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Introduction

Finitely additive measures, according to S. Bochner, are more inter-
esting, more difficult to handle and more important than countably
additive ones. (See the foreward by Dorothy Maharam Stone in [2]).
De Finetti, one of the noted advocates of finitely additive probability
put forth a strong case in its favour in his work, published as early as
1930. Since then many eminent mathematicians contributed to this
area, bringing into focus various aspects of the theory of finitely ad-
ditive probability. It was argued by some that countable additivity is
not an integral part of probability concept but is rather in the nature
of a regularity hypothesis, assumed most often to make mathemat-
ics tractable. Kolmogorov, in his book ‘Foundations of the Theory
of Probability’ put down countable additivity as an additional axiom
to define probability, which, in his own words, is assumed arbitrarily,
since the models which satisfy this axiom have been found expedient
in researches of the most diverse sort. See [25]. As was observed by
De Finetti ([10],p.119), “No one has given a real justification of count-
able additivity (other than just taking it as a ‘natural extension’ of
finite additivity); indeed many authors do also take into account cases
in which it does not hold, but they consider them separately, not as
absurd. but nonetheless ‘pathological’, outside the ‘normal’ theory.”

Although there is much to say in favour of the theory of finitely
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4 Introduction

additive probability it cannot be denied that it is not developed as
systematically as its brother—the theory of countably additive prob-
ability. One obvious reason , of course is that it has failed to generate
the same amount of activity among the researchers, as the other one
has done, the operation in this field being tedious and cumbersome
with scope, as yet very limited. One major drawback of finitely addi-
tive probability is the difficulty to construct a suitable, well-behaved
product measure on an appropriate o-field, rich enough to support in-
teresting stochastic processes. Of course, we are concerned only with
discrete-parameter stochastic processes. It may be mentioned here
that continuous-time stochastic processes in finitely additive setup is
an area which still remains unexplored. Of course, we must mention
here that Kallianpur and Karandikar [22] have successfully explored
finitely additive approach to white noise filtering.

The first rigorous attempt to construct a suitable product prob-
ability in finitely additive setup was made and a nice technique was
prescribed by Dubins and Savage [6] in their book ‘How to Gamble If
You Must’. Their object was to develop the theory of optimal gam-
bling in the finitely additive setup. Here they introduced the finitely
additive product probability on a product space good enough for their
purpose. More precisely, they dealt with the field of clopen sets on
infinite product spaces. This, they called strategic probability. This
foundation of strategic setup was extended by Purves and Sudderth
[28] in their seminal paper ‘Some finitely additive Probability’. Here
they obtained a natural extension of strategic probability to the Borel
o-field of product space and supplied all the details it needed in this
beautiful structure for other researchers to come and embellish it with

their ideas. The following few years—a period which extended al-
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most to a decade—witnessed most enthusiastic research activity in
this area. The works mentioned above paved the way to develop a
substantial part of classical probability theory in this setup. Here are
some of the highlights: The strong law of large numbers was treated
in Purves and Sudderth (28], Chen [5]; the law of iterated logarithm in
Chen [4]; the central limit theorem in Ramakrishnan [32], Karandikar
[23]; markov chains and potential theory in Ramakrishnan [30], [31],
[33); random walks in Karandikar [24]; martingales in Dubins and Sav-
age [6], Purves and Sudderth [28]; Komlos type theorems in Halevy
and Bhaskara Rao [18]. More recently-—as pointed out to us by J.K.
Ghosh—Heath and Sudderth [19],(20], Lane and Sudderth [26] have
advocated that it is beneficial to use finitely additive priors in some
problems of statistical inference. In fact the prescription of [20] is
simple: A Bayesian, who seeks to avoid incoherent inferences, might
be advised to abandon improper countably additive priors and use
only finitely additive priors (and face the consequences concerning

posteriors).

In the course of our investigations we come across some inter-
esting results which render strategic setup a character of its own,
having some peculiar traits which do not exist in the countably ad-
ditive framework. Some entirely new concepts emerge. As discovered
by Ramakrishnan, the concept of communication among states leads
in this setup to two inequivalent notions, namely—weak communica-
tion and strong communication (see [30] for details). As we shall see
later the concept of recurrence also has two inequivalent analogues in
this setup, namely—weak recurrence and strong recurrence. More-
over, random walks in this setup could be indeed purely nonatomic in

sharp contrast to the countably additive setup. It immediately follows
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that the symmetric o-field of i.i.d. random variables could be purely
nonatomic. In this context it is very interesting to note that the fun-
damental paper of Hewitt and Savage [21] discusses finitely additive
versions of their zero one law. As they say, their paper can be viewed
as an abbreviation of two papers—one finitely additive version and
the other countably additive version.

Briefly the organization of the thesis is as follows. Each chapter
starts with an introduction. In the first chapter of this thesis we
discuss recurrence and transience of random walks in the strategic
fram_ework. In the second chapter we consider Blackwell’s problem of
atomicity in the context of strategic random walks. The third chapter
is devoted to an analogue of the Hewitt-Savage zero-one law in the
strategic setup. In the fourth chapter we discuss the completeness of
L,-spaces, first over general finitely additive measure spaces and then
over strategic probability spaces.

0.1 Preliminaries

The Basic Setup: To define strategic probability we start with an
arbitrary non-empty set I. Let H = I, where I > is the one-sided
product of countably many copies of I. More precisely, H is the col-
lection of all sequences (k. ha. .. .) where each h; € I. We equip H
with the product of discrete topologies. We will refer to the elements
of H as histories. Let I* be the set of all finite sequences of elements
of I, including the empty one. Let T be the set of all finitely addi-
tive probabilities defined on all subsets of I. The term ‘probability’
for us will mean a nonnegative, finitely additive, normalised set func-
tion. We will explicitly say ‘countably additive probability’ in case
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the function is also countably additive.

Definition (0.1.1): A strategy o is a function on I' into T.
Thus corresponding to a strategy o we have a family of probabili-
ties denoted by o(<>). ..., (< dyda, oo yig >), .. ete. o(<>) is the
probability corresponding to the empty sequence which is called ini-
tial distribution. For p, ¢ € I*, pq will stand for the element of I'*
whose terms consist of the terms of p followed by the terms of g¢.
For p € I' and h € H, ph will stand for the element of whose
terms consist of the terms of p followed by the terms of k. If A C H. 5
Ap:{heH:phEA}andpA:{heH:h:ph’,h’EA}. A
strategy o is said to be an independent strategy if for all pel', o(p)
depends only on the length of p, not on its terms. In other words,
a strategy o is independent if there exists a sequence of elements Yo,
M, ... €T such that o(<>) = 79, and in general for p € I' of length
k, 0(p) = 1. A strategy o is said to be i.i.d if there is one 7 € T such
that for any p € I', o(p) = 7.

Definition (0.1.2): If o is a strategy and p € I', the conditional
strategy o given p, denoted by o[p] is the strategy defined by o[pl(g) =
o(pg) for all g € I*.

In [6], Dubins and Savage obtain, corresponding to every strategy,
a finitely additive probability measure on the field of clopen subsets of
H. This probability is also denoted by o. They define this probability
using induction on the structure of clopen sets. To describe the basic

property of this probability we need the following definitions:

Definition (0.1.3): A stop rule s is a function on H into N (the
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set of positive integers) such that if s(k) = n and A’ agrees with h
through the first n coordinates, then s(h') = n.

If s is a stop rule and h € H then p,(k) is the finite sequence
(h1,...,hp) where m = s(h). In particular if s = n then ps(h) is
denoted by p, (k).

Definition (0.1.4): A clopen set K of H is said to be determined
by stop rule s if

H forhe K

Kps(h) =
#:(h) {(ﬁ for h € K¢

For every clopen set K of H there exists a stop rule s such that
K is determined by s. A proof of this fact can be found in [6]. Given
a strategy o, using induction on the structure of stop rules one can
define o(K) for cvery clopen set K. It then follows that o(K) so
defined satisfies

o(K) = [ olp.(h)(Ep.()do(h).

In [28], Purves and Sudderth have shown that this probability defined
for clopen sets induces in a canonical way a probability on a field Ao)
of subsets of H including B, the o-field of Borel subsets of H. On any
open set U the induced probability ¢ is defined as

a(U) = sup{o(K) : K clopen subset of U}.

It has been shown in [28] that the induced probability is unique subject
to certain regularity conditions. o is characterised by the following

three properties:
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C(i) For any Borel A C H, a(A) = [olz](Az)do.
C(ii) If O C H is open then

a(0) = sup{o(K) : K clopen K C O}.

C(iii) If A C H is Borel and € > 0 then there is a closed set C'
and open set O such that C ¢ A C O and o(O\C) <e.

Below we give some useful results regarding o which we need in
the sequel.
(P1) (Cor.4.1 p.265 in [28]) If A is Borel and s a stop rule then,

o(4) = [ olpu(m))(Ap. () do(h)

(P2) (Lemma 5.2 p.266 in [28]) If A', A%... are Borel and
[pu(h)](A"pn(h)) = 0 for all n and h then o(UA™) = 0.

(P3) (Lemma 1 p.273 in [28]) Let {L,},>; be a sequence of clopen
subsets of H and {t,} a sequence of strictly increasing stop rules (i.e.
tn(h) > t,(h) for all m > n and for all h € H ) and {an} a sequence
of real numbers such that

(i) Ly, is determined by ¢, for all n € N,

(ii) o(L1) > (<)a; and for all h € H,

P (W) (Luirpi, (7)) = (S)air n e N

Then (N2, L,) > (<)M, a,,. Most often we have occasion to use
only the first inequality.
(P4) (Theorem 5.2 p.269 [28]) If A!, A2, ... are increasing Borel sets
then

o(UA™) = sup o(A%)
where the supremum is taken over all stop rules s and A° denotes
{he H:he AM},
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(P5) (Theorem 7.2 p.275 [28]) Let & be induced by aniid. strategy.
Then we have the following result: If A C N then

ofh: %1
This i a strong law of large numbers.
(P6) (Theorem 3.1 p.34 [29)) Let o be induced by an independent
strategy. Then we have the following result: If B is a tail Borel set
then o(B) = 0 or 1. Recall that a set B C H is a tail set provided
Bp= By whenever p.q € Seq have the same length.
This is Kolmogorov 0 - 1 Law.

(PT) (Theorem 4.1 p.35 [29]) If B is a Borel set then

ofh olp (1) (Bpa 1) - Lg{h)} =1

This is Levy 0 - 1 Law.



Chapter 1

Random Walks: Recurrence

and Transience

1.1 Introduction

In this chapter we discuss recurrence and transience of random walks
in the finitely additive strategic setup. The theory of general Markov
chains in this setup has been developed by Ramakrishnan in (30]
and [31]. We find that the implementation of these results to the
present context of random walks needs some interesting calculations.
Soon it transpired that the techniques of Karandikar [23] and [24] are
more suitable. The results presented in this chapter may be regarded
as a continuation of both Ramakrishnan ([30] and [31]) as well as
Karandikar ([23] and [24]).

In §2 we start with various observations concerning random vari-
ables in a finitely additive setting, culminating in an elementary proof
of Theorem 1.2 of Karandikar [24]. §3 cites some preliminaries which

we will use in the sequel. We take up the study of random walks in

11
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§4. In §5 we discuss the possibilities of extending some of our results

to higher dimensions.

1.2 Preliminaries

A finitely additive probability space is a triplet (H,C, ) where C is
a field of subsets of a set H and u is a finitely additive probability
on C. For A C H let p*(A) = inf{u(C) : C € C,C D> A}, and
#s(A) =1 - p*(A°). We shall assume, as in [24], that C is complete
in the sense : A C H and p*(A) = p,(A) implies that A € C. In what
follows, R is the set of real numbers. Recall (see [8]) that if X and
s, for n > 1 are real valued functions on H, say that s, - X (8n
converges to X in p probability) in case p'(|X — s,| > €) — 0 for
each € > 0. Let,

E={X:X=3alsA€C aeRrR n>1}
-1
Elements of £ are called simple functions. Let,
L = {X : There exists a sequence s, € £ such that s, -+ X}

Elements of £ are called random variables.
Remark (1.2.0) : Note that if X € £ then the distribution of X
is tight in the sense that for each € > 0 there is a number a with
w(1X]>a) <e.

For s € £, recall that [sdy = Sa;pu(A;). We say that X € £ is
1 integrable (or integrable) if there is a sequence {s,} in £ such that
su =5 X and [|s, — spldp — 0 as n.m —> oc. In such a case
J Xdp is defined - unambiguously, as is easy to see - as lim,, [ s,dp.
It is also denoted by E,(X).
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Definition (1.2.1) : Let X € £. Say that a real number c is a
continuity point of X in case p'(c—1 < X < c+%) — Qasn — oc.

This is equivalent to saying that if a, T ¢ and each a, < ¢, b, | ¢
and each b, > ¢ then p'(a, < X <b,) — 0 as n — oc. The set of
continuity points of X is denoted by C(X).
Remark (1.2.2) : If ¢ € C(X) then the set (X = ¢) is in C and
moreover, u(X = ¢) = 0. However the converse need not be true.
First let us recall that a finitely additive probability y defined on the
power set of a countable set H is said to be diffuse if u{h} = 0 for all
h € H. Let H be the set of nonnegative integers, C the powerset, u
any diffuse probability, X is the function X (0) = 0 and X (n) = L for
n > 1 then 0 ¢ C(X) but the set (X =0) € C and pu(X =0) =0.

Of course if ¢ € C(X) then the sets (X < ¢).(X > c) etc. are all

in C as shown in the next lemma.
Lemma 1.2.3 Let X € £ and c € C(X) then (X <c)€C.

Proof. : Since C is complete, it suffices to show that u*(X < ¢) =
1.(X < c); equivalently we show that p"(X < ¢) +p"(X >c) =1
Since the inequality u*(A) + p*(A°) > 1 always holds, we need to
show that u'(X < ¢) + p'(X > ¢) < 1. Fixe > 0. As c € C(X),
fix an integer N > 1 such that p'(c— % < X < c+ ¥) <% As
X € L fix s, € € such that s, —*» X. Fix an integer n, so that
1 (|sn, — X| > 5&) < & Get A € C such that 4 D (|sa, — X| > %)
and p(A) < €/4. Clearly,

(X<c) C (s, <ctsp)UA
(X>c) C (s, >c— ) UA,
(c— s <su<ctzy) C (c—F<X<ctyx)Ua
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So that
(X <e)+p(X >c)
S 1+p(e— gy <sp, <c+ %) +2u(4)
S l4p'(e— gy <X <ct+3)+3u(4)
< 14543
Since € > 0 is arbitrary, the proof is complete. [ ]

As in the countably additive case, we have the following

Lemma 1.2.4 For X € L, the complement of C(X) is at most
countable.

Proof For any real number c, letting 7(c) = inf, {p* (c—i<X<et

1)} one shows that for any fixed integer k the set Ay = {c: j(c) > 1}
has at most k — 1 points. [ ]
Definition (1.2.5) : For X € £ we define

Fx(c) = (X < ¢) forceC(X)

Fx(c) = p(X<e) forcer.

We think of Fx as the distribution function of X. Clearly Fx

extends Fy.
Remark (1.2.6) : At each point in C(X), F is continuous, whereas,
for points outside C'(X) nothing can be said in general. This state-
ment is illustrated by the following example. But before that we
need some definitions. Let a € 2. A probability § is said to be
diffuse to the right of a at a if dlaa+e)=1Ve>0. A probability
& is said to be diffuse to the left of a at a if b(a—e. a) =1Ve>0.

Now let H be the real line &, C be the power set, p =3} | lé), where
6y is a diffuse probability to the right of +1 at +1; 8, is a diffuse prob-
ability to the left of -1 at -1; 6, is a diffuse probability to the right of 0
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at 0; and é, is a diffuse probability to the left of 0 at 0. Let X (w) = w.
Then it is easy to see that Fyx is not left continuous at -1, not right
continuous at +1, neither left continuous nor right continuous at 0.

Of course, the function Fx as defined above does not, in any sense.
determine the distribution of the random variable X. However, our
objective is not to study these distribution functions as such, but to
relate them to countably additive probabilities.
Definition (1.2.7) : For X € £ and a € R define

F'(a) = [nfFe(b) = inf Fy(b)
beC(X)

It is not difficult to verify that the two infimums above are indeed
equal. F* is a right continuous distribution function in the usual
sense. F* is called the associate of Fx. If Y is a random variable with
distribution function F* we say that Y is an associate of X.
Remark (1.2.8) : Ifc € C(X) then F*(c) = F(c) and c is a point of
continuity of F*. However if ¢ & C(X) then F* is not left continuous
at c.

The association between Fx and F* is clarified by the following

Lemma.

Lemma 1.2.9 For any bounded continuous fuction g : R — R

Bu(o(X)) = [ gar.

: For each positive integer n > 1 choose a number k, > 0
such that p*(|X| > k,) < 35 This is possible since X is tight (see
remark (1.2.0)). Moreover we can assume that k, € C(X). By the

uniform continuity of g on [~k,.k,] choose 8, > 0 such that for z.y
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n [—k,. k] if |z — y| < &, then lg(=) — 9(y)| < &. Choose a partition
—k,=al <z} <. < xy, = k, with |¢} — x| < é, for all i. There
is no loss in assuming that each of these points is in C(X).
Define
g(z}) ifze(atay,)0<i<l, —1
9u(@) = { 0 ) if |2| > ks 1

Then it is easy to see that g,0X -5 goX . Also, p(ga(z)) =

[ gndF*.
Taking limits and using the Dominated Convergence theorem (see
[8]) we get the result. [

Higher dimensions (1.2.10) : The extension to multidimen-
sions is straightforward which will be explained briefly now. Let
X1. X5, ..., X, be k random variables on (H,C,p). Say that 4 =
(a1,a2,...,a;) € R* is a continuity point of the random ve;tor

= (X1, Xo, ..., Xx) if p*(a; — % <X;<a;i+ ,—‘l i=1,....k) con-
verges to 0 as n — co. Obviously, if for one i, a; is a continuity
point of X;, then a is a continuity point of X There are only count-
ably many noncontinuity points for the mndom vector X Define
FX(a1 az,...iap) = pr (X, < ap,... X < ai). If a is a continuity
pomt of X then FX is indeed continuous at a

For two points p = (b;.bs
use the notation p > ¢ if b > a; Vi and b; > a; for at least one i.
Define F* as follows :

o) = Bl Fx() = jnt Fx()

bec(x)

.. be) and g = (a1, ao, - ... ay) of R* we

F is a distribution function on R* in the usual sense. This is

called the associate of Fx.
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Moreover, for every bounded continuous function g:R* —R

Bo(X:. Xe.... X)) = [ gaF...(1)

Given (X;. X5..... Xi) there is only one right continuous distribu-
tion function Fy satisfying (1) for every bounded continuous function
9, namely the one constructed above.

IfY..... Y% are random variables defined on some countably ad-
ditive probability space having joint distribution F% then we re-
fer to (Y3,.... Y:) as an associate of (X1, ... Xk)- We can now ex-
tend the notion of associate to a sequence of random variables. Let
Y = (¥; ;i > 1) be a sequence of random variables defined on a
cNolmtably additive probability space. Let X = (X; ;i > 1) be a
sequence of random variables defined on a Nﬁm’tely additive proba-
bility space (H.C,pu). We call y an associate of x if for every k,
Yi....., Y%) is an associate of (X;. ... Xk). Suppose Tor example that
Unz10(Xi,- .., X,) = F (say) is included in C and 4/’ is another finitely
additive probability on (H.C) agreeing with z on F. Then any asso-
ciate of (X,,; n > 1) on (H,C, p) is also an associate of (X,; n > 1) on
(H,C, ). However the properties of the sequence (X, ;n > 1) under
# may be entirely different from those under p/. It is not difficult
to construct such examples, see for instance ([24] p.196). This forces
one to restrict attention to regular setups. We shall work in the more

popular strategic setting.

1.3 Strategic Setting

For the basic framework and the necessary properties of this setup see
50.1.
b
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We shall now return to the concept of associates introduced at the
end of §1. First note that every sequence (X,,) has at least one asso-
ciate. Consider the strategic probability o induced by an independent
strategy, (i.e., o(<>) = Yoees0(<dayin, iy >) = Ve+1s - - -, €bC.)
and the random variables (X,,; n > 1) on (I*,P>(I),0). X3, X,,...
are said to be independent if X,.(h) depends only on the nth coordi-
nate h, of h. It follows from (P3) in §0.1 that if X; are independent
then

o(X: € i, Vi 1) = I2,%(X; € 4)).

An independent sequence of random variables is said to be
identically distributed (abbreviated as iid.) if for each n > 1 and
for each € N, C(X,), we have T(Xn € ®) = (X, < ). This is
equivalent to saying that F} does not depend on n, where Fy is the

associate of Fy, .

In what follows, we will consider coordinate random variables
(X2;n > 1) on (I®,P*(I),0). Obviously, (Xy; n > 1) are indepen-
dent (resp. iid.) if o is induced by an independent (resp. iid.)
strategy. If (Y,;n > 1) is any associate of (X..) then it is clear that
(Y,) is a sequence of independent (resp. i.i.d.) random variables if
(X,.) are independent (resp. i.i.d.). One would like to deduce results
about the sequence (X,,) using the known classical results for its as-
sociate (Y,). One such technique, developed by Karandikar is the

following :

Proposition 1.3.1([24]) : Let x — (X)) be a sequence of i.i.d.
random variables defined on (I®.P>(I).0). Lety = (Y,) be an
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associate of (X,)). Let A € B(R®) be such that

(T| T....) € A
L) e m>. (%)
and Z[zlf:v,j < oc

Then X € A a.s. 0 iff Y € A a.s.
Here are some examples of sets satisfying the condition ().

Lemma 1.3.2 Let

A= {(z1,®2,...) €R™ : For each k. (3_w;:n >k)is dense in R}
i=k

Then A satisfies (x)

(Note that in the definition of A we could have taken k = 1 i.e. we
could have considered partial sums starting from x; and had we done
that we would have got the same A. But we prefer this form of A be-
cause to verify that A satisfies () this form proves more convenient.)
Proof. : Clearly A is a Borel set in R®. Let z= (z1,%2,...) € A and
E|'n,—z | <ococand k > 1. Fixany a € Rand > 0. Choose k. so that

Z|w,7a:|<e/4 If k > k. choose n; so that Z'z.e(aff a+ )

i=k

ik,

If k < k. choose n; so that Zz,e (a—l—éa—lﬁ- <) where

purd
Z(m —a;). In either case, Zz = zz,+z(r —x;) € (a—e, ate).

s ry
This shows that (Z @} : n > k) is dense in R. That is (z}.2}....) € A.

i=k
-
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Lemma 1.3.3 Let A = {(z1.7%2....) € R® : For each k,
| Eii| — coas n— oo}

Then A satisfies (*).

Proof. : Clearly A is a Borel set in R®. Let g = (¢1,%2....) € A.
Assume that 3 |z; — z}| = ¢ < co. Fix any k> 1.

n n n

M= 3w+ (- ).

ik ik i=k
Since the second term on the right side is bounded between —c and

+¢, and the first term in modulus tends to co as n — oo, we conclude

that | Y7 )| — oo as n — oco. That is, (z},),...) € A. ]
k Ti 1, T

Lemma 1.3.4 Fiz 1 #0. Let

A={(z1,22,...) ER® : (Ve > 0)(3k)(Vk > k)
(Vr € z)[For infinitely many values of n,
Yiw € (rl—erl+e)}

Then A satisfies (*).

Proof. : Clearly A is a Borel set in R®. Let (z;,22,...) € A. Assume
that 3 |=; — @] < oo. Fix € > 0. Choose k; such that 337 |z; — @}] <
€/2. Choose ky such that for all k > k; and for all r € Z we have for

infinitely many n. Ypw; € (rl—§.rl+3). Put k to be the maximum
of k; and ks. Now if we take any k > k. and any r € Z

Sai=dwm+ > (vi—w) € (rl—erl+e)
& x &

for infinitely many values of n. | ]
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1.4 Random Walks

We consider random walks on the real line. Accordingly let 4 be a
finitely additive probability on X. We consider (R*.P>(R).o) where
o is the strategic probability induced by 7 so that the coordinate
random variables X, Xa. -- - are i.i.d. Of course S, =0, and forn > 1,
S, = Yt X; is the random walk being considered. We refer to this
random walk as RW (7).

Definition 1.4.1 : For a random walk RW(7), its state space S
is defined as follows : In case v is tight, S is the closed semigroup
generated by the closed support of 5. In case v is not tight, we take
S = R (for reasons that will become clear later). (For definition of
tightness see Remark 1.2.0). The elements of S are called the states
of the random walk. A state a, is said to be weakly recurrent if for
cach € > 0, o(S, € (@ —€.a+e)io) =1 Astatealis said to be
strongly recurrent if o(S, € (a — €,a + €) i.o for each € > 0) = 1.

If a state is not weakly recurrent, it is called transient. A ran-
dom walk is called weakly recurrent /strongly recurrent, /transient if all
states are so.

1t will follow from our results that all states in a random walk are of
the same type. We shall first consider random walks induced by tight
probabilities. Accordingly let ¥ be a tight probability on R. Let ¥ be
its associate. Recall that a countably additive probability p on (R.B)
is said to be lattice if there is a d > 0 such that p{nd:nez}=1
Otherwise it is nonlattice.

Lemma 1.4.2 Let 5 be nonlattice. Then RW (7) is strongly re-
current iff RW (%) is recurrent.
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Proof. : Apply 1.3.2 and 1.3.3 [ ]

Lemma 1.4.3 Let 4 be lattice. Then RW (v) is weakly recurrent
iff RW(7) is recurrent.

Proof. : Let § be concentrated on L say, where L is the set of all
multiples of I. Here I > 0. Assume that RW (J) is recurrent. So we
have 371!, Y; = a io. for all @ € L almost surely. Let A be as in
1.34. Thus (Y7.Y5....) € A as. As a consequence (X1.X5,...) € A
a.s. 0. However this does not immediately imply the weak recurrence
of RW(y), the reader should note the appearance of k depending on
€ in the definition of A. We shall complete the argument as follows :
Fix € > 0. Let C; = {X; € U,=(rl — 5T - rl+ 55)}. By tightness of
7 we have o(C;) = 1 for i > 1. Since each C; is a clopen set, noting
that (X;.i > 1) is an independent sequence and that C; depends on
X; only, using (P3) in §0.1 we conclude that o(N¥C;) = 1. Note
that on NC; , Zf‘;, X, e(rl— $.7l+ %) for some r € Z. Now fix any
rez

n koot n

YXi=Y X+ Y X

il =1 ik
On NC; the first sum on the right side is in (rel — §.r 0 + $) for
some r, € Z. By definition of A, as. o, the second sum belongs
to ((r—ry)l —§,(r — r,)l + §) for infinitely many values of n. As a
consequence a.s. a. 31 X; € (rl—e.rl+e) for infinitely many values
of n. This shows that RW (4) is weakly recurrent.

Conversely, if RW(3) is not recurrent, ic., RW(3) is transient,

then 1.3.3 shows that RW (7) is not weakly recurrent. This completes

the proof. L]
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Lemma 1.4.4 Suppose v is not countably additive and 3 is lattice.
Then RW (%) is not strongly recurrent.

Proof. : Suppose § is concentrated on the lattice L = {rl:r ez}
>0

Let d; = inf (|1X; —rl| : v € Z) and K = [X, € {U,en(rl — 6.7 +
6) — L}] where 0 < é < /4. Of course, d; depeﬁds on the history A.

Since -y is not countably additive (and is tight) it follows that
o(K1) > 0. Fori > 2 let

K={X; e U(”l 2.+1"'l+2m”

Clearly K, K, ... are all clopen sets.

Note that for & € K, di(h) > 0 which implies that
o[hy)(Kahy) =1 and in general o[k ... h,)(Kys1hy ... k) = 1. An ap-
plication of (P8) in §0.1 now yields that (N2, K;) = (K1) > 0.

Now notice that on N2, K;, Y2, X; = vl + X0, +d; for some
r€z ThusonNK; |5, —rl| > —l for all n.
This implies that the random walk is not strongly recurrent. [ ]

Thus, in case 4 is tight, (1.4.2) and (1.4.3) show that RW(y) is
transient iff RW (%) is transient. Of course, in the lattice case, RW(«y)
is never strongly recurrent unless « is countably additive. We shall
now proceed to consider the case when v is not tight. First we shall
restrict ourselves to random walks on Z, the set of integers. Accord-
ingly let us consider an i.i.d. strategic probability o on (2>, P>(z))
induced by a v on Z. In what follows 6, stands for any finitely
additive probability on Z such that 610(n,00) = 1 for each n > 1.
Similarly §_, stands for any finitely additive probability on Z such
that é_(—oc,—n) = 1 for each n > 1. In other words, 8, is any
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diffuse probability concentrated near +oc and §_., is any diffuse prob-

ability concentrated near —oc.

Lemma 1.4.5 Let v = ab_o, + bbio + cu where a > 0, b > 0,
atb+c=1and pisa tably additive probability on 7.
Then RW(y) is transient i.e. |S,| — oo a.s. o and RW(y) is

oscillating i.e., a.s. o. S, changes sign infinitely often.

Proof. : Fix an € > 0. Choose €,, n > 1 such that [[2,(1—¢,) > 1—e¢.
Since p is tight, fix L,, n > 1 such that g(—L,.+L,) > 1 - ¢, for
n > 1. In what follows, for notational convenience hy is taken as 0.

For each: positive integer n > 1 we will fix a suitable positive integer

m,, later. For now, define, for n > 1, the sets
n 1 M
Av={h=(hihs...) s by € (~Lyn L) or bl > exp(3 [hil+3. L}
i=0 =

By choice of L, it is clear that o(4,) > 1 — ¢, and also for each
h. alpuoy (W] (Aupy-1(R)) > 1 — €, Let A=A, By (P3)in §0.1,
a(A) 2 TI°(1 — &) > 1 —e. Let,

Yi(h) = 1if hy e (—Li.L;)
= 0 otherwise

Put. ¢ = cu(—L;. L;) = 1(~L;. L,) and Z; =
Then clearly £(Z;) = 0, Z; depends only on the ith coordinate,
(Z;) are independent. By the SLLN (see (P5). §0.1)

o[%zz, s 0)=1.

¢, — ¢ (by the tightness of y1) so that 4= — ¢ As a consequence

|2 31Y: — ¢] = 1. Choose 5 > 0 so that ¢+ < 1 and for simplicity
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assume that ¢ + 7 is a rational number.
12
o[> Y; < ¢+ pfor large n] = 1. ()
L

Let 2 be the event in brackets above.

Letl—c—p = 2 where p. g are positive integers (recall that
¢+ 7 is rational). Put m, = g(n + 1). We shall now show that
with this choice of m,, we shall have |X,| — oc on ANB. To
see this, fix A € ANB. Thus for each k either hy € (=L, Lg) or
hel > exp(X§~" Al + T Li). Ler,

N,(h) = Card{k < n : |kt > ex‘p(kzl |h] +§L,}
o i=1

k-1 my
M, (h) = max{k < n: |he| > exp(}_ ||l + > Li}
0 =1

It h € B, then for sufficiently large n, N, (h) > (1 — ¢ — y)n. This
Sollows from the definitions of the random variables Y; and the event
B. Obviously M,(h) > N,(h). Thus suppressing h—for notational
=ase— we have (M, +1) > ¢(N,+1) > n. Also, for i = M, +1.....n.
=. £ (—L;.L;) so that

|Zh|>|hv"|— Z [t = 32 Al

=M, +1

a(Mp+1)

>exp(ZIhl+ Z L)—ZIM—ZM

(by definition of AM,,)

My 1 a(Mn 1) My 1 n
2exp( Y hl+ 3 L) - X - L
0 1 0 1
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(because for h € A if M, < i <n, then h; € (—Li. L;)).

— ocas n— oo (because ¢(M, +1)>n.)

Thus for h € AN B, |S,(h)] — oo. Since c(ANB) > 1 — € and
€ > 0 is arbitrary we have shown that RW (v) is transient. Two more
applications of the SLLN shows that S, changes sign infinitely often,

completing proof of the Lemma. ]

Lemma 1.4.6 Let v =bb,oc+cp withb >0, ¢ >0, b+ec=1and p
a countably additive probability. Then. RW () diverges to +oc.

Proof. : We proceed as in Lemma 1.4.5. Fix an € > 0 and for cach
n>1ane, > 0sothat [[;2,(1 —e) > (1 —¢). Forn > 1 fix L, so
that p(—L,.L,) > (1 —¢,). Define

A= {h = (h1.h

hy € (<L L) or hy > exp(3 L)}
=l

where m,, are suitably chosen positive integers. We can now proceed
as in the proof of the earlier lemma with appropriate modifications.m
We shall now summarize the conclusions of 1.4.2-1.4.6. In what
follows 8., stands for any finitely additive probability on R with
8. (n.oc) =1 for all n > 1. Similarly é_ stands for any finitely
additive probability on ® with § .(—oc,—n) =1foralln > 1.

Theorem 1.4.7 Consider the random walk RW(y) on the real
line % where 4 = aé_,, + bé_ +cp with a.b.c > 0: a+b+c=1:
and p a tight probability on X.

(i) If ¢ = 1 and ji is nonlattice. then RW(y) = RW(u) is
strongly recurrent iff RW(ji) is recurrent.
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(i) If ¢ = 1 and jr is lattice. then RW (1) = RW (u) is weakly
recurrent iff RW(ji) is recurrent. It is never strongly recur-

rent unless p is countably additive.
(iii) If ¢ <1 and a = 0. then RW(q) diverges to +oc a.s. 0.
(iv) If ¢ <1 and b= 0. then RW(y) diverges to —< a.s. o.

(v) Ife <1.a> 0 andb> 0. then RW(q) changes sign infinitely

often. and diverges in modulus to c© a.s. o.

(1.4.8) Some Remarks:

1. At the end of §2, we remarked about the necessity of restricting
attention to some kind of regular setups. Here is a specific
example : Consider on R the finitely additive probability 5 =

6+ %6“ + %)\ where X is the Lebesgue measure on [—
6., is a finitely additive probability giving mass one to cach
open interval (1,1+ 1) for n > 1; 6, is a finitely additive
probability giving mass one to cach interval (—1.—1 + L) for
n > 1. On ™, let C be the field of finite disjoint unions of
rectangles F} x --- x F, x R x R X --- where each F; is a finite
disjoint union of left open right closed intervals in R. On C
define p as the obvious product probability with each coordinate
equipped with «. Clearly 4 is nonlattice and RW(;) is recurrent.
If A is the set of all sequences in R* having dense partial sums
then p*(A) =1 and p,(A) = 0 so that we can get an extension
—say ¢ - of u with p'(A) < 1. With such a y’ the coordinate
random variables are i.i.d. in any reasonable definition (see
for example [24] Section 3). However the random walk RW ()

considered on this space is not recurrent.
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2. Notice that the 4 in the earlier remark is tight. Similar examples
can be constructed with nontight 4 also.

3. We have chosen the strategic setting as our regular setup. In
[24] another notion -~ namely, regularity — was introduced. Some
of our results — especially Lemmas 1.4.2—1.4.4 dealing with the
case of tight v hold good even in this setup.

1.5 Extension to Higher Dimensions

In this section, we show that some of our results obtained in the last
few sections can be extended to higher dimensions with a slight mod-
ification in the argument. But unlike the one-dimensional case, we do
not have here a neat theory covering all possible cases. The reason is,
in one-dimension we have a neat dichotomy, namely, the state space of
RW () can be either lattice or the whole space. In higher dimension
the nature of the state space can be more complicated depending on
4.

First we will consider the strategic probability ¢ induced by a tight
. Below we give a version of Karandikar’s theorem (see Proposition

1.3.1 or [24]) which we will apply to d-dimensional random vectors.

Proposition 1.5.1 Suppose that (X,) is a sequence of iid. ran-
dom vectors defined on (I, PL(IB o) where I = =%, Let A €
B(I*) be such that for all x = (rl @2 L) and x' = (T BES
I*. x€Aand 3, |lw — i',H < ¢ lmplyx € A.x Then Xe€ A as.
o, f Y € A a.s. where Y is the countably additive associate of
X.
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As in one dimensional case, we refer to the property of A that has
been marked by * above, as (+). In what follows, S| (3) denotes the sup-
port of 5 in 9. For a fixed ¢ > 0 let B(S(5).€) be the e-ncighbourhood
of S(3) ie., x € B(S(3).€) < for some ye S( w) Hx yH <e

Note that if (X|
each having dxstubutmu 7 then for any € > 0 and for all i, X €

B(S(3).¢) as. 1.
Below we give the analogues of Lemma 1.3.2, 1.3.3 and 1.3.4 in

..) be a sequence of i.i.d. random vectors.

d-dimensional setting where d > 2.

Fix a countable dense set {51.52....} in the closed group generated
by S(%) which will be denoted by Gr(3).
Lemma 1.5.2 Let

A= {(z),%....) € I*: For each k. (3 xi:n > k) is dense in R}
o ks

Then A satisfies ().

Lemma 1.5.3 Let

A={(z1,22....) €I*: For each k.|| 3 @) — o0 asn — oo}
i XY

i=k

Then A satisfies (x).

Lemma 1.5.4 Let

A={(w,22,..) €I® : (Ve >0)(3k.)(Vk > k)
(Ym € N) [For infinitely many values of n.
ik T € B(snm.€)]}

Then A satisfies (*).
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The proofs arc same as in one dimensional case.
The next proposition establishes a correspondence between
RW () and RW (). We will first consider two-dimensional random

walks.

Proposition 1.5.5: RW(y) is weakly recurrent iff RW (%) is re-

current.

Proof.: Assume RW(J) is recurrent. Let A be as in Lemma 1.5.4.
Since RW () is recurrent (Yl Ya,...) € A a.s where (Yth ..) is the
) Therefore | by Proposition

countably additive associate of (X 1.
1.5.1, (X1, X5....) € A as. o,. To prove that Se =35, X, k> 1is
weakly ;ecu;rent we will argue as follows. i

Fix ay € Gr(¥) and € > 0. By Lemma 1.5.4. corresponding to §

there exists a positive integer ks such that Vk > k¢ for inﬁnitely many
values of n, 3% kT € B(sp. 4) Vm € N. Now, Z‘ 1X 2
Tha X

The semnd part of the sum visits B(s,,, 4) infinitely often Ym € N
by Lemma 1.5.4. To tackle the first part, set

Cr= X = (X X ) X € BIS(). 57}

Note that o,(Cf) = 1 and Cf’s are clopen and independent for
i=12.... Therefore we have o,(NCf) = 1 by (P3) in §0.1 .
On D = (NC) N x7'(4), .5 X € B(a.) for some a

(81.82....) being dense in Gr(5) Zmg s.t. B(sm,. $) € Bag—a.$).

Now, we have already observed that Y5, _,Xi € B($m,.§) in-
finitely often since X € A. So consequently Zf:h_:X‘- € B(ag—a.§)
infinitely often........ ~(2) b
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Hence from (1) and (2) it follows that % | X; € B(ag. €) infinitely

often which shows that RW(4) is weakly roc'l;rr('ur completing the
proof. To prove the converse apply Lemma 1.5.3. [ ]
Remark (1.5.6): It is easy to sce that if one of the marginals of
3 is lattice then RW () cannot be strongly recurrent unless the cor-
responding marginal of 4 is countably additive. But it is possible
to construct a v using transition function p(z.-) which is lattice for
cach = and finitely additive but RW (y) is strongly recurrent as the
following example shows:
Example (1.5.7): Let 4y be a convex combination of the uniform
measure on (—3.1) and a diffuse measure at the left of 1 and at the
right of -1. Let p(x.-) be diffuse and § at VI — a2 and § at —y/1— 22
for all z. Define 4 on P(R?) as follows:

2A) = [ pla. A)dn(a)

RW (%) is recurrent and the marginals of 4 are nonlattice. Moreover,
the state space of RW () is entire B*. Therefore we can apply Lemma
1.5.2. to conclude that RW () is strongly recurrent.

In BY d > 3 the random walks in countably additive setup are
always transient. Likewise d-dimensional random walks (d > 3) in
strategic setting are always transient as can be shown by an applica-
tion of Lemma 1.5.3.

Remark (1.5.8): If 4 is a probability on ®* which has a marginal
with a nontrivial part diffuse at +oo (or -oc) then it can be shown
that RW () is transient.

This fact can be stated more preciscly as follows:

2

Theorem 1.5.9 Let 4 be a probability on R* and v and v, be its
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marginals, i.e. 11(4) = (A x R) and 12(4) = (& x 4). One of
them. say v, has the following form

N =ab.o+bb + cu
where a,b,c >0 and a+b+c=1 and n s tight. Then

1. Ifc<1anda>0.b>0 then for any positive integer N,
Su(h) visits both (—co,~N) x R and (N,20) x R infinitely

often a.s. o,.

2. Ife <1 and a =0 then for any positive integer N. S.(h) €
(N.oc) x R eventually a.s. o,.

3. Ife <1 and b=0 then for any positive integer N, Su(h) €

(—oc.—N) x R eventually a.s. .

The proof goes along the same line as the proof of Lemma 1.4.5.
and 1.4.6. A slight modification is necessary to fit it into the two-
dimensional framework. The sets A, which play the mmain role in the

argument in Lemma 1.4.5 would be defined here as follows:

An=1{h=((hi.M). (hoB))...) ©  hy€ (=L, L)
o [ha| > exp(S5 bl + 27 L)}

The notations have the same meanings as in Lemma 1.4.5. Now
A,s are subsets of (k?)*. Since A, is finite dimensional we can show
by direct computation that @,(A4,) > (1 —¢,). After this cxactly the
same proof follows except that here we define Yi(h) as:

1 if (h.h}) € (L. L) x B

0 otherwise

Yi(h) = {
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If we assume that 4, is of the form discussed above then similar
results hold with obvious changes in coordinates.

If both 4, and 4, are of this form then the random walk is tran-
sient and depending on 4 the partial sums belong to any of the four
quadrants eventually with probability one, moving farther and farther
away from the two axes. Below we give a simple example of 4 which
induces a random walk such that the partial sums avoid the second
quadrant and visit first, third and fourth quadrants infinitely often,

gradually moving away from the two axes.

Example (1.5.10): Let 9) = $6_. + 36.. Let p(-.-) be a transition
function defined as follows:

b6y ife <0
ple.) =4 | . )
b ot 36y ifx>0

Let y(A) = [ p(z. Aw)dy (=)
Then obviously 7((—oc.0) x (0.0c)) = 0 and 4, = 36 o+ 160 To
verify this, observe that

12(A) = (R x A) = /p(m.A)d'n.

If A = (n,o0) then p(x,A) = 0 if z < 0 and 1 if @ > 0. Therefore,
12(A4) = 4. Similarly, if A = (—oc. —n) then 72(A4) = 2. Now, it can
be easily verified that the partial sums visit all quadrants except the
second one infinitely often and move away from the two axes almost

surely.

Clearly, we can construct 4 in a similar fashion so that the induced
random walk avoids any number of the quadrants we like and visits
the rest infinitely often moving away from the two axes steadily. Also

it is casy to see that using a suitable p(z.-), 9 can be so constructed
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that the random walk moves towards (+00, +-00) along appropriately
chosen fixed unbounded curves. Since we do not have a complete and
comprehensive picture of all possible scenarios we will not go into the

details here.

So far we have discussed one particular aspect of random walks
in strategic setup, namely, their recurrence and transience and ob-
served some peculiar characteristics which distinguish them from their
countably additive counterparts. In the next chapter we will look into
another aspect of random walks , namely, their atomicity. We analyse
the behaviour of strategic random walks in that context and contrast

them to their countably additive counterparts.



Chapter 2

Purely Nonatomic Random
Walks

2.1 Introduction

In this chapter we concentrate on another aspect of strategic random
walks, namely their atomicity. Here our aim is to describe a class
of random walks on integers which are purely nonatomic. This is in
contrast to the countably additive setup where all random walks are
simply atomic—a very well-known result proved by David Blackwell.
Our result partially answers a question raised by Ramakrishnan in his

thesis.

2.2 Preliminaries

Here are some definitions and notations which we will use in the se-
quel. We mainly follow ([3], [30], [33]).
We will work on the set of integers z. 4 is a finitely additive

35
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probability on Z and o is the markov strategy with initial distribution
7, corresponding to the random walk induced by . More precisely,
o(<>) =7, o(< dnineniin >) = (A —1i,), n > 1.(<> denotes
the empty sequence). We shall denote this random walk by RW (v).
o also stands for the strategic measure ([28], or see Preliminarics
in §0.1) induced on Z*®, the space of histories h = (h1 ko, --). On
z>, the shift operator is denoted by S, and is defined as follows:
S(hi.ha....) = (ha. ha....). In what follows, only Borel subsets of Z*
are considered. A set A is invariant if it is invariant under S, i.c., if
S7'(A) = A. The class of invariant Borel sets form a o-field called
invariant o-field which we will denote by Z. We call an invariant set
A a g-atom if A is an atom with respect to o restricted to Z, i.e., if
o(A) > 0 and for all invariant B C A, o(B) = 0 or (4 \ B) = 0.
RW (q) is atomic in case there is a sequence of & atoms Ay Ayl

which are disjoint and ¥ o(4;) = 1. RW (y) is simply atomic in case it
is atomic and there is exactly one o atom. RW (v) is purely nonatomic
in case there are no o atoms, equivalently, given any invariant set A
with o(A) > 0, there is an invariant set B C A with 0 < o(B) < o(A).
All these notions and their detailed analysis is due to D. Blackwell [3]
in the countably additive case. Ramakrishnan ([30], [33]) discussed
them in the strategic setup. In particular he showed that > can be
decomposed into countably many ¢ atoms and a nonatomic part. He

showed

Theorem 2.2.1: (S. Ramakrishnan [30]). RW (1) is simply atomic
if either i) 4 is a 0-1 valued or ii) 4 has a nontrivial countably
additive part not concentrated at 0 or iii) 4 has a nontrivial

translation invariant part.

(The reader should note that the part (ii) of Theorem 2.2.1. is
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slightly different from what has been stated by Ramakrishnan in his
thesis. We have added the condition that the countably additive part
of 3 must not concentrate at zero for RW (1) to be simply atomic).
Of course if i) holds then o itself is 0-1 valued. In the other two
cases one shows that bounded harmonic functions are constants. He
raised the question whether every RW (7) is simply atomic as in [3].
We shall exhibit purely nonatomic RW (y). Recall that v is diffuse
in case 4 has no nontrivial countably additive part — equivalently,
2{n} = 0 for each n € z. Thus in case 4 is not diffuse, and the

countably additive part of 4 is not concentrated at 0, Theore
implies that RW () is simply atomic.

2.3 Main Results

Definitions 2.3.1: Let seq(Z) be the set of finite sequences of integers
including the empty sequence. T C seq(z) is called a tree if i) s € T
and t is an initial segment of s imply ¢ € T and ii) if s € T then there
is a y € Z such that sy € T. A tree T is called disjointed in case
sy € T and ty € T imply s = ¢t. For any tree T its body [T] is the set
of histories all of whose initial segments are in T
Theorem 2.3.2: Suppose v is a diffuse probability on 7. which
is not 0-1 valued. If there exists a disjointed tree T such that
o([T]) =1. Then RW () is purely nonatomic.
Proof: Since 9 is nontrivial, fix A C Z with 7(4) =a, 0 < a < 1.
Set,

Ao = {h:hi€ A}N[T)

A = {h:h ¢ A}N[T)

By = U%,S"A4y and B, = U 8"A,
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Using the fact that T is disjointed it is casy to verify that By and B
are disjoint. To see this. first observe that the first coordinares of Ao
and A; are different and both Ay and A, are subsets of ‘T| where T

i« a disjointed tree. Therefore. it follows that
¥ heAp W e and ¥ mo neNo by # h(¥)

Now. By and B; are invariantisations of Ay and A, respectively.
Therefore. for any h € By there exists some h € Ao such that h, = h,,
for all sufficiently large n. The same is true if we replace Bo and Ay
by B, and A, respectively. Since Ay and A, have the property marked

vint. Moreover o([T) = 1

by (¥) above. clearly By and B; are dis
implies that o(Bo) = (o) = a and ¢(B:) = a(A;) = 1 — a. For
i=0.1and 7 = 0.1 put

Ay ={h:h €A and hy —h € A/} )
where A=A and A' = A"
B, = 5A,

Then Bj;. i = 0.1.j = 0.1: are disjoint and a(B;;) = o’af where
A% = a and @' = 1 — a. Proceeding in this way we can get. for
any given € > 0. a decomposition of £ into fiuitely many invariant
wots of o measure smaller than e. This shows that RW (1) is purely
uonatomic, L]
Specific situations where the above theorem applies are included
n the following:
Theorem 2.3.3. Suppose v is diffusc and not 0-1 valicd on 7.

Suppose that for some sequenee of positive integers 0 < a; < 3y <
Pr 4 4!
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saee have ap = ag = x and A{xa; i > 1} = 1. Then RW(A)
is purely nonatomic.

Proof : Let ge = .y — 05k — 1.2 ... By our assumption g; — x

ie. for any fixed A > 1 there exists 1y > 1 such rhat g = N for all
k= oo Lot f{N') be the first ny for which this happens.

Now. set A — {£a dag. ... } and

B = {h:jihy- 20 ¥Vi>21 by —heA
and |2 — ki > agvg o
where N, > 2% b, — ki)
To show that o(B) = 1 observe that B = 0, B, where B, is

dofined as follows.
h € B, «— Bp.(h) # o

B, is clopen, being a finite dimensional cylinder set and clearly
apy (I)(Bup, +(B)) = 1 for all A @ So by P3 in §0.1.

a(B) = 1. Let T be the set of all mmal segments of histories in

B. T is atree. As B is a closed set (intersection of clopen sots)
IT) = B. To complete the proof, in view of Theorem 2.3.2. wo need
to show that if sy € T and ty € T then s = ¢: in the notation of
Theorem 2.3.2. In other words, we need to show that for any two
histories £ and k' in B. h,, = /., implies that n = m and h; = b’; for
i =1.2 ... n. This in turn is equivalent to showing that A, = I,
implies Ay — h;_y = B, - h';_ for i = 1.2....n taking by = 0. Before
proving this, observe a simple fact which we will use in the argument:

For any history h € B, and for all n > 1. h, aud k4, — h, ; have
the same sign because of the following two relations (1) and (2)

() M, — by, o] > 25,00 th — By,
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2) hn = (hn = b)) + (Bt =Py 2) + -+ Iy
Now take any two histories h and k' € B. Assume h, = h]_ for
some n and m. This we can write in the following form which we will

use afterwards:

@) (hn=hy )+ (s —hp2)+-- by =(h, —h, )+ (h, -
A

If possible, suppose h, — h, y > hl, — h We will assume both

are of the same sign because otherwise h, and H/

o are of opposite
signs and cannot be equal. Moreover, without any loss they may be
assumed to be positive. Now, both h, — h, , and ki, — k| are in

A Set h, — h, | = oy, and h, -k Og,. g > 0, by onr

assumption. But

gy =y 2 g 1 >2 D = by

el
Also.
Qg =y 2 gk, > 2 D0 |- B
Therefore, ag, — iy =y — by — (W — By 1) > 0w 1 e = by o] +
Siem =R ] s (*)
This leads to the following sequence of inequalities:
| = [+ (ha =)+ (b — b))
2> hy =l = Ticn Vi = hi )
> (W, =l )+ im0 h] |
2 (U =l )+ () = P a) e 0|
1Al
The strict inequality we have in the third line follows from ().
This shows that the assumption b, —h,, | is greater than b, b,
leads to a contradiction. Similarly we can show that b, — h,

, cannot

be greater than h,, — h, . Therefore they have to be equal.



2.3. MAIN RESULTS 41

Now, cancelling them from both sidés of the equation (3) we will
argue as before for the pair &, = by, s and &, | = b, , to conclude
that they must be equal. Proceeding in this way we finally show
that h, = A, implies e = noand (b, — h, ) by for i

1.2...........n, thus proving our assertion that 17 is a disjointed trec.

Hence RW () is purely nonatomic. [ ]

In the next section we will give some examples to illustrare the above
result. But before that, we would like to draw the readers’ attention
to some interesting facts about simply atomic random walks. Note

that though we have a fairely large class (and we conjecture that it

is exhaustive too) of purely non-atomic random walks. the number
of cases we know of simply atomic random walks are indeed very
small in comparison. Moreover, the method we have used so far to
prove that a random walk is simply atomic is by verification that the
bounded harmonic functions are constants. This is the well-known
method due to Blackwell who made use of it in countably additive
setup. But as Ramakrishnan has pointed out (see Theorem 15.12 m
[30]) for finitely additive 4 the condition that the bounded harmonic
functions are constants is only sufficient, not necessary for RW (1) to

be simply atomic. Below we give a necessary and sufficient condition:

Theorem 2.3.4: RW (%) is simply atomic if and only if
(o xa){(h.h):SNVYn>N m>Nh,#Hh,}=0.

Here o x @ is the product probability defined in the obvious way on

the field generated by the Borel rectangles of 2> x Z*. (o # ), is the
usual inner measure. (For definition see Preliminaries of Chapter 1.)
Proof: Let us denote the set {(h.h') : SNV n>N. m >N h, # I}
by D.
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If (¢ x o).(D) > 0 then by definition of inner measure there exists
a Borel rectangle B, x By C D such that (o x )(B; x Bs) > 0 which
implies o(B;) > 0 and o(Bz) > 0. Since By x B, C D, h € By and
K € By imply SNV n > N.m 2 N.h, # k... In other words, if
h € By and k' € B, then after some stage no coordinate of h can
equal any coordinate of #'. In particular, By and B, are disjoint.
Morcover. their invariantisations are also disjoint. So we get two
disjoint invariant sets both having positive probability. This shows
that RW () is not simply atomic.

Conversely, if RW (7) is not simply atomic then we have two dis-
joint invariant sets By and B, both having positive probability. Since
B, and B; are invariant. corresponding to thern there are two subsets

£B, and €8> of Z such that
B, ~ {h:h, €&B eventually} = B\(say)
By ~ {h:h, €EBseventually = By(say)

(Here A ~ B denotes o(AAB) = 0.) For details sec Lemma 15.2 in
130]. B;, B; being disjoint we can assume without loss that £B; ari

£B, are disjoint. Otherwise we can eliminate the common por

from both €3, and £B;. This will not change the probabilities

B, and B,. We will verify this as follows. Set E = EB1 &8y, Lo~
E={h:h.eE eventunally} Then clearly, EcBn B, Wi we
show that E C (B:ADy U B»ABy) and this will imply that alE -

To show this. let h € E. Then h € BN Bs. fh € By then b = 2o
since they are disjoinr and therefore h € By\ Bs. On the orh
ifh¢& B then h € B\ B:. This shows that h € (B‘ABl CBA
we claimed and thus without any loss we may assumce that
£B, ave disjoint. Therefore. ifhe Byand h' € B.
N.h, € Bk, € By - hence. h, # k. So, we have B. . % -

N vVn >N
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consequently, (o - @),(D) > 0. [

2.4 Examples and Remarks

Sxample (2.4.1) : If 7 is ditfuse. not 0-1 valued aud for some & > 2.
1{=n*: u > 1} = 1 then Theorem 2.3.3 applies and RW(7) is purely
nonatomic.

Example (2.4.2) : Let a be an integer > 2. Suppose 4 is diffuse.

not (-1 valued. and 7{£a" : n > 1} = 1 then again Theorem 2.3.3

applics and RW(4) is purely nonatomic.

Example (2.4.3) : Suppose 4 is diffuse. not 0-1 valued on 2 and
3{n* :n 21} = 1. Then RW(4) is purcly nonatomic. Apply Theo-
rem 2.3.3.

Remark (2.4.4). It is known ([30].[331) that in case bounded ~-
harmonic functions are constant. then RW(-) is simply atomic. Ir i<

interesting to note that the converse is not true.

For instance if 4{2*: n > 1} =1 and

h{m) =2 ™ML27 b 42 ™ f mo= 2N 2% >y

s simply atomic as soon as =

on2’ ={1.2.---}: then RW(q) onz~
0-1 valued. However h is always a bounded 4 harmonic function. A«
soon as 4 is not concentrated at a point, & is nonconstant. Howe- :

for any ¢ > 0 A(h > ¢) = 0. Thus b is in a sense almost sucely 7 -

Example (2.4.5) : Let a.b be integers and A = {a—: 4 L
Define for n > 1and B C %
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pa(B) LCard{k:a+kbe B. 1<k < n}
and 1(B) £(p1(B), p2(B). - )
where £ is a Banach limit. Then RW (v,) is simply atomic. In fact
fy=cn+(1-cm0<c<

]

1, 1 any probability then RW(v)
is simply atomic. The idea of the proof is similar to that used* in
Proposition 16.5 in [30]. For the sake of completeness we give below
a brief outline of the argument.

First we.show that 4 is invariant under a translation by bi.e. 39(A) =
Y(A+Db), ACZ Let ACZ Card{k:a+kbe A1 < k<n}=
Card{k:a+kb€ A+b.2 <k < n+1}. Therefore,

1a(A) = LCard{k :a+ kb€ A1 < k< n} = ,—"Curll{lc ca+kbe

A+b.2<k<n+1}. Now,

m(A+b) = "”Curd{k at+kbe A+bl <k<n+1}
= LCard[{a+b}NA+b+ 2m(A)

The first term on the right side is at most = and henee tends to
zero as n tends to co. So taking Banach limit £ on both sides and: using
the fact that Banach limit is shift invariant we have £{u,(A +?b)) =
{4+ 0} = {2m(A)}. But 25p,(4) = pa(A) + Ti(A).
The second term on the right side tends to zero as n tends ro x.
Therefore, we have £{:251,(A)} = H{;,(A)}. Hence, 7o(A) = 'm(A +
b). Now, coming back to the proof that RW(q) is simply atomie.
it suftices to show that any bounded harmonic function with respect
to 4 is constant, (sce Theorem 15.12 in [30] or [33]). So let f be a
bounded harmonic function with respeet to 4. Since 4y is invariant

under a translation.by b we have

[ £ +)dri) = [ £+ 5+ byraCi)e . (3)
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changing the variable from j co —=J rb Set gli) = f{i +b) - £(i).

Since g is harmonic with respect to 4

9y = [y(i+ j)da(j)
= e fgli v fWra()+ (1—¢) Fgli = j)dr ()
= (1 S gli = j)b(j)

(The third equaliry follows from (x)). Since 1--¢ < 1 and g is
bouuded the above oqualiry implies rhat 9(7) = 0 for all i. Therefore.
fli+8) = f(i) ie. fis periodic with period b. If for all proper
subgroups J C 1. 4(J) < 1 then by corollary 16.3 1301 f is coustanr
and we are done. If on the other hand. there cxists a proper subgroup
J C I such rthat 9(J) = 1 then we will work with J and 4 restricred
to J and arrive at the same conclusion. For derails sce Theoremn 16.6
[30}. [
Remark (2.4.6). The purely nonatomic RW (1) provide examples
of failure of the Hewitt-Savage zero one law. Failure of the Howitr-

Savage 0 — 1 law in the strategic set up was first noted in [29}.

So far, we have considered random walks induced by 4 which are
supported on subsets of Z. But the same idca as we used in the proof
of Theorem 2.3.3 can be implemented to show that there are purely
nonatomic random walks RW (1) with 4 not necessarily having z as
its support. Below we give an example of such a random walk.

Example (2.4.7). Let 4 be a probability diffuse at 0 from the
right and concentrated on the sequence 8§ = {%},,21‘ To show that
RW () is purely nonatomic consider the following set

B = {h=(h.hy--) : h.-—h€S.
hii=h < (ho—h )PVi}
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Then clearly o(B) = 1. As in Theorem 2.3.3 let T be the set of initial
segments of histories in B. Then T is a tree and [T} = B as B is closed

jointed just notice that for any finite sequence

To prove that T is d
of positive integers arranged in increasing order ny < na < --- <
with the additional property that n;-; > n} we have the following
inequality
1 1
— 4 =
nona
(%)

Now suppose two partial sums 38

We

want to show that in such a case & = [ and rhat the two cquations
arc term by term equal. If not. to get a contradiction assume rhat

= < L‘ ie. n; > my. Som:. < n. - 1. But then from (%) we ger

L4+ s+ £ < 5 < L. So the partial sums cannot be egual

For the same reason 1 >

is also impossible. S0 we must have

BN

We complete the proof in a rontine w

Remark (2.4.8). We conjectwre thar for every ~. RU{~) musr ei-
ther be simply atomic or purely nonaromic. More specifically. we
conjecture thar RW/(4) is purely nonatomic if 4 is concentrated on a
sequence with diverging gap as in Theorem 2.3.3. On the other hand,

then RW (5)

if 7 gives mass strictly less than 1 to all such sequenc

is simply atomic. We have not been able ro prove it.

We have already gor come clas-es of 4 which induce simply atomie

random walks {sce Example 2.4.3 and [30. §16]. Below we detine

aunother interesting class of
Ler 4y be a diffuse probability concentrated on a sequence of in-
tegers & — {o,},-n. Let v be a translate of 4 concentrared on

@, +r},-0 where r s any integer. so that 8 and Ss are disjoint.
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=l -l

Loty = U< 10 We condecruze thar random wa ke
induced by ~ belonging ro rhis clase are Snply aromic, Bur we e

unable to prove i

The above discussion gives us some idea abour the atomicity of
strategic random walks. The discussion shows that in respect of atom-

berween strategic random walks and their countably

icity rhe contr
addi

ably additive random walks are simply aromic is a direct consequence

¢ counterparts is remarkably pronounced. The fact that count-

of Hewitt-Savage 0-1 law. As our investigation shows. strategic ran-

dom walks could be purcly nonatomic. Thus rhe Hewitt-Savage 0-1

y to TWo questions re-

law would drastically fail. This leads natur

Savage 0-1 law: Firstly. are there natural condi-

garding the Hewirt-
tions so that a symmetric Borel ser satisfying those conditions obeys
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Hewitt Savage 0-1 law for any 4. Secondly, are there reasonable con-
ditions on ¥ so that every symmetric Borel set obeys Hewitt Savage

0-1 law. We take up these problems in the next chapter.



Chapter 3

Hewitt — Savage Zero-One

Law

3.1 Introduction

In the countably additive theory of probability the Hewitt - Savage
0~ 1 law states the following : In a product space with independent
identical components, every symmetric set has probability either zero
or one. This theorem has diverse applications, especially in random
walks, potential theory and U-statistics. In the context of finitely
additive probabilities Purves and Sudderth observed in [29] that the
Hewitt Savage 0— 1 law fails in this setup. As we have seen in Chapter
2, this failure can indeed be spectacular ~ the symmetric ¢ field could
be purely nonatomic. In this chapter we restrict our attention to
product spaces where the component space is a countable set. Let
7 be a finitely additive probability on this set. We show that the

Hewitt -Savage 0-1 law holds for the infinite product measure 4 x4 » . . .

49
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(which will be denoted by @, in the sequel) if and only if 4 takes at
most two values when restricted to subsets of the set {i : (i) = 0}.
Moreover, when this does not hold, the symmetric o-field is indeed
nonatomic.

The organization of this chapter is as follows : In §2 we describe
an alternative way (Theorem 3.2.1) to select a point in the infinite
product space with distribution ,. In §3 we use the construction of
42 to prove the main result (Theorem 3.3.1) described in the earlier
paragraph. We conclude with some remarks in the last section.

For notations and basic concepts in this chapter see §0.1.

3.2 An Identification of o,

Given a finitely additive probability 4 on N, define the countably
additive measure 4, on N by setting 41(i) = 4(i) and set 45 = — 4.
Then 4, is purely finitely additive and 4 = 4, + 4. This is nothing
but the Hewitt- Yosida - Kakutani decomposition (sce [36] and [34]).
Set Ny = NU {oc}. A denotes the countably additive probability on
No defined by A(i) = 11(7) = 1(i) for i € N and A(c) = 1(N).

denotes the finitely additive probability on N defined by p1(A) = nl,

This g1 is just 4. normalized. Throughout this section we assume that
0 < 9 (N) = 1. so that X is not point mass at x and 1 is well defined.
We are going to use g and A to select a sequence of integers with

distribution o,. To get started. here is the method for selecting a

single integer z: first use g to seleet .2y and then A to select y. If
Y1 # o, set z) =y, and if y; = >x. set z; = ;. Then the probability

that 2, € E is 4(E).

To sclect an infinite sequence of integers with distribution o, . first
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use g (repeatedly and independently) to select .. ... and then use
A (again repeatedly and independently) to select yy.ys..... Let = be
rhe first sequence and y the second one. Let (. y) be the sequence
btained by replacing the first oceurrence of o in y by . the second
occurrence of oc in y by xs. and so on. until all the infinities have
been replaced. Then T (. y) has distribution o,. This is the content
of Theorem 3.2.1 below.

To state the Theorem, we need some notation. Set H, = N, x
Ny X .... equipped with the product topology. where N, has the
discrete topology.

Set H' = H x H,. Points in H' are denoted by (z.y). where
r € H and y € H,.. Let o, be the finitely additive probability on
H induced by the i.i.d. strategy p. Let o, be the usual countably
additive product measure A x A x .... For any Borel set C' in H'
and any = € H, let C, be the section of C at x, namely, C, = {y €
H, : (z.y) € C}. As o, is countably additive, observe that o,(C.)
is a measurable function of z on H. Consequently, the expression
[ ox(Cr)do,(x) is well defined. Denote this by ¢'(C). Then o' is a
finitely additive probability on H'.

Here is the precise formulation of the selection procedure men-

tioned above.
Theorem 3.2.1 For Borel BC H. o'(T'B) = 0,(B).

‘We start making a series of observations leading to the proof. For

any infinite sequence v = (vy.v2,...) we let vy = (v2. vs....).

1¢. For any Borel set S C H! and i € N define
iS={(w.y) e H :yi =i & (w.ym) € 5}

Similarly we can define iS for any Borel set S C H, as follows:
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S={yeH :y=i & yyy e S}
Claim : o’(iS) = A(i)o’(S).
To see this observe that (iS), = iS, so that
a(i8) = [ aa(iS)sda,(2) = A) /rr,\(Sl)da,,(:c) = A(i)o'(85)
2% Claim : o'(UieniS) = 55en o/ (i5).
To sece this, note that,
oA (UiS:) = 3T(A())oa(Ss)
forany ;€ H by the countable additivity of A. Now

F(UIS) = [o,\(UiS,)do,(x)
= JZA)ar(Sr)do,(x)
= (ZA))o'(S) =X o'(iS)
where 17 is used in the last cquality.
More generally we have,
8% Claim : For cach i € N. let S; be a Borel subset of H'. Then
o' (UiniS)) = 3 0'(iS))
=
To see this fix any integer & > 1. Proceeding as in 27 wo got
a(UiS) = 3 ADea((S).)do, (o)

Z IS 0 MDea((S)).)do,(r)
= ZF,o'(s)

where we used the finite additivity of the integral and 17 for the last

equality. &k being arbitrary we got

a'(UiS) = 3" o' (iS)
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iS={yeH.:y=i & yye S}
Claim : ¢'(iS) = A(i)a’(S).
To see this observe that (i8); = i8S, so that

'(iS) = /m(is),da,‘(z) =A%) /m(s,)da“(m) = A(i)o'(S)

2% Claim : ¢'(U;eviS) = Tien 0'(i5).
To see this, note that,

ox(UiS.) = 3(A())oa(S:)
for any € H - - by the countable additivity of A. Now

o'(UiS) = [oy(UiS,)do,(z)
= J(EZX@))or(S.)do,(z)
= (ZA@)o'(S) = £ o'(iS)

where 17 is used in the last equality.
More generally we have,
3“ Claim : For each i € N, let S; be a Borel subset of H'. Then
' (UieniS)) = 3 0'(iS))

=N
To see this fix any integer & > 1. Proceeding as in 2 we get
(UiS) =[5 Mi)ox((S).)do,(:r)

TS 0 MD)aa((Si).)do(x)
= T ,a'(iS)

v

where we used the finite additivity of the integral and 17 for the last

equality. & being arbitrary we get

a'(UiS) = 3" o'(iS))
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To show the reverse inequality. fix € > 0 and an integer & such that
Sk 1cicx AD) < € Observe that 34,0 A(D)aa((S)),) < € for cach

& so that proceeding as above

a'(UiS,) < YF,a'iS) +e
< Tro(iS) +e

€ being arbitrary the proof is complete.

4. For i € N. B; C H be Borel sets and B = U;ex(iB;). Then
T (o) €T "By = oo} = Mox) [ /(T ' Bdui)

To see this denote by C the set in braces on the left side. Observe
that y € C, iff y; = oc and T(z(y. y)) € Bxr; (Recall that Be, =
{h € H:xh € B}). Thus y € C; iff y, = oc and yy € (T 'Buwy).q)-
Thus

A(C) = [ar(C,)do.()
= A(oc) [ oA(T "' By)(1ydo()
= A(oc) [ o'(T "' Bxy)dp(zy)
= A(oc) [o'(T7'B;)dpu(i)

where in the third equality we used C(i) in §0.1 applied to the function
(instead of sets), f(x) = aA(T 'B),. For the last equality note that

Bi = B;.

5°. For any clopen set T C H, ¢/(T"'T) = a,(T).

The proof is by induction on the rank of the clopen set T. Of
course if T' = o or H this is trivial. Suppose then that T = U(iT;) and
0,(T;) = o'(T"'T;). We show that o,(T") = o/(T 'T).
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oo(T) = [o,(Ti)dn(d) (by C(i) in §0.1)

J o, (Ti)dr (i) (since, Ti =T;)

5103 (CIAG) + A(00) S o (T)dpi)

o' (T T3)A(E) + A(oc) [ o' (T'T;)dp(i)

(by induction on the rank of T)

= J(UiT'T)+ o' {(z.y) ;=00 & T(z.y)€T}
(by 3¢ and 4°)

= o (T'T) (o’ being finitely additive)

I

6°. For any open set U C H, o'(T"'U) > o, (U).

Indeed fix € > 0 and by the regularity property of strategic proba-
bility (see §0.1), get clopen T C U with 0,(U) < a,(T) + €. Note that
T7'T C T7'U so that

o (U) <o, (T)+e=0(T7'T)+e by 5
<dT'U) +e
€ being arbitrary this proves the stated inequality.
7°. If V C H' is open and € > 0 then there is a clopen set C & 1"
such that ¢'(V) < ¢'(C) +e.

To see this, fix clopen sets Lj C H and M; C Hy such rhar
V = Ui(L; = M;). Put V,, = Ui o(L; x M) so that V, are clopen and
V., TV. Set

€
Ap = {roa((Va)2) > oa(Ve) — 5}
As o, is countably additive, A, T H and hence 0,(U,A4,) = 1. By
(P4) in §0.1 get a stoptime T with 7,(4,) > 1 — €/2. Define

C = {(r.y): (z.y) € Vin}
= VN {(x.y) : T(x) = n}]
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Then C C V. C is clopen. Note that if = € A, then 0, (C,) =
ax(V,) — /2. Moreover for any r. 03(C}) = @a(V;) = 1. We will use
the last inequality for = € A.. As a result

() = [o.(Ch)da,(r)
Iy, @2(Ch)da,(r) + 4 ox(Co)do,(x)
[aa(V)da,(r) = §0,(A;) — a,(A7)
a'(V)—e€

Il

v v

To proceed further we introduce a hypothesis, which will be re-
laxed later.

(L) : N=N;UNs. Nj NNy = 0. p(Ny) = 1. AN U {ox}) = 1.

8¢, Assume (L). For any open U C H; o/(T7'U) < o, (0).
To see this, temporarily denote by Hi, the set of sequences of

points from N;. Denote by H», the set of sequences of points from

Ny U {oc} with infinitely many occurrences of oc. Set D = H; x
H> C H'.Let R be the set of sequences of points of N having infinitely
many occurrences of elements from N;. Then by the usual SLLN,
ox(Hy) = 1.

Consequently o’ (D) = 1. By strategic SLLN —sec (P5) in §0.1--
o, (R) = 1. Moreover T'is a homeomorphism on D onto R. Fix € > 0.

T being open in H'. use 7¢ to get a clopen set T C T-'U with
S(TT) < (D) + e
Note that
#(T) = o/(TND). as o'(D) = 1
< o(T 'T(T N D))
As T is closed in H'. TN D is closed in D so that T(T N D) is closed
in R, Say T(T N D) = C 1 R where C is closed in H.
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() < (T (CNR))
< (T'C)
< o0 by 6
= o,(CNR) as oy (R) =1
= o, (T(" N D))
< o () as TCT U

Thus o’ (T'U") < 0,(U) +¢. Since € is arbitrary we are done.
Combining 6° and 8” we immediately obtain:

9°. Assume (L). For any open U C H, /(T 'U) = o,(U).
This leads us to a special case of the theorem, which we state as

a Lemma.

Lemma 3.2.2 Assume (1). For any Borel B C H. o'(T 'B) =
o.(B).

Proof : Suffices to show that ¢,(B) > o/(T 'B). To this end. fix
€ > 0. By C(ii) in §0.1, take open I" D B with ¢,(B) > o,(I) — ¢.
Then we have,
7 (B) > o) —e

= (T 'U)—e¢ by

> o (T'B)—e as T'UDT 'B
Since € is arbitrary the proof is complete. .

To remove the assumption (L) we need to work a little more.

Suppose o is a map on % onto N. Let 1) be a finitely additive probability
on 7 and 4 be defined on K by 7(A) = (o 'A). Let o, and o, be the
strategic measures on %> and N> = H respectively. Define o, on 7z~
by

O (g ) = (0(n)). o(za). ).



3.2. AN IDENTIFICATION OF o, 57

Ir is natural to expect that as in the countably additive case. o, (B) =
(03} B) for all Borel sets B € H. We have not been able to establish

this. We show that if o is a finite-to-one map ~ for every i. o '{i} is

finite then this is indoed correct. The general proof cludes us.

Lemma 3.2.3 Let o be a finite-to-one map. Then for coery Borel
set BC H
ay(0.(B)) = a,(B)

Proof : Since both o, and o, are strategic measures, it is casy to sce by
using induction on the rank of clopen sets, the desired equality holds
when B is a clopen set in H. Proceeding as in 6° we can establish
that 0,(07) < 0,(03!U) for all open sets I” C H.. Note that o., takes
open sets to open sets. As o is finite-to-one, a simple argument shows
that 0, takes closed sets to closed sets as well. Thus for any clopen
set I' C z%, 0..(T) is a clopen set in H. Now take any open set
U C H and fix € > 0.Then there exists a clopen set T C o }(U") with
y(0)T) < 0, (T) + €. Note that 0,(T") < o,(0}0.T) = 0,(0,.T) <

a,(U) where the equality is a consequence of the fact that oI is

clopen. e being arbitrary we deduce that ¢,(0,!U) < o,(T7). This
establishes the result for B an open set. Now proceed as in Lemma

3.2.2 to complete the proof. L]

Proof of Theorem 3.2.1 : The main idea is to shift the purely finitely
additive part of 4 to the negative integers so that (L) holds. Then
we will apply Lemma 3.2.2. Finally we bring back the mass from
negative integers. These three steps are achieved with the help of the

maps vr,. T and o, as detailed below.
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Given 7 on N define 3 on Z by F(A) = 1,(4) + 72(—A) where
—A = {-x:x € A}. Define 77 and X for 7 just as 1. A were defined
for . Define o” on 2> x 23 with oy and o5 just as ¢’ was defined on
N* x N with o, and o,.

Define the map v, : N* x N¥ — 2 x Z% by
vx(T.y) = (—z.y)

where —x = (—w,, —®....) if # = (,.%,....). Then it is immediate
that 0”(B) = o'(v ! B) for each Borel set B C 2 x z3%.
Define the map T : 2% x 2 — Z* just as T was defined from

N® x N3 to N¥. Lemma 3.2.2 applies now to yield that o5(B) =
o"(T"'B) for each Borel set B C z*. Lemma 3.2.2, though stated
for N applies to Z as well. Finally, define the map o : Z — N by
o(x) =| « |. Lemma 3.2.3 now yields that for each Borel B C N>,
0,(B) = ox(03 B).

Thus for each Borel B € H, ,(B) = 03(0;!B) = o"(T '02)B) =
(V2T '61B). Observe that T — 0, 0T o, to complete the proof.

3.3 Hewitt-Savage 0 — 1 Law

A permutation 7 of {1.2.. .} is called a finite permutation if a(n) =n
for all sufficiently large n. Ifh = (hy.hy...) € H and = is a finite
permutation then fip = (fo) by .. ). A Borel sot B C H is called
symmetric if h. € B whenever A € B and 7 is a finite permutation.
Let 4 be a finitely additive probability on N and as usual o, the
strategic measure on H = N* induced by the i.i.d. strategy 7. Let
A ={ieN:(i) = 0}. Suppose 4 restricted to A takes more than
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two values. Say A, C A and 0 < 2(A.) < 1(A). Then. gencralizing a
construction of [29] we can exhibir a symmetric Borel set § € H such
that 0 < 0,(5) < 1 as follows : Let H, be the subsot of H consisting
of those histories in which clements of A oceur at infinitely many
coordinate places and they occur in increasing order of magnitude.
Note that ¢,(H;) = 1. Let S; be the subset of H, consisting of those
histories in which the first occurrence from A is from A,. Define for
aln > 1. B, ={he€ H :h g Afori < n and h, € A,}. Then
S1 = Uy B,. Direct computation shows that for n > 1. 0y(B,) =
(1 =2 ()] (A,) so that ,(85)) > 24 Similar computation shows

NEN
o, (Hi\S1) 2 2432 It follows that equality must hold at both the

places.  Thus if S is the symmetrization of S, then 0 < o,(S) =
o0, (S1) < 1. If 3= max{%(%‘% 3{1(\4;—2} then we have a decomposition
of H into two symmetric sets, cach having o, measure < 3. Since
3 < 1 and the above construction can be extended by taking into
account the first finite number of occurrences of points of A. we get the
following : given € > 0 there is a decomposition of H into symmetric

sets each having o, measure < e.

Now supposc 1 restricted to A is trivial - that is 4 assumes at most
two values on subsets of A. In this case we show that the Hewitt-
Savage 0—1 law holds. Main idea is the following : Suppose S C H is
a symmetric Borel set. Then for x € H. (T7!S), is a symmetric Borel
set in H,; so that 0,(T7!S), = 0or 1. Let E = {x: 0,((T"'S),) = 1}.
In case 4 is countably additive on A° then of course 4 | A is its purely

finitely additive part and hence 1 is 0— 1 valued, so is ,. Thus o,(E)
is either 0 or 1. Accordingly o,(S) is 0 or 1. The problem becomes
more difficult if 4 is not countably additive on A° or. equivalently. if

and 9, are not supported by disjoint sets. In that case y may not be
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two valued even though p|A is so and therefore the above argument
is not applicable. But observe that we are interested only in the value

of o, (F) and if we can show that o,(E) is either 0 or 1 we are done.

That is what we are going to show next. If A = o, that if 4 gives
positive mass to every singleton then a simple calculation shows that
E is a tail set in H so that 0,,(E) is either 0 or 1 (see P6 in £0.1) as
we want.

But in general situation when A is not necessarily empty E may
not be a tail set. However we can apply Levy 0-1 law (see P7 §0.1)
to conclude that ,(E) = 0 or 1. In the countably additive case
the ﬁxartingale theoretic proof of the Hewitt-Savage 0 — 1 law is well
known. See [27]. Here is our main Theorem :

Theorem 3.3.1 Let 4 be a finitely additive probability on N and

A= {i:(i) =0}.

a) If y restricted to A is trivial (assumes at most two values)
then for any symmetric Borel set S C H. a,(8S) is either 0

or 1.

b) If 4 restricted to A is nontrivial (assumes more than two
values) then for any € > 0 there is a finite partition of H

nto syminctric Borel sets each having o, measure < e.

Proof. Part (b) was already established above. We shall prove (a).
We can and shall assume that 4 is not countably additive. We use
rthe notation of 2. In particular p. . o’. T are as discussed there. Ler
S C H be a symmetric Borel set.

We first observe that for w € H. (T 'S), is a symmetric set in
H,. Let y = (y,. ) € (T 'S),. Let i < j. Let § be obtained by
permuting the coordinates y; and y; in y. We show that j € (T 'S),.
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If both y, and y; are oc then of course § = y € (T 'S),. In the other
case. a simple caleulation shows that. T(x. j) is obtained by a finite
permutation of T(x. y) so that T(z.j) € § and hence § € (T '8),.
As a consequence, for cach » € H. o,((T 'S),) is cither 0 or 1. Lot
now
E={reH:a(T"8),) =1}

Here are some properties of E.
1 If2® = (af.2d...) € B k> 1, 2 € A° and ° is obtained from
7° by deleting 2, then 0 € E.

To show a0 € E we only need to show that a,((T 1S),.) > 0.

Let M ={y € H,, : y; = forall i <k}. Then ax(M) >0
and hence so is o3(M,) where M, = (T"1S), N M. Let

Mo={yeH. ye=a) & Fe AL}
where
o=y if i#k
= oc if i=k
Then ¢,(A;) > 0 and it is easy to verify that Af, C (T15),i-
2°. Ifx = (z1.22....) € B; k > 1; a € A° and # is obtained from by
inserting a just before x; then # € E.

Proceed as earlier and take
M={yeH,:yi=oc for i<k-1. y=a}

and
M={yeHy.: =0 &Fe M)}
where
o=y i iFk
=a ifi=k
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Now to show that o, (E) is either 0 or 1 we argue as follows :
For any p € Seq, let |p| denote the length p. Now fixap € Seq
and let its length be n. We have the following relation:

ouBr) = [ o, Epidu() + [ o,(Bpidut)
For i € A°. Epi = Ep by 1¢ and 2°. So we have
ou(Bp)iA) = [ ou(Bpi)du)
i€

Since 1 is two-valued on A, this implies that u{i € A : | o,(Ep) —

,(Epi) |> 55} = 0 where € > 0 is any arbitrary number fixed
beforehand. (Recall that n =| p|). As noted above, Ep = Epi for all
i€ A°. Thus,

iz ou(Ep) = ou(Bpi) |> 5o

Let I, denote the set in braces and K, the set of all those histories
whose first coordinate is in I, so that o,(X,) = 0. This is all done for
a fixed p € Seq. Now having done this for each fixed p € Seq define

Fe= U, +(pK;)
and
F = U Fy
Note that Ep = E when | p |= 0.
Also observe that o, (Fipi(ir)) = 0 for all k and . Now by property
P2 in §0.1 we have
ou(F) = 0.

This can be restated as.
aur V20| 0, (Lp,(2)) = 0, (Bp,.1(2) IS g} =1
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To complete the proof of the theorem fix » € F¢ such that
@, (Epy(r)) — 1,:(r). This ix possible by Levy 0 — 1 law (sce P7 §0.1).
Combining this with 3“ we get o (E) — 1, (h) |< e. If. to start with.
0 < 0,(E) < 1. then an appropriate choice of € would give rise to a

contradiction. -

3.4 Remarks.

1. Lemma 3.2.3 of §2 is perhaps true for general 0 not necessarily

finite-to-one valued.

2. There is perhaps a more direct way to prove Theorem 3.3.1

without going through the detour as we did.

. S. Ramakrishnan  [30] proved that if S is a G, set in H which
is a countable intersection of symmetric open sets then o, (S) is
either zero or one for any 4. It is quite likely that for a large

class of sets the 0 — 1 law holds whatever be 4.

To be more precise, we can define a hierarchy of symmetric Borel

sets as follows: Let
S\(H) = {U C H: U open and symmetric}
P\(H) = {F C H : F closed and symmetric};
and for any countable ordinal «, define by induction,
So(H) = (Us<a Ps(H))s

and
Pu(H) = (Us<aSs(H))e
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Recall that for a class of sets A, A, denotes the class {4 :
A = UX A,.4, € A} and Ag denotes the class {A: A=
MaA. 4, € A}

Ramakrishnan proved in his thesis that whatever be «, sets in
P.(H) (and hence in Sa(H) ) have o, probability 0 or 1, if
@ < 2. Now a natural question that arises is, whether the sets
in P,(H) enjoy the same property even for &« > 2. We don’t
know the answer. It is worth noting that this hierarchy does
not include all symmetric Borel sets. To see this, let S be the
o-field generated by {S.(H) U P,(H)}. Then & is countably
generated- —as pointed out to us by S.M.Srivastava—-since the
class of symmetrized basic open sets generates this o-field. But
clearly S. the o-field of symmetric Borel sets is not countably
generated. Therefore, & strictly contains &. In other words
there are symmetric Borel sots B such that B cannot be written
in the form of countable union or intersection of the sets from
Ly (H) and S, (H).

- The sets of interest in the context of random walks are Gy sets of

the form S = {h: i h, € A i.0.} for some A C N (see [30]. [33].
and also. chapter 2). It is interesting to note that such a set §
is a countable intersection of symmetric open sets iff 4 is of the
form {i :i > A} for some k. Indeed. suppose S = N, where
U, is symmetric open for all n. Lot i € A. Then (i.0.0....) €
S and hence in U, for all n. Since U, is open there exists a
basic open set which contains (4.0.0....) and is a subset of .
In other words. there oxists an m. depending on n. such that
(i-0.0.....0)H C . Therefore. (i.0.0.....0.1.0. 0...)€el,.
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Since U, is symmetric as well. after performing a finite number
of permutations we have (1.i.0....) € U',. This being true for
all n. the point (1.i.0....) € S. Therefore. i +1 € A. If k
denotes the least element in A then A is of the form we described

above. But in that case S is already open.

s Let A = {i:~(i) = 0}). If 7 | A rakes more than two valuos

then the Hewitt-Savage 0 — 1 law does not hold. However the
Kolmogorov 0 — 1 law holds. As a consequence in this case
there are symmetric sets which are not equivalent to any tail
set under o,. Of course if 7 | A is atmost two-valued then
the Hewitt-Savage 0 — 1 law holds. So trivially. any symmetric
set is equivalent to a tail set under o,. Thus tail o-field is o,
equivalent (in the obvious sense) to the symmetric o-field iff

7 | A is atmost two-valued.

. If A, consists of all histories with at least one coordinate smaller

than n then A, is a symmetric set and A, T H. If 4 is dif-
fuse (that is every singleton gets 4 mass zero) then clearly
o,(A,) = 0 showing that o, is not countably additive on the
symmetric o field. Contrast this with the fact that o, is count-
ably additive on the tail o field (Theorem 2 of [29]). It can
be shown that o, is countably additive on the symmetric o
field iff 7{i : 4({) = 0} = 0. Towards proving this, first let
A{i : (i) = 0} > 0. As before. we call the set in braces A. Enu-

merate A as {iy.is }. Let A; consist of all histories which
have at least one cordinate coming from A and minimum of them
< in. Then clearly A, is symmetric. Let A be the set of all his-
tories which have no coordinate coming from A. Then A is also

symmetric and by strategic SLLN (see P5 in §0.1). o, (A) = 0.
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Obviously, 4;, T A" Since 4 is diffuse on A. 7,(4,) = 0 but
0,(4%) = 1 showing that o, is not countably additive on the
symmetric o-field. Conversely, if y(A) = 0, without loss of gen-
erality we may assume (i) > 0 for all i, We will show that 7,
is countably additive on the symmetzic o-field. Let B\, B,....

be a sequence of symmetric sets. It suffices to show that
0(B)=0Yi— g,(UB)=0.

For that it suffices to show, by P2 in §0.1, that ¥ pE
Seq. 0,(Bip) = 0. If possible suppose, o,(Bp) > 0 for
some i and some p = (py.pa.....p,). But then, a(B) >
Wppe)-1(p)o(Bp) as B; S pBip. Since A(p,) > 0 by
our assumption, #,{B;) > 0 which is a contradiction.

- As noted earlier, N is taken for convenience but the theorems

hold good for any countable set. p



Chapter 4

Completeness of L,-Spaces

4.1 Introduction

The fact that L,-spaces over countably additive measures are nice
Banach spaces has various useful applications. But finitely additive
measures are not so well-behaved. Eventhough the L, norms are
defined in the usual way when the underlying measure is finitely ad-
ditive, in gencral L,-spaces fail to be complete. In [16] Green gave
necessary and sufficient conditions for L(X.F.p), 1 <p<oc,tobe
a complete normed linear space for a positive bounded finitely addi-
tive measure space (X.F. p). But in [1], V. Aversa and K.P.S.B.Rao
have shown that the necessity part of Green’s result is not correct. In
§3 of this chapter we give a complete solution of this problem. In §4
we consider the completeness of L.-spaces. §5 gives an application
of the completeness of L,-spaces. In §6-§11, we study in some de-
tail the completeness of L,-spaces supported on a general probability
space and analyse its interrelation with the structure of the underly-

ing probability 4. This study yields a number of interesting results

67
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which we believe are useful. These sections are concerned with the
completeness of the space Li(7) of integrable functions over a finitely
additive nonnegative bounded measure 4 defined on a o field of sub-
sets of a set. In the mathematical literature ([2], [8], [21], [36]) the
domain for such a 7 is a field of sets. Qur interest is not in finitely
additive measures per se, but in the development of probability. The
natural domain for 4 then is a o field and that is what we take in

those sections.

4.2 Preliminaries

We need the following definitions and notations in the sequel. We will
consider a measuwre space (X.F.p). For the definitions of measure
space, measurable functions (random variables), integrable functions
and convergence in measure sce preliminaries in Chapter 1. Only we
should bear in mind that in £3 and §4 of this chapter we will consider
general finitely additive measures, not just probabilities.

In what follows. all measures # considered are assumed to be non-
negative. But that restriction is superfluous in case of the rosults
obtained in §3. §4 and §5 because the defition of L,-spaces over a

general measure space involves only the total variation of the mea-

swe. For f. g X - 2 we write f~ygif f= g as. [p] ie. if
AL ) = ()] > e} = 0 for all e > 0,
Denote by Ly(s1) the linear space of all measurable functions and
let Lo(n) = Lo(1)/ ~.
Foro<p< x put
Lo(n) = {f € Lo(p) : |£I” is integrable}

and L,(y) = £,(p)/ ~.
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The space Ly(p) is equipped with ||+ ||, where [|f — g, defines an
invariant metric on Ly.p > 0 and is a norm on L, for p > 1. || - ||, is
defined as follows:

) e o< pel
11y = -
(U 1frdy i1 <p<

For p=0. we say f, — f in L, if

Ye>0 p'(|fu—fl>e€)—0.

In other words., f, — f in Lo is, by definition, equivalent to the
concept of f, — f in 1 measure.
A function f: X — 3

a positive real number & such that

called essentially bounded if there exists

pix | f(x)] >k} =0.

Denote by L.(p) the linear space of all essentially bounded measur-

able functions on X and put
L) = Loc(p)/ ~ -
The space L,,(u) is equipped with the norm
Ifll = inf{k > 0: p*{x: |f(x)| > k} = O}.

A sequence {A,}, where A, C X, is said to be p-Cauchy if
1 (AAAL) — 0as n, m — oc.
4.3 Completeness of L,, 0 <p < oo

We begin this section by proving three lemmas which will be useful

in proving our main theorem. Theorem 4.3.4.
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Lemma 4.3.1. If 4, c ¥ and the sequence {Z4,} converges to f
. then f =1, a.s. {1} for some A c X and p*(A,A4) - 0.

Proof: We shall show rhat there is a set A C X such that

#He ) = L)l > 1k) =0 v i >1.
Consider
Bi={z:f(z) € (=20 =1/K) U (1/k. 1~ 1/k) U (1 + 17k x)}. k> 3.
Since By C {x : 1£() = 14, ()| > 1/k} for all n, we have H(By) =0.
Let A ={x:1/2 < f(») < 1+ 1/2}. Then {x : |f(x) — Ls(x)] >
1/k} C By for all k > 3. Therefore u*{x - 1£(#) = Li()| > 1/&) = 0
for all & > 1. Thus f=1I4as. [u]. Hence {14,} converges to Lyin p
or, equivalently, 1 (AAA) — 0. L]

Lemma 4.3.2 Suppose for cvery ;1~Cur1(:lzy sequence {A,} ¢ F
with p(4,) < oc there erists A C X with 1(AAA) = 0. Then
for every sequence {B.} C F there crists B C X such that

(2) 1 (B, \ B) =0 for all n

(i) " (B) < ¥, u(B,)

Proof: If s> 1#(B,) = oc the assertion of the lemma is trivially
true with B = UB,. So without loss of generality assume that

X imuB,) < x.

Then p(Ay) < x and {A} is a #1-Cauchy
seauence in F since p(AAA ) < (B, 1) and p(A4AA4,,) <
ShE m(AAA,L). Take B C X with ;' (4AB) — 0. Now.
n (A \B) < 1 (AAB). But 1 (A \ B) is an increasing sequence of
non-negative real numbers. Tt follows that 1" (Ac \ B) = 0 for all k.
This yields (i).
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For (ii). notice that

(B < A, U ALAB)
< piAL) + pt(AAD)
= TF (B + ' (AADB)

Since ' (AAB) — 0 we ger (ii). [ ]

Lemma 4.3.3. Lct 0 < p < o and let {f,} be a Cauchy sequence
in Ly(yr) which converges to f in p. Then f € Ly(n) and ||fu —
fllp = 0.

Proof: We shall show that if {f,} is a Cauchy sequence in Ly(p).0 <
p < oc, then it satisfies the following two conditions:

(i) The measures A, on F defined as
M(E) = [ IfPau.F e F

are uniformly absolutely continuous with respect to p, i.e. givene > 0
there exists 6 > 0 such that \,(E) < € for all n whenever u(E) < é.

(ii) For each € > 0, there exists E. € F such that n(E.) < oc and
A (ES) < e for all n.

The assertion follows from this by Theorem 4.6.10 in [2]. (In fact,
that theorem is formulated in 12} for 1 < p < ¢ but the proof can be
casily adapted to the case where 0 < p <1).

We first prove (i) and (ii) for 0 < p < 1. Fix e > 0. Since
{f.} is a Cauchy sequence in L,(p), there exists N > 1 such that
S\ fn — FmlPdp < €/2 for all n.m > N.

Now,

[ogaPd < [ 1= Firdp o+ [ fxlrdi for slln 2 N
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Since fi.fouee fv € Ly(n). there exists & > 0 such that
AL(E). ... An(E) < €/2 whenever u(E) < é,(see (2]), Theorem 4.4.13
(xi)).

It follows that X, (E) < € whenever u(E) < é and n is arbitrary.

This proves (i) for 0 < p < 1. With the same notation, there exists
E, € F such that yu(E,) < x and A\ (E¢) < ¢/2 for n = 1.2, ..... N
(See [2]. Lemma 4.4.15). This yields (ii) for 0 < p< 1. For 1 < p<oc

the same argument goes through except that we use the inequality

([ ) < ([ 152 = fulae + ([ Bl pxpauyie

Now, we are ready to prove our main theorem.

Theorem 4.3.4. Let 0 < p < oc. Then L,(u) is complete if and
only if for every p-Cauchy sequence {A,} C F with p(A,) < oo
there exists A C X with p'(A,AA) — 0.

(However it is easy to sce that the condition ji(4,) < x is not
essential. We assume it for convenience.)
Proof: Necessity. Let {A,} C F be a p-Cauchy sequence with
#(A,) < oc. Then {14,} is a Cauchy sequence in L,(s1). Hence, by

our assumption of completeness. there exists f € L,(y) such that
1L, — fll, — 0. By Theorem 4.6.10 of (2}, {I4,} converges to f in j.
This yields. in view of lemma 4.3.1. the desired conclusion.
Sufficiency. Case p = (. Let {£,} be a Cauchy sequence in Lo(z1).
By passing to a subsequence. we may assume that
€ X ifule) = fua(®) >2 "} <20
Since f;s are measurable. we may assume. without loss of gen-

crality, that f,s are simple functions to ensure that {r € X
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[fu(m) = fur(p)] > 2 "} € F. Indecd. we can do this without any loss
of generality because of the foliowing reasons. =+, £, = L, and the
set of simple functions is dense in L. Therefore, given any sequence
of positive reals {e, } with ¢, — 0. we can gt a sequence of simple
functions {s,} such that j°( f, ~ 5, > ¢,) < ¢, Easy to <ce that if
s, = fin p then f, — fin p.
Set
A= {r € X 1) = furlo)] > 27}

Since we have assumed that f)s are simple functions A4, € F. Now,

YooY <Y 2 =1/25 L vk

Now, for each fixed & > 1 consider the sequence {A, },»x. Then, by’
our assumption and lemma 4.3.2 we can get a set By, C X such that

(i) p (A \ Bx) =0 foralln > k

(i) 1 (Be) < Eolem(4,) < 1/2% !

Without loss of generality. we may assume that By C By ., for all
k (because. otherwise. take B). B, N B, etc.) Let B =N;B;. Then
clearly, yu*(B) = 0.

We shall now define our function f to which {f,} converges in .

If x € B, define f(x) arbitrarily. If « does not belong to B, let
k(z) be the smallest k such that # € Bf. Note that if z does not
belong to U, H‘A and m > n. then

(i) 1ful) = flo)] < £, 0277 < 172007

Now, consxder the followmg two cases:

Case 1. @ & U,>kryAy- Then, by (iii). {fu.(z)} is a Cauchy se-

quence of real numbers. Define

fx) =lim, . fu(r).
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Case 2. & € U,~k)-dn- Let n(r) be the smallest n > k(:r) such that
x € A,. Define f(z) = f,»(r).
To prove that {f,} converges in u to f define

Ci=BU (Uf LB U (UE AL\ Bo) U U (Ax \ By) U By

In view of (i) and (ii) we have u*(Ck) < p*(By) < 1/2%71

We claim rthat r does not belong to Cy implies |f(x) — fi(z)| <
1/2%-1

Indeed. if » ¢ C'x we have k(z) < k. If = is as in case 1, then «

does not belong to U,~xA,. and so in view of (iii)
1f(2) = felo)l = lim, ol ful®) = ful@)| < 1727

Now, let z be as in case 2. Since x does not belong to Ck. we have
k(x) < k < n(x). Hence. by (iii) |f(z) — fi(z)| < 1/2%"! and so the
claim is proved. Since u'(C,) — 0 as n — o, we have f, £ f. This
proves the sufficiency for p = 0.

Case 0 < p < x. As easily seen. a Cauchy sequence in L,(p) is
also a Cauchy sequence in Ly(p). Hence the assertion follows from

the case p = 0 and lemma 1.3.3. | ]

Remark (4.3.5): Nore that the argument given above goes through

even if we work with a <cemingly weaker version of the conditions given

in lemma 4. To be more precise. we can prove. using the same
argument that L, (X. F. ) is complete if for every sequence {B, } C F
and for any preassigned € > (. there exists B C X. depending on €
such that

(i) " (B \ B) = 0 for all n

(i) g (B) S p(B,) + e
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We sum up the above discussion in the following theorem:
Theorem 4.3.6 The following are cquivalcnt -

1. L(X.F.pp) is complete for 0 = P ox.

[

. For cocry p-Cauchy scquenee {4} © F with p(4,) < x
there exists A C X with u'(A,AA4) — 0.

3. For every sequence of sets {B.} C F there erists a set B C
X such that
(a) p'(B,\B) =0 VYn and
(6) " (B) ST u(B,).

4. For every sequence of sets {B,} € F and any preassigned

positive number € there erists a sct B ¢ X depending on e

and satisfies the following:
(a) 4 (B,\B) =0V n and
() w(B) <% u(B,) +e.

Proof: We have already proved (1)<=(2) (Theorem 4.3.4.) and 2)
=(3) (Lemma 4.3.2.). (3)=(4) is trivial. To show (4)==(1) we
modify the argument given in the sufficiency part of theorem 4.3.4 as

follows:

Fix a sequence of positive numbers {ex} such that € | 0. For each
k > 1 select a set By so that

(a) 1" (A \ B) = 0 for all n > &

(b) 1*(By) S =i n(A,) + .
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This can be done by using the present hypothesis for the sequence

of sets {A, },>x. Now repeat the same argument as given in the suf-
ficiency part of Theorem 4.3.4. with B, replaced by Bj throughout
and this leads to (1).

This completes the proof. ]

Further. if we assume F to be a o-field then the above Theorem

takes the following pleasing form which we will use afterwards:

Theorem 4.3.7 Suppose 4 is a finitely additive measure on a

o-field 7. Then following are equivalent:

1.

2.

. Given any sequence of sets {A,} in F. there ex

Li(7) is complete.

(F.d) is complete where d is the usual pseudometric on F
given by d(A. B) = uy(AAB)A1. (Notice that if ju is bounded
we define d(A. B) simply as y(AAB).)

ts a set A £

F such that. p(A,\ A) = 0 for cach n: and p(A) < (A,

Given any sequence of scts {A,} in F and e > 0. there exists
a set A= F such that

ntd A =0 for cach i and p(A) < 3 p(A) + e

- Given any scquence of scts {A,} in F othere is a sequence

of scts {B.} in F such that
B, & A, (A N\DB,) =0 for cach n:

and p(UB,) < 3" p(B,) = 3 p(AL).
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6. Given a sequence {A,} of pairwise disjoint sets in F. there
crists a sequence {B,} in F such that.

B, < pA, B =0 forcach n:

and B =3 p(B.) = > n(A).

=

Given an inercasing sequence {A,} of sets in F. there crists
a sct A€ F such that

(AN A) =0 for cach n: and p(A) = lim p(4a).

Remark (4.3.8). It is interesting- “but not surprising—-to note that
the conditions for completeness of Ly(X.F.u) are independent of p
as long as p < oc. So from now on, we will only consider Li(X.F. pt)
and when the underlying measure space is fixed. we will just call it

L.

Proposition 4.3.9. Suppose L(X.F.p) is completc and F is
a o-field and p is bounded. Then for any p-Cauchy sequence
{A.} C F we can find Ae F such that p(ALA) — 0.

Proof: Since L, is complete there exists A C X such that
u' (A0A) — 0. Using the fact that F is a o-field we shall show
that we can choose A from F such that }I(A"AA) — 0. In F find A

containing A such that
1 (A) = n(A).

This is clearly possible since F is a o-field. Also, since A,Ad, =
ACAAL. {AD} is a p-Canchy sequence and there exists a B C X such
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that p'(AAB) — 0. We can take B = A° and as before we can get
BinrF B containing A° such that u'(A°) = ;l([?).

We claim that p(d,) — p(A) and p(AS) — u(B). To prove the
claim notice that A, C A U (A, AA). Therefore,

H(A) € 1 (A) + p* (A,A4)

Since y*(A,A4) — 0 we have, taking limits on both sides of the

above inequality.
lint, p(Ay) < p'(A)... (%)
Again. as A\ (A\ A,) C A, and hence A C 4, U(A\ 4,), we have
H(A) < p(A) + u' (AN A,).
Taking limits on both sides we get
w(A) < limp(A,) ... (%),

(*) and (##) together give limu(A,) = p'(A) = p(A) as re-

Wowe want

quired.The same argument yields the result for Af.
to show that (AN B) = 0. For that observe. A contains A and B
contains A°. So.
u(X) = pu(AuB)
= p(A) = p(B) - p(An B)
= linm(p(A,) = p(A)) — p(An B)
= pX)—plA~B)
Therefore. A~ B) =0
But A4,A4 C (4,A4) _ (A1 B). So it immediately follows that
(A AA) < 47 (A4, A4) and hence converges to 0. u

Example (4.3.10). Let X = [0.1]. F be the field gencrated by all
open sets of X and p be any finite countably additive measure on F.
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Then the o-field generated by F is the Borel o-field By and p can
be extended as a finite countably additive regular measure ji on By.
Since i = p*|Bx and since any p-Cauchy sequence of sets in F is ji-

Cauchy sequence of sets in By it follows that L)(X.F. ) is complete.

Example (4.3.11). Ler X = {0.1). let
F={U  la.b):n€Na < b.a.b € (0,1)}

and p be the Lebesgue measure restricted to F.
Then (X.F.p) does not satisfy the condition of Theorem 4.3.4
and hence L(X.F,p) is not complete. Indeed, let {r;.rs.....} be an

enumeration of the rationals in [0, 1) and put
A=, =20, 4270 N X 0= 1.2,

Then A, € F and ¥, u(A,) < 1/2.

Suppose (X, F. u) satisfies the conditions of Theorem 4.3.4. Then
there exits a subset A C X such thar

(i) p* (A \A) =0 for all n

(i) p'(4) <1/2.

Conditions (i) implies that A,NA is nonempty for all n > 1. Hence

A is dense in X. which contradicts (ii)

Remark (4.3.12). In the above two examples the underlying mea-
sures are essentially the same. In Example 4.3.10. we can take u
to be the Lebesgue measure X restricted to F, the field generated
by all open subsets of X. As the example shows, Li(X.F.A|F) is
complete. On the other hand. in the Example 4.3.11., though we

work with the Lebesgue measure A restricted to the field F, where
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F={U' fanb) nea < b.a.b € (0.1)}. Li(X.F.A|F) is not
complete. The reason is that in the second example the field is too
small. This shows that the underlying field plays an important role in
determining the completeness of Ly-spaces. This happens because the

value of the outer measure y° depends on the field where y is defined.

Example (4.3.13). Let X = N. the set of positive integers and let
F = P(N), the power set of N. Define 4 on F as follows:

Phea27" if A is finite

uA) = L
2= 3,eac27" if AC is finite

Extend 41 to F as a positive real-valued measure. Then (X.F.pu)
does not satisfy the conditions of Theorem 4.3.4. Indeed, put 4, =

{1.2.....n} and suppose
(A, \ A) — 0 for some A C X.

Then A = X, whence (A \ 4,) > 1.

4.4 Completeness of L.

The following theorem shows that L is always complete in contrast

to the Ly-spaces for p < ~x.

Theorem 4.4.1. The ~puce L (X.F.p) is complete for coery
Sinitely additive measnre space (X. F.pi).

Proof: Let {f,} be a Cauchy sequence of functions in L. (4). We
shall define a function f € L _ such that fa = fin L. By passing



4.4. COMPLETENESS OF L _ 81

fo a subsequence. if necessary. we may assume that

Let

A= fni—f e a1 20 e e,
Then 1 (A,) = 0 for all 1. Moreover. as in the proof of Theorem 4.3.4.
if for some m > n. x does not belong to U}", ' 4,. then {f, (&)= fulr)| <
1/2"'. So. if for a given =, n(x) is the smallest n such that « € A,

then for any & < n(x).
[fi(@) = fue(®)] < 1728 " (4).

This inequality we will use in our argument later.

Now we are ready to define our desired function f.

Case 1. x € (U2, A,)". Then {f, ()} is a Cauchy sequence of real
numbers. Define f(x) = Linmy, . fo(x)

Case 2. x € U A,. Let n(x) be the smallest n such that « € A,
Define f(x) = fox(x).

To show that f, — fin L. define H, = Ui Ag. Since p*(A) =0
for any k. u*(H,) = 0. We claim that = € (H,.)° implies

() = f=)] < 17270
This is clear if x is as in case 1. Let x be as in case 2. Since x ¢ H,.
we have n(x) > n and so by (+).
[fa() = fanr(0)] = 1£u(®) = fuw| < 1/2°7%

Thus the claim is proved. Now, since p'(H,) = 0, it follows imme-
diately that f, — f in y and f is essentially bounded. Therefore. in
view of Proposition 4.6.13 in ([2]). £ € L, Morcover. |[f,— fll.. — 0.

Thus f is as desired. -
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4.5 An Application of Completeness of
L,-Spaces

In this section we slightly digress from our main theme, namely, the
study of interrelation between the completeness of L,-spaces and the
underlying measure spaces. This we will take up again in the subse-
quent sections. Here we will consider a nonnegative bounded measure
ton a o-field 7. We will show that if v is a bounded signed measure
on F such that v << pie., vis absolutely continuous with respect
to pt then the exact Radon -Nikodym derivative for v with respect p
exists if and only if L,(X. F. 1) is complete. Before proving this result

we will give some definitions.

Definition (4.5.1.) v is absolutely continuous with respect to p if
given e > (). there exists a & > 0 such that #(A) < § implies [v(A)| < e.

v is said to have an exact Radon- Nikodym dervative with respect to

it
SFE€ Li(p) such that vAC X. v(A) = /l Fdp

Proposition 4.5.2. Lct 1 he a positive bounded measure on (X.F)
where Fois a o-ficld. Then Lo(p) is complete if and only if for
cvery bounded ~igned measure vowhich is absolutely continuous
with respeet to p. there «rists an eract Radon-Nikodym deriva-

tive f for v awith respeet to g,

Proof: Sufficiency.  Suppose for all bounded absolutely continuous

v << p. an exact Radon-Nikodym derivative with respect to M exists.

We shall show that L, (1) is complete.
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Take any L (i) Cauchy-sequence of functions { f,} so that f|f, —
Fuldpg = 0 as n.m — 5. Define i, (A) = [y fudpr. Observe that

) =) = [ Ftn = [ gl < [15, = fulan - 0.

Therefore. g1, (4) — viAd) (some real number) for all A € F. By
finitely-additive version of Virali-Hahn-Saks theorem (see [2]. Theo-
rem 8.8.4) v is a bounded finitely-additive measure on F.

Claim: v << g1. Fix € > 0. Since each g, is absolutely continuous
with respeet to pi. gy, is uniformly absolutely continuous with respect
to y1 (see [2]. Theorem 8.8.4.) i.c.. there exists a § > 0 and ng such that
#(A) <8 — |, (A)| < €/2 for all n > ng. Therefore, |v(A)]| < €/2
which proves the claim. By our assumption there exists a function
f € Li(p) such that v(A) = [, fdu for all A € F. It is easy to see
that f, — f in L,(y). Observe that

| [ (fa = D)l = l1aA) = A = 0 for all A € .

We shall show that this convergence is uniform over A. Indeed, since
{fu} is Li(p)-Cauchy. given € > 0 there exists a positive integer N,
such that [|f, — f|dy < €/2 for all n.m > N.. Since | [4(fi —
F)dp| — 0 for all A € F. there exists a positive integer ny such that
| f4(f — F)dnl < €/2 for all n > ny. Choose ny > N,.

Now,

Ualfu= Hdul = 1 1s(fu = fuu+ far = )dul
< sl = fuddul + 1 [a(fua = Fdnl
< € foralln> N,
Since N, is independent of A, this proves that | f[4(fu — f)du| — 0
uniformly over A. Therefore. [ |f, — fldu — 0 by Theorem 4.6.14 in
[2).
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Necessity. Let Ly(u1) be complete. Let v be bounded and » << p.
Then by Radon-Nikodym theorem for finitely additive measures (see
[2], Theorem 6.3.4.). we know that for all € > 0 there exists a simple
function f, such that |v(A) — Sy fedu| < € for all A € F. So, taking
€=1.1/2.....1/n. .etc. we get a sequence of functions {fu}. which
are simple and hence in L,(y) such that Ja(fu= fm)dp — 0 uniformly
over A. Therefore [|f, — fnldu — 0 by Theorem 4.6.14 in [2] and
Ly(i1) being complete there exists a function f € Ly(n) such that
J1fu = fldu — 0. Easy to sce that f is an exact Radon-Nikodym

derivative for v with respect to s. [ ]

4.6 Further Results on Completeness of
L,-Spaces

In what follows. we consider a nonnegative finitely additive bounded
set function 4 defined on a o ficld F of subsets of a space 2. Even
though our motivation and interest is only in probabilities. it is con-
venient to deal with bounded measures. Also. we will consider only
Ly (1).as we have already seen (sce remark(4.3.3)) that the complete-
ness of Ly () is equivalent to the completeness of L,(v) for any p with
1<p<x

Our starting poinr i~ Theorem 4.3.7. As a useful consequence of

the criteria given in rhe Theoren we have the following Theorem:

Theorem 4.6.1 «) Supposc 4 =14, + 1,

i) If Li(n) is complete then so are Ly(~,) and Li(h2).
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i) If Li(v) and L.(+.) are complete then it is not necessary
that Li(n) be compicte.
78) If Li(~y) and Lo~y are complete and 41,7, are supported

on disjoint scts thou Li() is complete.,

(b) Supposc Q. & F. () < 2{82,) <A (). Let 410 4 denote restrie-
tions of v to Q. and Q =, respectively. Then Li(n) is complete
Uf Li(n) and L.(n,) are complete.

(¢) Supposc L:(n) is complete. F, be a sub o field of F which
includes all 4 null sets that are in F. Let Yo be A restricted to
Fo- Then Li(4,) is complete.

Proof: (c) and (aiii) follow from criterion 6 of Theorem 4.3.7. (b)
follows from (ai) and (aiii). To observe (aii) take Q@ = {1.2.-..

power set of Q. 4, is the countably additive measure. 4, (n)=5. n=
1,2.--+; 7 is diffuse 0-1 valued measure on F giving 0 to singletons;

7 = % + 22 Then both Li(1;) and L.(4,) are complete. However
criterion 6 of Theorem 4.3.7 fails for the sequence of sets A, = {n}
to show that L;(5) is not complete. Finally. we prove (ai) as follows:
Towards verifying criterion 6 of Theorem 4.3.7, suppose {A,} is a
sequence of disjoint sets in F. Since L;(7) is complete, get a sequence
{B,} as stated there. In particular, for each n, M1(A,\B,) =0 =
12(A,\ B,). Morcover

2(UB,) = 11(UB,) +12(UB,)
3B =Y m(Ba) + 3 1(B)
By choice of {B,}. the left sides of the equations above are same. So

must be the right sides. But 4,(UB,) > ¥4,(B,) and 12(UB,) >
32 12(B,.) so that equality must hold at both places. In other words the
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same sequence {B,} verifies that criterion 6 of Theorem 4.3.7 holds

for both v, as well as 4,. [ ]

Remark (4.6.2). Theorem 4.6.1(ai) can equivalently be stated as
follows. If Ly(7) is complete and M < 1 (inequality being setwise)
then L, (1) is also complete.

4.7 Yosida-Hewitt Decomposition

Recall that a finitely additive positive measure poon (2, F) is said to
be purely finitely additive in case A is a positive countably additive
measure and A(A) < p(A) for all A € F implies that A = 0.

The celebrated decomposition theorem due to Yosida and Hewitt
[36] (see also [34]) says that any finitely additive positive measure 4y on
(2. F) can be decomposed as 7Y = M +72 where 4, is countably additive
and 7, is purely finitely additive. Moreover such a decomposition is

unique.

Theorem 4.7.1 Let 4 = 4, + v, be the Yosida-Hewitt decompo-
sition of 1. Li(v) is complete iff v,.v2 are supported on disjoint

sets and Ly(~,) is complete.

Proof : If 4,. 4, satisfy the conditions of the Theorem, then L;(n) is
complete in view of Theorem 4.6.1 (aiii). Conversely let us assume
that L,(7) is complete. The idea is the following. We shall express
Q= AUBUC where A. B.C' € F and are pairwise disjoint, 4, (4) = 0,
72(B) = 0, and if S € F. § C C then 1,(S) > 0 iff 12(S) > 0.
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Assume for a moment that such a decomposition exists. We claim
that 4, (and hence M) is null on C. If not, 72 being purely finitely
additive we can get €, < . ¢, 1 C. lim, 15(C,) < 12(C). Since
Li(1) is complete we can use criterion 7 of Theorem 4.3.7 and get
C such that 7(C, \ ') = 0 for cach n and 1) = lim,1(C,). Tn
particular. 4,(C, \ C) = 0 for each n so that 4,(C) > lim, 4,(C,,). In
case 13(C\C) = 0 we have 12(C) > 22(C) > lim,, 1,(C,) implying that
2(C) > lim, (C,.). a contradiction. Thus 15(C'\ €) > 0. But then
M(C\ E) > 0. Since cA\Ct1C \ C and 1, is countably additive we
conclude that 4,(C'\ &) = lim, 4,(C, \ C) = 0. again a contradiction.
Thus 4, must be null on C. So must be 4,. Thus 71 and 4, are
supported on B and A respectively. The proof is completed by using
Theorem 4.6.1(b).

We shall now proceed to exhibit the stated decomposition. Con-
sider,

C={Se€F:%(5) >0 and 22(S) =0}
and 3 = sup{1,(S) : 5 € C}

Completeness of L1(7) now allows us to show that this supremum is
indeed attained. To sece this, pick S, € C, 7(S.) T 8. Since C is
closed under finite unions we can assume that S, increases with n. By
criterion 7 of Theorem 4.3.7, get B such that 4(B) = 3 and for each
7, ¥(Su \ B) = 0. There is no loss to assume that B C U,S,. First
observe that 41(B) + 4(B) = Y(B) = . Secondly, 7(S, \ B) = 0
and hence 4;(S, \ B) = 0 for each n, so that y,(B) > 4,(S,) for
all n, implying that M(B) > B. These two observations show that
(B) = 5 and 13(B) = 0.

In an analogous manner. consider

D:{SEf:)g(S)>O&m(S):O}
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Since 11 is countably additive. D is closed under countable unions and
hence there is a set A such that 4,(4) = 0 and 72(A) = sup{12(S) :
S € D}. By construction it is clear that (AN B) =0 =1,(AN B).
Thus we can assume AN B = 0. Set C = 0\ {A U B} to complete
the proof. ]

Remark (4.7.2). Since 4, in the Theorem above is countably ad-
ditive clearly L,(7;) is complete. That is why in the theorem it was
enough to state the condition that L, (72) be complete. Note how the
completeness of L;(4) played a crucial role in obtaining the decompo-

sition. Look at the example given in the proof of Theorem 4.6.1.a(ii).

4.8 Discrete Measures

Recall that a finitely additive nonnegative measure 4 on (2. F) is said
to be discrete if 4 = 3 a;6, where cach é; is a 0-1 valued measure
and a; > 0. Since we are considering only bounded measures, clearly

Ya; < x.

Theorem 4.8.1 Let 4 = Y a;6; be discrete. Li(y) is complete iff
8, arc uniformly singular. that is. there are pairwise disjoint sets

A € Fowith &(A4,) =1 for cach i.

Proof : If {4} are uniformly singular then criterion 6. Theorem 4.3.7

applies to show that L, (4) is complete. To prove the converse. assume
that {§;} are not uniformly singular. Let us say that 4, can be sepa-
rated if there is a set A; in F such that 6,(A;) =1 and é;(4;) = 0 for
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J # i If each & can be separated. witnessed by say A,. then sctting
B, = A, \ Ui, 4;. we observe that 6i(B)) = 1 for each i: showing
that &; are uniformly singular. Thus there is a 6, which cannot be
separated. By renaming if necessary we shall assume that é) cannot
be separated. We shall construct a sequence of pairwise disjoint sets
(A,),>1 such thar (i) if 5 > 1 then for some i, 6;(A;) =1 and (ii) for
each i, &,(A;) = 0. If this is done. then we claim that criterion 6 of
Theorem 4.3.7 fails for this sequence. Indeed, suppose we have sets
B; C Ai, 7(A:\ B)) = 0 for each i. By properties (i) and (ii) we have
Xi212(Bi) = Tisy a;. I §,(UB,) = 0 then property (i) implies that 6,
can be separated which is not the case. Thus & (UB;) = 1 implying
that 1(UB)) = ¥y a; > T A(B;).

We shall now proceed to exhibit sets A; as stated. Pick B, such
that §i(B,) = 1. Set A, = By and S, = {j > 1 : 8;(B,) = 1}.
Sy is infinite because &, can not be separated. Pick the first integer
J1 € Sy and write B, = B, U A, disjoint union with é,(B;) = 1 and
6;,(A2) = 1. To do this. just note that & being 0-1 valued they are
pairwise singular. Then Sy = {j > 1 : é(By) = 1} is again infinite.
Proceed inductively by picking the first J in S, at the nth stage. This
completes the proof of the Theorem. [ ]

The following theorem, a slight extension of Theorem 4.8.1, will
be needed later. Theorem 4.8.1 corresponds to the case when 7 is

absent.

Theorem 4.8.2 Suppose v = Tisoayi with a; > 0, Ya; < oc.
Assume that ~;, i > 1 are 0-1 valued. If Li(v) is complete then

Y. 1 2 1 are uniformly singular.
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Proof : Apply Theorem 4.6.1(ai) and Theorem 4.8.1. [ ]

4.9 Sobczyk-Hammer Decomposition

Recall that a finitely additive nonnegative measure 7 on (2, F) is said
to be strongly continuous if given e > 0, there is a finite decomposition
Q = UA; where A, € F and 1(4,) < € for each i. The well known
decomposition theorem due to Sobezyk and Hammer [35] says that
any finitely additive positive measure 4 = 7y, + 4, where T is discrete

and 42 is strongly continuous. Further such a decomposition is unique.

Theorem 4.9.1 Let 4 =4, + 4, be the Sobezyk-Hammer decom-
position of v. Li(v) is complete iff Li(v).Li(72) are complete

and 1. Y2 are supported on disjoint sets.

Proof : The if part is a consequence of Theorem 4.6.1. To prove the

converse, assume that Li(7) is complete. By Theorem 4.6.1 again,
Li(m1) and L(72) are also complete. We only need to show now that
715 72 are supported on disjoint sers

First assume that 4. is 0-1 valued. By using strong continuity

of 42, one can obtain for cach n. a set A, such that NnA) =1
and 42(A]) < <. We can also assume that A, increases with n.
lim, 4 (A,) = lim, 2,(4, ) = 42(52). By Theorem 4.3.7(7) get B C UA,
with 1(B) = ~.(Q) and 3(A, \ B) = 0 for each n. In particular

12(Au\ B) = 0 for cach 1 so that 45(B) > 12(A, N B) = 4,(A,) which
increases £ 15(Q2). Thus 2(B) = 12(€2). But since 4(B) = 12(2) we
conclude that 4,(B) = 0. In other words 4, 7, are supported on B¢

and B respectively.
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To treat the general case. assume that the discrete part 4, =
Limraibio a; > 0. Ta, < x. & 0-1 valued. By Theorem 4.8.2. &
are uniformly singular so that € can be written as disjoint union
Upid, with 4,(4,) = 1 for cach i. By Theorem 4.7.1, Li(a;ib; + 1)
is complete for cach i and hence by earlier para we can get B, C A,
such that &(B;) = 1 and 4.(B;) = 0. Since Ly(4) is complete, by
Theorem 4.3.7(6) we can get C; C B, with (B; \ C;) = 0 for each i
and 1(UC)) = 321(C)). In particular for each i, &(B;\ C;) = 0 so that
6(Ci) = &(B:) = 1. Since 12(Cy) = 0 and 11(C;) = a; for each i, we
have

YAC) =X mC)+ X n(C) =Y w

HUEG) = N(UC) +72(UC)) = 3 a;i + 12 (UCy)

Since left sides are equal we conclude that 42(UC;) = 0. In other
words 4, is supported on UC; and =, is supported on its complement.
as claimed. [}

Combining Theorems 4.7.1, 4.8.1, 4.8.2 and 4.9.1 we obtain the

following two versions of the main characterization theorem.

Theorem 4.9.2 Let v be a finitely additive probability on (. F).
F being a a-field of subsets of Q. Then L,(v) is complete iff Q has
a decomposition, Q1 = Q,UQ,UN,, where Q; € F for0 <i <2 such
that (i) 5 restricted to Q, is countably additive (ii)  restricted
to Q, is discrete and is a combination of uniformly singular 0-1
probabilities and (iii) 4 restricted to Q0 is strongly continuous

and its Ly space is complete.
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Theorem 4.9.3 Let 4 be a finitely additive probability on (Q, F).
F being a s-field. Then Ly(n) is complete iff 2 has a decompo-
sition Q@ = U, where each Q; € F such that (i) v restricted
to Q, is countably additive (if) 4 restricted to each Y. i >24s
at most two valued and (iii) v restricted to 4 is strongly con-
tinuous and its Ly space is complete and (iv) for each A € F.
(4) = £F1 (01 A).

In Theorem 4.9.2 we had a finite decomposition so that the last
condition of Theorem 4.9.3 was not imposed. We conclude this section

with a few remarks.

Remark (4.9.4). Here is an example of a sequence of 0-1 measures
which are not uniformly singular. ) = {0,1.2,---}. For i > 2, let 4;
be a diffuse 0-1 measure concentrated on the powers of ith prime. Let

C={A:1(4) =1 for all but finitely many i > 2}.

Extend C to an ultrafilter and denote by 4, the corresponding (-1
measure. Then {4, : i > 1} are not uniformly singular. Note that all
these 4; are purely finitely additive. If we did not want this. we could
have taken point masses and any diffuse 0-1 measure. Also note that
all these 4, are defined on power set of Q. The same construction can

F) provided F is infinite.

be carried out on any (

Remark (4.9.5). Given any sequence of 0-1 measures {1} on (. F)
there exists an infinite subsequence which is uniformly singular. We
inductively construct a sequence of disjoint sets A; > 1 and indices
n;, i 2 1 such that 4, (4;) = 1 for all i. Just make sure that at the
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kth stage infinitely many 4, are concentrated on the complement of
Uik A

Remark (4.9.6). If» = 37 2% where 4, are as in Remark 4.9.4. then
Li(7) is not complete  though 4 is defined on the power set of ).

Remark (4.9.7). Given (2. F) where F is infinite it is always pos-
sible to obtain strongly continuous 4 on F such that Li(4) is not
complete. F being infinite, the general case can be reduced to ) = N
and F is power set. This is what we treat. Let 4 be any extension of
density charge defined on arithmetic progressions. p is clearly strongly
continuous. Fix a decomposition of N into disjoint sets A", n >1
with p(A") > 0 for each n. Let

F={B:pu(BnA") = p(A") for all but finitely many n}

To start with, let Ay and A7 be a decomposition of A, into two dis-
1 P

joint sets of positive p-measure. For each k, 1 < k < n and each

of A" with pos-

is the disjoint union of A7, and

sequence (e1.---. ) of 0's and 1’s fix a subset Al
itive 41 measure such that A"
AY,..q1- This can be done by the strong continuity of u. For k > 1
define B,,..,, = Unxkdy - Extend F restricted to B, . to ultrafil-
ter on U,>¢A". Let 7., be the associated 0-1 measure supported
on UysiA™, defined on power set of N. For k > 1, let 7 be the
average of the 28 measures 7y, ODtained varying (e, - - - €) over se-
quences of 0’s and 1's of length k. Fix any Banach limit ¢ and set
N(A) = £{m(A) : k > 1} for A C N. Let 4 = n+ 3p. It is not
difficult to see that 4 is strongly continuous. Since m(A,) = 0 for

k> n, it follows that for any n, 5(4,) = 0. Using this. one can argue
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that criterion 6 of Theorem 4.3.7 fails for the sequence {A,} so that

L, () is not complete.

Remark (4.9.8). We shall see later examples of strongly continuous
v for which L,(y) is complete. However, we are unable to decide
if there are extensions of density charges for which the L, space is

complete.

4.10 Finite Strategic Products

When dealing with finitely additive measures, product measures are
not in general well defined on product o fields. However, as we have
already seen, there is one situation where the product probability
measures are well defined by successive integration, namely strategic
probabilities. So far we have considered strategic probabilities only on
infinite product spaces. But in the same way we can define strategic
probabilities on finite product spaces as well. As in the case of infinite
product spaces here also we need to consider probability measures
defined on power sets. So then, for 1 < i < k, let 7 be a finitely
5, On

d

additive probability defined on power set of ;. Let Q =

power set of €2 define
W) = [ [ Lator o) - ()

This 4 is called the strategic product of the 4, 1 < i < k. Carefully
note the order of integration. For more on this, see [6]. The reader
should note that even though the probabilities are defined on power
sets, their L, spaces may still be incomplete, sce Remarks 4.9.6 and

4.9.7 of the previous section.
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Theorem 4.10.1 Let 4 be the strategic product of 7;. 1< i < k.

(a) If for each i. Ly(~,) is complete then so is Ly(v).

(6) If Li(3) is complete then so is Ly(1y).

(¢) Li(n*) is complete iff Lyi(n) is complete. Here y* s the k
fold strategic product of 1.

Proof : (c) is immediate from (a) and (b). To prove (b) Let f, be
Cauchy in Ly(v,). Set f (.- -.@x) = fu(zi) on Q. Clearly f, is
Cauchy in L(7) so that, by hypothesis, we can get a limit f € Li(v).
Sct f(z) = J (.22 . wp)dre(ws) - - dra(ws). It is easy to check
that f, — fin Li(v,). Indeed,

J1fa(=) = f(2)ldn(=)

T (Ful@ @2 28) = @ mas.. wn))dv .. drsld ()

T 1 fa = Fl(@. . ... 7)) ()

J1fu = fldr — 0

This shows that L(v,) is complete. We shall now prove (a) using
ideas from Theorem 4.3.4. For simplicity we consider k = 2. Lot {fu}
be Cauchy in L;(q; x 4,). We shall assume that 0 < fu £ 1 for each
n — see Theorem 4.3.7(2). By passing to a subsequence if necessary,

IA

It

we shall assume that
1
o [1 fulerm) = frslor, ) | drales) > 2,,} >
Let the set in braces be denoted by A,. Since Li(11) is complete,
Theorem 4.3.7(3) applied to the sequence of sets {A, : n > k} gives
us a set By such that,

n(By) < F and 11(A4, \ By) =0 for all n > .
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By taking successive intersections if necessary, we shall assume that
By decreases with k. Let B,, = MiBi. Clearly Y(Bx) = 0. Set
f(z1,2:) = 0 if z; € By, If ) € B, let k(x;) be the first integer
k such that =, ¢ B;. If T1 & Up>k(z))An then clearly, the sequence
of functions g, (z,) = fu(zi.22), defined for n > k(z1) is a Cauchy
sequence in L;(v2) and hence has an L, limit say g depending on z,,
of course. Set f(z1.22) = g(x2). Iy € Un>k(z;)An then choose the
first integer n — say n(x;) — such that 1 € A, and n > k(z;). Set
flzr.22) = fu(z) (1. ). This defines f on all of 2, x ©,. Note that
if

= (U A\ B U(UE Ly \ By) U--- U (A4 \ Ba) U B,

n=1
then by choice of the sets By, the first k sets that appear on the right
side above are 4, null so that
1
7(Ch) = n(By) < ET5

Suppose z; & Cj, then

S o (@1, 22) — Se(r @) dra(zs) < 3 for @1 € UnsreyAn
S filr ) — Flxr @) dya(ms) < 7 for @ & Usk(zyAn
Using the above three inequalities, and performing another in-
tegration w.r.t. 4, one obtains that fu = frin Li(m x 42). This
completes the proof of the Theorem.

Remark (4.10.2). If Li(m x 12) be complete it is not necessary
that L,(72) be complete. In fact if 71 is 0-1 valued and not countably
additive then Li(y) x 4) is complete, whatever be 4,. To see this,
we shall verify Theorem 4.3.7(4). Let {4,} be a sequence of subsets
of ) x 2, and € > 0. Fix a partition N\, N,.--- of ©, such that
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2(N;) = 0 for each i. Fix n > 1. Observe that 7,{z : 12(A,), <

2(4)
by C,,. Define

} =1 where 4 =1, 4. Let the set in braces be denoted

B, ={(r.y) :w € C. & & U n Nk} N A,

We will now show that these sets verify Theorem 4.3.7(4). Since
A4\ By C U (UeeuNi) % D 2(Au\ B) = 0. To see 4(UB,) <
> 7(B.,) we first observe that

2(UB,) = [ 12(UB.)sdn ()

and for any fixed x there is exactly one k such that z € Ni. Soifn > k,
then (B,), is empty. Therefore, for all « there exists a k, depending
on x, such that 1,(U,B,), = 12(U5_B,). < 3 _,12(B,.),. Hence.

=1

(U3, By)

i

J2(U32 Br)zdi (w)
T332 12(Bn)sdni (=)

J 21 72(An)z1c, (x)dyi ()
TZ2(v(4n) + 5er)dm
(A + 5

AN IA

I

This verifies Theorem 4.3.7(4) and we are done. The same proof
works even if 4; is a purely finitely -additive probability which is a
combination of uniformly singular 0-1 valued measures. The same
argument shows that if 4 is the product ®%_;4; and L;(7) is complete
then L;(1;) need not be complete for any i > 1.



98 CHAPTER 4. COMPLETENESS OF Lp-SPACES
4.11 Infinite Strategic Products

For each n > 1, let 4, be a finitely additive probability defined on
the power set of Q. Let H = Q. Let o be the strategic probability
defined on the Borel o-field of H and induced by independent strategy
v, (for details see §0.1). This o is called the strategic product of «,
and will also be denoted by =2 ,v,. In case each v; =, where v is a
fixed finitely additive probability then o, induced by i.i.d. strategy y
will be denoted by °. For this setup our results are only fragmentary.
However, using the arguments given in the last section we can prove

the following theorem:

Theorem 4.11.1 Let o be the strategic product of vi. 1 < i <oc
e o=0%%

(a) If Li(0) is complete then so is Li(m)

(b) If v is a combination of 0-1 valued uniformly singular
purely finitely additive probabilities then whatever be ~; fori > 1.
Li(o) is complete.

(c) If each 4; is a fived finitely additive probability 4 which
is a combination of 0-1 valued. uniformly singular and purely

finitely additive probabilities then Lyi(o) is complete.

Proof: For (a) see Theorem 4.10.1(b) and for (b) see Remark 4.10.2.
Finally (¢) is a special case of (b).

Using (¢) we can construct an example of strongly continuous 4

for which L, space is complete.

Example: Let &, (resp. é..) be a 0-1 valued, purely finitely ad-
ditive probability concentrated on the set of positive (resp. negative)
integers and let 7 = %é\ + %b ~- Then o = 4™ is strongly continuous

and L,(0) is complete by Theorem 4.11.1(c).
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We have seen in the last section that on an infinite ofield we can
always construct a strongly continuous probability whose L;-space is
not complete. Therefore one may ask the following question:

Is it true that given an infinite ofield we can always construct a
strongly continuous probability on it such that its L-space is com-
plete? The question remains open.

If we take 2 = Z,we can prove part (c) of Theorem 4.11.1 for a

more general class of 4.

Theorem 4.11.2 Let @ = Z and 4 = Y;59a; where a; > 0.V i
and Yisoa; = 1. 39 is countably additive and 4; is 0-1 valued for
all i > 1 so that there erists a sequence of disjoint sets {A;}ixo

such that 4(A;) = 1. Then Ly(o) is complete where o = y*.

For the proof of the Theorem we need the following lemma.
Lemma 4.11.3. Let X and Y be two polish spaces and Bx and
By be their respective Borel o-fields. Let p and v be two finitely
additive probabilities on Bx and By respectively. Suppose T is a
continuous and measure preserving map on X intoY. If there
exists a Borel D C X with y(D) =1 such that T : D — T(D) is a
homeomorphism and T(D) is Borel in'Y then Li(u) is complete
implies Li(v) is complete.

(In this lemma one could replace homeomorphism by Borel isomor-
phism. However, we stated it in the form in which it will be used
later.)

Proof: Let {A,} be a v-Cauchy sequence of sets in By. Consider
B, = T7'A,. Since T is measure preserving (i.e. v(A) = pu(T14)),
{B.,} is p-Cauchy. By our assumption L;(y) is complete. Therefore
there exists a B € By such that u(B,AB) — 0 (by Theorem 4.3.7(2)).
Clearly, u((DNB,)A(DNB)) = p(DN(B,AB)) — 0. Let T(DNB) =
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4. Then A C T(D). Since T|D is a homeomorphism, 4 is a Borel
subset of T(D) and hence A € By as by our assumption T(D) e
By. Now, v(A,A4) = pu(T'A,AT'4) = w(B,AT1A) = (D n
(B.AT'A)) = p((DNB,)A(DNT'A)) = #((DNB,)A(DNB)) — 0.
The third equality follows since (D) = 1 and the last equality follows
from our assumption that T is a homeomorphism and hence is one-

one when restricted to D. ]

Proof of Theorem 4.11.2. Let Z,, = Z U {cc}, H = 2> and H,, =
(). Let H' = H x H,. Then recall from chapter 3 that we
can define a probability ¢’ on Borel o-field of H' such that ¢’ =

0, X oy, where p = Z‘.i.a:n- and A|Zz = agyo and A({oc}) = 1 —a
Also we can have a continuous map T : H' — H such that T is
measure preserving, ie., o'(T7'A) = o(A). By our assumption, ~o
and ¥, a;y; are supported on disjoint sets.Therefore, as in 8 of §3.2
(see p.57) we will denote by H the set of sequences of the points from
the support of y. We denote by H, the set of sequences of the points
from the support of A with infinitely many occurrences of . Finally
we set D = H, x H, and R be the set of sequences of integers having
infinitely many occurrences of elements from the support of u. We
have already seen in 8° of §3.2 (p.57) that T|D is a homeomorphism
and TD = R. Therefore. this T satisfies the hypothesis of Lemma
4.11.3. Also note that Li(H'.Byi.0') is complete. Indeed, H' =
H o Hy and ¢’ = 0, x 05, Li(H.By.o,) is complete by Theorem
4.11.1.(c) and L\(H,.By_ .0,) is complete because oy is countably
additive. Therefore by the argument given in Theorem 4.10.1.(a)
it follows that L,(H'.Byi.0') is complete. Then by Lemma 4.11.3.

L,(H.By. o) is complete and we are done. [ ]
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fori=1,2,..,mand a = 1,2,...,n.
The corrector matrices, M, &, are defined as follows,
M.ef = Dpe (7). (4.4.3)
Then, B* is given by the formula
B* = lim XeM!B.M. in D'(Q). (4.4.4)
Let F'(8) be defined as follows.
Fi(6) = %./HB‘DE.ngI

where u = u(0) is the solution of

(445
u = 0ondQ. )

—div(A"Du) + Ku = xf+0inQ, }

It can be verified, as in the scalar case, by first introducing and homogenizing the

state-adjoint state systems of equations that A* and B* defined above are the

fici for the h ized system. This implies, as in the scalar case, that the
energies converge to an appropriate energy in which the matrices A* and B* appear
naturally. All these show that F! defined above will satisfy (2.1.19) for a suitably
modified Lemma 2.1.1. So, this and the discussion in Section 4.1, where F? and Uaa
have been defined, show that §* is the minimizer of the functional F + F? over the
domain U,y.

In the periodic case, it is possible to give an explicit formula for A* and B*.
Let S be a closed subset Y with Lipschitz boundary. We then define a periodically
perforated domain as in Chapter 3 and we assume that Q. is a connected set. Let
A € MP(a,b,R") and B € M™(c,d, R") be Y-periodically defined block matrices

and B is assumed to be symmetric. Define the sequences A, and B, as follows:
A@) = A, Bu=) = BE).

We consider the homogenization of the problem (P.) defined with these coefficicuts

on periodically perforated domains. To obtain the homogenized coefficients we need
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Xj(y) will denote the characteristic function of Y 5 (=1, 2) extended Y-
periodically to all of R¥. Then, XZ(%) is clearly the charactensnc function of ©7;
this will simply be denoted by X T5, = 005N 0% N will denote the interface
of f with Q5 which is interior to 0 and, I'y; = 8Y; 0¥, NY will denote the
corresponding interface in the reference cell. We also set B=0,Y =Y, and

X3 = X2, to be used to simplify notation at times. . -
Let ui : RN x RN — RN (j = 1,2,3) be Carathéodory functions, Y-periodic

in the first and continuous in the second variable, for which there exist positive

constants k,C,co and 1 < p < oo such that for every £, n € RN and a.e. yeyY

iy, ) < ClefPt+k (6.2.1)
5y, &) =iy, ). (E=m)) > 0 (6.2.2)
1Y, 6.6 2 col€P—k. (6.2.3)
Let ¢; € Cy(Y) (4 = 1,2, 3) be conti Y-periodic functions on R¥ such that
0<e¢<e¢<C (6.2.4)

The exact microscopic model for diffusion in a partially fissured medium is given by

the system
z, Ouf 5 T © e

a5 - diva (;, Vui) =0 i (6.2.5)

c;(g)% dlvu,( vug) = 0 ing (6.2.6)
z, Ouf A %o

3(;)? —edivyg (;, eVua) = 0 in0Q (6.2.7)

ous+ fus = uf on Ii, (6.2.8)

ap (g Vi) A = o (f Vus) 4 (6.2.9)

By ( Vug ) Vo= ep ( Veua) (6.2.10)

where the last two conditions hold on I'f,. We have the homogeneous Neumann
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condition on the external boundary

" (f,Vui) v = 0 ond%Nan (6.2.11)
o (g V) v = 0 ono9snan (6.2.12)
s (g,aVu;) v = 0 on d05NAQ (6.2.13)

where v denotes the outward normal on 952,

The system is completed by the initial conditions
u(0,.)=uw} € L*Q), 1<j<3. (6.2.14)

u{(, ) is the flow in the fissures Qf with the flux given by —u, (%, Vu5). The flow
in the matrix has two components: u§(z,t) with the flux —p, (%, Vu$), is the usual
flow through the matrix and; the slow scale flow u§(z, ) with flux —epus Z,eVug),
leading to local storage in the matrix. The “total flow * in the matrix is g + fus,
where a + 8 =1 with @ > 0,8 > 0. (6.2.8) represents the continuity of flow across
the interface and (6.2.9), (6.2.10) determine the partition of flux across the interface.

We now describe the variational formulation needed to study the well posedness

of the Cauchy problem. The state space is the Hilbert space
He = L) x L*(Q5) x L2(5) (= L) x L%(95)%)

equipped with the inner product

(2 us(2) 6,(2) da.

3
» U2, Ugl, [P, @2, Ba))u, =
(s, s, s, D=3 [

5
Define the energy space
B. = H. n{[@] € W'»(Q5) x WYP(Q5)? : u, = auy + fus on T{,}

where 7@ = (u1,u2,u3). B, is a Banach space with the norm

3 3
11 w1 ua, us)lls, = Z 11X5 uj llzaeay + Z 11X5 Y 4y llogey-
i=1 =1
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Define the operator A, : B, — B, (where B, denotes the dual of B.) by,
Ae ([, vz, wa (81, 62,08 ) = T3, fo 153, V). Vs
+ Jog H3( 2, €Vu3) . eV do
for [uy, uz, us], [¢1, 42, ¢s] € Be.
Let V, = {u® € L2([0,T}; B.) : (&) € L2([0, T}; B.)}, g being p/(p — 1).
For £ > 0, the Cauchy problem is equivalent to finding a solution 2?e V; to the

problem
—
ddit+AE? = 0in L9([0, T; B) (6.2.15)
#0) = SinH, (6.2.16)

and this problem is well-posed, thanks to the conditions (6.2.1)-(6.2.3) (cf. Showal-
ter [34]). We end with an identity(cf. [14]),

%”?(T)”; - % [?(o)”; + /OTAE(?)(?)dt —o. (6.2.17)

6.3 Homogenization

‘The micro-model presented in the previous section was homogenized in [14], using
two-scale convergence; we recall the main results.

In this case, the definition of two-scale convergence (cf. [1], [14]) is the following.
Definition 6.3.1 A function, ¢(t,z,y) € LI([0,T] x Q, C,(Y)), which is Y-periodic

in y and satisfies
T T
lim / /w (+%.2)" dzar :/ // Bt )7 dy dz dt
e=0Jo Ja € o Jaly
is called an admissible test function. B

Definition 6.3.2 A sequence f¢ in L?([0, T|x Q)) two-scale converges to a function
f(t,z,y) € LP([0,T) x Q X Y) if for any admissible test function ¥(t, z,y),

s [ f 50w (05, 2) arte= [ [ [ st wte avasae

We write f* 2=3 f. m
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Remark 6.3.1 The space of admissible functions used in the definition of two-

scale convergence differs from the one used in Chapter 8. But this is Justified by

Remark 3.2.8. T 1/ g9 is also obtainable for seq in LP spaces,

1 < p < oo (¢f. Allaire [1]). W

Proposxtlon 6.3.1 [14] Let w® be the solution of the Cauchy problem (6.2.5)-
(6.2.14). The following estimate holds

2

SVl g, + Ixdevsips, < ZCznuﬂnm ©31)

=1

Proposition 6.3.2 [14] Let & be the solution of the Cauchy problem (6.2.5)-
(6.2.14). There ezist functions u; in LP([0, T WY(Q)), j = 1,2 and functions
Uj in LP([0,T] x Q; W,“”(Y,-)/H), 7 =1,2,3 such that, for a subsequence of ?, (to
be indezed by € again) the Sollowing hold:

X545 3 x6@ute), j=1,2,
X5 3 )i, y),
XV I3 X 0)(Vau(t2) + VU5t 2,9)), 5 =1,2,
X6V 3 @)V Uit 7,y),
X (C V) B3 Xy, Vaus + 9,05, =12,

I

x
Xk (2, € V) x2(v)ua(y, V,Us),

Xu5(T2) 23 x)w(T,e), j=1,2,
X$u(T2) - 55 xa(y)Us(T, 7,9) and,
w(t,z) = auy(t, z) + BUs(t, =, y) forally e I, ®

Proposition 6.3.3 (1] The functions w1, Uz, U, Uy, Us satisfy the homogenized sys-
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tem

~Z/ // c,(y)u, 3 dy dz dt — /// cs(y)Ug—dydrdt
—Z:j A /y 5w 4500, ) dys — [ /y (V)13 @ (0, 7,y) dy

PR (6.3.2)
+Z/D /n/ 15(Ys Vou; + VyUy).(Vads + Vy®;) dy do dt
=1 Y

T
+ [ [ ] nst, 905,90 dy st = 0
o aJYz

for all
4i(t,3) € LP(0,T]; Wi(@), j=1,2
2it,z,y) € LP(0,T] x (WI(Y;), 5=1,2,3
satisfying
% e o TEwr@), j-1,2
I e 10T % % (WP )Y), 5=1,2,3

B3(t,2,y) = ¢1(t, %) — ags(t, z) for ally € Ty, and,

$1(T,z) = ¢2(T,z) = &3(T,7,9) =0. W
The strong form of the homogenized problem has the following description. The
state space is H = L*(2) x L*(Q) x L*(Q x Y;) equipped with the scalar product

@ = 3 L[ ctmws@e@ dvae
i=17/9%;
<[] S W)¥s(@,)8a(a,0) dyda
for every ¥ = (41,2, ¥s), § = [$1, 65, ®5] € H. Define the energy space,
B={l$1,¢2,05) € HNW'(Q) x W'P(Q) x L*(Q; W{-*(Y,)/R)
B®s(z,) = ¢1(2) — aca(z, y) for all y € Tz}

and the corresponding evolution space V = L*([0, T]; B).
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Proposition 6.3.4 [14] @ = [u1,u,Us] € V and is the solution of the strong

homogenized system,

f cwaFies + 5[ etz

= diva( /Y (s Vat + V,U) dy)
s

f, e wGEen - 2/ awutzna

= diva( [ (v, Vaua + V,0) d)
Y2

AUs(t, x,
c3 (U)%

— divy p3(y, VUs(t, 7,9)) = 0
where Us(t, z,y) and p3(y, VyUs(t, z,y)).v are Y-periodic and,
BUs(t, =, y) = ur(t, ) — ause(t,z) fory € T1p
with boundary conditions
/Y (Y, Vaur + VyUi)dyv = 0 on 0Q
d
/Y p2(y, Vouz + Vylp)dy.vr = 0 on 8Q
2
and initial conditions
u;(0,2) = ui(z) j = 1,2; Us(0,z,y) = ul(z).
The functions U;(t,x,y) solve the cell problems,

divy 134, Vaus (8, 2) + VyUs(t,3,3)) = 0 fory € ¥;

#5(y, Vau;(t, ) + VyUj(t, 2,y)).v = 0 on T2 and

(6.3.3)

(6.3.4)

(6.3.5)

(6.3.6)

(6.3.7)

(6.3.8)

(6.3.9)

(6.3.10)

(6.3.11)

Y -periodic on T2z, for j = 1,2. In the above, t,z are treated as parameters and the

cell equations are solved. W
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For £ € RY, define the following functions;

5O = [ mne+ v, dy, =12 (6.3.12)
where Vf is the Y-periodic solution of

divy pi(3, £+ VyVi(y)) = 0inY, (6.3.13)
ui(y, €+ VyVi(y).r = OonTy, (6.3.14)

Then, because of (6.3.10), (6.3.11), the right hand sides in (6.3.3), (6.3.4) can be re-
placed by the functions div, A (Voui (¢, )) and divy e (Vzus(t, z)) respectively. Also
the left hand sides of (6.3.7), (6.3.8) can be replaced by Ay (Vu1).v and Ap(V,us).v

respectively.

Remark 6.3.2 We note that the functions Aj can be interpreted as the integrands
in the ' — limit of the functionals

Fje(Vo) = /n X (2, Vo) dz.

In fact, T —1im F}.(Vv) = [, A\;(Vv)dz (cf. Dal Maso [16]). Further, the functions
Aj» J=1,2 satisfy conditions (6.2.1)-(6.2.8) for the same p but maybe for different
constants k,C, & (cf. [17], (10]). m

Proposition 6.3.5 [14] The following energy identity holds
13 1
32 [ cw@arads+ ] [ [ e@io ok
27 Jaly, 2 Jaly,
13 1
- cj u"x"’dd——//c uS(z)|? dy dz
22 ), sori@ras - [ [ awmsera
2 .7
+2/ﬂ /Q/Y 139, Vot + Yy U;). (Vo + ,U;) dy do dt
=1 f

T
+/ // 13(y, VyUs).V,Us dydz dt = 0. W
0 )y,
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6.4 Correctors

‘We now prove corrector results for the gradient of flows under stronger hypotheses
on p;’s than (6.2.1)-(6.2.3). Let k;, k2 > O be constants and assume now that the
p;’s are Carathéodory functions, Y-periodic in the sge;xg variable, satisfying for
&,m € RN with |£|+ |7| > 0 and ae. y€ Y:

#;(¥,0) = 0, (6.4.1)
115, €) = i(w, Ml < ka(€] + Inl)* %1€ —nl, (6.4.2)
(5%, €) — wily,m)-€E—m) = k(1] + Inl)*~2l€ — nl>. (6.4.3)

Remark 6.4.1 Note that (6.4.1) and (6.4.2) imply

5w, O] < FalepP=" (6.4.4)
and, (6.4.1) and (6.4.3) imply

25y, 6)-£ = kal€IP. (6.4.5)

Thus, the new hypotheses are indeed stronger than the original hypotheses on Hj's.

Moreover,

(153, €) — iy, M)-€—n) = kol —nl” ifp=2 (6.4.6)
115, €) = sy, )| < kil —nPP~t f1<p<2 (6.4.7)

These inequalities follow from (6.4.8) and (6.4.2) and triangle inequality in RN. &

Remark 6.4.2 An ezample of p; satisfying (6.4.1)- (6.4.8) is p; = |£|P7%, i.e. the

cor ding diffusion op is the p-Laplaci Let T',«y be positive constants.
The following class of functions, f € C°(Qx R¥; RN)NC' (2 x RN\ {0}; RV), which
satisfy condition (6.4.1) and

ZI I(I n) < TnP~?

Fi=1

Z 1Li@nes > P

Gi=
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for allz € Q,n € RV \ {0} and ¢ € RN, also satisfy (6.4.1)-(6.4.8) (¢f Damas-
celli [18)). m

Let uf, u5, u§ be the solution of the Cauchy problem (6.2.5)- (6.2.14) and let
[ur, ug, U1, Us, U] be as in Section 6.3. We will denote [0, 7] x Q by Q7. Define the

sequence of functions

§(tay) = 0)(Vay(t2) + VUt 2, y)), j = 1,2, (6.4.8)
&t2,1) = x)V,Ui(t, 2, y) (6.4.9)

and let,
&t z) = g(t,z, ;). i=1,2,3. (6.4.10)

‘The main theorems of this Chapter are the following:
Theorem 6.4.1 Let &5 ’s be as above and assume that the functions VyUj, 5=1,2,3
are admissible (cf. Definition 6.3.1), then
— z . . X
e 16 C) (Vi5t2) - 6, 2) | — 0, jmse,
€ P21

o [ Vst - e — om

Theorem 6.4.2 Under the same assumptions as in Theorem 6.4.1

en o2 (s (29) - (E.0))] . > 0.5-0

W) (o 2 6) 0 (o)) — om

Remark 6.4.3 Theorem 6.4.1 shows that X5 (5)Va(u;(t, 7) + eUj(t, =, Z)) strongly
approzimates x(2)Vu5(t,z) for j = 1,2 in Lr([0,T] x ), whereas Proposition 6.3.2
only implies that these tuo sequences have the same two-scale limit and hence, the
same weak limit in L”. Similarly, for the third component of the flow. Theorem 6.4.2

is about a strong approzimation for the fluz terms. The utility of the corrector results
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lie in the fact that the approzimations involve the homogenized Cauchy problem and
lly simpler pared to the original Cauchy

cell problems which are
problem. In this context, it is desirable to get order of ¢ estimates for the corrector

results and, this is still open. m

We first prove a few lemmas yielding some limits and estimates required in proving

Theorems 6.4.1 and 6.4.2.
Henceforth, M will denote a generic constant which does not depend on ¢, but
probably on p, k,, k,, ¢, C, and the L? norm of the initial vector 79, Let0<k <1

be a constant and ®;(t,z,y) be admissible test functions such that
3
Z v,u; - <pJ'”ﬁ,(o,r)xnxy, sk
=

Note that,
2542, 2) 53 0,(t,2,y)
for j=1,2,3. Define the functions:
e z z.
75 z) = Xj(;)(vz"‘j(trz) + ®;(¢, z, ;)), ji=12 (6.4.11)
E

%) = xa(D)s(ta, 2. (6.4.12)

Then we note that the functions n5(t, ) and #5(£,75(¢,2)) arise from admissible

test functions and we have the following two-scale convergence (cf. [14]),

nf 23 XsW)(Vaus(t, 2) + (2, 7, y)) =ntz,9), j=1,2,
% 53 )8, z,y) = m(t,z,y),
BET) S 0wyt m)), 5 12,3

Lemma 6.4.1 (¢f. Lemma 31 [17]) Let 1 < p < 2 ana P15 62 € LP(Qp)N. Then,

T 2
s - dallZg, < [ Lo f J¢x~¢zl2(l¢xl+ldbl)”2xdzdtj

x [/or/n (ol + l¢zl)"drdtj%z
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where x denotes the characteristic function of the set

{(t,2) € [0,T] x Q: |4](t,2) + |2](2, 7) > 0}.
Proof:  Multiply and divide the integrand in left hand side by (|¢y| + |¢])@-P0/2
and apply Holder’s inequality to get the result. W

Lemma 6 4.2
lex:(y) =5+ VyUp) |5 + llx2(v) Yy Us|?2 < ﬁZHu 598
Proof: Follows from the energy identity (Proposition 6.3.5) and (6.4.5). B
Lemma 6.4.3 Let &M 5,151 =1,2, 3 be functions as defined above. Then,
o [ Sy (900 = o) )t
<L Jatv, W5, &) — 139, 17)) (& — my) dy dw dt
for i=1,2 and
e | . (101909 lEo)) (e — )

S Tia ) faly, (5, &) = 15w my)) (& — my) dy dz .

Proof: Denote the integrals appearing in the left hand sides of the above relations

by !f,15 and 5 respectively. Then for i=1,2,3, using (6.2.17), we obtain,
3
B>k
J=1
1< 13
=2 [ eOu@re- 33 [ a@hm
=1 =179

2 T T
=3 [ ) (98 - ) awat
j=1Jo Jag T

T x
7/ / na(E, 7). (Vs — n5) de it

.
—Z//gj , VuS).af do dt — //ua(f,evugj.quzdt
i o Jag €

=1



CHAPTER 6 FLow IN POROUS MEDIA 90

We now use the two-scale convergence properties of various functions discussed so

far to pass to the limit. We get,

3 3
- . 1
Mo Yl = 52/,,/,, W) (@) dy do
= Saly,
i 13 z )
-hms_,oiz/ OS2 dz
=179
T
L L wwn 6 - n dyaz
o Jaly,

/O.T/x;/};, 15 (y,&5).mj dy dz dt

The right hand side can be written as

M-

7

w i

™

1
=1

3

1$ ) 00\ (2 ;i 1 Ty1e 2
> Lo, s ay i tim g 3 / SO P e

3 T
+,X=,:/v ‘[’/Y] (5 &) = 13w, m3)) (& — my) dy dzdt

—2:3 / - / /y 15(0,6)-& dy d dt

which, using Proposition 6.3.5 to replace the last expression, is nothing but,

2
22 LS, sl oraa s L [ L, o0 P ayas

3
1 z
—lim,. o / ¢ (=) |[w(=, T) |2 dz
32 [ o@D

3 T
+,§/m /n/y (5, &) — 13, m3)) (& — m;) dy dzdt

However, by standard arguments,

2
> / /Y SOI@ ) dyis+ [ [ vz, Py ds

3
Simesod” [ oEhte ) do
= Jag

This completes the proof. W
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Lemma 6.4.4 Let &j,7;,« be as before. Then,

3 T
2; Lf /Y (856,&5) — 5 (,m)) (& — ) dydz dt < MS®

where
1 ifl<p<?2,
s(p) = X
HE2 P22
Proof: Let the left hand side of the estimate be denoted by S.
Case 1: 1 < p < 2. Using (6.4.7) we get,

3 T
s < g/ S 1050, = s m 16 = ml dy e
3 T
< klj;j/o Lo 6= n ayaza
< Mk

Case 2: 2 < p. Using (6.4.2) and Hélder’s inequality we get,

3 T
s = 3 [ [ [ w6 - mnies = niayazas

3 T
< w2 [ [ [ 16 -niig+ mrrayaza
=170 JaJy;

3 T %2
< B lE -l ( L (I€jl+lnj|)”dydzdt)
= o Jaly;
;
< kN6 — il A, + gl )
=1 -
<

3 % 3 B2
ky (Z llg; = lelZ) (Z(Ilfjllp + ||le||,,)”)
g=1 3=t
3 % 3 %’
<k (Z llg; — lelﬁ) (Z(2 €11, + 11€; — W;II,,)”)
3= i=1
3 % 3 ’:‘Z
< B2 (E lI6; — 77:‘“:) (Z (2" &1 + g5 ~ 71]’”:))
Jj=1 Jj=1

Therefore, by the estimate for the second term proved in Lemma 6.4.2, we get the

result.®



CHAPTER 6 FLow IN POROUS MEDIA 92

Theorem 6.4.3
— P
e[ ) (Va5 2) ~mie )| < pawo),
o

= T s
e [P it n) - me )| < mwo

r(p) = {

Proof: Case 1: 1 < p < 2. We use Lemma 6.4.1 with the functions
X5Vu§ and 75, j =1,2 to get,

where
ifl<p<?2,
if p>2.

YIS

X575 = 9511 0,
S U fog 195 = m5 PV ] + [m51)7=2 dr dt) B (f7 fog (19051 + I51)P dodt) s

Therefore, using strong monotonicity (6.4.3), we get,
T z z H
»
o5 = n51} o, <k ( L L (v~ wGmp) - (905 =) dzdt)

x(Ix5vus] + [Ing115) %=

gle=ne=n /¥

where k . Similarly,

H

1T T x
lxgeVas - n3ll 0, <k ( / | (Eoevu) = a(E ) - (Vs — ng) doat
3

2
x(lIxgevusly + llmslip) ="

i)
Il

2
S Ixves = 5112 o, + lIxge Vs — nslE ., »
=1
2 T x x
si= 2 [ () - wEn) (s — )zt
=1 5
T
+ [ (seEoevu) — ia(Z,1) (Ve — i) dedt and ,
o Jag € €

2
S5 = oIVl + 2 + xgevuslis + lingliE -
=1
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Then, from the estimates for the individual terms in 5§ and a simple application of
Hélder’s inequality in R®, S < k(S5)§ x (S5)%°

Note that 75 arise from admissible test functions. Therefore,

3
lim >~ |57
i=1

3
Z lIm; ”:,[o,ﬂxnxy

IA

ij"*'(||:,||",[mmxy+ Znn, 15 orixxy)
Z

< M

where the last estimate follows from Lemma 6.4.2. Also by (6.2.17) and (6.4.5), we
get,
2
1 =32
i P =
22 Iavesil + e vusly < g [-2],, <&

From this we conclude that, im 0S5 < M. Therefore, taking limsup as € — 0

and using Lemmas 6.4.3 and 6.4.4, we get
Iim.,0S; < Mk%.

This concludes the proof in this case.
Case 2: 2 < p. From (6.4.6), we get,

VUi =5l < & (ms(2, Vu5) = 15(2,75)) (V§ — n5)
Therefore, by integrating with respect to ¢ in [0, 7] and z in Q5, we get,
156V = 15117 0, % 2 S g (13 (2 V) — 11y (2, m))-(V5 — 75) d
Similarly,
‘ X566V — 15115.0,< 2 o Sog (1(2, £V ) — pra(Z,75)).(e Vg — 5) dw it

We note that if Sf and S5 are defined as in the previous case, then Sf < %S;

Passing to the limit, as before, we reach our conclusions. M
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Theorem 6.4.4
o T x 9
Tim .o ”X;;L,(;,Vu;) - ,L,(;,r,;)||q.n’r < Mg®
T x x 9
T o [[xua(ZoeV03) — maCom) < M
€ € ¢.9r1

where

_ 3 ifl<p<2,
. {L ifp>2.

p-1
Proof: We will prove only the first of these estimates, the other is proved similarly.

If 1 < p <2, by (6.4.2) and triangle inequality in RY, we get,
i 15 C,vVus) — i Eon) T dzdt < ky [T fo, |VS — m5[9%-D dz dt
[ Jo 15 V) — s (Comf)l dzdt < Ky fy for VU5 — ]
'

Since ¢(p — 1) = p, using the Theorem 6.4.3, the estimate follows easily. Let 2 < p.
Then,

[ v — mE iz
o Jas il 5 VU Al

S K J7 S 1V5 = 7517 (17051 + In) ® ™ dz
‘The right hand side, by Holder’s inequality,

< ky2e-t (fonn; |V — nslP do dt) a (fOTfn;(|Vu§|” + Ing|?) dz dt) =
< MgV - I,

So, again using Theorem 6.4.3, we get the desired result. M

Proof of Theorems 6.4.1 and 6.4.2: Since, V,Uj’s are assumed to be admissible
test functions, we can take ®; = V,U;. Thus, « can be taken arbitrarily small and
therefore, Theorem 6.4.1 follows from Theorem 6.4.3. Similarly, Theorem 6.4.2

follows from Theorem 6.4.4. B

Remark 6.4.4 The functions V,U;(t, z,y) will be admissible if we have C* regular-
ity of U; in the variable y. Even if the functions V,U; are not admissible, Theorems

6.4.3 and 6.4.4 are corrector results in their own right. W
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