5) and (4.6), we get, for any n > 0,
riil
sup P ({IDn1(0)] > 1} X:,1 <4 < n,ieven) 57 0. (4.7)
{0:10-0,|<c/v/R}
Then, (4.4) follows by D.C.T. from (4.7) with 7 = ¢/2.
(I)(A) First observe that, because of (4.3), there is a sequence {cn} of
nonnegative real numbers increasing to infinity such that for any ¢ > 0,
sup P} ({|Dni(0)] > €}) = 0 as n — oo. (4.8)
(0:10—60|Sen/v/m}
Claim : Given any sequence {d,} of nonnegative real numbers such that
d, < ¢, Vn and d, T oo,

P, (Ep) > Lasn — o0 (4.9)

where E, denote the event that there is a solution of (4.1) lying inside the
interval (0, — dn/y/n,0, + dn/y/n).

Then (II)(A) will follow because given any arbitrary sequence {dn}
increasing to infinity, one can always work with the sequence
d',, = min{d,, c,} Vn.

Proof of the claim : Fix any sequence {d,} such that d, < c,, for all n and
d, 1 oo.
By (4.8)

D0, + 2

‘/"ﬁ (4.10)

Again, by condition (iv)(b),

1

(c( ilzp(x.»,omcunpa.a,)hz,
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is tight and by condition (iv)(c) and choice of {dn}ns1,
([ $(2,00,G) 1'(2,0,, Go)du(z)) = o0 a5 1> 00 (111)

[assuming, without loss of generality, f ¥(,0,, Go) f'(z, 0., G,)du(z) > 0}.
From (4.10) and (4.11),

\/n{ L V(X004 2, G+ 32 ¢(x‘,a &

@)y

i€iEn

=% Point mass at Foo, i.e., for any K > 0,

7, (——l%(;‘ Y(X:,0, +7 ,G)

Ln (X, 00 -+ 7— ,GO)) < —K})

1<i<n

+‘_§an 9, —é— G2)] > K3})

— 1 as n — oo. (1.12)
Pix any K > 0. Define, A x({dn})

2 v(X

i odd

GE)+ Y (X 0+ 2, 89)] < K}

Gl v

E 7Li__ 0
fc)'fZa/JX,,ﬂ fG)]>K},

i even

< 1S
then, by (4.12), Pg s (Anx({dn})) — 1 as n — oo and by condition
(iv)(a), on Anx({dn}) there is a solution of (4.1) lying inside the interval
(0 — dn//7, 0, + dn/ /7).

Since {d,} was arbitrary, this proves (4.9).

(I1)(B) Suppose not. Then there is a sequence {dn} of nonnegative real

numbers increasing to infinity such that d, < ¢, for all n and
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Py, ({s/AlTw — 0o > dn}) 7 0, where {ea} is the sequence considered
in (4.8). [Note that, without loss of generality, we can assume ¢y > 0 and
dy > 0].

Choose and fix a sequence of positive real numbers {an} such that

,forall n > L.

Then by /n-consistency of Un,
. 1
P, ({VnlTn — 0,| > dn, V/1|Un — 00| < min(d, — andn-1, 2 logn)}) # 0.

Consider B i= Anx({min(2andn—1 — dn, 3 logn)}).

Note that in (4.9) one can easily drop the assumption of increasingness
of {dn}. :

By von-Neumann sclection theorem, choose a measurable function S,
which solves (4.1) on Bpk-

Define Cn = {v/A|Tn—0| > dn, V/AlUn—0,| < min(dn—0otndn-1, 3 logn)}-

Then, on By () Cny Sa solves (4.1), y/7i|Sp = Un| < min(endn-1,logn),
whereas, \/it|Ty — Un| > andny and Pg: g (BrxNCp) 7> O contradicting
the defintion of Tj.

(I)(A) Fix ¢ > 0, ¢ > 0 and # > 0. To show that there is no > 1 such
that n > n, implies

P, ({  sup |Dn(0)] > €}) <m: (4.13)
(0:10—0,|<c/v/A}
Fix a postive number a which divides ¢.
For 0 € [0, — ¢/+/n, 0, + ¢/+/n], define

D@ (0) = ‘/— Z (0 -0, —T)D (0, +

i=—c/a

+{

Logr iz <og0,4 E80)

()
T

Now,

Pre,({  sup |Da(0) > €})
(e40-00|<e/VR)
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<
0}

iA

P, ({  sup [Da(0) — DD (0)] > €/2})
(eto-eaie/ v}

PPpo(l sup DS > e/2))
Vn}

{6:10-80]<c/
Pa,({

IA

sup
{(e"e,G):le’|< e Je M <e| ‘c"r¢’|<a Geu(c,ﬁ,))

[ Dn (0, + \/, — Dn(0, +
e, [Dn(0, + f)l > ¢/2})

€{0,x1, ey

IA

2
“Epp . ( sup
€0 N (e G) et |Se e | Se et —e! | S GEB(Gaibn)}

1D (0, + ﬁ) — D0, +

cla ;
2 e (0l + ) > 2}
—c/ox

m

Vn

2
< g, (

000 (ot e G) e’ | e | \c"|<¢ ;C"7='|<.x GEB(Go,60)}
c

"

Valp(Xi, 0, +
+al [ $(,00:G) I (00, Go)dus() ]

,G) — P(X1,0, +

o= ia
+ 22 Po e, ({100, + 7;-;)1 > ¢/2})

—c/a
zja(f A(+ 05, Go) [ (-0, Go)du()
Aw/w (4001 Go) /(-4 00, Go) ()1}

IA

L Py, ({1 Dn (0o + f)l> /2})

el
= I+II (say).
Let us choose a > 0 such that alc and I < /2.

Using (I) choose n, > 1 such that n > n, implies IT < /2.

Then (4.13) follows from (4.15).
(1L1)(B) Easy.

(IV) An easy consequence of Proposition 3.4.
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Remark 4.1 Condition U(iii) is a uniform version of condition (2.8) of Schick
(1986, p. 1144). For Cy-kernels this condition holds by definition. For the
optimal kernel 4, in view of Lemma 3.5, this condition holds even for the
general semiparametric familics satisfying Bickel’s Condition C, provided

suitable regularity conditions hold (cf Remark 3.6).
RRemark 4.2 Note that for any kernel %,
9 ¥
Aol $(0,6)7(,0,G)du()] = 0 V(0,6)
under suitable regularity conditions, which, in turn, implics
/./J'(},a,u)/(“o,c)du(-) = —jw(»,ﬂ,c)/’(-,ﬂ,c)du(») v(0,G).

This helped in putting the Taylor’s expansion used in the proof of the above
result in the usual form. This idea goes back to Bickel(1975)(vide relation
(2.8) of page 429).

Let us now consider the following definition.

Definition 4.2 Any kernel ¢ satisfying the conditions U(ii)-U(vi) will be
called an estimable kernel in Model II (or, in short, an EK (II)) and any
uniformly y/n-consistent solution (II) of (4.1) (vide Definition 3.3) will be
called a generalised Cy-estimate in Model II corresponding to ¥ (or, in short,
a GCy (1) estimate).

In view of Definition 4.2, conclusion U(III)(B) of Lemma 4.1 can be

restated as

Lemma 4.1a Assume (B1). If [ satisfies U(i) and % is an EK (II), then
T, (%) is a GCy (II) estimate (corresponding to v) as well as a UAN (II)
estimate with AV V (-, ).

Ezample 4.1 All Ci-kernels are EK (II) and all Cj-estimates corresponding
to them are GC; (II) estimates.
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Ezample 4.2 It can be verified in several cases that ¢ = f'/f is an EK (II)
and Tn(¥) is a GC, (II) estimate.

The following is the construction of an efficient estimate as given in
Schick (1986, pp 1140-1144).

Let I : S x© x G — Ml and Q : 0 x § X § — IR be defined by

I (2,0,¢) P(£,0,G)/1(0,G) V(z,0,G) € S x O x §

and Q(0,G,G") - T (0,G) [ (- 0,G")du() V(0,G,G") € © x G x G.
(4.16)

Consider the estimate

. 1 = o~ — - -

Zo=Uu+ 1 S (X0 0,85+ L S 1(X%,0,,89)  (1.17)

" ci<n ™ <izn

Fada ¥ eian

where U, is a discretized version of U, i.e., U, = (oerest integer to i)
Assume that

(B2) (a) For any z in S, f(z,-,-) € C(6 x §)

and (b) for any compact subset @, of @, there is 6, > 0 such that the

family of functions

U ,0.6)

/(-0,G)

is uniformly integrable with respect to p.

10,0' € ©, with |0 — 0] < 6,,G € G}

Remark 4.3 1f (S,S) = (M”,B*) and assumption (B2)(a) holds, then, in
view of Corollaries 3.1.1 and 3.1.2, one can easily drop assumption (B1)(b)

even if @ is unbounded.

Remark 4.4 Let ¢ be a Borel-measurable function from IR? to IR*. Let

51,825+ + -5 be k Borel-measurable functions from IR? to IR. Define
k
Q={we R*: /1ﬁ(z) exp{3_ s;(z)w;}dz < co}.
=

Assume that

(a) O #0.
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Consider the exponential family of densities defined by

h(z,w) = (do(w)) Y (= exp(z,s,

5}
for all z in IR” and w in 1, where the function d, is given by the formula
" .
4,(w) = [ $(@) exp{ 3;(@)ws}do Voo,
i=1
Consider the family of marginal distributions of s,
{Qu :wen}.

Assume that
(b) The above family is dominated by the k-dimensional Lebesgue measure.
(c) There is a k-dimensional rectangle J contained in the support of all the
Qu’s.

Let my,@g, ..., m be k functions in Cz0(6 x 5).

Assume that
(d)  := (w1, 73, -+, mx) is one-one and bimeasurable.
(¢) Range of m is contained in the interior of €.

Finally, let us assume that
(f) (S,$) = (Ir?, BP) and the density f is given by the formula

f(=,0,€) = ¥(z) exp{L 0,6)}

4(0 £)
forall z in S, 0 in © and £ in 5, where d stands for the function d, o 7.

Assumptions (a)-(d) and () are needed to prove assumption (A1)
whereas assumptions (a), (¢) and ([) are needed o prove assumption (132).
We shall only prove the first assertion. The proof of the other one is simple
and hence omitted.

In view of assumption (d), it is enough to prove the identifiability of
{jh W)dH(w) : II € X}

where ¥ denote the set of all probability measures on 1 with compact

support.
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Consider any two probability measures H; and H; in ¥. By assumption
(b), for i = 1,2

A4(0) = [ exp (X wys;}(do(w)) " dHi(w) < 00

for almost all 8 and hence, by assumption (c), for all 8 in J.
Moreover, if Hy, H, give rise to the same marginal of X, then A,(8) =
Ay(8) for almost all s and hence, by continuity of A;’s, for all 8 in J.
Therefore
(do(w)) " dH (w) = (do(w)) ™' dH, (w)
by a well known result on moment generating functions. Hence by con-
tinuity of d, and choice of ¥, I, = I;. (At this stage, nole that in the
Lindsay (1980)’s case,lo be discussed in Chapter 6(b), we don’t nced the
identifiability of G so that one can easily replace assumptions (b) and (c) by
(b)" The family {i(-,w) : w € N} of density functions is identiliable.)
Next, observe that, assumptions (b)-(c) imply that the family
{Qu : w € O} of probability measures is identifiable. The assertion fol-
lows by Theorem 10.0.3 of Prakasa Rao (1983, p. 440) and the definition
of Qu’s.

In order to prove the efliciency of Z,, we need one more assumption,
namely, :
(B8) There is a version of the optimal kernel ¥ such that
(a) For all z in S, ¥(z,-,") € C(O x §)
and (b) for any compact subset @, of © the following statements hold
(i) there is 6, > O such that the family of functions
{#(0',G"/(-,0,G) : (0,G), (0',G") € O, x §
with [0 — 0'| + d(G,G") < &,}
is uniformly integrable with respect to
1ega(. p2(+,0,G) f(-,0,G)du(-
and (ii) sup [{f («.’(‘v‘a)gx)’«b ( A Ydu(-)}
(6.6)€60%§ 1(0,G)

]—o0
as n — oo.

45



Observe that
(1) Assumption (132) is a stronger version of assumption (A3) and it
implies condition U(i).

(2) I* (and hence Z,) is well defined only under assumption (A5). More-
over if (0, G) — I(0,G) is continuous, then any condition among (ii)-(v) and
U(ii)-U(vi) holds for the kernel £*, if and only if, it holds for the kernel .

(3) Assumptions (B2)(a), (33)(a) and (B3)(b)(i) imply that (0,G)
I1(0,G) is continuous. They also imply a local version of assumption (Ad)
with @ and § replaced by I3(6,,6;) and B(G,,6;), respectively, where
5 =6,/2.

(4) Assumption (B3)(b)(ii) implies assumption (A5).

The relation between assumption (B3) and the relevant conditions of the
lemma will become apparent from the proof of the following result which

establishes the efficiency of Z,.

Theorem 4.2 Assume (B31)-(B3). The estimate Zn of 0,, as defined
through the relations (4.16)-(4.17). is UAN (II) with AV (1/I) (vide Defi-
nition 3.4).

Proof : Let us start with the following simple observation.
[160,6)1'(,0,G)du() = 1 V(0,G). (4.18)

Next, we shall show .that

1

sup 18, ({7 300 (X6, 00, Go) < 2) = @@ T (0, )| =0 (4.19)

as n — oo, uniformly with respect to (65, G,) in compact subsets of © x G.
We shall proceed as follows.
IFirst observe that, ¥ being a kernel, I*(-,0,G) has zero expectation
under Pp. Fix any compact subset A of © x G. By assumption (B3),
conditions (i)-(ii) of Proposition 3.4 holds with X,(a) = *(X,, &), for all
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ain A and n > 1. llence by Proposition 3.4, L.ILS. of (4.19) goes to zero
uniformly with respect to a in A. Since A was arbitrary this proves (4.19).

In view of (4.17)-(4.19), it is enough to show that

P ({Da(0a)] > €}) = 0 as n — oo, (1.20)

uniformly with respect to (0,,G,) in compact subsets of @ x g.
Again, as U, (and hence U,) is a uniformly y/n-consistent (1) estimate

of 0,, it is enough to show that for any ¢ > 0 and ¢ > 0,
Py, ({IDa(U)] > Y HVAITa = 0| S c}) 0asn— o0 (1.21)

uniformly with respect to (0,, G,) ir. compact subsets of @ x G.

Now /|y — 0,] < ¢ if and only if y/Ai0, —¢ < /Al < /,+ ¢ and by
definition of Un,/nU, is an integer. Therefore, U, can only assume values
of the form :/"—_, where /n0, — ¢ < 1 < 4/nl, + ¢ and there can be at most
[2¢] + 1 such values. (This is so because given any two real numbers a < b,
there can be at most [b — a] + 1 integers in [a,b].) Thus (4.21) (and hence
(4.20)) holds if part U(I) of Lemma 4.1 holds with % = I*. So, in view of
observation (1), it remains to check conditions U(ii) and U(iii) with ¢ = I".

In view of observations (2) and (3), assumptions (B2)(a), (B3)(a) and
(1B3)(b) (i) imply condition U(ii) for the kernel I.

In view of observation (3) and a local version of Lemma 3.5, with ©x G x
G replaced by B(0,,6;) X B(Ga, 8;) X B(G., 65), one can easily conclude that
Q = 0 on B(0,,6:) x B(G,,6;) x B(G,,6;) guarantecing condition U(ii).

jm)

Remark 4.5 The proof of Theorem 4.2 is similar to that of Bickel (1982) or
Schick (1986) but differs in many details. In particular, we need uniformity

unlike them.

For the next result, we need the following stronger version of assump-
tion (B3).
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(B3s) There is a version of the optimal kernel % such that
(a) for all z in S, ¥(z,-,*) € C1,0(8 X §)
and (b) for any compact subset ©, of ©, there is §, > 0 such that
(i) assumption (B3)(b) holds

and (ii) [9'(, 0, G} (- 0,G)du()]

sup  [[{ sup
(6,G)EO.x G (6",G)eB((6,G).60)
< oo.

We can now state the final result of this chapter.

Theorem 4.3 Assume (B1), (B2) and (B3s). The estimate To(1) of 0,,
as defined in Definition 4.1, is UAN (II) with AV (1/I).

Proof : In view of Lemma 4.la and observation (1), we have to check
conditions U(ii)-U(vi) for the kernel . In the proof of the last theorem, we
have checked conditions U(ii)-U(iii) for the kernel I*. Also, observation (3)
guarantecs the continuity of (0, G) — I(0,G). Hence, in view of observation
(2), conditions U(ii)-U(iii) hold for the kernel  also. So, it remains to check
conditions U(iv)-U(vi).

Condition U(iv)(a) follows from assumption (B3)(a), U(iv) (b) from as-
sumption (B3)(b)(i) and U(iv)(c) from assumption (B3)(b)(ii) and the def-
inition of .

Condition U(v) follows from assumptions (B3s)(a) and (B3s)(b)(ii).

Condition U(vi) is a consequence of assumption (B3s)(b)(ii) and obser-
vations (3)-(4). [m}
Remark 4.6 In view of observations (3)-(4), assumptions (B1), (B2) and

(B3s) imply that I* is an EK (II) and for any compact subset 8, of & and
€e>0

sup  Pp o ({V/n|Za — Ta(l")| > €}) = 0 as n — oco.
(6,G)€EO.xG "

Remark 4.7 As indicated in Remark 3.6, all the results stated in this chapter

holds for the general semiparametric families satisfying Bickel’s Condition

C also.
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Remark 4.8 In view of Remarks 4.3 and 4.4, for Euclidean S and expo-
nential f, it is enough to check assumption (B1)(a), i.e., the existence of a
uniformly y/n-consistent (I1) estimate of 6,, and assumption (B3) or (B3s),

i.e., the smoothness propertics of the optimal kernel.
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Chapter 5
IFixed Set-up

In this chapter, we shall state the analogues of Lemma 4.1, Theorem 4.2
and Theorem 4.3 in the fixed set-up. However, we apply a random permu-
tation I1 to the original sample (X1, X3, -+, X,) and base the analysis on
(Xuqys Xugzys > Xum)). Let s, denote the group of all permutations of
{1,2,---,n} and P, denote the probability distribution of /I. Later we shall
make an approriate choice of P, for the asymptotically eflicient estimate
so that the empirical distribution functions (or, the empirical probability
measures) of £n()’s based on odd and even indices will be close to each
other.

Let us start with the following definitions.

Definition 5.1 Let (Y,Y), (Z, Z) be two measurable spaces. For any n > 1,
Z-valued statistic V,, on (Y, Y)" and probability measure P, on s,, call the
statistic sending (Y1, Y2, -+ ¥n) L0 Val¥m(1), Yir(2), = » Yir(n)) the randomisa-
tion of the statistic V, corresponding to P, and denote it by V.’ (P,).

In practice, we shall take (Y,Y) to be (S, S) or (5,B(5)), Z to be &,
Gor® x G and Z to be B(Z).

Definition 5.2 Let (Y,p) and ¢ be as considered in Definition 3.1. For any
esimate V, of ¢(0,,G,) in Model I (¢(0,,G,) in Model 1I) and probability
measure P, on s,, we shall call the Y-valued statistic V,; (P,) as defined in
Definition 5.1 a randomised estimate of ¢(0,,G.,,) in Model I ((0,,G,) in
Model IT).

As a special case of the above definition, we can define the notions of
randomised estimates of 0,, G,, or (8,,G,) in Model I (6,, G, or (0,,G,) in
Model 1I) (¢/f. Definition 3.1).
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Note that

(1) The nonrandomised estimates are special cases of randomised es-
timates. Also, for any Z-valued statistic V, on (S, S)" and probability
measure P, on s,, the following hold.

n n
(T o) (Vi (22) € AY) = [ (] Pevieoy) ({Vn € A))dPa(m)  (5.1)
i=1 i=1
for all Ain Z, 0, in @ and {&}1<icn in 8" and
P, ({Vi(Pa) € A}) = PP, ({Va € A}) (5:2)
for all Ain Z,0,in © and G, in G.

(2) In view of the relations (5.1)-(5.2), there are extensions of Definitions
3.1-3.4 for randomised estimates and in view of observation (1), for any
property P defined in Definitions 3.1-3.4 and statistic V,, P holds for V, if
and only il it holds for all possible randomisation V,;(F,)’s of it, both in
Model I as well as Model 11

(3) As in observation (2), the notion of efliciency (I) ((II)) has obvious
extension for randomised estimates and one can casily prove that in the
extended sense, regularity (1) implies regualrity (II). So the problem of
efficiency (I) reduces to finding a randomised estimate which is efficient
(11) and regular (1).

For the remaining part of this chapter, we shall need the following
Model I-analogue of assumption (B1).

(C1) (a) There is a uniformly y/n-consistent (I) estimate U, of 8, (vide
Definition 3.2)
and (b) there is a uniformly consistent (1) estimate Gy of G, (vide Defi-
nition 3.1).
Convention 1 Kor any n > 1, let P¥ denote the uniform distribution over s,.
From now on we shall use the shorthand notation V; for V.7 (Py). Let ¢ be
a kernel. Our goal is to solve the following randomisation of equation (4.1).

RERS . Amyey L L GO) .
fLw(XnMG,.)H\/—Zw( $,0,(GR)7) =0 (4.1)

i=1 =
odd ieven
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where (GF)* and (G¢)* are obtained from G, using (11) of Chapter 3
and Definition 5.1 with P, = P¥. T;(4) is defined in analogy with Tn(1)
by replacing (4.1) and U, by (4.1)* and Uj, respectively. Clearly Tj;(1)
equals (7. (¥))".

Note that

(4) Theorems 4.2-4.3 and relation (5.2) together imply that Z is ef-
ficient (11) under assumptions (B1)-(B3) and T} (¢) is efficient (II) under
assumptions (B1), (B2) and (B3s).

In view of observations (1)-(4), it remains to show that Z; and T, ()
are regular (I). Naturally, we shall prove an analogue of Lemma 4.1 when
we have Model I instead of Model II and randomised estimates. Before
stating the required lemma we nced three more auxiliary results namely

the following two propositions and Lemma 5.1(t).

Proposition 5.1 Let (Y,p) be a compact metric space. Let I denote the
set of all Borel probability measures on Y. Let &1, &2,...,&q be n indepen-
dent Y -valued random variables with & following the distribution P;. Then
for all € > 0,

sup (IT P) ({d(#Fn, P.) > €}) — 0 as n — oo
{Pihicicn€P™ =1

B 13 .
where P, denote the measure —»_ P; and d denote the Prohorov metric on
n

=1
IP as defined in (10) of Chapter 3.
Proof : First let us observe that for any function f in C(Y) and € > 0,

sup (I1 PRIl [ Fd(IF = B > ) = Oasn— oo (5.3)

{Phicicn€P™ =y

Next, we shall extend (5.3) to the following.
For any compact subset ¥ of C(Y) and € > 0,

sup (f] P)({sup] [ 10, = P > ) = 0 asn = co. (5.4)

{Pihicisn€l™
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This can be proved as follows.

Lel F be a given compact subset of C(Y) and € be a given positive real

number. Using compactness of 7 get hold of an §-net {f1, fa,- - yfi} of 7.
Then

supl [ Fd(F, ~ P\ < /2 + ax | [ (I = P

Therclore

ol (AP Wy [ 140 = P21 > )

< sup

(a1 ) ({max, | [ 130, = Pl > ¢/2}) =0 as = oo,
{Pihigicn€l" ooy
by (5.3).

As 7 and ¢ were arbitrary, this proves (5.4).

Let us now consider the function ¢ : IR — [0,1] defined by,

1 ift<o
Ppt)=4q 1—t ifo<t<1 (5.5)
o if1<t.

Then ¢ is bounded and uniformly continuous as it is a continuous func-
tion with a compact support.

For any € > 0 and closed subset F of Y, we shall denote the [unction

(J?D) from Y to [0, 1] by fcr and consider

%, := {fer : I a closed subset of Y'}. (5.6)

Let us now observe that for any z,y in ¥ and closed subset F of it

d(z,2) < dy) +dW:2) | ooy, iny,
and d(y, )S d(y, z) + d(z, 2) ’

Therefore taking the infemum over z in F and using the symmetry of d.

d(z, F) < d(z,y) + d(y, F)
and d(y, F) < d(=,v) + d(z, F).

Hence |d(z, F) — d(y, F)| < d(z, ).
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As z,y and F were arbitrary this proves that the family of functions
{d(-,F) : F a closed subset of Y} (5.7)

is equicontinuous on Y.

From now on, we shall assume that € is a preassigned positive number.

From (5.5)-(5.7) and boundedness and uniform continuity of ¢, we can
easily conclude that 7 is uniformly bounded and equicontinuous.

Therefore by Arzéla-Ascoli Theorem % is compact.

Hence, by (5.4),

sup (1T p,-)({sup;//d(m,. —P)|>¢}) »0asn— oo (5.8)

{Pihigisn€l™ iz JEeT

Let us now observe that the Prohorov metric d as defined in (10) of
Chapter 3 can ecasily be redefined using closed sets only, i.e., for any
r,Qep,
d(P,Q) = inf{n > 0: P(F) < Q") +7,Q(F) < P(F") +n VF C Y,

I closed}.

Therefore, for any P,Q in IP,

d(P,Q) > ¢
= there is a closed subset F' of Y (possibly depending on P,Q and ¢)
such that P(F) > Q(F¢) + e or Q(F) > P(F) + €
== there is a closed subset F' of Y such that
[ Lord? S P(E) > Q) + ¢ 2 [ furdQ + ¢
or [1rd@ S @y > P(r) ¢S [ fpar e
==> there is a closed subset I of Y such that

|f sordp = [ fordQl >
= 72;[//d(P—Q)I >e

where 7 is the family of continuous functions defined in (5.6).
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Therefore, for any P,Q in PP and {P;};<i<n in IP"

(I rar. > o) < (TR [ 14P -1 > 9. 69
i=1 i= J€7.

Taking supremum over {P;}1<i<n in IP" we get for any P,Q in I

s (T PEAPQ) > &)
*‘l

{(Pihicignel™ =

<

< s (1P) el [raP-Q)> ). ©10)
{P:hicicn€P™ =1

The result follows from (5.8) and (5.10) with P = IF,, and Q = P,. O
The following is an immediate corollary to the proposition
Corollary 5.1.1 Let (Y,p), IP, (€1, €2, -, €n) and d be as considered in
5.1

Let P* denote the uniform distribution on s, as defined
in Convention 1. Then for any € > 0,

Proposition

n
sup f(H Poio)) ({d(F2, FE) > €})dP(r) — 0 as n — oo
{Pihicicn€P™ Y 2y
Proof : In view of Proposition 5.1, it is enough to show that for any € > 0
P{d((P2)*,(PF)') > €}) » 0as n — oo. (5.11)
Fix f € C(Y). Let us denote [ fdP; by a; and - La, by @ Then
=

[G=tm L(ff“”’"“) [ /z] Z (f rapo)yari(x)

ieen

Yo

Gpgiy — Y2 AP ()

IN

1= o7 G D~

(5.12)
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since the variance under ling without repl is less than or equal

to the variance under sampling with replacement.
By (5.12) with arbitrary f, we note that the following analogue of (5.3)
holds : For any [ € C(X) and € > 0,

P [ 1Py = (PEY) > ) m0asn— . (5.13)
(5.11) follows from (5.13) exactly as in Proposition 5.1. =]
Proposition 5.2 Let G and GF be empirical distributions of &’s based

on odd and even numbered observations (vide (11) of Chapter 3, of course

they are not observable since &;’s are unknown constants). For any € > 0,
sup _ PR{d((G2)",(GE)) > ) = 0 as n = 00
{&}icign€S"
where d denotes the Prohorov metric on G as defined in (10) of Chapter 3.

Proof : The given expression

= sup /1(«((9:‘)-,@5)'»0(”)‘“’:(")

(€} 1<i<n€5™
N <e.v>,i‘.‘§,55n/(£ Be,) ({U(G2, GE) > )dP(x)

(where 6; denote the degenerate distribution at {£})

< o [ATGn) (G2, GE) > )ari(n)

{Cihigignegn?

— 0 as n — oo by Corollary 5.1.1 with Y = Z and (hence) IP = §G. (m]

Corollary 5.2.1 There is a sequence {€’},>; decreasing to zero such that

sup PR{A((GE), (GE)) > ) = 0 as n - oo,
{&}igiznEEn

Proof : The result follows trivially from the proposition. o
In view of the corollary it is natural to consider for any n > 1 and ¢ > 0,
an(e) i= {{&}igizn 1 d(G2,GY) < €} (5.14)
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Fix any sequence {€,}n»>1 decreasing to zero. Let 8, € ©. Let

{&ni}1<icnm>1 be a triangular array of elements in & such that
{&nitigisn € an(en) Vn. (5.15)

Corollary 5.2.1 leads to an analysis of the following triangular array

version of Model L.

Model It) : Let {Xni}i<i<nn>1 be a triangular array of rowwise indepen-
dent random variables with X, following the distribution P, ¢, , where
0, € © and the triangular array {éni}icicnn>1 satisfies (5.15).

Convention 2 Let (Y,Y) and (Z, Z) be as considered in Definition 5.1. Let
{Uni}i<ignnz1 be a triangular array of elements in Y. For any Z-valued
statistic V,, on (Y, Y)™ we shall denote the statistic Va({yni}izizn) by V,

The above convention suggests obvious Model I(t)-analogue of equation
(4.1) which we shall denote by (4.1)".

(5) As in observation (2), Definitions 3.1-3.4 have obvious Model I(t)-
analogues, and for any property P defined in Definitions 3.1-3.4 and statistic
Vi, Vi, salisfies P (1) only if V,, satisfies P (I(t)).

Let 3 be a k Fix 0, in @ and {&ni}icicnnz1 satislying relation
(5.15). The following is the Model I(t)-analogue of relation (4.2).

Don(0) = zw(xm,a,c” = $(Xais 00y Go)
i udd
+(0 = 02) [ (100, ) ' 000 G ) ()}
+__ Z {¥(Xni,0,G2,) = ¥( X 00, Ginn)
+(0=0,) [ %00 Gon) /' 001 G )di()}
(5.16)
for all 0 in ©.

The following conditions are the Model I(t)-analogues of conditions (i)-
(v) and U(i)-U(vi) of Chapter 4.
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o (a) Condition (i) of Chapter 4 holds, with G, replaced by G2,

(ii)*

)

con

and GE,,, uniformly with respect to n > 1

and (b) [ AL G() £l E"”"‘)) du(-)lg=go, or g&, — 0 as n — co.

The following two statements hold uniformly in n > 1

(a) there is 6, > 0 such that condition (ii)(a) of Chapter 4 holds
with G, replaced by G2, and GZ,

and (b)) J{8(10,G) = (00, GEP S (00, G2) () =
as (0,G) — (0,,GE,)
and ii) [{¥(-0,G) = (0, G2} (4 00, GFn)dis(:) = 0
as (0,G) = (00,GS,)-

¢ Condition (iii) of Chapter 4 holds with (Gn,G,) replaced by
(GE iy GO)s (Gins Gon)s (Gns GRy) and (Gony Gr)-

(a) Thereis 6, > 0 such that condition (iv)(a) of Chapter 4 holds
with G, replaced by G, n,

(b) condition (iv)(b) of Chapter 4 holds, with G, replaced by
G, uniformly inn > 1

and (¢) {J ¥(+00,Gnp) /(4 00, Gon)dis(-) : m > 1} does not contain
zero as a limit point.

! There is 6, > 0 such that condition (v) of Chapter 4 holds, with G,

replaced by Gy, uniformly in n > 1.

Let 6, > 0 be as considered in (ii)!, (iv)! and (v)‘. As belore, for any
dition C among (i)*-(v)!, UC denotes the condition that condition C

holds, with 0,,0 and ¢' replaced by 0,0 and 0", respectively, uniformly
with respect to 6,8’ and 8" in B(0,,6,), G in B(Gpnn,6,) and {£niticicn in

o

¢,). Condition U(vi)! is given below.
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U(vi)* (a) sup sup
n21 (6,{€ni}1<i<n)EB (60,50)x an(en)
[f l(w(»mgn,,)\zk)(2)1/1’(1,”,Qn.n)f(z,ﬁ,gn,n)dﬂ(x)] ~o
J(0,Gnn %) .

as K — oo

and (b) condition U(vi)(b) of Chapter 4 holds.

Lemma 5.1(t) Assume (C1)(b). Fiz any sequence {€n}n>1 decreasing
to zero. Fiz 0, in © and {En}icicnns1 satisfying relation (5.15). Let P
be a kernel. Let Dy, be as defined by relation. (5.16). Also, whenever it
makes sense, let T, (%) be the estimate defined through Definition 4.1 and
Convention 2. We can conclude the following.

(I) If conditions (i)‘-(iii)" hold, then for all ¢ >0 and € >0,

sup (I Peonc) {Dnn(0) > €}) = 0 as n — oco.
{6:40-6|<c/\/R} i=1
(I1) If conditions (i)'-(iv)' hold, then

(A) for any sequence {cn}n>1 increasing to infinity
n
(IT Pooeni) (Bn) = 1 as n — o0
=1

where E, denotes the event that there is a solution of
(4-1)" lying inside the interval (0, — cn/ /7,0, + cn/y/7)
and (B) under assumption (C1)(a), Tan(¥) is a y/n-consistent
solution (I(t)) of (4.1)'.
(III) If conditions (i)'-(v)' hold, then
(A) for any ¢ >0 and € > 0,

|Dn(0)] > €}) — 0 as n — oo

"
(IT Pooen)({ sup
i=1 {0:16—00|<c/v/n}

59



and (B) under assumption (C1)(aj,

R J<f{ P tn ) {VA( T () = 0) < 2})
= = B(2/V (o) G )]

— 0 as n — oo, where V denote the function defined in
(9) of Chapter 3.

(1V) As in Lemma 4.1(IV), for any conclusion C among (I)-(III), let
UC denote the conclusion that C holds unformly with respect to 0,
in compact subsets of © and {{ni}i<i<nnz1 satisfying (5.15). Then
U(I), U(II) and U(II)(A) hold if the relevant conditions among
U(i)'-U(v)* hold whereas U(III)(B) kolds if conditions U(i)'-U(vi)*
hold.

We can prove this by an easy modification of the proof of Lemma 4.1.

Note that

(6) Lemma 5.1(t) is only an auxiliary result needed to prove our main
result, namely Lemma 5.1(1V), the assumptions for which are only slightly
stronger than those of Lemma 4.1(IV), vide observation (7) preceeding

Lemma 5.1.

Let us now consider the original set-up, namely Model I with randomised

estimates.

For any n > 1 and {&}1<icn in 57, define
Bn({&}1ign) = {7 € sn: {&x(i) hr15icn € an(€l)}, (5.17)

where the sequence {€3}n51 is defined in Corollary 5.2.1.

Let ¢ be a kernel. Fix 0, in © and {£x}nz1 in 5. Consider the following
analogue of (5.16) in the present context.
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Do) = 3,0, (GE)) = (X 00, G)

=1
iodd

+(0 = 02) [ 100G (1001 ) dis()}
3= (0(X2,0,(2)") = w(X7, 00, G)

(0= 02) [ 9000, Ga) (4002 Ca)du( )}
(5.18)
for all 4 in ©.

Consider the following conditions uniformly with respect to 7 in
Bn({&}1gizn).
e o 4(,0,,G,0,G) —1
0 (@) Jirg limsup [ 6= —
S (500, G)la=(c2)" or (¢2)- 4K (") = 0,
where sy denotes the kernel defined by relation (3.20)

(-,0,,G ,00,G)}
and (b) [ L O 2SI G g

as n — oo.

= 50(-,00,G)}*

o (@Ey — 0

()" (a) There is 6, > 0 such that
limsup f‘l’z(', 0,G")
noreo (8, U’JEB((% G),60)
£ 80, G)dp()la=(c2)- or (¢5)- < o

and (b) limsup /('/’(‘v 0,G") — ¢(-,0,,G)}?

n—oo (8, G’)GB((,B,G]VSD
f(00,G)du()|lo=(g2)- or (¢7)- = O-

(iii)* Assumption (C1)(b) holds with a choice of Gy so that

timsvpl | sup (L] P ) (VA [ $,0,6010,0,)4u0)] > )
= 0, where (G,G) = ((G)",(65)"), ((G2)", G), ((G)",(62)") ox
(G5)", G-
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(iv)" (a) There is & > 0 and n, > 1 such that for all n > n,, z in §
and G in B(G,,6,),

¥(z,-,G) € C(B(0,,6.)),

(b) limsup[/ (-, 00, Gn) f(+ 00, Gn)du(-)] < oo (This condition
il

follows from condition (ii)*(a) but is given separately for case
in later referrences.)

and (c) liminf| [ ¥( 00 Ga) (-, 00, Gadis(3)] > 0.

(v)* There is 6, > 0 and A(:,0,,G.) € Li(f(-,0,,G,)) such that
[%(-,0',G) —¥(,0,G)| < |0' — 0]A(:,0,,G.)
for all 0,6' in B(0,,4,) and G in B(G,,5,).

Analogous to the formulation of the conditions U(i)-U(v) on the basis of
the conditions (i)-(v) in Chapter 4, we formulate the conditions U(i)*-U(v)".

An additional condition U(vi)* is given below.

U(vi)* (a) There is §, > O such that
lim sup
sup [)' Lyo0.6)2k) ()2 (2,0, G) f (2,0, G)du(z) I
(6,6)€B((80.G.).50) J(0,G, %)

—0as K — o0

and (b) condition U(vi)(b) of Chapter 4 holds.

Note that

(6) Any condition among U(ii)*-U(vi)* is equivalent to the correspond-
ing condition among U(ii)-U(vi) of Chapter 4 whereas condition U(i)* is
a stronger version of condition U(i) of Chapter 4 with U(i)"(a) equivalent

to it.

The following is the required analogue of Lemma 4.1.
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Lemma 5.1 Assume (C1)(b). Fiz 8, in © and {€.}n>1 in 5. Let ¢ be
a kernel. Let Dy, be as defined in relation (5.18). Also, whenever it makes
sense, let T, (¥) be the estimate defined in Convention 1. We can draw the
Jollowing conclusions.
(I) If conditions (i)'-(iii) hold, then for all ¢ > 0 and € >0,
sup (] Poe) ({D(8) > €}) » 0 asn — oo
8:10-60|<e/VR) i1

(M) If conditions (i)'-(iv)" hold, then

(A) for any sequence {c,}n>1 increasing to infinity
(IT Po..e)(Bn) = 1 as n — o0
=1

where E, denoles the event that there is a solution of
(4.1)" lying inside the interval (0, — cn/\/7,0, + cn/\/7)
and (B) under assumption (C1)(a), T;(¥) is a randomised /n-
consistent solution (I) of (4.1)".
(IIT) If conditions (i)°-(v)" hold, then
(A) for any ¢ >0 and € >0,

([I Poe)(

sup |D5(0)] > €}) = 0 as n — oo
{0:0-00l<c//R}

and (B) under assumption (C1)(a),

sup |(IT Pe..e) ({v/n(T3 () = 0) < 2})
= i=1
= &(z/V (00, Gn» )]
— 0 as n — oo, where V denote the function defined in
(9) of Chapter 8.
(IV) As in Lemma 4.1(IV), for any conclusion C among (I)-(ILI), let
UC denote the conclusion that C holds unformly with respect to
(00, {€n}n1) in compact subsets of © x 5%. Then U(I), U(II) and
U(III)(A) hold if the relevant conditions among U(:)*-U(v)" hold
whereas U(IIL)(B) holds if conditions U(i)*-U(vi)" hold.
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Proof : Observe that for all n > 1, d((G2)*,(GE)*) < € if and only if
{&}1<icn € an(€) (vide relation (5.14)) so that Corollary 5.2.1 can be
restated as

sup  [L— P¥(Ba({&}1gign))] @ 0 as n — oo (5.19)

(&} 1zigneSn
where B,’s are as defined in relation (5.17).
We shall now prove part (1) of the lemma and then indicate a proof of
part U(I) of it. The other parts can be proved similarly.
For this purpose note that conditions (i)*-(iii)* imply that for any 0,
in ©, {&u}nz1 in
Bn({&}1<i<n), conditions (i)'-(iii)* with e, = € hold at the point 6, in ©

and triangular array {&x,.()}1gi<nnz1 Which satisfies (5.15) by the choice of

£% and sequence of permutations {mp}n»1 with m, in

m,’s. Hence by part (I) of Lemma 4.1(t) for any ¢ > 0 and € > 0,
sup sup  (II Pooc) {ID(0)] > €lIT = 7}) (5-20)
*€An({&i}1sign) {0:10-00|Se/v/) i1
— 0 as n — oo.
Let A, = 5". For any « in A, and 7 in fa(c), let

Jalmy) = (T Pooed {ID(0)] > €l1T = ).

sup
(0:0-60lSe/v/m) i1
By (5.20)

sup fa(m,a) > 0asn — oo
7€Bn(a)

and f, is [0, 1]-valued.

Hence, by (5.19)

R LA O ARNACOE SO R AR AT AC R
as n — oo, proving part (I). Part U(I) follows similarly from the uniform
versions of (5.19) and (5.20) with A, replaced by relevant compact subset
of ©® x &". ]

Defintion 4.2 has an obvious extension for randomised estimates. The

following is the Model I-analogue of the extension.
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Definition 5.8 Any kernel ¢ satisfying U(ii)*-U(vi)* will be called an es-
timable kernel in Model I (or, in short, an EK (I)) and any randomised

/R-consistent solution (1) of (4.1), i.e., any uniformly y/n-consistent solu-

tion (I) of a randomisation of (4.1) namely,

1

30 WX (Pa),0, (GE) (P) + \% 32 WX (P2, 0, (B2)"(P) = 0
!

ieven

for some probability measure P, of s, will be called a generalised Cy-

estimate in Model I corresponding to i (or, in short, a GCy (1) estimate).

There is an obvious analogue of Lemma 4.1a for Model I and randomised
estimates and in view of observation (7), we can make the following remark.

Remark 5.1 For any kernel , % is EX (I) if and only if it is EK (II) whereas
for any randomised estimate V, of 0,, Va is GCy (I) only if it is GC; (II).
Also, one can easily verify that Examples 4.1 and 4.2, with T,,(¢) replaced
by T;:(t) for the latter one, remain valid for Model L.

The following is the Model I-analogue of Remark 4.3.

Remark 5.2 It (S, $) = (IR?,B?) and assumptions (A1) and (B2)(a) hold
then Corollaries 3.1.1 and 3.1.2 enable us to drop assumption (C1)(b) even
if @ is unbounded.

Let us now write down the analogues of Theorems 4.2 and 4.3.

Theorem 5.2 Assume (C1), (B2) and (BS). The (randomised) estimate
7% of 0,, as defined through relations (4.15)-(4.16), Definition 4.1 and
Convention 1, is UAN (I) with AV (1/I).

Theorem 5.3 Assume (C1), (B2) and (B3s). The (randomised) estimate
T: () of 8,, as defined through Definitions 4.1, 5.1 and Convention 1, is
UAN (I) with AV (1/1).

65



Remark 5.8 Theorems 5.2 and 5.3 tell us that Z; and Tj:(%) have the
most limiting concentration around 0, among the randomised regular (1)
estimates, i.e., the following holds.
For any (0,,{én}n>1) in © x 5%, randomised regular (I) estimate V,, of
0, and convex symmetric set A in B(JR),
n
Jim (T] Pe.e) (VR I3 (00, G) (Wa — 0,) € AY)
=1
= P(N(0,1) € A)
n
2 limsup(I] Po,.e) (VA T3 (00, Gn) (Vo = 00) € 4})
n—eo iy
where W,, = Z;. or Ty (¥).

Remark 5.4 It has been pointed out by van der Vaart (1987) as criticism

of the regular estimates that given any regular estimate one can construct

a non-regular asymptotically normal estimate which is better. To some
extent the idea of such a construction is implicit in a grouping technique
introduced in a paper by Chaterjee and Das (1983) as variance estima-
tion. However, such better estimates due to van der Vaart is, of necessity,
non-symmetric in X;, X3,...,X,. This makes one reluctant to use them.
Moreover, from a technical point of view, one should compare its maximum
risk, over permutations of &1, &3, ..., &, With the risk of a regular estimate.
This is a matter that requires further examination. In this connection it
would be interesting to study the efficient regular estimate in Example 1.2
with the best equivariant estimate that exists if (£1,&2,+, &) is known

upto a permutation. We hope to study this in a further communication.

Remark 5.5 There can be no asymptotic improvement over efficient esti-
mates of the kind discussed in the previous paragraph if the optimal kernel
does not depend on G. Typical situations where this happens are discussed
in Lindsay (1980) and Pfanzagl (1982) (see also Chapter 6(b)). In partic-
ular, this holds for the estimate in Example 1.1. We omit proof.

Remark 5.6 If the dimension ¢; of X; is not constant one can group the

observations according to their dimensions, Let us now consider the special
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case where the distinct values of ¢;, 7 running from 1 to n, remain fixed
as n tends to infinity, in other words, there are finitely many such groups.

Let us rearrange the observations to get an array of independent random

variables
Yu Yiz -0 Yin,
Y1 Yz -o0 Yo,
Y1 Y2 oo Yo,

with Yji’s following f(-,0,, &1, k;) and n; being non-negative integers with
Sio,n; = n.  Without loss of generality, let us assume that
ky < ky < ++- < k, and liminf(%) > O for all j, so that each group
represents a distinct fixed set-up model by itself. Call an estimate of 0,
regular (in the new model) if it is uniformly asymptotically equivalent to
a pooled mean of regular estimates (including the randomised ones) as de-
fined through Definitions 1.1, 5.1-5.2 and observation (2), corresponding to
each component fixed set-up submodel. For the j-th submodel, let !f;,‘ de-
note the optimal kernel as defined through relations (3.20)-(3.22), Un; and
G, denote, respectively, the uniformly y/n-consistent estimate of 9, and
= IFn,({€1}1<i<n;) (vide Definitions
3.1-3.2) as considered in assumption (C1), the superscript *J stands for the

uniformly consistent estimate of Ga;

operation of randomisation as defined in Definition 5.1 and the superscripts
O and E stand for the operations defined in (11) of Chapter 3. Then an

efficient regular estimate will be a solution of

z zw( 7,0, (GR) +Z Z W(Y;7,0,(G)7) =0 (5.21)

which is nearest to U, if there is a solution of (5.21) lying inside

— log n/\/ni, Un. + logn//n] and equal to U,. otherwise; where Up =
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Remark 5.7 In view of Remarks 5.2 and 4.4, for Euclidean S and expo-
nential f, it is enough to check assumption (C1)(a), i.e., the existence of
a uniformly \/n-consistent (I) estimate of 6,, and assumptions (B3) and
(B3s), i.e., smoothness properties of the optimal kernel (¢f. Remark 4.8).
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Chapter 6

Two Special Cases

In this chapter, we shall discuss two special cases referred to in Chapter 1
where the optimal kernel 9 is “smooth”. Throughout the discussion, we

are assuming the validity of assumptions (A2) and (A3).

(a) Orthogonal Case : This is a generalised version of the symmetric
location-scale problem with known functional form of the density f, as
in Example 1.2. llere, for all (0,G), s4(-,0,G) belongs to the orthogonal
complement of the space Ny, so that sy itself is a version of the optimal
kernel.
Let us assume that
(D1) (a) Forall zin S, f(z,+,) € C20(O x &)
and (b) for any compact subset O, of © the following statements hold
(i) there is 6,
a) the following two families of functions
na2(. gt
% :0,0' € ©, with |0 —0'| < &,,
G € g}
and
{s3(-,0',G" f(-0,G): (9,G),(0',G") €
6 x G with |0 — 0'| + d(G,G") < 6}

are uniformly integrable with respect to p

and b)  sup [f (Is'e) (-, B((9,G), 8)) (-, 0, G)du()]
(6,G)E6xG

" (2(,0,G)
and (ii) ,G?\E.\gxg[{/ Leaa. lG))K)Wd“(')}/I(a’G)]

— 0as K — co.
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Assumption (D1) and orthogonality together imply assumptions (B2)
and (B3s). llence by the theorems proved in Chapters 4 and 5, Z, and
T (%) are efficient (I1) and Z; and T}; () are efficient (I) as well as efficient
(1I), both under assumptions (C1) and (D1).

We have verified assumptions (A1) and (D1) for Euclidean S and expo-
nential f as considered in Remark 4.4. In pa.r(;.icular, they hold for Exam-
ple 1.2 with p > 2.

Example 1.2 with p = 1 does not fall in the exponential families
described in Remark 4.4. However in this case one can easily verify as-
sumption (D1). The verification of assumption (A1) is as follows : Let
(8,G), (¢',G") be such that f(-,0,G) = f(-,0',G") a.e[A]. By symmetry of
the normal density function we get § = ¢'. So, it remains to prove, for all
0 in O, the identifiability of G. In this respect, let us observe that condi-
tions (b)-(d) of Remark 4.4, have obvious modifications guaranteeing, for
any 0 in O, the identifiability of G. We have verified these conditions for
Example 1.2 so that G = G' and hence the validity of assumption (A1).

In view of Remark 4.7 and observation 1) of Chapter 3, it remains to
check assumption (C1)(a) for Example 1.2 and in this respect the grand
mean X = L ¥, ©°7_, X;; is a natural choice for Un.

In view of the last two paragraphs Theorems 4.2, 4.3, 5.2 and 5.3 hold
for Example 1.2 with arbitrary p. An asymptotically efficient estimate for
Example 1.2 with arbitrary p can also be obtained from the results of van
der Vaart (1987, pp 89-93).

(b) Case of Partial Likelihood Factorization : This case in the present
context was first considered by Lindsay (1980). Here the likelihood function
f factorizes in the following manner.

There are Borel-measurable functions p : S x & — IR* and ¢ : § X
6 x 5 — IR* such that

1(2,0,€) = p(z,0)q(z,0, €) for all (z,0,§) €S x O x & (6.1)
and [ p(-09q(-0,€)du(-) =1 for all (6,0,¢) €6 x 6 x 5. (6.2)

In cases where (6.1) and (6.2) hold we call p a partial likelihood function.
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In applications, for (6.1) and (6.2) to hold one assumes the existence of
either a partially suflicient statistic ¢t for £ or a &-ancillary statistic ¢. In
the first case ¢ is the marginal of t and in the second p is the marginal of
c. Example 1.1 falls in the first case with ¢(X;) = Xi. (An example of the
other kind is Example 9.4 of Lindsay (1980, pp 654-655).)

Here § ,

se=0 4L (6.3)
14 q

Assume that

(D2) (a) For all z in S, p(z,-) € C2(8) and q(z,-,-) € C24(6 x §)
and (b) for any compact subset 8, of © the following statements hold
(i) there is 6, > O such that
a) the following three families of functions

EPEOPH0.6)
ST o e e
with |0 — 0'| < 6, and G € G}

PEO@HOE) oo

p(0)e(-0,G)
with |0 — 0'| < 6, and G € G}

{

and

'
{(%)Z(',a')z)(-,0)q(-,0,G) 0,0 o,
with |0 — 6'| < 6, and G € G}
are uniformly integrable with respect to u
and b) sup

(6,G)€€.x G

[ UED 6 B0,8)p(,0)a(:, 0, G)du()] < oo

and
sup
(0,6)€6,x G

[ (1) B0, 60, 0)a(10,G)au()] < oo
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(-, 0)q(- 0, G,
wd @), o I ‘«e’mm%f‘“‘”
[/ H 9, G)du(v)]’l—ﬂ)asK—»oo.

(D$) For any (0,G) € 6 x G, there is My € M, such that
¢(@.0.6) _ az.0,Mo)
q(z,6,G)  ¢(z,0,G)

Clearly, assumption (D2) implies assumption (B2). From assumption

(D3) and relation (6.3) we have ¢ = %’ so that assumptions (D2) and (D3)

together imply assumption (B3s). Hence we get the required efficiency of

Z, and T,(%) in both the set-ups under assumptions (C1)(a), (D2) and

(D3). (Note that in this case Z; = Z, and T (%) = Ta(%)-)

Let us note the following

for all (z,6,G) in S x 6 x .

Remark 6.1 If assumption (D2) holds and equation (4.1), with 3 = &, has
a unique solution , (say, the latter holds for Examples 9.2-9.5 of Lindsay
(1980) which includes Example 1.1) , then part U(II)(B) of Lemma 4.1
(equivalently, that of Lemma 5.1) holds with T,(¢) replaced by 8,, in other
words, 8, is UAN(I) with AV V(-,-,4), guaranteeing assumption (C1)(a)
with U, = 0, (which, in turn, implies T,(¢) = ,).

We are now going to check assumptions (C1)(a), (D2) and (D3) for
Example 1.1. In view of Remark 6.1, it is enough to check assumptions
(D2) and (D3). We have verified assumption (D2) for the more general
case of Euclidean S and exponential p, g provided assumptions (a), (b)
and (d)-(f) of Remark 4.4, with 6 x 5 and C30(6 x Z) replaced by &
and C;(8), respectively, hold for p and assumptions (a), (e) and (f) of this
remark hold for g. A proof of assumption (D3) is given in Lindsay (1980,
§8.1-§8.2).

Example 1.1 can also be handled in a slightly different way, vide Pfan-
zagl (1982). Pfanzagl assumes the existence of a partially sufficient statistic
t(z) of £. Instead of assumption (D3) he assumes the completeness of ¢ with

respect to the family {Ps¢ : £ € 5} for all 4.
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Note that in this case sy is given by (6.3) and the functions of Ny¢
depends on z only through t. One can use the latter fact and partial

sufficiency of ¢ to conclude that

?'(9) .
Pl € Nig v0,0).
Therefore,
= % e (6.4)

where 1, denote the optimal kernel in the mixture model induced by the
marginals Py of t.

Therefore, using Lemma 3.5 for the marginal model, one observes that,
under assumptions (A2)-(A4),

Ep; {#(0,G)} = 0ae[Pig] V(0,G,G).
Hence, by completeness of ¢,

(-0,6) = OaelPg] V(6,G)
ie, Pi(t(-),0,G) = Oael[Psg] V(6,G)

proving, in view of relation (6.4), that ¢ = Z.
Note that for any 6 in © one can easily weaken the condition of com-
pleteness of {Ps¢ : £ € £} by Lj-completeness of it, in other words, it is

enough to assume that for any # in 6 and function ¢ of ¢,
¢ € Ly(Po) V€ onlyif ¢ =0a.e[Pog] V&

(see also Definition 5.12 of van der Vaart (1987, p. 107)).
If, in the above, one allows ¢ to be a [-dimensional real-vector depending
on 4, i.e., t = t(-,0), essentially the same calculation imply that the optimal

kernel is .
-7 a3 3 a3
¥ = > +§(Eq]{(ﬁ‘) - E(ﬁ‘[‘)}

— a result due to van der Vaart (1987).
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Our calculations are somewhat different from the above authors
(i.e., Pfanzagl and van der Vaart). Assumptions needed for applying Theo-
rems 4.2, 4.3, 5.2 and 5.3 for Pfanzagl’s case are (C1)(a) and (D2) whereas
those for van der Vaart’s case are (C1) and an obvious generalisation of
(D2). In this connection, it may be pointed out that van der Vaart’s
method, based on a generalisation of Pfanzagl’s model, is a powerful one
yielding a solution for Examples 1.1 and 1.2 as well as Example 9.6 of Lind-
say (1980, pp 656-657) and the symmetric location-scale model of Bickel
and Klaassen (1986). However, his L;-completeness condition does not ap-
ply to Example 9.4 of Lindsay (1980) mentioned earlier in this chapter. His

estimate is different from ours and requires fewer regularity conditions.
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Chapter 7

Mixture Models with Observations on G

So far, we had only a single set of observations, which is used for esti-
mating both § and G. The question now arises what happens if another
(independent) set of observations giving information only on G is also avail-
able? Will the problem become simpler? Hasminskii and Ibragimov (1983,
§3) has provided a positive answer to this question. In the following discus-
sion we shall derive their results using the methods of Chapter 4 instead
of the original method due to Hasminskii and Ibragimov (1983). The as-
sumptions of direct observations on G allow a verification of the smoothness
conditions of the optimal kernel. Less important, but still useful, is the fact
that we also have a uniformly y/n-consistent estimate of G so that the split-
ting technique can be avoided and the identifiability assumption becomes
much weaker.

This problem is taken up mainly as a technically interesting case where
the required smoothness of the optimal kernel can be demonstrated. How-
ever, it may also have some practical applications as indicated in the fol-

lowing scenario.

Ezample 7.1 Suppose there is a source sending a signal 8 over time. The

signal as it comes out of the source at time ¢ is distorted to
Z,=0+€

where ¢, is the noise associated with the source, €’s are, say, i.i.d. N(0,0?),
o? known. As Z; passes through a channel there is a further distortion &

leading to an observation of
We=0+e+&

&’s are assumed to be i.i.d. with common distribution G. Clearly &’s are

not observable at a time a signal is being sent, since they are confounded
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with the signal. But the distribution G can be estimated by observing
W, = & when a signal of magnitude zero is being sent from another con-
trolled source, i.e., when Z, = 0. Suppose that two independent sets of
observations are recorded, the first one (X1, X2, -+, Xn, - -) being recorded
at time instances when a signal is being sent from the original source and
the other one (¥7,Y3,- -+, Yn,--) when sent from the alternative.

More generally, one assumes given a signal # and an “uncontrollable”

noise ¢, the channel produces response X according to the density func-
tion f(-,0,€). Along with observations on X, one has observations on the
distribution of £. Let us now write down the model explicitly.
Model IIT : Let (Si,S;) be an arbitrary measurable space and S; be a
compact metric space with S; = B(Sz). In other words, (S1,S1) and S;
play the roles of (S, S) and 5, respectively, of Model II. Let © be as in
Model II and § stand for the set of all probability measures in (Sz, S2).
In this model, observations (X;,¥;) are i.i.d. random vectors in (51, $;)? X
(Sz2, S2)4(=(S, §)) with common distribution

P q
P =11 f(25,00,Go)du(z;) II dGo(ys) for all (z,y) € ST x 57
=1 k=1
for some 6, in & and G, in §. [As in Chapter 1, let us also assume that
the probability measures are well-defined on 6 x §.]

Note that

(1) Definitions 3.1-3.5 have obvious Model II-analogues which is
obtained by replacing X;’s by (X:,¥;)’s and Ps,c, by P{%_ in the rele-
vant definition for Model II.

As in Chapter 3, we shall abbreviate the phrase ‘in Model III’ by (III)’.
Notation : We shall denote the set of all Model IlI-kernels by K.

We shall need the following definition.
Definition 7.1 A function ¢ : $;x6x § — R (Szx6 x § — IR) is called an
Sy (S2) - kernel if ¥(-,0,G) € L3(f(-8,G)) (L3(G)) for all (6,G) in & x §
and the set of all S; (S;) - kernels is denoted by K; (Kz).

76



Given any Si-kernel ¥ and Sj-kernel 4, let us define a function Qy, g,
from § x & x G to IR by

Cura(2:9),0,6) = 3 vu(25,6,G) + 3 ¥a(us,0, G)
=1 k=1
v((z,¥),0,G) € S x & x G. (7.1)

Note that
(2) Relation (7.1) defines a bounded linear map from K, x K; to K.

As in relation (3.20), let us define the §-score Sy for Model III by
9 )
55((2,v),6,G) E £120,9.8) _ s~ 2000,6)
1 f(2,6,G) o
V((z,v),0,G) € S x 6 x G. (7.2)

(3) Ss € K if and only if s; € K; so that Ss is well-defined under
assumption (A3). Also, for p=1and ¢ =0, S5 = ss.

Before proceeding further let us make the following convention and def-
inition.
Convention : For any G in G and ¢ in L}(G), we shall denote the function
J1( €)6(£)dG(€) by f(:,-, ¢dG).

Definition 7.2 For any (6,G) in & x § and ¢ in L§(G), define 4,c(¢) from
51 to IR by

(2,8, $dG)
DBLP%0) vre s,

f(z o,6) C€%

and for any ¢ in K, define A(¢) from S; x 6 x § to IR by

Asc()(z) ==

A(¢)(2,6,G) := Asc((,6,G))(z) V(z,6,G) € 51 x 6 x G.

Then

(4) For any (9,G) in & x G, Asc is a bounded linear map from L§(G) to
L3(f(-,6,G)) and A is a bounded linear map from K to K;.
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For any (0,G) in 6 x G, define
Ny = {¥ e Ly(PJY):3¢ € L§(G) with
(=) == ZAac ) (=) + Z¢(yx) V(z,v)}-(7.3)

(5) The elements of Ny can be thought of as ‘directional scores’ with
respect to small variations in G. However, for the special case where p =1
and ¢ = 0, Ny is a proper subset of Ny unless G has a finite support so
that relation (7.3) falls short of an analogue of relation (3.21).

As in Chapter 3, one can define an optimal kernel ¥ and the information
I'T by the following analogue of relation (3.22).

7(-0,G) Projn; {Se(-0,G)}
e, G) = ||&(-9, G)HL’(P,,,)

} v(0,G). (7.4)

In order to get a simpler formula for evaluating ¥, we shall need the

following definitions and lemma.

Definition 7.8 For any (0,G) in & x G, the closed linear space in L§(PJ§
spanned by S;(-,8,G) and Nsc will be called the tangent space at (6,G)
and will henceforth be denoted by Tj/4.

Remark 7.1 Our tangent space coincides with that considered in Hasminskii
and Ibragimov (1983, §3).
Definition 7.4 Call a kernel ¥ a tangent-space-kernel if ¥(-,0,G) € T{
for all (6,G) € 6 x G.

Observe that

(6) T4 consists of functions of the form Z é1(z;) + Z ¢2(yx) for some

#1 € LY(f(-,0,G)) and ¢, € L3(G) so that a.ny tangent-space—kernel ¥ must
be of the form Qy,,y, for some ¥; € Ki, ¢z € K».

(7) A tangent-space-kernel Qy, ¢, is an optimal kernel if and only if

2 91(+0,6) Anc(8)()1(0,6)du()) + a( [ #2(,0,G)#()4G()) = 0
(7.5)
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for all (8,G, ) with ¢ € L3(G).

In Lemma 7.1(2) (vide relation (7.6)), we give a simpler sufficient con-
dition for a tangent-space-kernel to be optimal. Lemma 7.1(b) gives a sort
of converse which is a Model I1I-analogue of Lemma 3.5. Then in Lemmas

7.2-7.4 we show a smooth solution of (7.6) exists.

Lemma 7.1 (a) If for some tangent-space-kernel Qy, y,,

# [ 9:(,0,6)£(.0,6)du() +q [ ¥2(-,0,G)dG" () =0
v(0,G,G) €O xGxG (7.6)

then Qy, 4, is a version of the optimal kernel.

(b) Conversely, if Qy, y, is a version of the optimal kernel defined through
the relations (7.2)-(7.4) and for all 0 the L.H.S. of (7.6) is continuous
in (G,G"), then (7.6) holds for it.

. Proof : (a) In view of observations (4), (7) and the fact that the set of all
bounded functions ¢ lying in L§(G) is dense in it, it is enough to show (7.5)
for bounded ¢’s only.

Now, let ¢ be a bounded function in L$(G), then there is € > 0 such
that 1+ né(y) > 0 for all y in S, whenever || < e. Fix one such €. Define
the curve G, : (—&,€) — § by

dG, () = {1+ n¢()}dG() Vn € (—¢ ).
The relation (7.6) with G' = G, implies relation (7.5) for ¢. Since ¢

was arbitrary, this proves (a).
(b) An easy modification of the proof of Lemma 3.5(b). o

Let 9; be an S; kernel, ¢ = 1,2. Consider the following Model III-

analogue of equation (4.1).

3 Qo (X ¥0,0.80) + 3 Quunn((X 10,080 =0 (1)

i=1
i

ieven

where G 1= Fng(Yis, Yiz, -+, Yig, Yo, Y22, 0+, Yag, -+, Y1, Yozs -, Yo
and suffixes £ and O stand for the operations based on even and odd

indices, respectively, as defined in (11) of Chapter 3.
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Note that

(8) By Proposition 5.1, &, is a uniformly consistent (III) estimate of G,
(vide Definition 3.1 and observation (1)).

Assume that
(E1) There is a uniformly \/n-consistent (III) estimate U, of 8, (vide Defi-
nition 3.2 and observation (1)).

Let T,,(Qy,.y,) be the estimate defined through Definition 4.1 and obser-
vation (1). We are now going to give regularity conditions on f, ¥; and ¥,
guaranteeing uniform asymptotic normality (III) (vide Definition 3.4 and
observation (1)) of Tn(Qys.¢a)-

Fix (6,,G,) in 6 x G. Let §, denote a positive real-number which will
be chosen later. The following are the required regularity conditions.

Uli] Condition U(i) of Chapter 4 holds.

For any condition U(C) among U(ii), U(iv)-U(vi) of Chapter 4, U[C]
denotes the condition that U(C) holds with ¥ replaced by %, or the relevant
parts of it hold with (¥, f,u) replaced by (¢2,u,G) where u denotes the
function identically equal to one. The condition Uliii] is given below.

Uliii] For any ¢ > 0 and € > 0, the supremum, over 8§ € B(,,6,),
G € B(G,,6,) and |6 — 8| < ¢/+/n, of
2
(P ({Ivmp [ #1(,0,80)1(,0,G)du()
2
+vmg [ $:(,6,8.)d6()| > &})
tends to zero as n — oo.

The following is the Model III-analogue of Lemma 4.1a.

Lemma 7.2 Assume (E1). If f satisfies conditon Ufi] and (¥1,%;) sat-
isfies conditions Ufii]-Ulvi], then Ta(Qy,y,) is a uniformly /n-consistent
solution (III) (vide Definition 8.8 and observation (1)) of (7.7) as well as
UAN (III) with AV V (-,-,%1,%2) where

pll¥a(- 0, G)Hi,(r, Sk qll¥:(-,6,G)|I3. (G)
= L 2 v(9,G).
P(¥1(+0,G),54(-0,G))i(p, ) S

V(0,G,¢1,¢)
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An easy modification of the proof of the parts U(II)(B) and U(IIT)(B)
of Lemma 4.1 proves the result.

From now on, we shall assume that g is positive.

Note that

(9) If there is ¢ in K such that Q,,+a(¢),¢ Satisfies relation (7.6), then
I'"(6,G) = pllse(-, 8, G) + A(6) (8, )2, (sc0.6y) + all$(5 0, Dl Eas)
v(8,G).
Hence I"71(§,G) > 0 if and only if
(E0) 0 < [|s6(+ 8, G)IZ,(s.06) < o V(0,G)-
(10) Assumption (D1) implies assumption (E0) and condition U[i].
Therefore, in view of observation (9), conditions Ul[ii]-U[vi] hold for
1 = ss+A(¢) and 2 = ¢ provided there is ¢ belonging to Co,1,0(S2x6 x §)
such that Qy, ¢, satisfies relation (7.6).

Remark 7.2 In view of observations (9)-(10), it remains to prove the exis-
tence of ¢ lying in Co1,0(S2 x © x G) such that Q,,+4(4).¢ satisfies relation
(7.6).

Let us now observe that, for any ¥; in K; and ¢ in K, relation (7.6)
is equivalent to
P [ $1(50,G)1(,0,5)du() + a¥2(4,0,G) =0 V(8,G,v) € 6 x § x 5.
Therefore, Q,,+4(¢),¢ Satisfies relation (7.6) if and only if
P[54, 0.Q)f(,0.0)du() = —p [ AB)(0,G)I(-0,9)du()

—4¢(v,0,G)  V(0,G,y). (7.8)

But, for any (8,G,y) € & x § X Sz,

[ A@),6,6)7 (.0, 5)du()

[#(v/,6,G)/(=,0,4)dG()
/ —?,)iy/(z,e,y)du(x)
[ Kw.4,0.G)6(5',0,G)4G () (79)
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where the function K : Sz x 53 x 6 x § — IR is defined by
(6,9 7(,6,¥")
FAMLLL JFAULAY DAFIA

Teaey w0
VY(y,v',0,G) €Sy x Sa x 6 x G.

K(y,v,0,G) :=

Assume that

(E2) (a) For any z in S, f(z,+,-) € C1,0(6 x Sz)
and (b) the following three families of functions

{ﬁ%”—) :(v.v,0,G) € S: x S; x 6 x G}
{f(”ef’(lf?i(c‘:vﬂ,yi) 1 (1,¥,0,G) € 52 x S2 x 6 x G}
16,0,9)7(,6.9)1'(.6,G)

and { 76:6,6)

(v,¥',0,G) € 52 x S; x © x G}
are uniformly integrable with respect to u.

(11) Under assumption (E2), K € Cop,1,0(Sz2 % S2 x & x G) and therefore
the R.H.S. of relation (7.9) defines a bounded operator B from CK; to CK;
where C K, denotes the subspace Co,10(S2 X8 x §)NKz, of Co,10(S2 X O % G).

Definen : S; x & x § — IR by
1,0,6) 1= [ 54(2,0,6)1(,0,v)du(z) V(5,0,G).  (7.10)
(12) Under assumption (D1), n belongs to the set C Kz.
By (7.8)-(7.10) we see that for all (y,6,G)
q
n(v,0,G) = —(B+ ;I)(¢)(y,9,G)
= —C($)(:6,G) (7.11)
where C denotes the (bounded) operator (B + 1) from CK; to itself.
In view of observations (9)-(12), Remark 7.2 and relations (7.9)-(7.11),
it remains to prove that C is invertible. As a first step towards this goal

let us show that
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Lemma 7.3 Under assumption (E2), (a) C is 1-1 and (b) B is a compact

operator.

Proof : (a) Let ¢ € CK, be such that C¢ = 0.
Then,

[ #.0.0)K(1.5,6,G)6(+/,0,)AG()4G (W) + 211#( 0 Dlltu(e) = ©
v(6,G)
which, in turn, implies

{ 8(v,0,G)f(2,0,9)dG(y)}* -
/ et ) du(z) + 21908, 0)lue) = 0 (0, 6)

equivalently,
#(-,0,G) =0a.e.[G] V(4,G)

and hence
é = 0 [Since ¢ € CK;)].
(b) Want to show that AS is compact in || [|o,1,0-norm where
AS = {A($):¢ € 5(Coro(Szx 6 x §))}
and §(Co10(S: x & x §)) = {# € Con0(S2 % 6 x G) : [ ¢lloso = 1}-

Note that, ||¢llo,1,0 = [[8llsup + | Z¢llsup for ¢ € Co1,0(Sz x € x G).
Also, note that AS is compact if and only if AS and (AS)' are uniformly

‘bounded and equicontinuous where
a =
(AS) = %(A(qﬁ)) 1 ¢ € S(Copol(S2x6 x G))}.

We shall only show that AS is uniformly bounded and equicontinuous.
One can prove this fact for (AS)' in a similar way.

Now, let us observe that
148llsup < 1K lsupllllsup < 1K llsupllbllono V6 € Coao(S2 x € x G).
Therefore, AS is uniformly bounded. (7.12)

83



Let us now fix (yo,0,,G,) € Sz x 6 x G, then
[4(6)(4: 6, G) = A(8) (4o 01 Go)|

= | K(.v.0,6)6(,0,6)dG(v)
= [ K(or',00,G)(¥', 00, G} dGoly)]
| (K, ,0,6) = K(ua¥/, 00, Go)}o(v',0, GG W)
+ [ K(1o,9',0,, G){8(5,6,G) = (1,0, Go)} G W)
H [ K (ort 00, G)(', 02, Go) (G = Go) (4]
< g + g + g — ¢ if |6 -6,], d(G,G.,) and p(y,v.) <5  (7.13)

IA

where p is some metric inducing topology on S; and 0 < 6 < 3\[1{6

is

leup

chosen in such a way that for any pair (v,¥',6,G), (3,7,6,G); |6 — 8|,
d(G,G), p(y,7) and p(v',7') < § imply

- € s = €
— &(7,0 e ',0,G) — 3,9,0,G =
|6(v,0,G) — 6(7,6,G)| < Ko and |K(y,y',0,G) — K(3,9,6,G)| < 3
From (7.12) and (7.13) it follows that AS is uniformly bounded and
equicontinuous. [w]

As a corollary to Lemma 7.3, one can show that

Lemma 7.4 Under assumptions (D1) and (E2) there is a function
$ € CK; such that ¥ = ss + A($) and 1, = & together satisfr relation
(7.6) and conditions Ufii -Uui.
Proof : In view of calculations done earlier it is enough to show that C is
invertible.

Suppose not. Then using the fact that ¢ # 0 and compactness of B
conclude from Theorem 4.25(b) of Rudin (1974) that C is not 1-1, which
contradicts Lemma 7.3(a). o

In view of Lemmas 7.1-7.4 one can show

Theorem 7.5 Assume (E1), (D1) and (E2). Let ¢ be as consi ed in
Lemma 7.4. Then Ta(Q,,+a3),4) s UAN (IID) with AV (1/I'7).
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Remark 7.8 It is worth pointing out that we do need the compactness of
the operator B since it acts on a Banach space rather than a Hilbert space.
Note also that we make use of ‘non-negative’-ness of B (vide Lemma 7.3)
but the associated inner product will not give the norm of the Banach

space.

Remark 7.4 We have verified assumptions (D1) and (E2) for the following

two cases
Case I (a) S is compact,
(b) f € Coz0(S x 6 x G)
(c) f(=,6,G) >0 V(z,6,G)
and (d) Poc({|f'(-.6,G)| > 0}) >0 ¥(8,G).

Case II We have Euclidean S and exponential f following assumptions (a)

and (f) of Remark 4.4 and additional assumptions

k

T 2o(m)*(6,€) >0V(6,€)

=1
and () for any 0 in ©, both 27, ({8} x 5) —77({6} x 5) and 277({0} x 5) —
7; ({6} x ) belong to the interior of 2.

In particular, Example 7.1 falls in Case II of the above remark.

Remark 7.5 To solve (7.7), we have to determine for various values of 0,
#(Y,6,G,.) and #(Y,6,G,,) evaluated at all the observations Y;;’s on Y.

Now, one can easily observe that for G’s with finite support and y’s
restricted to the support of G, equation (7.11) can be rewritten in the from
Az = y where the matrix A is positive-definite. Thus we have a unique
solution for &(¥i;,0,8%) for odd #’s and for $(¥i;,0,85) for even is.

To evaluate {$(Yy,8,82),1 < i < gyieven} and {3(¥:;,0, c: ),
1<

o

< g,i0dd }, define G,y := (1 —f)c 4 eB. and G = Bh +

2E ~
(1 — ¢)&, and solve the linear version of (7.11) with G = G,; and G, for
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{6(Yij,0,80a),1 < i < g,ieven} and {(¥;;,0,Ge2),1 < i < g,iodd}

Again the solutions are unique. Now let € tend to zero

In actual practice one would solve

Z‘Z(Sf(Xm” &) + 4(3)(Xs. 0,80} + ):¢(Y-k,9 Ga))

+ Z[Z{s»( X,;,0,87) + A(3) (X5, 0,5, )}+Z¢(m,o Ga) = 0

for various values of € and stop when two consecutive values differ insignif-

icantly.

86



Chapter 8
The Results of A Simulation Study

In this chapter, we shall compare first theoretically and then numerically
both the small and large sample behaviour of our estimate with two more
estimates — the grand mean X and the (fixed set-up) m.l.e. in Example 1.2
or the symmetric location-scale problem. The first estimate or the grand
mean is the most obvious estimate here and the second one is suggested by
Neyman and Scott (1948).

From relations (2.1)-(2.2), one can easily conclude that the second esti-
mate is a solution of _

S
i=1 2% —p)?

where X; = 15, X;; and S? = ¥h, X} - kX7

Convention : Throughout this chapter, we shall use 7; to denote the quan-
tity (0?)”!, H to denote the common distribution of 7;’s and refer to the
second estimate as the ‘m.l.e.’. We shall also use the term ‘asymptotic vari-
ance’ of an estimate T}, to mean the variance of the asymptotic distribution
of /n(Tn — 1) (cf. Definitions 1.1 and 3.4).

Note that

(1) The m.le. is asymptotically normal only if k > 3 and in that case

it is a Cj-estimate (as § is compact).

The first theoretical result shows that, as expected, for H close to the
degenerate distribution the grand mean behaves like the efficient estimate,
whereas, as Neyman and Scott (1948) predicted, for large k, the m.le.

behaves similarly.
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Proposition 8.1 (a) For any k > 1, the ratio of the asymptotic variances
of X and T (1) tends to one as E(r)E(L) approaches one, i.e., T approaches
the degenerate random variable.

(b) For any choice of H, the ratio of the asymptotic varances of the
m.l.e. and Tn () approaches one as k becomes large.

Proof : Let us observe that,

(AV (To(@)) 7 = E[S(Xy,w){E(r|X1)}?]

x

where S(X1,u. E

< ES(XLwE ] ol
= E[E(S(Xnu) r}f 1= Ek;q | =kE(r). (8.1)
(AV m.le)™ ' = (k—2)E(7). ©.2)
(WA = iy )
From (8.2) and (8.3),
AVX kE(r) _ B(Y) 1

N0 S w5y kE(r)—= = E(NE(}) (8.4)

T
and from (8.1) and (8.2),
AV m.le. kE(r) k

AV (D) - F-2)E(M k-2 (8.5)
Again,
AVX AVE _ (k—2)E() _ (k-2 .
NLE) Z Amle air) S EME(R)
(8.6)
AV m.le. k 1
and m *k—2)EMEQ) (8.7)

‘From (8.4) and (8.6),

EA ety vis 2



and from (8.5) and (8.7),

k AV m.le.
Gmrmea VS g S

5 (59)

From (8.8), m — 1 as E(r)E(}) — 1 proving part (a) of the
proposition and from (8.9), #m:;) — 1 as k — oo proving part (b) of it.

[}

The following is the second and the remaining theoretical result.

Proposition 8.2 Fiz any k > 3. Let 7; follow the gamma distribution
T(a,)) with @ > 1. Then as « approaches one, the ratio of the asymptotic
variances of X and T,(¥) tends to infinity whereas that of the m.l.e. and
T () tends to gtk which is a number strictly greater than 1.
However, for large values of «, the grand meanX behaves like an efficient

estimate whereas the asymptotic variance of the m.l.e. is approzimately %5

times that of our estimate.

Proof : By an easy algebra, one can show that

so1_ k _ k_k(e—1)
(AVX) TEG T ,,i,) =Ty
Again,
(AVmle)? = (k-2)E()=(k-2)3
1 ket «
and (AV T.(¥))™" = (a+2+1) X
Therefore,
AVE  ke+}) e A (a+Ya
AVT,(@)  (a+i+1) X kl@a-1) (a+i+1)(a—1)
(8.10)
_ ke+d a1 A ket 3)
T latEr) X k-2 & (@a+i+(k—2)"
(8.11)
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The result follows from relations (8.10) and (8.11). . o

Before proceeding further, we shall obtain a more accurate relation
between the asymptotic variances of the three estimates. First observe

that
(B1X) —~ BTN - W7} < Bl — BOPIXIEG - w7}

by the theory of least squares.
Therefore, by taking the expectation over the distribution of X,

BUEG|X) - E*(rix)}{é(x, — WM

IA

k
BIE{G ~ BG)IXHL (G — w)?)]
= Bl BEDHE05 - w7
= Eltr - EE)YE
= KE[I - 20B(n) L+ (B 1]
= KE() - 2B() + (EOYHEC))]
= KE(){EMEC) -1}
Therefore
AV T, = BUEGIXS05 — w7
> BIEEXGSCG - 0] - EOEOED) -1
= BIPS0G -W - REOHEEC) ~ 1)
= B(5) —kE@EOEC) -1}
= kB - E(MEC)}
= o 2){2 - E(MEG 1)}AV m.le)?
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and hence

(AV T(4)) < [

k L
=z~ EOEQNTAV mle)
provided E(r)E(L) < 2.

Also, in view of relation (3.9),
Av T,(p) = E=2)

Therefore,
(k—2) 1

(k-2 .
FR-EOER)

T )(AV m.le) <AV T,(¥) < (AV m.le.).
(8.12)

Suppose that k = 3, the smallest k for which the m.l.e. is UAN. Suppose
that ;’s follow the uniform distribution over (e, %) for € > 0 (i.e., we have
a sort of noninformative prior on ¢?’s). A difficulty arises due to the fact
that the integrals involved are mathematically intractible. So we resorted
to numerical techniques for € = 0.03125(0.03125)0.96875. The results of
this effort is given in Table 1.

For small values of ¢, the asymptotic variance of the grand mean X is
twice the asymptotic variance of the efficient estimate 7,,(¢/) whereas for €’s
close to 1 they are nearly the same (¢f. Proposition 8.1) and the asymptotic
variance of the m.le. is roughly three times the mixture lower-bound. We
have also evaluated the quantities given in relation (8.12) which become
close for those values of € which are close to 1.

To study the small sample behaviour of these estimates we have also
made a series of simulations. For each of these simulation 1000 samples each
of size n = 100 are generated from the population considered in Example 1.2
for different choices of H and common value of k = 3 and gz = 1.0. The only
difficult part was the estimation of H. For this purpose, we have used the
nonparametric m.l.e. based on the sample {S?}1<icn 1= 5, (X — X5)?,
coming from a mixture of exponential distributions and used the algorithm
given in Jewell (1982, p. 483). Roughly what this algorithm does is the

following.
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€
0.03125
0.06250
0.09375
0.12500
0.15625
0.18750
0.21875
0.25000
0.28125
0.31250
0.34375
0.37500
0.40625
0.43750
0.46875
0.50000
0.53125
0.56250
0.59375
0.62500
0.65625
0.68750
0.71875
0.75000
0.78125
0.81250

AV T.(¥)
0.0238516
0.0471831
0.0698811
0.0920136
0.1135486
0.1343806
0.1543583
0.1733220
0.1911400
0.2076875
0.2228800
0.2366652
0.2490469
0.2600419
0.2697123
0.2781355
0.2854070
0.2916332
0.2969261
0.3013433
0.3130538
0.3159907
0.3183959
0.3203480
0.3257487
0.3269285

AV m.le.
0.0624390
0.1245136
0.1858664
0.2461538
0.3050524
0.3622641
0.4175209
0.4705882
0.5212669
0.5693950
0.6148471
0.6575342
0.6974015
0.7344262
0.7686149
0.8000000
0.8286366
0.8545994
0.8779783
0.8988764
0.9174061
0.9336870
0.9478428
0.9599999
0.9702851
0.9788234

Table 1

AV m.le.
3

0.0208130
0.0415045
0.0619555
0.0820513
0.1016841
0.1207547
0.1391736
0.1568627
0.1737556
0.1897983
0.2049490
0.2191781
0.2324672
0.2448087
0.2562050
0.2666667
0.2762122
0.2848665
0.2926594
0.2996255
0.3058020
0.3112290
0.3159476
0.3200000
0.3234284
0.3262745
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AV m.le.
2.0018846
0.5918380
0.4250715
0.3657613
0.3383300
0.3243045
0.3172670
0.3130313
0.3128288
0.3130759
0.3141373
0.3156735
0.3174615
0.3103524
0.3212450
0.3230715
0.3247866
0.3263611
0.3277776
0.3200271
0.3301068
0.3310180

AVX
0.0722734
0.1159776
0.1492571
0.1760374
0.1982033
0.2168714
0.2327801
0.2464523
0.2582759
0.2685485
0.2775045
0.2853321
0.2921850
0.2981900
0.3034536
0.3080654
0.3121018
0.3156283
0.3187014
0.3213700
0.3236769
0.3256595
0.3273507
0.3287795
0.3299717
0.3309500



Suppose that, we have a set of i.i.d. random variables Y3, Y2, ..., Y, with
the common distribution of the form [5° e~"d H(r) for some distribution H
on IR*. Tt is easy to prove that the m.l.e. has a finite support containing at
most n points lying in the interval [gl-, 7=]. Jewell (1982) used an EM-
type algorithm to find for r = 1,2,3,-- the m.Le. H, when H is restricted
to the set of all r-point distributions on IR* as long as the log-likelihood
increases. For each r = 2,3,--- he used the uniform distribution over r
equi-spaced points starting with y—{‘; and ending with ﬁ

In our case, we found that with this starting distribution, the algorithm
runs too slowly. Instead, we have obtained a starting point from ﬁ,,; by
introducing a new point in the middle of two successive points which fall
most widely apart from each other.

The complete computer program written in FORTRAN for VAX 8650
which we have used to get our results is given in Appendix A.

We shall now discuss, one by one, the results of these simulations. For
each of these simulations, a comparison of the given estimates based on
the simulated random sample is made in terms of the (suitably normalised)
bias (f.e., the average distance from the true value of ), the standard error
(s.e.) and the asymptotic variance in Tables 2(a)-(e), respectively; also note
that due to the limitation of the CPU time we have obtained 1000 samples

in two groups of equal size.

Simulation 1 Here we took H to be a discrete distribution taking values
1.0 and 15.0 with probabilities 0.2 and 0.8, respectively. This distribution
is one of the mixing distributions considered by Jewell (1982). Note that
the s.e. of the m.l.e. for two groups differ widely. We attribute this fact to

the failure of the linearisation technique.

Simulation 2 Here H is a discrete distribution taking values 0.1 and 1.0

with equal probabilities 0.5.

Simulation $ Here H is a discrete distribution taking values 0.2 and 1.0
with probabilities 0.4 and 0.6, respectively. We choose this distribution as

a special case where X is better than the m.le..
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Table 2(a)

Estimate X m.le. T (D)
Group

+/n bias | —0.0021574 | 0.0536739 | —0.0008184

I s.e. 0.0911756 | 1.0408700 0.0536020
AV 0.0844444 | 0.0819672 0.0296475

/n bias | —0.0092238 | 0.1244006 | —0.0016165

II s.e. 0.0716781 | 4.5568588 0.0394353
AV 0.0844444 | 0.0819672 0.0296475

\/E bias | —0.0056906 | 0.0890372 | —0.0012174

Combined s.e. 0.0814270 | 2.7988769 0.0465187
AV 0.0844444 | 0.0819672 0.0296475

Table 2(b)
Estimate X m.le. T ()
Group

/1 bias 0.0147551 0.0912993 | —0.0441951
I s.e. 1.8469815 2.2123895 1.9045249
AV 1.8333333 1.8181818 0.7604553

/n bias | —0.0381543 | —0.0997603 | —0.0085974

II s.e. 1.5362952 2.2512605 1.2087399
AV 1.8333333 1.8181818 0.7604553

/7 bias 0.0116996 | —0.0042305 | —0.0263962

Combined s.e. 1.6916454 2.2319164 1.5566356
AV 1.8333333 1.8181818 0.7604553
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Table 2(c)

Estimate X m.le. Ta ()
Group

/1 bias 0.0053186 0.0270631 0.0127041
I s.e. 1.0257751 1.4094767 1.3838135
AV 0.8666667 1.4705882 0.6027694
/n bias | —0.0217991 | —0.0709684 —0.0201541
II s.e. 0.8449745 1.7684397 0.8942075
AV 0.8666667 1.4705882 0.6027694
\/n bias | —0.0082402 —0.0219526 | —0.0037250
Combined s.e. 0.9353766 1.5889823 1.1390132
AV 0.8666667 1.4705882 0.6027694

Simulation 4 Here H is a discrete distribution taking the values 0.05 and
1.0 with equal probabilities 0.5. Contrast this case with Simulation 3.

Simulation 5 Finally, we take H to be a gamma distribution with a = 2.0
and A = 1.0.



Table 2(d)

Estimate X m.le. T.(¥)
Group .

/7 bias 0.0281004 0.0184313 | —0.0740670
I s.e. 3.4746987 3.9005452 1.6857447
AV 3.5000000 1.9047619 0.7436790

/7 bias | —0.0612840 | —0.1136078 | —0.0126448
II s.e. 2.927079 3.4211260 1.6804266
AV 3.5000000 1.9047619 0.7436790

/n bias 0.0165918 | —0.0475882 | —0.0433559

Combined s.e. 3.2009089 3.6608793 1.6830951
AV 3.5000000 1.9047619 0.7436790

Table 2(e)
Estimate X m.le. T,.(¥)
Group

/7 bias | 0.0223542 | —0.0203280 | —0.0046954

I s.e. 0.3629048 0.5808004 0.4678451
AV 0.3333333 0.5000000 0.2142857

/n bias | 0.0122539 0.0548677 | —0.0061972

11 s.e 0.3510266 0.9207742 0.3168615
AV 0.3333333 0.5000000 0.2142857

\/n bias | 0.0173040 0.0172698 | —0.0007509

Combined s.e. 0.3569660 0.7507874 0.3923536
AV 0.3333333 0.5000000 0.2142857
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Chapter 9

The Counterexample

In this chapter, we shall state the counterexample mentioned in Chap-
ter 1 suggesting that it may not be easy to get simple regularity conditions
on f gauranteeing the continuity of %.

First, observe that condition U(i) of Chapter 4 is equivalent to the
following :

(F1)For any (6, G) in ©x G, the likelihood ratio 4(-,8,G,#', G) is quadratic-
mean-differentiable with respect to 8’ at the point #. In other words, there
is s6(-0,G) in Ly(Psc) such that

[{A(-,6,G,0 + h, G) = 1} = hsy(-,6,G)l1a(pr.0) = o(Ih])-

For any (0,G) in © x G, let N;c denote the set of all functions % in
Ly (Ps,) such that there is a map v from [-1,1] to § with v(0) = G such
that

{A(-8,G,0 + h,v(k)) = 1} = ksy(-,0,G) — kbllLypy ) = o(VR? + K2).

Then Ny is dense in Ny so that one can define ¢ using Ny instead
of No.

Note that for any (6,G), L§(Psc) is isometric to La(u)N
{6 : (6,f35(~0,G))1,) = O} and Nyg is isometric to Njg :=
{34f3(,0,G) : ¢ € Nog}.

Define the functions ps and p; from © x § to L3(p) by

L 0,G) = ls(- He
ﬂi(1 ) ) 13,4(.,9,G)f (, ,G] V(H,G)A
and p;(-,0,G) = Proj(ﬁ'lvc)L ps(-0,G)
Then .
§=2 (©.1)

fi
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The following is a weaker version of assumption (B3) as required by
Schick (1986).

(F2) For any (0,G) in © x §

i ) 16102 G) = 5,0, @)laserae = O-

In view of relation (9.1), one can casily prove that

Proposition 9.1 If assumptions (A2), (F1) and (F2) hold, Then p; is a
continuous map from © x G to Ly(u).

Usual choices of § and regularity conditions on f guarantce assump-
tions (A2) and (F1). However, in what follows, we shall give an example
suggesting that the continuity conditions insured by assumptions (A2) and
(F1) may not suffice for the continuity of pj. Specifically, we show that,
if there is a function taking values in a Hilbert space ¥ and we consider
its projection on linear spaces which are generated by continuous functions
the projection of the continuous function will not in general be continuous.

The reason why a counterexample is non-trivial is that the (closed)
linear spaces on which the projection is made are isomorphic to a fixed set
L. If L were finite-dimensional, projections would have been continuous.

Before stating the example let us make a brief mathematical formulation
of the problem.

Let X be a compact topological space. Let X be an infinte-dimensional
Hilbert space. Let f : X — X@C and g : X x X — X@C be two
continuous maps with ¢ satisfying the additional property that for any z
in X, the map z + g(z,") is one-one.

For any z in X, let M(z) := {g(x,h) : h € X}.

The (topological) spaces X and X @ € are like our © x G and Lz(u),
respectively, the function f is like our py and the (linear) spaces M(z) and

¥ are like our (Njg)" and L, respectively.
The question is whether z + Projy(,) f(2) is continuous or not.

Here is an example providing negative answer to the above question.
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Ezample 9.1 Let ¥ be an infinite-dimensional Hilbert space. Let T : ¥ — ¥
be a compact operator satisfying the additional property that

(a) T is one-one (equivalently, O is not an eigenvalue of T').
Claim : Jh, € X such that [|ha]| = 1 but [|Tha|| < 5.

First observe that, because of (a), TX is an infinite-dimensional topo-

logical vector space. Clearly, it is enough to show that B > 0 such that
Izl < AIT=|| V2 € X.
If there were such a A, define, once again by (a), 5 : TX — X by

S(Tz) =z Va.

Then

IISyll = ll=ll < Al
pulting y = T'z so that S extends to X; := TH — an infinite-dimensional
Hilbert space and

T(Sy) =y on ¥y. (9:2)

Let B, denote the unit-ball on ¥;. Then, there is r > 0 such that
SB, C B}

— a ball of radius r in X.

But T(Bj) is compact.

Therefore, by relation (9.2), T(SB)) is a compact set containing By.

This is a contradiction to the fact that ¥; is infinite-dimensional.

Hence the claim follows.

For any integer n > 1, using Ilahn-Banach Theorem get hold of a func-
tion An : ¥ — @ such that Au(h3) = 1 and ||An]lop = 1 and define a map
T, : ¥ — X @ T by Tn := T(h)®22) for all h, Define T, by T, (h) = T'(h)®0
for all h. Let X = {1,%,---,%,---}U{0}.

Define f : X — XD by f(z) := 0@ 1 for all z. (ie., f takes a
constant value on ¥ @ T.)
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Defineg: X x X = X @ € by

(z,h) = L L(ziz=1) Ta(h) + Liziz=0)To(h)

for all (z,h) in X x X.

One can easily check that f and g are continuous and for all z, g(z,-)

is a one-one map from ¥ to X @ T.

Let, for any z in X,
N(z) = {g(z,h) : h € X}.

Claim : @~ Projy(,/(z) is not continuous.

Proof of the claim :

Clearly,
Projy()f(0) = Projmpymen(©@1)
= Projirmeonex)(0® 1)
= 090=0 (of X P ).
Now,
. 1 .
Proj,,(%)f(;) = Projm(o 1)
= Y ®un (say)-
Note that
1
lyall? + laall® < ISP =1
Again,

O®1—yn ®u,) L T(h)® —— ( ) for all h.
In particular,
P 1
(Yn @ (n — 1), Ta(hn) @ ;)u@a‘ =0

equivalently,

s Talhoy + E2=B) g,
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Therefore 1 L
Hn — _ 1
=51 = Kyn, Ta(ha))xl < =

by relation (9.5) and choice of A,.

Therefore
1
|tn—1] <= > 0asn — oo
n
implying
fn — 1 as n — oo. (9:6)
Claim follows from relations (9.3), (9.4) and (9.6). =}

We shall now give a briel motivation behind the choice of g and ¥ for
the special case of semiparametric models satisfying Bickel’s Condition C,
ie., scmipara.metric models where § is convex and f is afline in G. This
family includes the so-called mixture models.

Assume that

(F38) G is a compact subset of a topological vector space L.

Remark 9.1 Yor the special case of mixture models a natural choice of £ is

the set of all signed measures M on 5.

The aflinity of f enables us to extend the definition of f and A to the
spaces S X @ x L and S X @ x § X © X L, respectively.
In view of assumption (F3), for any (0,G), Ny can be replaced by

{4(-,0,G,0,L) : L€ L}
and N/ can be replaced by

{9(0,G,L): Le L}

Lok (9, G, L).

where ¢(0,G, L
a( ) 373(:0.6)
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Appendix A

Computer Programs

This chapter contains the computer program mentioned in Chapter 8.
All the pseudorandom number generation algorithms are taken from Fish-
man (1978).

PROGRAM SIMULATIONL

INTEGER*2 ONE,TWO,THREE,FOUR,FIVE,SIX,SEVEN,EIGHT,TEN,SIXTY
REAL*8 ZERO,ONE_HALF

REAL*8 EPS

INTEGER RE,RO

REAL*8 PSI2A,PSI2B,PHI

REAL*8 BIAS1,BIAS2,BIAS3,C,D1,DN,DSQRTN,PHIE,PHIO, PSI2EMAX,
$PSI2EMIN,PSI20MAX,PSI20MIN,Q,Q0,S,SS,SUML, SUM2, SUM3, SUM4, SUME, T,
QTAU, THETA, TN1,TN2,TN20,TN3,U,V1,V2,V3,VAR1, VARZ, VAR3

REAL#*8 LAMDAE (5000) , LAMDAO (5000) , PE(5000) ,P0(5000) ,PSI1(10000),
$PS12(10000) , PSI2E (6000) ,PSI20(5000) ,X(10000,3)

REAL*8 FUNC,MIXPOS,NORMAL,RANDOM

COMMON NERR /BLK1/ PSI2A,PSI2B,PHI

PARAMETER (ONE=1,TWO=2, THREE=3,FOUR=4 ,FIVE=6,SIX=6, SEVEN=7)
PARAMETER (EIGHT=8, TEN=10,SIXTY=60)

PARAMETER (ZER0=0.0DO,ONE_HALF=1.5D0)

PARAMETER (EPS='0000000000003D00*X)

PARAMETER (MAXITER=1000)

DATA NBAD1_1,NBAD1_2,NBAD2_1,NBAD2_2 /4+0/

DATA BIAS1,BIAS2,BIAS3,VAR1,VAR2,VAR3 /6+0.0DO/

DATA LAMDAE,LAMDAO,PE,PO,PSI1,PSI2,PSI2E,PSI20,X /80000%0.0D0/
FUNC (S, INIT)=NORMAL (INIT) /DSQRT(S)

WRITE (*,*) °'GIVE THE VALUE OF THE PARAMETER OF INTEREST.®

1 READ (*,*,ERR=14) THETA

WRITE (*,+) °GIVE YOUR CHOICE OF THE MIXING DISTRIBUTION FROM THE®
$,* SET {1,2,3}."

2 READ (*,*,ERR=15) NDIST
IF ((NDIST.NE.ONE).AND.(NDIST.NE.TWO).AND. (NDIST.NE.THREE))
$GO TO 15
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WRITE (*,*) 'GIVE THE SAMPLE SIZE.'

READ (*,*,ERR=16) N

IF (N.LE.O) THEN

GO TO 16

ELSE IF (N.GT.10000) THEN

WRITE (*,*) 'SAMPLE SIZE IS TRUNCATED TO 10000.°
N=10000

END IF

WRITE (*,*) 'GIVE THE NUMBER OF SAMPLES TO BE GENERATED.'
READ (*,*,ERR=17) NITER
NITER=MAXO(MINO(NITER,MAXITER) ,ONE)

OPEN (1,FILE='0UT3')

WRITE (1,°'(1H1,40X,I4,A,I6,A)") NITER,
$* SAMPLES TO BE GENERATED EACH OF SIZE',N,
WRITE (*,*) 'GIVE AN INTEGER BETWEEN 1 AND 2147483646.

READ (*,*,ERR=18) INIT

IF ((INIT.LE.O).OR.(INIT.GT.2147483646)) GO TO 18

WRITE (1,°(1HO,46X,A,I110,A)") ’THE SEED PRIOR TO SAMPLING IS *,
$INIT,*

WRITE (1,°'(///11X,A,12X,A,13X,A,18X,A,16X,A)") ’SAMPLE NUMBER’
$'SEED AT END',’GRAND MEAN','MLE’,’ONE STEP MLE®

LINE=EIGHT

C=ONE/ONE_HALF

NE=N/TWO

NO=N-NE

DN=DBLE (N)

DSQRTN=DSQRT (DN)

DO 13 ITER=ONE,NITER

WRITE (x,*) 'ITER=',ITER

SUM3=ZERO

DO 7 I=ONE,N

SUM1=ZERO

SUM2=ZERO

TAU=MIXPOS (NDIST, INIT)

DO 6 J=ONE,THREE

X(I,J)=FUNC(TAU, INIT)+THETA

8=X(1,3)

SUM1=SUM1+§

SUM2=SUM2+5*S

$=SUM1/THREE
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T=(SUM2-S*SUM1) /TWO
PSI1(I)=S

PSI2(I)~T

IF (MOD(I.TWO) .EQ.ONE) THEN
PSI20( (I+0ONE) /TWO) =T

IF (I.EQ.ONE) THEN
PSI20MIN=T

PSI20MAX~T

ELSE
PSI20MIN=DMIN1(PSI20MIN,T)
PSI20MAX=DMAX1 (PSI20MAX ., T)
END IF

ELSE

PSI2E(I/TWO)=T

IF (I.EQ.TWO) THEN
PSI2EMIN=T

PSI2EMAX=T

ELSE
PSI2EMIN=DMIN1(PSI2EMIN,T)
PSI2EMAX=DMAX1 (PSI2EMAX, T)
END IF

END IF

SUM3=SUM3+S

TN1=SUM3/N

V1i=TN1-THETA
BIAS1=BIAS1+V1
VAR1=VAR1+V1*V1

WRITE (=*,*) °*THE GRAND MEAN IS
SUM1=ZERO

DO 8 I=ONE.N
S=PSI1(I)-TN1

T=PSI2(I)=*C

SUM1=SUM1+S/ (S*S+T)

Q=DABS (SUM1)

M2=0

TN2=TN1

TN20=TN2

Qo=Q

SUM1=ZERO

SUM2=ZERO

*.TN1
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SUM3=ZERO

DO 10 I=ONE,N

§=PSI1(I)-TN2

§8=5+8

T=PSI2(I)*C

U=ONE/ (S8+T)

SUM1=SUM1+S§%U

SUM2=SUM2+U

SUM3=SUM3+T+U*U

TN2=TN2-SUM1/ (SUM2-TWO*SUN3)

Q=DABS (SUM1)

D1=DABS (TN2-TN20)

M2=M2+ONE

IF (MOD(M2,1000) .EQ.0) WRITE (*,*) ‘M2=',M2,° TN2=',TN2,’' Q=',
IF ((D1.GE.EPS).AND.(D1.LT.1.0D0).AND.(Q.LT.QO0).AND. (M2.LT.1))
$ G0 TO 9

WRITE (*,%) °'M2=',M2,’ TN2=',TN2,’' Q=".Q
IF ((Q0.LE.Q).OR.(D1.GE.1.0D0)) TN2=TN20
V2=TN2-THETA

IF (DABS(V1).LT.DABS(V2)) THEN

IF (V1*V2.GT.ZERO) THEN
NBAD1_1=NBAD1_1+ONE

ELSE

NBAD1_2=NBAD1_2+ONE

END IF

END IF

BIAS2=BIAS2+V2

VAR2=VAR2+V2+V2

WRITE (%,*) °'THE MLE IS *,TN2
PSI2A=0NE/PSI20MAX

PSI2B=0NE/PSI20MIN

CALL MAXLHD (NO,PSI20,R0,LAMDAG,PO)
PHIO=PHI

PSI2A=0NE/PSI2EMAX

PSI2B=0ONE/PSI2EMIN

CALL MAXLHD (NE,PSIZE,RE,LAMDAE,PE)
PHIE=PHI

SUM1~ZERO

SUM2=ZERO

DO 12 I=ONE,N
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12

S=PSI1(I)-TN1

SUM3=ZERO

SUM4=~ZERO

SUMS=ZERO

IF (MOD(I,TWO) .EQ.ONE) THEN

DO K=ONE,RE

T=LAMDAE (K)

U=DSQRT (T) *DEXP (—-ONE_HALF*T*S*S) *PE (K)
SUM3=SUM3+U

U=T*U

SUM4=SUM4+U

U=T*U

SUMB=SUME+U

END DO

ELSE

DO K=ONE,RQ

T=LAMDAO (K)

U=DSQRT (T) *DEXP (~ONE_HALF*T*S%S) *P0 (K)
SUM3=SUM3+U

U=T*U

SUM4=SUM4+U

U=T*U

SUMS=SUMB+U

END DO

END IF

IF (SUM3.NE.ZERO) THEN
T=SUM4/SUM3

U=SUMS5/SUM3

ELSE

T=ZERO

U=ZERO

END IF

SUM1=SUM1+S*T
SUM2=SUM2+ (3. ODO*S*S* (U-T*T) -T)
TN3=TN1-8UM1/8UM2

IF (DABS(TN3-TN1) .GT.1.0DO) TN3=TN1
V3=TN3-THETA

IF (DABS(V1).LT.DABS(V3)) THEN
IF (V1*V3.GT.ZERO) THEN
NBAD2_1=NBAD2_1+ONE
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ELSE

NBAD2_2=NBAD2_2+ONE

END IF

END IF

BIAS3=BIAS3+V3

VAR3=VAR3+V3*V3

WRITE (*,+) °THE ONE STEP ESTIMATE IS °,TN3

LL=LINE+ONE

IF (LL.GT.SIXTY) THEN

WRITE (1,’(1H1,10X,A,12X,A,13X,A,18X,A,16X,A)') *SAMPLE NUMBER’,
$'SEED AT END’,’GRAND MEAN®,'MLE’,'ONE STEP MLE’

LL=THREE

END IF

WRITE (1,’(1HO,13X,I4,17X,110,7X,3G24.16)) ") ITER,INIT,TN1,TN2, TN3
LINE=MOD(LL,SIXTY)+ONE

DO 13 I=ONE,N

IF (I.LE.RE) THEN

LAMDAE (I)=ZERO

PE(I)=ZERO

END IF

IF (I.LE.RO) THEN

LAMDAO (I)=ZERO

PO(I)=ZERO

END IF

DO 13 J=ONE,THREE

X(I,J)=ZERO

WRITE (#,*) °*NBAD1_1=",NBAD1_1,’ NBAD1_2=',NBAD1_2,’ NBAD2_1=',
$NBAD2_1, ' NBAD2_2=',NBAD2_2

LINE=MOD(LL, SIXTY)+ONE

LL=LINE+THREE

IF (LL.GT.SIXTY) THEN

WRITE (1,'(1H1)")

LL=FOUR

END IF

WRITE (1,'(1HO,9X,A,I6,A,T6,2A/1H0,3X,A,16,24,16,A) ")

$'FOR THE MLE THE NUMBER OF BAD SAMPLES OF TYPE ONE IS’ ,NBAD1_1,
©' AND THAT OF TYPE TWO IS’,NBAD1_2,’,FOR THE ONE STEP MLE THE *,
#'NUMBER OF*,*' BAD SAMPLES OF TYPE ONE IS’,NBAD2_1,' AND THAT OF’,
$* TYPE TWO IS',NBAD2.2,'.’

LINE=MOD(LL,SIXTY)+ONE
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S=DN/(NITER-ONE)

T=BIAS1/NITER

VAR1=(VAR1-BIAS1*T)*S

BIAS1=T+DSQRTN

T=BIAS2/NITER

VAR2=(VAR2-BIAS2+T) *S

BIAS2=T+DSQRTN

T=BIAS3/NITER

VAR3=(VAR3-BIAS3+T) *§

BIAS3=T+DSQRTN

WRITE (*,*) °*BIAS1=',BIAS1,’ BIAS2=',BIAS2,’' BIAS3=", BIAS3
LL=LINE+THREE

IF (LL.GT.SIXTY) THEN

WRITE (1,’(1H1)")

LL=FOUR

END IF

WRITE (1, (1HO,9X,2(A,G23.16),A/1H0,4X,G23.15,A)")
$°THE ESTIMATED BIAS OF THE GRAND MEAN IS',BIAS1,',THE MLE IS,
©BIAS2,' AND THE ONE STEP MLE IS',BIAS3,’.’
LINE=MOD(LL,SIXTY)+ONE

WRITE (,+) 'VARi=",VAR1,' VAR2=',VAR2,’ VAR3=',VAR3
LL=LINE+THREE

IF (LL.GT.SIXTY) THEN

WRITE (1,'(1H1)')

LL=FOUR

END IF

WRITE (1,°(1HO,9X,2(A,G23.15),A/1HO0,4X,A,G23.16,4A)")

$°THE ESTIMATED ASYMPTOTIC VARIANCE OF THE GRAND MEAN IS’,VAR1,
@’,THE MLE IS’,VAR2,' AND THE °,°ONE STEP MLE IS’,VAR3,'.’
STOP

WRITE (*,*) 'ERROR:THETA MUST BE A REAL NUMBER.®
NERR=NERR+ONE

IF (NERR.LE.TEN) GO TO 1

GO TO 19

WRITE (*,+) 'ERROR:CHOICE OF THE MIXING DISTRIBUTION LIMITED TO
$* THE SET {1,2,3}.°

NERR=NERR+ONE

IF (NERR.LE.TEN) GO TO 2

GO TO 19

WRITE (,+) 'ERROR:SAMPLE SIZE MUST BE A POSITIVE INTEGER.’
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18

19

NERR=NERR+ONE

IF (NERR.LE.TEN) GO TO 3

GO TO 19

WRITE (*,*) "ERROR:THE NUMBER OF ITERATIONS MUST BE A POSITIVE®,
$' INTEGER.®

NERR=NERR+ONE

IF (NERR.LE.TEN) GO TO 4

GO TO 19

WRITE (*,*) 'ERROR:THE SEED MUST LIE BETWEEN 1 AND 2147483646.°
IF (NERR.LE.TEN) GO TO 6

STOP

$'THE PROGRAM IS TERMINATING DUE TO MORE THAN TEN I/0 ERRORS.’
END

REAL*8 FUNCTION RANDOM(INIT)

INTEGER*2 ZERO,ONE,TWO,THREE,FOUR,FIVE,SIX,SEVEN,EIGHT
INTEGER CARRY,PRDT

DIMENSION M(4),I(4),IM(8)

REAL*8 C

PARAMETER (ZER0O=0,ONE=1,TWO=2, THREE=3,FOUR=4 ,FIVE=5,SIX=6,SEVEN=T)

PARAMETER (EIGHT=8)
PARAMETER (MAXPRM=2147483647)
PARAMETER (C=2.147483648D+9)
DATA M /126,218,172,23/

M IS A BINARY REPRESENTATION OF THE NUMBER 397204094 WRITTEN BYTEWISE

IF (INIT.LE.ZERO) THEN
WRITE (*,*) 'ERROR:THE SEED IS NEGATIVE.®
STOP

END IF
I(FOUR)=INIT/16777216
J=INIT-I(FOUR)*16777216
I(THREE)=J/65636
J=J-I(THREE) *65636
I(TWO)=J/266
I(ONE)=J-I(TW0)*266
CARRY=ZERO

DO 2 J=TWO,EIGHT
LMIN=MAXO (ONE, J-FOUR)
LMAX=MINO (FOUR, J-ONE)
PRDT=CARRY

DO 1 L=LMIN,LMAX
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PRDT=PRDT+I (L) *M(J-L)

CARRY=PRDT/256

IM(J-ONE)=PRDT-CARRY*266

IM(EIGHT) =CARRY
K=33564432+IM(EIGHT)+131072+IM(SEVEN) +612+IM(SIX) +2+«IM(FIVE)+
$IM(FOUR) /128

INIT=MOD (IM(FOUR),128)*16777216+IM(THREE) *65536+IM(TW0) *256+
$IM(ONE)

MK=MAXPRM-K

IF (INIT.LT.MK) THEN

INIT=INIT+K

ELSE

INIT=INIT-MK

END IF

RANDOM=INIT/C

RETURN

END

REAL*8 FUNCTION NORMAL(INIT)
LOGICAL*2 IND1,IND2,IND3
REAL+8 A,B,RANDOM,U1,U2,V,W1,W2
REAL*8 ZERO,ONE,TWO

DATA ZERO,ONE,TWO /0.0DO,1.0DO,2.0D0/
DATA IND1 /.FALSE./

IF (IND1) THEN

NORMAL=%2

ELSE

U1=RANDOM (INIT)

U1=TWO*U1

IND2=(U1.GT.ONE)

IF (IND2) U1=U1-ONE
U2=RANDOM (INIT)

U2=TWO*U2

IND3=(U2.GT.ONE)

IF (IND3) U2=U2-ONE
B=U1+U1+U2*U2

IF (B.GT.ONE) GO TO 1
V=-DLOG (RANDOM (INIT))
A=DSQRT (TWO*V/B)

‘W1=U1sA

W2=U2+A
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IF (IND2) Wi=-W1
IF (IND3) W2=-W2
NORMAL=W1

END IF
IND1=.NOT.IND1
RETURN

END

REAL*8 FUNCTION U(A,B,INIT)

REAL*8 A,B,C

REAL*8 RANDOM

IF (A.GT.B) THEN

WRITE (*,*) °*ERROR:UPPER LIMIT < LOWER LIMIT."

END IF

IF (A.NE.B) U=U+(B-A)*RANDOM(INIT)
RETURN
END

REAL*8 FUNCTION D(K,X,P,INIT)
INTEGER*2 ONE

LOGICAL IND

REAL*8 SUM,T

REAL#*8 P (K),X(K)
REAL*8 RANDOM
PARAMETER (ONE=1)

DATA IND /.TRUE./

IF (IND) THEN

DO 1 I-ONE,K-ONE

DO 1 J=I+ONE,K

IF (X(I).GT.X(J)) THEN
T=X(I)

X(I)=x(J)

X(ID=T

T=P(I)

P(I)=P(J)

P(I=T

END IF



CONTINUE
IND=.FALSE.
END IF
SUM=0.0DO
T=RANDOM (INIT)
DO 2 I=ONE,K
SUM=SUM+P (I)
IF (SUM.GE.T) GO TO 3
CONTINUE
D=X(I)

RETURN

END

REAL*8 FUNCTION GAMMA(ALPHA,LAMDA,INIT)
REAL*8 ONE

REAL*8 ALPHA,LAMDA

REAL*8 A,B,C,U1,U2,V

REAL*8 RANDOM

LOGICAL*1 IND /.TRUE./

PARAMETER (ONE=1.0DO)

IF ((ALPHA.LT.ONE).OR.(LAMDA.LE.0.0DO)) GO TO 2
IF (ALPHA.EQ.ONE) THEN
GAMMA=-DLOG (RANDOM (INIT))

ELSE

IF (IND) THEN

A=DSQRT (2.0DO*ALPHA-ONE)

B=ALPHA-DLOG (4.0DO)

C=ALPHA+A

A=ONE/A

IND=.FALSE.

END IF

U1=RANDOM (INIT)

U2=RANDOM (INIT)

V=A*DLOG (U1/ (ONE-U1))

GAMMA=ALPHA*DEXP (V)

IF ((B+C-GAMMA) .LT.DLOG(U1*U1xU2)) GO TO 1
END IF

IF (LAMDA.NE.ONE) GAMMA=GAMMA/LAMDA

RETURN

WRITE (*,*) 'ERROR:ALPHA MUST BE AT LEAST ONE AND LAMDA MUST BE’,
$' POSITIVE.'
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STOP
END

REAL*8 FUNCTION MIXPOS(NDIST,INIT)

INTEGER+2 ONE,TWO, THREE,TEN

REAL*8 ZERO

CHARACTER CHR1+80,CHR2+30

LOGICAL IND#*1 /.TRUE./

REAL#*8 A,ALPHA,B,C,LAMDA,T

REAL*8 P (50),X(50)

REAL*8 D,GAMMA,RANDOM,U

COMMON NERR

PARAMETER (ONE=1,TWO=2, THREE=3,TEN=10)
PARAMETER (ZER0=0.0DO)

PARAMETER (CHR1=' THE SUPPORT OF THE MIXING DISTRIBUTION CAN NOT
$CONTAIN ZERO:TYPE FRESH INPUT.')

PARAMETER (CHR2='INPUT-OUTPUT ERROR:TRY AGAIN.®)
DATA P,X /100%0.0DO/

IF (IND) THEN

OPEN (2,FILE='IN2')

IF (NDIST.EQ.ONE) THEN

WRITE (*,%) °GIVE THE LOWER LIMIT (A) AND THE UPPER LIMIT (B).’
READ (+,*,ERR=2) A,B

IF (A.GT.B) THEN

WRITE (*,*) ®ERROR:UPPER LIMIT < LOWER LIMIT.®

END IF

IF (B.LT.ZERO) THEN

WRITE (%,+) 'ERROR:SIGNS OF BOTH A AND B ARE WRONG.'
C=A

A=-B

B=-C

ELSE IF (A.LE.ZERO) THEN

WRITE (*,*) CHR1

NERR=NERR+ONE

IF (NERR.LE.TEN) GO TO 1

GO TO 10

END IF

WRITE (2,°(1H1///14X,2A,G23.16,A,G23.16,A)") 'THE MIXING',
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$* DISTRIBUTION IS THE UNIFORM DISTRIBUTION OVER(',A,’,
CLOSE (2)

IND=.FALSE.

Go TO 9

WRITE (*,*) CHR2

NERR=NERR+ONE

IF (NERR.LE.TEN) GO TO 1

Go TO 10

ELSE IF (NDIST.EQ.TWO) THEN

WRITE (*,*) 'GIVE VALUES OF K,X AND P.’
READ (*,*,ERR=6) K, (X(I),P(I),I~ONE,K)

DO 4 I=ONE,K

IF (X(I).EQ.ZERO) THEN

WRITE (*,*) CHR1

NERR=NERR+ONE

IF (NERR.LE.TEN) GO TO 3

GO TO 10

ELSE IF (X(I).LT.ZERO) THEN

WRITE (#,*) *NEGATIVE SAMPLE POINT:DROPPING THE NEGATIVE SIGN.'
X(1)=-X(1)

END IF

IF ((P(I).LE.ZER0).OR.(P(I).GT.1.0D0).0R.
$((P(I).EQ.1.0D0).AND. (K.GT.ONE))) THEN

WRITE (*,'(A,I4,A)*) * THE CHOICE OF THE PROBABILITY OF THE ',I,
$'-TH SAMPLE POINT IS WRONG:GIVE THE CORRECT VALUE.'
NERR=NERR+ONE

IF (NERR.GT.TEN) GO TO 10

READ (,*) P(I)

END IF

CONTINUE

DO & I=ONE,K-ONE

DO & J=I+ONE,K

IF (X(I).GT.X(J)) THEN

T=X(I)

X(I)=x(J)

X(I)=T

T=P (1)

P(I)=P(J)

P(I=T

END IF
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CONTINUE
WRITE (2,°(1H1///38X,2A/(7X,4(A,12,A,G23.16)))") 'THE MIXING’,
$* DISTRIBUTION IS A DISCRETE DISTRIBUTION WITH',
e(r X(*,I,”)=",X(1),* P(*,I,*)=",P(I),I=0ONE,K)
CLOSE (2)
IND=.FALSE.
Go TO 9
WRITE (*,*) CHR2
NERR=NERR+ONE
IF [VERR.LE.JEN) 6D TD 3
GO TO 10
ELSE IF (NDIST.EQ.THREE) THEN
WRITE (*,+) 'GIVE THE VALUES OF ALPHA AND LAMDA.®
READ (*,*,ERR=8) ALPHA,LAMDA
IF ((ALPHA.LT.ONE).OR.(LAMDA.LE.ZERO)) GO TO 8
WRITE (2,°(1H1///8X,2A,G23.16,A,G23.16,A)*) 'THE MIXING',
$* DISTRIBUTION IS A GAMMA DISTRIBUTION WITH ALPHA=', ALPHA,
@' AND LAMDA=',LAMDA,".*
IND=.FALSE.
GO TO 9
WRITE (x,*) CHR2
NERR=NERR+ONE
IF (NERR.LE.TEN) GO TO 7
GO0 TO 10
ELSE
WRITE (%,*) 'CHOICE OF THE MIXING DISTRIBUTION. IS WRONG.®
STOP
END IF
END IF
IF (NDIST.EQ.ONE) THEN
MIXPOS=U(A,B,INIT)
ELSE IF (NDIST.EQ.TWO) THEN
MIXPOS=D(K,X,P,INIT)
ELSE
MIXPOS=GAMMA (ALPHA,LAMDA, INIT)
END IF
RETURN
STOP
$*THE PROGRAM IS TERMINATING DUE TO MORE THAN TEN I/0 ERRORS.®
END
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REAL=*8 FUNCTION DSUMCA,N)
REAL=*=8 A(N)

DSUM=O . ODO

DO 1 I=1.N
DSUM=DSUM+A (I)

RETURN

END

REAL=+8 FUNCTION DPRD(A.N)
REAL*8 A(N)

DPRD=1 .0DO

DO 1 I-1,N

DPRD=DPRD=A(I)

RETURN

END

REAL*8 FUNCTION DINPRDC(A.,B,N)
REAL*8 A(N) .B(N)

DINPRD=O .ODO

Do 1 I=1.,N
DINPRD=DINPRD+A(CI)*=B(ID
RETURN

END

REAL=8 FUNCTION DSQNRMC(CA.N)
REAL=*8 A(N) )
DSQNRM=DINPRDC(A.A.N)

RETURN

END

REAL=+8 FUNCTION DSUMLG (A.ND)
REAL*8 A(ND

DSUMLG=0 . ODO

DO 1 I=1.N
DSUMLG=DSUMLG+DLOG (ACI))D
RETURN

END

REAL=*8 FUNCTION DDSGNDTS (X,Y)
REAL=*8 ZERO,HALF ,LONE,TWwWO

REAL*8 X,Y,Z,W,WHALF
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PARAMETER (ZERO=0.0DO,HALF=0.6DO, ONE=1.0DO, TWO=2.0D0)
IF ((X.EQ.ZERD).AND.(Y.EQ.ZERO)) THEN
DDSGNDTS=ZERO

RETURN

END IF
Z=DMAX1 (DABS (X) ,DABS(Y))
W=ONE

IF (Z.LT.HALF) THEN
WHALF=HALF

DO WHILE (Z.LT.WHALF)
W=WHALF

WHALF=W+HALF

END DO

ELSE IF (Z.GE.ONE) THEN
DO WHILE (Z.GE.W)
W=W+TWO

END DO

END IF
DDSGNDTS=DABS (X-Y) /W
RETURN

END

SUBROUTINE MAXLHD(N,X,R,LAMDA,P)

INTEGER*2 ONE,TWO, THREE,FOUR

REAL*8 ZERO,HALF

INTEGER R,R1

REAL*8 E,EPS1,EPS2,EPS3,G,PHIOLD,PHITMP,RE,S,T,U,Y,Z
REAL*8 XA,XB,PHINEW

REAL*8 LAMDA(N) ,P(N),X(N)

REAL*8 F (10000),V(10000) ,W(10000)

REAL*8 DDSGNDTS,DSUM

COMMON /BLK1/ XA,XB,PHINEW

PARAMETER (ONE=1,TWO=2, THREE=3,FOUR=4)
PARAMETER (ZER0O=0.0DO, HALF=0.5D0)

PARAMETER (MMAX=1000000)

PARAMETER (EPS1=" * X, EP§2=" 00000

PARAMETER (EPS3='0000000000003300'X)
DATA F,V,W /30000+0.0D0/
S=N/DSUM (X, N)

LAMDA (ONE) =S

P (ONE)=0ONE

117



PHINEW=N=* (DLOG (S) ~ONE)
OPEN (2,STATUS='SCRATCH")
DO 7 R=TWO,N
PHIOLD=PHINEW

R1=R-ONE

IF (R.GT.TWO) REWIND(2)
WRITE (2,%) (LAMDA(J),P(J),J=ONE,R1)
IF (R.EQ.TWO) THEN
T=XB-§

S=S-XA

IF (S.LT.T) THEN
INDEX=ONE

U=LAMDA (ONE)
LAMDA (ONE) =U-HALF*S

P (ONE) =HALF

LAMDA(TWO)=U

P (TWO) ~HALF

ELSE

INDEX=TWO

P (ONE) =HALF

LAMDA (TWO) =LAMDA (ONE) +HALF *T
P (TWO) =HALF

END IF

ELSE
S=LAMDA (TWO) ~LAMDA (ONE)
INDEX=TWO

DO 1 J=THREE,R1
T=LAMDA (J) ~LAMDA (J-ONE)
IF (T.GT.S) THEN

s=T

INDEX=J

END IF

CONTINUE

DO 2 J=R,ONE,-ONE

IF (J.GT.INDEX) THEN
J1=J-ONE

LAMDA (J)=LAMDA (J1)

P (J)=HALF*P (J1)

ELSE IF (J.EQ.INDEX) THEN
LAMDA (INDEX) ~LAMDA (INDEX) ~HALF*S
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P (INDEX)=HALF

ELSE

P (J)=HALF*P (J)

END IF

CONTINUE

END IF

M=0

E=ZERO

RE=ZERO

IF (M.EQ.0) PHINEW-ZERO
DO 5§ I=ONE,N

G=ZERO

s=X(I)

DO 4 K=ONE,R

T=LAMDA (K)

F (K)=T*DEXP (-S*T)

=F (K) *P (K)

G=G+T

IF (M.EQ.0) PHINEW=PHINEW+DLOG (G)
DO 5 J=ONE,R

T=F(J1) /G

VD)=V +T

T=S*T

W(ID=W(I)+T
PHITMP=PHINEW
PHINEW=ZERO

DO I=ONE,N

s=X(1)

G=ZERO

DO 6 J=ONE,R

IF (I.EQ.ONE) THEN

T=P (I *V(I/N

U=v (I /W(I)

Y=P (D)

Z=LAMDA (J)

E=DMAX1 (E,DABS (Y-T) ,DABS (Z-U))
RE=DMAX1 (RE, DDSGNDTS (Y, T) , DDSGNDTS(Z,U))
V(J)=ZERO

W (J)=ZERO

P(D=T
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LAMDA(J)=U

ELSE

T=P(J)

U=LAMDA (J)

END IF

G=G+T+U*DEXP (-S*U)
PHINEW=PHINEW+DLOG (G)

END DO ’

M=M+ONE

IF (M.LE.5000) THEN

IF ((E.GE.EPS1).AND.(RE.GE.EPS2)) GO TO 3
ELSE IF (M.LE.MMAX) THEN

IF ((E.GE.EPS1) .AND. (RE.GE.EPS2) .AND.

$ (DABS (PHINEW-PHITMP) .GE.EPS3)) GO TO 3
END IF

IF (((PHINEW-PHIOLD).LT.EPS1).0R.(P(INDEX).LT.EPS1)) GO TO 8
CONTINUE

IF ((PHINEW.LE.PHIOLD).OR. (P(INDEX).LT.EPS1)) THEN
LAMDA (R) =ZERO

P (R)=ZERO

R=R1

REWIND (2)

READ (2,%) (LAMDA(J),P(J),J=ONE,R)

END IF

CLOSE(2)

JSHIFT=0

DO 9 J=ONE,R

JJ=3+ISHIFT

IF (JJ.LE.R) THEN

IF (P(JJ).EQ.ZERO) THEN

DO WHILE ((P(JJ).EQ.ZERO).AND.(JJ.LE.R))
JJ=JIJ+ONE

END DO

JSHIFT=JJ-J

IF (JJ.LE.R) THEN

LAMDA (J)=LAMDA(JJ)

P(N=P(IY)

ELSE

LAMDA(J)=ZERO

P(J)=ZERO
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END IF

ELSE IF (J.NE.JJ) THEN
LAMDA(J) =LAMDA(JJ)
P(D=PIJ)

END IF

IF (JJ.EQ.R) GO TO 9
JJ=JJ+ONE

IF (LAMDA(J) .EQ.LAMDA(JJ)) THEN
8=P ()

DO WHILE ((LAMDA(J).EQ.LAMDA(JJ)).AND.(JJ.LE.R))
S=S+P (JJ)

JJ=JJ+ONE

END DO

JSHIFT=JJ-J-ONE

P(J)=s

END IF

ELSE

LAMDA (J)=ZERO

P(J)=ZERO

END IF

CONTINUE

R=R-JSHIFT

RETURN 5
END
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