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CHAPTER 1

INTRODUCTION

Agneralized inverse (g-inverse) of a matrix A is a solution

X to the matrix equation
AXA=A . (.1.1)

A g-inverse of A can be defined alternatively as a matrix X such that

x = Xb is a solution to the linear equation Ax

= b for any b that makes
Ax = b consistent. There is a vast literature on g-inverse. For a
number of results on g-inverses and their applications one may refer to

the well known books in the literature by Rao and Mitra (1971); and by

Ben Israel and Greville (1974).

Another inverse that lies hidden in the definition of g-inverse is
outer inverse. An outer inverse of a matrix A is a solution X to the

matrix equation

XA X=X 1.1.2)

Ben Israel and Greville (1974) give some . - applications of outer imverse.
A recent book by Getson and Hsuan (1988) lays emphasis on outer inverses

and highlights their role in statistical applications.

Unless A is nonsingular, a g-inverse of A is not unique. Similarly
an outer inverse of A is not unique unless A = O. This has led to the
introduction of a variety of inverses in the literature for various
applications. However we have several results on characterization of these
inverses available to us. These results enable us to understand the key

variables that give rise to different types of inverses. Usually in the



literature g-inverses and outer inverses are treated separately. In this
thesis we introduce an integrated approach for studying both g-inverses
and outer-inverses. This we accomplish by means of bordered matrices.
Also we derive some new results using the new approach.

Given an nxn real matrix M and an n-dimensional real vector g, the
linear complementarity problem (LCP) is a problem of computing a solution

w,z), if it exists,to the following system of equations:

w-Mz =q, w,z >0 (1.1.3a)

Wz =0 (1.1.3b)

T
where w' is the transpose of w.

LCP is a unified formulation of linear amd quadratic programming
problems, and the problem of computing equilibrium strategies to a bimatrix
game. It has application in several other areas too. (See for details
Murty (1988)).

One of the important algorithms for LCP is due to Lemke (1965).
However this algorithm cannot solve all LCPs. In this thesis we identify
some classes of LCPs which are beyond the scope of Lemke's algorithm.

Also we give new algorithms for solving these problems. This we achieve
by exploiting a particular property of Lemke's algorithm in combination
with the bordered matrix approach for g-inverses.

Now let us discuss briefly the results included in this thesis.
Characterization of g-inverses via bonrdered matrices

We shall confine ourselves to complex matrices for the sake of
convenience especially for examining the eigen value properties of g-inverses/
outer inverses. However the general results as obtained in Section 3 of

Chapter 2 hold for matrices over a general field.



A
For an mxn matrix A and E,F,B of appropriate orders if

F* B
is square and nonsingular then let us denote the nxm leading sulmatrix of
its inverse as A(E,F,B). (The symbol * stands for the conjugate transpose
of the concerned matrix). However,whenever we write A(E,F,B) we shall
presume that A(E,F,B) is well defined unless the context warrants its

proof.

It may be interesting to observe that if A and G are conformable

for multiplication then

A I-AG G I-GA

- (1.2.1)

which implies that if A is of order mxn then any matrix of order mXm can
be represented as A(E,F,B). In particular, we see that any g-inverse or
outer inverse of A can be represented as A(E,F,B) for some suitable choice

of E,F and B.

A matrix X that satisfies both (1.1.1) and (1.1.2) is called a
reflexive g-inverse of A. We see from Blattner (1962) that Condition 1 given
below is sufficient for A(F,F,0) to be a reflexive g-inverse of A.

Condition 1: Given an mXn matrix A of rank r, let E and F be of order

=% (m-r) and nx(n-r) respectively such that the column spaces of E and A are
complementary to each other; and the column spaces of F and A* are

somplementary to each other.

We extend Blattner's result (vide Theorems 2.3.1 and 2.3.2) by

nowing that if A{1} is the set of all g-inverses of A then
a{1} = (A(E,F,B) : E,F satisfy Condition 1 } (1.2.2)

As regards outer imverses we show (vide Theorem 2.3.3) that if



A{2} is the set of all outer inverses of A then

a{2} = {A(E,F,0): E,F any matrices that make A(E,F,0)
well defined} (1.2.3)

It may be appropriate here to recollect some of the important

characterizations of g-inverse and outer inverse of A. They are:

A{1} = {G + W - GAWAG : W arbitrary and G is any
particular element of A {1}} (1.2.4)

A{1} = {G + (I-GA)K+L(I-AG): K,L arbitrary and G is

any particular element of A{1}} (1.2.5)

al1} = (@7t EI) (L’:[ ! . p ana g are nonsingular such
I
that A = P]:o SIQ and L arbitrary} (1.2.6)

al1} = {Q‘II:\I, 5:{»‘1 : P and Q are two fixed non-

I 0
singular matrices such that A = P E’ DIQ;
and U,V,W arbitrary} (1.2.7)

1f a{2)_ denotes the set of all elements A{2} with rank s then

a2}, = { vz : zay (1.2.8)
where I_ is the identity matrix of order s.
A{2} = {U(V*AU)_ V*: U,V arbitrary and (V*AU) is
a reflexive g-inverse of V*AU} (1.2.9)

The characterizations (1.2.4), (1.2.5), (1.2.6) and (1.2.8) are
available in Ben Israel and Greville (1974); (1.2.7) in Boullion and

~dell (1971); and (1.2.9) in Getson and Hsuan (1988).

As compared to the above characterizations the ch izati

~ia bordered matrices is advantageous in the following respects.

The bordered matrix approach enables us to represent both g-inverses

and outer inverses in a single frame. This provides a better way of



studying the two closely related inverses in a unified manner. Many.of
the questions raised for study in g-inverses are based on the knowledge
of the relationship between a nonsingular matrix and its inverse. The
bordered matrix approach seems to be more appropriate for such studies

because we have only to compare a nonsingular matrix [A E:[ with its
F* B
inverse. If A(E,F,B) ¢ A{1} then by pre and post multiplying E‘ ‘5]
F* B

by suitable nonsingular matrices such that A remains unaffected in the

final form, we get all possible g-inverses of A. This enables us to see

the inter-relationship among various types of g-inverses. Further the
bordered matrix |» ® | itself provies immediately some of the information
F* B

like the row and column spaces, and rank of the g-inverse/outer inverse.

Tnvens es with spectrnal properties

By spectral properties we mean the properties imvolving eigen
values and eigen vectors.

A vector x is called a principal eigen vector of grade p of a
square matrix A corresponding to an eigen value A of A if (A-A)P 1x # o
and (Aa-21)Px = 0 where p is a positive integer. Following Ben Israel
and Greville (1974) we vall such a vector x a A-vector of A of grade p.

If A is nonsingular it can be easily verified that A and X = A 1
together have the following property.
Property 1: x is a A-vector of A of grade p if and only if x is a

-1

A""-vector of X of grade p.

In the case of a singular square matrix A we may try to examine
the extent to which Property 1 can be satisfied by a g-inverse/outer
inverse X of A. If A is singular then A = O is an eigen value of A and

so the closest approximation of Property 1 would be:



Property 2: For X # 0, x is a A-vector of A of grade p if and only if
) -1
x is a 2 "-vector of X of grade p; and x is a O-vector of A of grade p

if and only if x is a O-vector of X of grade p.

Any matrix X possessing Property 2 is called an S-inverse of A.
It is well known that a g-inverse/outer inverse X of A is an S-inverse of
Aif and only if X = a¥, the group inverse of A. (See Section 2 of

Chapter 2 for definition of a%).

We note that A" exists if and only if rank A = rank AZ. ALL
singular matrices do not satisfy this rank condition. So, we relax
Property 2 further and look for a g-inverse/outer inverse that satisfies
Property 3: For X # O, x is a A-vector of A of grade p if and only if
x is a A\ '-vector of X of grade p; and x is a O-vector of A if and only
if x is a O-vector of X without regard to grade.

Any matrix X satisfying the above property is defined as an
S'-inverse of A. It has been proved (See Greville (1968), Boullion
and Odell (1971) and also Ben Israel and Greville (1974) pp. 177) that

x e a{1} u a{2} is an s'

inverse of A if and only if

where the superfix D denotes the Drazin inverse of the concerned matrix.
(See Section 2 of Chapter 2 for the definition of Drazin inverse). An
S'-inverse belonging to A{l1} U A{2} exists for any square matrix A. In
Section 4 of Chapter 2 we give its representation in temms of A(E,F,B).
There are other weaker properties which are of interest. For example
Pwperty 4: For A # 0, x is a A-vector of A of grade p if and only if

¥ is a A l-vector of X of grade p.

Theorem 2.4.2 gives a sufficient condition for X = A(E,F,0) to have



Property 4. If X is a reflexive g-inverse of A the condition of
Theorem 2.4.2 reduces to-the condition that R(F) = N(A*), the null space
of A* in which case rank A = rank A>. Such a reflexive g-inverse has been

identified by Mitra (1968). In the ahove reflexive g-inverse if R(E

=N(A*)

we get the g-inverse identified by Cline (1968).
Theorem 2.4.1 gives a sufficient condition for X = A(E,F,B) to have

Property 5: For X # 0, if x is a A-vector of A of grade 1 then x is a

1" vector of X of grade 1.

Tnvens es with nonnegative principal minons

Square matrices with positive (nonnegative) principal minors are known a:
P-(P_-) matrices. These matrices, as we shall see in Chapter 3, have
special significance in LCP. Also in a finite state Markov chain we see
that the matrix I-T is a Po—matrix where T is the transition probability
matrix of the chain. The above matrix plays a pivotal role in the
analysis of the Markov chain. Meyer (1975) used the group inverse of
I-T to derive several results on the Markov chain. Later Hunter (1982)
iemonstrated the use of any g-inverse of I-T in the analysis of the chain.

£ A is a ronsingular P_-matrix then A"l is also a P -matrix, but it is
act so in respect of a singular P -matrix and its g-inverse. Mohan,
Neumann and Ramamurty (1984) investigated the conditions under which a
reflexive g-inverse of I-T preserves the P-property. In this process we
ire led to the problem of obtainina conditions for a g-inverse (of any

s3uare matrix) to be a P_-matrix.
By making use of the relationship between the minors of a
~cnsingular matrix and its inverse, we are able to express the minors of

= g-inverse A(E,F,B) in terms of the minors of the nonsingular bordered



N A E N
matrix [ ] . Thus, we derive necessary and sufficient conditions
F* B

for a g-inverse to be a P_-matrix. We derive some more results relating

to minors.

It was proved by Mohan, Neumann and Ramamurty (1984) that in a fin e
state Markov chain the Drazin inverse of I-T is a P_-matrix, but therein

we do not find an interpretation for this result in the context of the
Markov chain. We give in Section 7 of Chapter 2, Markov chain
interpretation for the principal minors of any g-inverse of I-T when T is

irreducible (See Section 5 of Chapter 2 for the definition of irreducibility).

Linearn Complementarnity ProblLem

Let us denote the LCP defined at (1.1.3) as (q,M). We see that all

cs i o]
LCPs do not have solutions. For example the LCP (q,M) with q = ana
-1
M = l:l 0:[ has no solution. So, for a given M we are led to examine the
o o

set D(M) of all q for which (q,M) has at least one solution. If M is such
that (q,M) has a solution for any g then M is called a Q-matrix and in such
a case D(M) equals the entire Euclidean space. Also we note that the
existence of a solution to (1.1.3a) ensures the existence of a solution to
(q,M) if and only if D(M) is a convex set. A matrix M with D(M) convex is
called a Q -matrix. We see that a Q-matrix is a Q -matrix too. A problem
that has attracted the attention of many researchers is to characterize

© and @ -matrices. No constructive/efficient characterization of O or

0 -matrices have been obtained so far. (See the remarks of Aganagic and
Cottle (1987)). Fredricksen, Watson and Murty (1986) respond to this
problem but in a small measure by characterizing Q -matrices of order mnot
sreater than 3. Kelly and Watson (1979) propose a spherical geometric

approach for characterizing Q-matrices. We may also see Watson (1976) in



this connection. However several subclasses of Q and Q -matrices have

been identified in the literature.

An LCP (q,M) may have more than one solution. So, in another
direction of research, problems relating to the number of solutions to (Q,M)
is being studied. It is known that the LCP (q,M) has a unique solution
if and only if M is a P-matrix. (See Samelson,. Thrall and Wesler (1958)).
Cottle and Stone (1983), introduce the class U of matrices M such that for q
in the interior of D(M) (d,M) has a unique solution. Jeter and Pye (1987)
study a subclass of U-matrices, called W-matrices. Stone (1986) studies
matrices M for which (q,M) has the same number of solutions for all q in the
interior of D(M). Kojima and Saigal (1979) show that if the principal
minors of M are negative then for any q the number of solutions to (q,M)
is 0, 1, 2 or 3. Apart from the above there are many other aspccts

that are being examined in LCP.

Obtaining algorithms for solving LCP is another important area of
research. An algorithm for solving LCPs is said to process a particular
LCP (q,M) if the algorithm is guaranteed to either detemmine that (q,M)
has no solution, or f£ind a solution for it after a finite amount of
computational effort. We say an algorithm for LCPs processes a matrix M

if the algorithm processes (q,M) for all q.

Some important algorithms for LCPs are due to Lemke (1965), Dantzig
and Cottle (1967) and Chandrasekaran (1970). Lemke's algorithm is similar
o the simplex algorithm for Linear Programming Problems(LPPs) and it can
rrocess most of the LCPs that arise in practice. The algorithm due to
Santzig and Cottle is also known as the principal pivot algorithm. It can
~rocess LCPs associated with P-matrices and positive semi-definite matrices.

~handrasekaran's algorithm can process LCPs associated with matrices whose



off-diagonal elements are nonpositive, and this algorithm processes such
problems in polynomial time. (That is, the number of steps taken by the
algorithm to terminate is a polynomial in s where s is the size of the
problem). The other two algorithms may take exponentially large member

of steps to terminate.

Though Lemke's algorithm cannot process all LCPs we see that it can
process many matrices that arise naturally in practical applications : for
example ,the co-positive plus matrices that include the matrices occuring in
the LCP formulation of the Quadratic Programming Problem, and the L-matrices
which include matrices that occur in the computation of equilibrium point
of a bimatrix game through an ICP formulation. Further we note that it can
process all the matrices that are processable by Chandrasekaran's algorithm
and the algorithm due to Dantzig and Cottle (See Saigal (1971) and Eaves
(1971a)). Many of the research results in LCP hinge on the properties of
this algorithm.

In this thesis we observe some properties of Lemke's algorithm; have
2 look into the classes of matrices processable by the algorithm; and
~btain some new results in LCP based on the observations. Also we identify
“wo subclasses of Q -matrices by making use of a property of Lemke's

=lgorithm in combination with g-inverse.

Jraanization of the thesis

The thesis is arranged into three chapters, Chapter 1 being the
rresent one. Chapter 2 is on g-inverse and Chapter 3 is on the Linear
Zomplementarity Problem. In Chapter 2 there are seven sections, Section 1

an introduction to the Chapter, Section 2 introduces notation and

creliminary, Section 3 deals with the bordered matrix approach for g-inverse



Section 4 gives some results on spectral inverses, Section 5 deals
with the minors of g-inverses, Section 6 gives some results on principal
minors of g-inverses of matrices with nullityone; and Section 7 deals

with g-inverses of I-T where T is a Markov matrix.

Chapter 3 is divided into six sections, Section 1 is introduction
to the chapter, Section 2 examines some properties of Lemke's algorithm,
Section 3 gives an application of g-inverse for identifying some classes
of Qo-matrices, Section 4 presents two algorithms for processing the
classes of matrices identified in Section 3, Section 5 is on solution
rays to LCP, and Section 6 gives some results on matrices with nonpbsitive
principal minors.

This thesis contains, among others, all the results that appear in

Eagambaram (1988a & b), Eagambaram and Mohan (1987 a&b, and 1988).

For the sake of easy reference and completeness some of the definitions

introduced in this chapter are repeated in the subsequent chapters as well.



CHAPTER 2

GENERALIZED INVERSES OF MATRICES

1. Introduction’

There are a number of results available in the literature on

characterization/computation of g-inverse of a matrix A, which is a

solution X to the matrix equationAXA = A. Each result has its own
advantage in understanding the properties of g-inverses. The bordered
matrix approach for characterizing g-inverses, to which this chapter is
devoted, was found useful for examining g-inverses with nonnegative
principal minors. The same bordered matrix approach enables us to
characterize outer inverses as well. (See Eagambaram (1988a & b)). Thu.
we come upon a unified way of looking at all g-inverses/outer inverses.
In this chapter we give same applications of the bordered matrix approach

in characterizing g-inverses/outer inverses.

In Section 2 we give the requisite preliminary. In Section 3 we
prove results on characterization of g-inverses/outer inverses. In
Section 4 we demonstrate the advantage of bordered matrices in identifying
a-inverses/outer inverses with some spectral properties, and in Section 5
we characterize g-inverses/outer inverses with pre-specified principal
minors. As a particular case, we concentrate on matrices of order n and
rank n-1 in Section 6. Finally we give some interpretation of g-inverses
in the context of Markov chain, in Section 7.

2. Preliminary

x i mxn
Let ™™ denote the set of m¥n complex matrices and R ' the set
n n

; mx o
5f mxn real matrices. When either m or n is zero C and R are taken

X1 X N n n
to be empty. C" ana R denote ¢! ana " ! respectively. Let R} and R”



stand for the sets of nohnegative and nonpositive vectors respectively,
of R". The column space and null space of a matrix A are denoted as
R(A) and N(A) respectively. For a square matrix A, det A and adj A
denote the determinant and the adjoint of A respectively. When a matrix

A is vacuous det A is taken as 1. The symbol ¢ means "subset of" and

< means "proper subset of For an mxn matrix A and for J < {1,2,...,m},
xef1,2,...,n}, Ajg Stands for the submatrix of A obtained from the rows
and columns indexed by J and Ki Ay, stands for Ag o) i By denotes
A otes .

S(1,2,... 00 A4 A g denotes Ag . The symbol @ denotes the

direct sum of two complementary subspaces of a vector space. For any set

J,]3| aenotes its cardinality.

If A is a nonsingular complex matrix then A and X = A | satisfy
AXA = A e8]
XAX = X 2
AX = (AX)* (&)
XA = (XA)* ()
AX = xa s)
A% = aA"*lx, for . nonnegative integer k- (6)

where * denotes the conjugate transpose of the concerned matrix. Let
{i,3,...,k} € (1,2,...,6). For an arbitrary complex matrix A, a solution
X that satisfies equations (i), (i),...,(k) above is called an {i,j,...,k}
—inverse of A. This definition is due to Ben Isreal and Greville (1974).
We note that a lll-inverse and {2}-inverse of A are the alternative
names for a g-inverse and an outer inverse of A respectively. The well
Known Moore-Penrose inverse of A, denoted as A, is the unique {1,2,3,4)-

inverse of A. The index of a square matrix A is the smallest nomuegative




s 14 :

such that rank A"} = rank aA¥. If A is a square matrix of index k, then

a {2,5,6)-inverse of A exists and it is denoted as A”. A" is called the
Drazin inverse of A and it is unijue. If the index of the square matrix
A is 1, then a° is a {1,2,5,6)-inverse of A and it is denoted as At at

is known as the group inverse of A. A {1,3}-inverse of A is called a least

square inverse of A and a {1,4}-inverse of A, a minimum norm inverse of A.

It is well known that A ¢ C™™ with index k can be decomposed as

(2.2.1)

We may write T and T © as

=l (2.2.2)
T,

where the partition is conformable for multiplication in (2.2.1). We
observe that
ct oo
L= ot (2.2.3)
o o
The following notation is convenient for representing {i}-inversc

i e {1,2}, in temms of bordered matrices:

Definition 2.2.1: Let A ¢ C™ ™ and the matrices E,F and B be such that

A E
the bordered matrix is square and nonsingular. If

F* B

a et G U



15 :

where G € ¢™™ , then G is denoted as A(E,F,B). Whenever we write
A(E,F,B) it is presumed that A(E,F,B) is well defined unless the context

necessitates its proof.

3. Generalized inverses via bordered matrices

n

Blattner (1962) showed that for A e C° ", of rank r, if

£, e ™ ™) are such that R(A) ® R(E) = R(A*¥) @ R(F)

c”, then
A(E,F,0) exists and A(E,F,0) is a {1,2}-inverse of A. The following

theorem extends the above result.

Theonem 2.3.1: 1et A ¢ &™™ be of rank r. Let E ¢ & ®™F am

£ e ™ T Lo such that R(A) ® R(E) = C" and R(A%) @ R(F) = C". Then
for an arbitrary B ¢ ¢ (X)X M=)
N s A E 2 N
1) the matrix is nonsingular,
F* B

A E A(E,F,B) U |
(i) the inverse of (., g | is Of the fom o o |
.ii)  A(E,F,B) is a {1}-inverse of A,
(iv)  R(U) = N(A) and R(V) = N(A%),
) N(A(E,F,B)) = R(EB) where B is any matrix such that R(B) = N(B)
and
(vi)  rank A(E,F,B) = rank A + rank B.

Proof: (i) It is obvious that E:, §:| is a square matrix. Suppcse[x]
Y

is a null vector of [" EJ where x € C" and y € " ©. Then
F* B
Ax + Ey'= 0 (2.3.1)
F*x + By = 0 (2.3.2)
R(A) ® R(E) = " implies that Ax = 0 and Ey = 0. The columns of E being

linearly independent We see that y = 0. Now (2.3.1) and (2.3.2) reduce



to x = 0 which is true only when x = O because R(A*) & R(F) =
P

<o, is nonsingular.

(ii) Suppose that

-1
A E A(E,F,B) U
= (2.3.3)
F* B A H

We see that AU + EH = 0. Now arguing as in the proof of part (i) we

infer that H = O.

(iii) and (iv) are obvious.

(v) Let x € N(A(E,F,B)).

A(E,F,B) U Mx o
v o o V*x

which leads to

x A E o E V*x

o F* B V*x B V*x
We see that x e R(E). Let x = Ey. Then BV*x = BV*Ey = By = O. This

shows that y € R(B). Therefore x € R(EB). On the other hand if x ¢ R(EB)

then x = EBy for some y. Then from (2.3.3) we have
A(E,F,B)x = A(E,F,B) EBy = -UBBy = O.

Thus part (v) is proved.

(vi) Without loss of generality we can assume that B is of full

column rank.



rank A(E,F ,B) =m - dimension N(A(E,F,B))
=m - rank BB
= m - number of columns of E B
= m - dimension of N(B)
=m - (m-r-rank B)

= rank A + rank B

Ci

Thus we complete the proof of the theorem.

Remark 2.3.1: In Theorem 2.3.1 it is easy to verify that
A(E,F,B) = A(E,F,0) - UBV*.
The following theorem proved by Eagambaram (1988a) asserts that

any {1}-inverse of A can be obtained by the bordered matrix approach.
xn X

Theonem 2.3.2: Let A € C" " be of rank r. Let G'be a {1}-inverse of A.

Then there exist E ¢ ¢ ™ F) g ¢ MO0 g5 ¢ cOmOIXMoE) Joh that

A(E,F,B) is well defined and A(E,F,B) = G.

Procg:  Let B e ™ ™) ana B e ™ ) 4o such that R(E) = N(A*) and

R(F) = N(A). Then R(A) @ R(E) = C" and R(A*) ® R(F) . According to

Theorem 2.3.1 A(E,F,0) exists and it is a {1} -inverse of A. Tet

A(EF 0) U
(2.3.4)
o

It is known (for example see Rao and Mitra (1971), that, given a

{1}-inverse G of A, any other {1}-inverse S of A can be written as
& =G+ (I-GA) K + LU-AG)

where K and L are suitably chosen matrices. So, we can find matrices

K and L such that

G = A(E,F,0) + (I-A(E,F,0)A)K + L(I-AA(E,F,0)) (2.3.5)



If

E = (I-ALE

F = (I-A* ;(")l‘: N
and B = F* (KAL - K-L)E

We see with the help of (2.3.4) and (2.3.5).that

= (2.3.5%)

Hence the theorem. ||

The above two thorems are generalization of the corresponding

results for square matrices which are published in Eagambaram (1988a).

Conollary 2.3.1: Let A,G,E,F and B be the matrices as in Theorem 2.3.2.
Then

(i) R(E) = R(I-AG)

(3i) R(F) = R(I-A*G*)

-F*GE

and  (iii) B
Proof: (i) amd (ii) follow from (2.3.5%). (iii) Follows from Remark 2.3.lin

conjunction with part (v) of Theorem 2.3.1. O

Remark 2.3.2: We see that for nonsingular matrices P and Q,

A(E,F,B) = A(EP, FQ, Q*BP). Therefore, Corollary 2.3.1 shows that any
matrices E,F and B satisfying (i), (ii) and (iii) of Corollary 2.3.1 yield

G = A(E,F,B). Further the choice of E and F determines B.

The following theorems characterize {2}-inverses.

Theonem 2.3.3: G € ™™ is a {2)}-inverse of A € C™" if and only if there

exist matrices E and F such that G = A(E,F,0).

Proof: It is obvious from the definition of A(E,F,0) that if G = A(E,F,0)
then G is a {2}-inverse of A. On the other hand if G is a {2}-inverse of

A, then A is a {1}-inverse of G and hence it follows from Theorem 2.3.2



that G = A(E,F,0) for some E and F. j|
Theorem 2.3.4; A(E,F,0) = A(E,F,0) if and only if R(E) = R(E)

and R(F) = R(F).

Proog: If A(E,F,0) = A(;:, = G then we see that N(G) = R(E) = R(;)
and N(G*) = R(F) = R(F). On the other hand if R(E) = R(E) and R(F) = R(F)

then there exist nonsingular matrices P and Q such that E = EP and

F* = Q*F*. Now

A E I o A E I o
F* 0 o o* F* 0 o
The above relationship shows that A(E,F,0) = A(E,F,0). i)
Remark 2.3.3: Theorem 2.3.4 shows that a {2}-inverse with a particular
pair of column and row spaces is unique.
Now let us see how same well known g-inverses/outer inverses of
are represented in the form A(E,F,B).
Theorem 2.3.5: A(E,F,B) is a least square inverse of A (that is,
A(E,F,B) is a {1,3}-inverse of A) if and only if R(E) = N(A*).
Proof: In accordance with part (ii) of Theorem 2.3.1 let
-1
A E A(E,F,B) U
F* B v* o

From the above we have: A(E,F,B) is a {1,3}- inverse of A <=> EV* is

hermitian <=> R(E) = R(V) = N(A*) noting that V*E = I. ||

: A(E,F,B) is a minimum norm inverse of A (that is,

Conoflany 2.3.

A(E,F,B) is a {1,4}-inverse of A) if and only if R(F) = N(A).



Proof: We note that if G is a {1,4}-inverse of A, then G* is a
{1,3}-inverse of A*. Now the proof follows from Theorem 2.3.5.

O

Theonem 2.3.6: The {2}-inverse A(E,F,0) of A is the Moore-Penrose

inverse a* if and only if R(E) = N(A*) and R(F) = N(a).

Pro0f: We note that N(AY) = N(a*) anda N((aA")") = N(A). Now the proof

follows from Remark 2.3.3. jm]

Theonem 2.3.7: The {2)-inverse A(E,F,0) of A is the Drazin inverse A"
if and only if R(E) = N(Ak) and R(F) = N((Ak) *) where k is the index of A.
Proof: We note from equations (2.2.1) - (2.2.3) that N(AP) = N(aX) ana

N(@®) %) = N(@S)*). The proof follows from Remark 2.3.3. jm}

For A(E,F,B) to be a {1)-inverse of A; Blattner's condition on
E and F as given in Theorem 2.3.1 is a sufficient condition. So, in
general A(E,F,B) need not be a {l1}-inverse or a {2}- inverse. The followin
theorems give conditions for A(E,F,B) to be an {i}-inverse of A for
ie {1,2).
Lenma 2.3.1: Let A ¢ ™ be of rank r. If E and F are of full column
rank then A(E,F,B) is a {1}- inverse of A only if E and F satisfy the

condition of Theorem 2.3.1.

Proof: Let
-1
A E G U
- (2.3.6)
F* B v* H
where G is a {1}-inverse of A. We have,
(2.3.7)

AG + EV* = I

V*A + HF* = 0 (2.3.8)
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Since E is of full column rank, from (2.3.7) we have V*A =

Substituting this in (2.3.8) we get HF* = O. Again, F* being of full

row rank we find H From (2.3.6) we see that AU = O which shows that
R(U)< N(A). The R.H.S of (2.3.6) being a nonsingular matzix[g:[ and
hence U is of full column rank. F*J = I implies that the number of
columns of F is equal to the number of columns of U which is not greater
than n-r. But then rank [;}‘] = n implies that the order of F is nX(n-r).

similarly it follows that the order of E is mx(m-r). Now it is easily seen

that E and F satisfy the conditions of Theorem 2.3.1. Hence the Lemma.

O

Theorem'2.3.8: Let I and I be the identity matrices of order m and n
x
respectively. Then for A € C".", A(E,F,B) is a {1}-inverse of A if and

and only if there exist nonsingular matrices | 'm 1 | ana | n °©
&9 2

such that

m n 1
= F* B, O
1 (2.3.9)
*
o P, F* B T
where E) and F, satisfy the conditions of Theorem 2.3.1.
Sufficiency: It is obvious from (2.3.9) that A(E,F,B) = A(E;,F,,B)

which is a {1}-inverse of A according to Theorem 2.3.1.

Necessity: Let A(E,F,B) be a {1}-inverse of A. From Lemma 2.3.1
we have that if E and F are of full rank then E and F themselves satisfy
conditions of Theorem 2.3.1 and hence (2.3.9) holds with P, =0, 9, =0,
P, and Q, identity matrices. Now if either E or F is not of full rank
then we can obtain the relationship (2.3.9) by applying the fact that

A(E,F,B) = A(EP, FQ, Q*BP) for nonsingular P, Q and Lemma 2.3.1.

Hence the theorem. jml
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Theonem 2.3.9: Let I and I  be the identity matrices of order
m and n respectively. Then for A € C™, A(E,F,B) is a {2}-inverse of

A if and only if there exist nonsingular matrices| ‘n ° and

2 Ll

such that

Im o p:Y E Im Pl 1} 1
5, @ r o | - |TE°
1 2 2 o I

Proof: The proof follows by inverting the matrices on the L.H.S. and

R.H.S. of (2.3.9). . i}

Theorems 2.3.3 - 2.3.7 have been included in Eagambaram (1988b).

Tt may be noted that it poses no difficulty in extending the

results of this section to matrices over a general field.

4. Spectral inverses
In this section we identify some A(E,F,B) which have spectral
properties comparable to those of A.

n

x
For A ¢ ™", avector x e C” is called a A-vector of A of grade

pif (A-2DPx = 0 ana (A-AD)P 1x £ o.

Theonem 2.4.1: Let A ¢ ™™ and G = A(E,F,B) with R(F)S N((a5)*),
where k is the index of A. If A # 0 is an eigenvalue of A and x is an

eigenvector of A corresponding to A then A\ ' is an eigenvalue of G and

x is an eigenvector of G corresponding to A .

Proof: Consider the form A as at (2.2.1) and of T at (2.2.2). Let

A # 0 be an eigenvalue of A and x be an eigenvector corresponding to A.
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We see that x & R(T)). Since R(M)CS ne@fy s = R(T,) we have that F*x=0.

x . . :
Therefore is an eigenvector of the nonsingular matrix | > F
o

F* B
corresponding to the eigenvalue A. Hence we see that A © is an eigenvalue

of G and x is an eigenvector of G corresponding to the eigemnvalue A 1.

ju}

It may be noted that A(E,F,B), in general, need not be a generalized,
outer inverse of A. Imposing the requisite conditions on E,F and B
Theorem 2.4.1 can be stated for a generalized/outer inverse of A.

x
Theonem 2.4.2:  ret A e c™™. et the outer inverse G = A(E,F,0) of A

be such that R(F) = N((aA¥)*), where k is the index of A. Then

for A # 0, x is a ) '-vector of G of grade pif and

only if x is a A-vector of A of grade .
Proof: Consider the decamposition of A as at (2.2.1) and of T as at
(2.2.2). We see that R(F) = R(T,). So by virtue of Theorem 2.3.4 we have

that A(E,F,0) = A(E,T,,0). Let

-1
A E G u
N (2.4.1)

- T v H

ox

% o
We find that

N(G*) = R(T,)
and so

R(G) = R(T,) (2.4.2)

Further from (2.4.1) we get V*A + H'I‘; = 0 which, in conjunction with the
observation that ‘1‘5 Ak = 0, shows that
RUV) & R(T,). (2.4.3)
Let, for A # 0, x be a A-vector of A of grade P. It follows

from the form of A at (2.2.1) that x € R(T)). Since T§ T, = O we find that



A -1 E x (A-AI) X
(2.4.4)
% -1 o o

It can be verified that T§ Ax = 0. So, by premultiplying (2.4.4) with

A-)AI E x a E
- P-1 times we see that is a A-vector of
T3 - o YN
TZ
x 1 G U
of grade . It follows that is a A "-vector of of grade p.
o vV* H

By invoking (2.4.3) and applying the same technique as above with respect to

G u
-1 -1

and A ©, we see that x is a A\ -vector of G of grade p.

v* H

Conversely for A # 0, if x is a A '-vector of G of grade P, then

(2.4.2) implies that x € R(T)). Now, by proceeding on the same lines as

Hence the Theorem.

[}

above we can show that x is a A-vector of A of grade p-

Conoflarny 2.4.1: (Mitra (1968)). Let A € C™" be of index 1. Then a

reflexive generalized inverse A(E,F,0) of A with R(F) = N(A*) satisfies

Theorem 2.4.2. Further R(A(E,F,0)) = R(A).
Mitra (1968) denoted the above A(E,F,0) as A_. He characterized

A; as a generalized inverse whose columns belong to the column space of A.

i
According to Ben Isreal and Greville (1974), X e €™'" is called an

x N
S'-inverse of A ¢ C™™ if for A # 0, x is a A l-vector of X of grade p

if and only if x is a A-vector of A of grade P, and x is a O-vector ¢f

X if and only if x is a O-vector of A (without regard to grade). They have

x .
shown that a generalized/outer inverse X of A € C' " is an S'-inverse of
A if and only if

x® = a®P?

With the help of equations (2.2.1) - (2.2.3) we find that X is of the fomm



1
*

< o 3

X = [T, T,] -
12 J M T

where M is a nilpotent matrix. Further, X is a generalized (outer
inverse of A if and only if M is a generalized (outer) inverse of N,
where N is the nilpotent matrix in (2.2.1). In the common notation for
generalized/outer inverse of N, if P, © and B are chosen such that

M = N(P ,Q B) is a nilpotent matrix, then we see that

B).

X = A(T,P, T,0,

The results of this section are available also in Eagambaram (1988b).

5. Generalized inverses with restrictions on minors.

A P_(p)-matrix is a real square matrix whose principal minors are
nonnegative (positive). An M-matrix is a P_-matrix whose off-diagonal
elements are nonpositive. A N_(N)-matrix is a real square matrix whose
principal minors are nonpositive (negative). A square matrix A is said
to be reducible if there exists a permutation matrix P such that A = PAPT

All o

is of the form .

P P2

Mohan, Neumann and Ramamurthy (1984) showed that if A is an
irreducible M-matrix then A" ana A are P -matrices. Also they showed
that a° is a P -matrix if A is an M-matrix. In the same paper they posed
as an open question, the problem of obtaining conditions under which a
g-inverse is a P_-matrix. Eagambaram (1988a) provides a complete answer
to this open question. In this section we see that the bordered matrix

for obtaining g-i /outer inverses enables us to derive

results which are more general than required for amswering the open

question of Mohan, Neumann and Ramamurthy (1984). That is, we derive



necessary and sufficient conditions for obtaining a g-inverse/outer
inverse with pre-specified minors. Also we derive some additional results
en route.

Theorems 2.5.1 and 2.5.2 are well known. However for the sake
of completeness we prove them here. Theorem 2-5-1 plays a pivotal role
in this section.

" be nonsingular. Then for J,K< {1,2,...,n}

Theorem 2.5.1: Let ¢ e K™
with the same cardinality, we have

(J3+ w0

o 137 KK gep ¢
det (@) = et (2.5.1)
Proof: Let us first prove the theorems for J K. Without loss of
generality we can assume that C is of the form
Cyge
c - 33
Cra S
If C; is nonsingular it is easy to verify that
det C = det C det(c_,- ) (2.5.2)
and
-1
=( -
€y, =le,, - ¢ (2.5.3)

So, (2.5.1) with J = K follows from (2.5.2) and (2.5.3). IfC, is

. -1 X .
singular (C 7)), must also be singular. Otherwise by reversing the roles

of C and €' in (2.5.2) and (2.5.3) we would arrive at the contradiction thet

det(c_ll_y.
det ¢ = #0

aetc™h)
Therefore (2.5.1) holds when J K. Now, let P and Q be permutation

matrices such that Cp; becomes a leading principal submatrix of P C Q.

Let L {1,2,...,n} be such that (P C Q) = Cp . Since (2.5.1) is found
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to hold for J = K, we see that

_ det (P c Q)
det (P C Q)L} L

“3trc 9
det C,
_ KJ -1
= —3stc— (det P. det Q)
(T 3+)1x
det Cyy 1 35 kex
det C
But
-1
det (P C Q) =
Hence the theorem. ||

Let us denote the set {1,2,...,n} by N and the set {1,2,...,m}

by M.

n

Theorem 2.5.2: A ¢ R is a P -matrix if and only if A+D is nonsingular

for all positive diagonal matrix D.

Proof: We note that for D = diag(d,, ... dn)
det(A+D) = ) d,... d + Y _ aw) et ag, (2.5.4)
Jo N
where d(J) = 1T d., J # ¢ and d(4) = 1.
jed

So, if A is a Po—matrix then A+D is nonsingular for all positive diagonal
matrix D.
On the other hand if A is not a P_-matrix then det Aj < O for some

J < N. Let us assume without loss of generality that



Since det A, < O there exists d) > O such that

det (Aj + a;T;) < O.

Let @, > O be large enough so that

det (n_, + - -

e gyl g = Ay (AT
- d)IJ o

Then for D = we see that

0 a,I.,

>
Ajg0) > 0.

det (A*B) < 0.
But for a very large positive a

det (A+D + A1) > 0.
Therefore there exists a 4 > O such that for D = Dra_T, det(A+D) = O.
This completes the proof. jm}

Theorem 2.5.3: Let ¢ ¢ R™™ be nonsingular. Then for J€ N (¢ 1), is
9! 3

P -matrix if and only if det(C+D) # O for every diayonal matrix D such that

D, is a positive diagonal matrix and Dy, = 0

Proof: Let D be a diagonal matrix such that D is nomsingular and D, =

0 when j £ J

From (2.5.4) we have for d =1/d; when jeJ and 4,

det((c™h) +b) = a, + J A det(c (2.5.5)
g cg

jeg 3

By virtue of Theorem 2.5.1, (2.5.5) becomes

aee(€™ 4p) =1 A, + § am aetc (det ©)

3 KeJ

(IJ-x) '

= (1 a,) @t o) t@et ¢+ § aw-Kdet ¢ D
N 3 (J-K)
jed Ko J

=«n é].)(dec o™t aet (c+p).

So, from Theorem 2.5.2 we see that (c_l)J is a P_-matrix.if and only if

det (C+D) # O for all diagonal matrix D such that D is a positive diagonal

matrix and D = O. O
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1

If (7 ); is a P_-matrix for some J & N then (C k is a P_-matrix

tor all K€ J. So, we have

Conoflarny 2.5.1:  Let ¢ ¢ R™™ be nonsingular. Then for J . N, (C 5
is a P -matrix if and'only if det (C+D) # O for all nonnegative diagonal
matrix D sich that D, = 0.

Theorem 2.5.4: A ¢ R is an N _-matrix if and only if det (A\+D) < O

for all nonnegative diagonal matrix D with at least one zero diagonal entry.

Proof: Necessity: Since at least one diagonal entry of D is zero, the

expansion of det (A+D) as in (2.5.4) gives

det (a+D) = § d(J) det A_,
- J
N
where a(J) = T a4,.
jes

A is an N -matrix implies det A, < 0 for all J& N. Since D is nonnegative
we see that det(A+D) < 0.

Sufficiency: Suppose A is not an N -matrix. Then there exists a
J < N such that det Az, > 0. Let the diagonal matrix D be such that for d > 0

Dy = I, and Dy, = 0. Then the expansion det(aA+D) as in (2.5.4) gives

det(A+D) = ]  d(K) detA,,
KeJ AK

4a(x)
=d() @etA,+ ] Sldeta,)
J KCJd(J) K

- all e Aj+ ] —ﬁ:ﬂ' det A,)
kesd

Taking d very large we see that det (A+D) > 0.
Hence the theorem. ||
Theorem 2.5.5: a ¢ R is a P -matrix if and only if det(A+D) > O for

all nonnegative diagonal matrix D.
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Proof of the above theorems follows by arguing on the lines of
the proof for Theorems 2.5.4. in conjection with Theorem 2.5.2.

Theorem 2.5.6: Let ¢ ¢ R™™ be nonsingular. Then for a given J = N, (C

)y

is a P -matrix (N -matrix) if and only if for any nonnegative diagonal matrix
D such that D, = 0
det (C+D)

detc > @1

Proof: We know, from (2.5.4), that

det C

det (C+D) _ . K.
Getc =1+ Evd(K) e rrel) (2.5.6)
KeN
K # ¢
We note that in (2.5.6) d(K) = 0 for all K$J, due to the definition of D.

Necessity: If (c'17J is a P_-matrix (N -matrix) then for K £ J

det(C

St 2 (=)0 (2.5.7)

In view of (2.5.7), (2.5.6) yieids

det (C+D)

det c 2 (2t

when (¢

is a P_-matrix (N_-matrix).
I o o

X ted (C+D .
Sufficiency: Let us show that the condition e S*E) > 1 4o

sufficient for (C ') to be a P -matrix. The proof for the case of N_-matrix
is similar.

Suppose that det(C_l))’( < 0 for some K & J. Define D such that

Dy = AI; and Dy, = O where d > 0. Now from (2.5.
det_(c4D) Pkl 1
det ¢ Sl ram et M Fetc )
< © K <K d(K-K)
1l det C,

=1 +a @t (c

7t
% -
KE K dlx—x}

Fet ¢
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N Sas a +D.
Taking @ very large positive we see that 325 (E*P) (1 pence the Theorem.

t C
Now we give the main results of this section.

Theonem 2.5.7: Let A ¢ R™

n

Let J £ M and K =N be such that |J]| =

Then

det A(E,F,B), .

The proof of the above theorem follows from the definition of
A(E,F,B) and Theorem 2.5.1.
As a consequence of Theorem 2.5.7 we have

Theorem 2.5.8: Let A ¢ K" ™. Then A(E,F,B) is a P_-matrix (N_-matrix) if

and only if

o3 3
det T JJ
&
[OSE ] B
>(<)0 ,foralld < N (2.5.8)
A E7|
det
B
x
Theoxem 2.5.9: Let A € R . Then'A(E,F,B) is a P_-matrix if and only if
A+D E
T is nonsingular for every positive diagonal matrix D.
F B

The proof of the above theorem follows from Theorem 2.5.3.

Theonem 2.5.10: Let A ¢ RV be a p_-matrix. Then a {2}-inverse A(E,F,0)

of A is a P_-matrix if and only if

(A+D) R(A(E,F,0)) N N(A(E,F,0)) = {0}.

for every positive diagonal matrix D, where (A+D) R(A(E,F,0)) is the subspace

{@+D)x : x € R(A(E,F,0)}



Pro0f: Note that R(A(E,F,0)) = N(F') and N(A(E,F,0) = R(E). According

to Theorem 2.5.2, A+D is nonsingular when D is a positive diagonal matrix.

A E
Since is nonsingular the column vectors of E are linearly
F 0
A+D E
independent. Now it follows that T is singular if and only if
F o

there exists an x ¢ N(F') such that (A+D)x ¢ R(E). Therefore in view of

Theorem 2.5.9 we see that the theorem stands proved. il
Ramamurthy and Mohan (1985) established the above theorem for the
particular case where A(E,F,0) is a {1,2}-inverse of A.

The proof of Theorem 2.5.11 below is similar to that of Theorem 2.5.9

except that we invoke Corollary 2.5.1 instead of Theorem 2.5.3.

x
Theorem 2.5.11: Let A ¢ R™™. Then A(E,F,B) is a P -matrix if and only if
A+D E
T is nonsingular for every nonnegative diagonal matrix D.
F B

Conoblary 2.5.2: rLet a e RV

and A(E,F,B) be a P_-matrix.
Then (A+D) (E,F,B) is a P_-matrix for every nonnegative diagonal
matrix D.

Proof: Since A(E,F,B) is a Py matrix . from Theorem 2.5.11

A+D4D E

we have that . is nonsingular for every nonnegative diagonal
F
matrix D . But then by the same theorem we see that (A+D) (E,F,B) is a

P -matrix.
A .

The following theorem is an immediate consequence of Theorem 2.5.6.

x
Let A ¢ RV". Then A(E,F,B) is a B -matrix (N_-matrix)

Theorem 2.5.1

if and only if



A+D E
det T
F B
> (<.
det A .
FT B

for every nonnegative diagonal matrix D.

6. Some results on g-inverse of matrices of order n and rank n-1.

Throughout this section A stands for a real nxn matrix of rank n-1;
. T .
A and 7 e R denote vectors spanning N(A) and N(AT) respectively; a denotes
. : T . :
a vector not in R(A) and B a vector not in R(A") so that A(x,B8,c) is definec

for all real c.

Theorem 2.6.1:  For A(«,8,0) to be a P -matrix or N -matrix it is necessary

that o 8, are of the same sign for all i € N.
The proof follows from equation (2.5.8) by taking all J< N with
la] =1 O

Conollary 2.6.

A is a P -matrix or N_-matrix only if A\, m are of the same
o

sign for all i e N.
Fwof: a = Ale,8,0) (A,m, 0). So, the proof follows from Theorem 2.6.1.

O

Conoflary 2.6.2: The Moore-Penrose inverse of A or the group inverse of A

(when it exists) is a P_-matrix or N-matrix only if X, 7, have the same

sign for all i e N.

+ ]
The proof is obtained by noting that A(w,1,0) = A" and A()A,7,0) = A

(when it exists).

O



" Theorem 2.6.2: Let adj A; > O for all J= N. Then

(i) A(a,8,0) exists for some a , B € R} U R”
(ii) all A(a,8,0) with a, 8 ¢ R} U R are P_-matrices.
a o

det = - BT(ad] Ao (2.6.1)
B o

Proof: (i)

Since rank A = n-1, adj A > O implies that adj A # 0. So, we can choose
T
a,B e R: U R” such that -8T(adj A)a # 0. For such a,8 we see that

A(a,B,0) exists.

(ii) When o,8 & R} U R" , for TR

T 3
det = -(B; )7 (adj Apa, (2.6.2)
T
8" 0

Now the proof follows from Theorem 2.5.8 in conjunction with (2.6.1)

and (2.6.2) j]
It is known that  a nonsingular M-matrix is inverse-nonnegative.
(See for example Berman and Plemmous (1979)).Since every principal submatrix A

of an M-matrix A is an M-matrix and Aj + AI is nonsingular by Theorem 2.5.2,
we see that adj A; > 0. This property proves the following corollary to

Theorem 2.6.2.
Corollany 2.6.3: If A is an M-matrix then for ronzero a,8 € R, v rD
A@,8,0) is a P_-matrix.

Conoflary 2.6.4: If A is an M-matrix, then the Moore-Penrose inverse of

A and the group inverse of A (when it exists) arc P_-matrices.

Proof: When A is an M-matrix, adj Ay > 0 for all J = N. We know that
A,m € R} UR" and so the proof follows from Theorem 2.6.2 by noting that
the Moore-Penrose inverse and the group-inverse of A are A(w,A,0) and

A(A,7,0) respectively. jm]



Corollary 6.4 was proved by Mohan, Neumann and Ramamurthy (1984);
and Ramamurthy and Mohan (1985).
Theorem 2.6.3: Let A be a symmetric positive semi definite (PSD) matrix.
Then
(i) A(x,8, 0) with =B exists, and
(ii) Ala,0,0) is a P_-matrix.
Proof: (i) Since A is a symmetric PSD matrix each of its principal

submatrices is also a PSD matrix. Again, adj A; is a PSD matrix for all

A
det " o = —a"(aaj m)a # 0
T

because R(A) = R(A”) and o ¢ R(A) implies that a ¢ R@AT). Therefore
Alw,a,0) exists for a | R(a).

(ii)

T
(o o ar (adj A) a
g _J. 3 I ., g

7 a"(aa3 a) a
det
]

because rx:‘; (adj A)a; > 0 and for all J< N and o’ (aqj A)a > 0.

in
e

Hence the theorem. [

We observe that

A a A(a,8,0) @™
(2.6.3)
= T -1 T
o (mio) T o
1
for non zero t € R
N ot Al 8,0-t "0 T T Ty

. 1w | (2.6.a)
8T ¢ (o)1 a " o |



= for t # 0 (2.6.5)

(T 7T T o

n

x
1f e RV is nonsingular, H(y,§, 0) exists and

-1
H Y H(y,5,0)
5 0 -t o
then
H(y,5,0) = 0% - lye-sT 5yt 6T (2.6.6)

The following theorem is a simple consequence of equations (2.6.3)

and (2.6.4).

Theonem 2.6.4: If a, v e R} U R" then A Ala,B, t) is an M-matrix for all

t e R'. similarly, if 8,1 ¢ R} U R” then A(a,8, £)A is an M-matrix for
a1t e RN
Theorem 2.6.5:  Let A be a P_-matrix and its {1,2}-inverse A(a,f,0) also

A 1
be a P -matrix. Let det [: ":I . o, Then Alx,f,t) exists for all teR and
8 0 -

Ala,£,t) is a P -matrix for all t20. Further if every proper principal minor of

A is positive then A(a,B,t) is a P-matrix for all t > O.

Proof: For all Jc N,

det = det + t det Ay (2.6.7)

Now the existence of Afa,@,t) for t & R' follows from (2.6.7); and that

A(a,B,t) is a P -matrix for all £ > O follows from (2.6.7) and Theorem 2.5.8
Where det Aj > 0 for all proper subset J of N then from (2.£.7) we see

that A(a,B,t) is a P-matrix for all t > O. O



Remank 2.6.1: If A and A(a,B,0) are as at Theorem 2.6.5. Then from
equations (2.6.4) and (2.6.5) we see that
() Ata,8,8) = Ala,8,0-t @™ %0 " is a B -matrix for all t z 0
(ii) A-ta BT is a Po—matrix for all t > O.

Remark 2.6.2: As a Corollary to Remark 2.6.1, if A is an M-matrix and
@8 e R} UR we see in view of Corollary 2.6.3 and Corollary 2.6.4 that

T

() AG,8,0) + (@A 17 is a P -matrix for all t > 0

+
G A"+ e is a P -matrix for all t > O

(111) when a* exists &' + (™A is a P -matrix for all t > O.

(iv) If A is irreducible then every proper principal minor of A is
positive and hence from Theorem 2.6.4 we see that the matrix
pencils given at (i), (ii) and (iii) above are P-matrices for
all t > 0. Further for sufficiently large positive t these
matrix pencils are positive matrices because (n1\)An’ is positive

A being irreducible.

7. Generalized inverse and finite Markov chain.

A finite time-homogeneous Markov chain is a pair (T,n°) where
T = [t;;) is an nxn real nonnegative matrix with each row sum unity and -~
is an n-dimensional probability vector which is a nonnegative vector whose
elements add up to unity. T is called the transition probability matrix
(tpm) of the Markov chain. The set N = {1,2,...,n} is known as the state space
Of the Markov chain. & is the probability that the chain moves to state j

from state i in one step. (For reference one may see Kemeny and Snell (1967)).

f 1" = [:i(“)], ':x(;) is the probability that the chain visits state j
n

at the nth step, given that it starts from state i initially. J :l(‘]‘) gives
k=1

the expected number of visits to state j in n steps, given that the chai:

starts from state i.



The Markov chain (T, i°) is said to be reducible if T is reducible.
When T is irreducible then A = I-T is an irreducible M-matrix and in this
case Ay is nonsingular for all J € N.

Mayer (1975) has highlighted the role of the group inverse of
A = I-T in obtaining several results relating to the Markov chain. These
results are also available in Berman and Plemmons (1979). Later, Hunter
(1982) demonstrated the use of any g-inverse in analysing irreducible Markov
chains. 1In this section we give an interpretation for the principal minors
of a g-inverse of A for an irreducible Markov chain. In Theorem 2.7.3 we
show that the Moore Penrose inverse of I-T is a Yo-—matzix under certain

conditions.

Let T be irreducible and for JC N, J =

- J, and i,j € J, the

(i,j)th element of A;l = J 7] gives the expected number of visits to state j
)

before visiting any state in J', given that the chain starts initially from

state i. If Ba; is the reward obtained whenever the state j is visited

given that the chain starts from state i, then for o(J) = J 1% # 0 ana
jea J
_ o °
=[] peeey W8
= the expected total reward accummulated by (2.7.1)

the chain before it leaves J € N, given
that it starts initially from J.

n*n
Theorem 2.7.1: Let T e R and e € R" with all components unity. Let

1 . : :
(T, 7 e) be an irreducible Markov chain. Let A(a,f,0) = G be a {1,2}-inverse

of A. Let B, a; be the reward whenever state j is visited, given that the

chain starts from state i. Then for J&N , J' =N- J and A = I-T
det G T
-
£ {2d) Ao _ ppe accummulated reward before
det A TaT

the chain leaves J, given that it starts
from J.



Procf: From Theorem 2.5.1 we have

A a
det 7 " g )
(6.7 o det A_((B, )" A "a_) (2.7.1%)
det G_, = J. - J J. J _J.
L ~a N 6" (adj A)a
R
So,
et Syv g"(adj A o _
det A 3
Now the proof follows from (2.7.1). ||

Theorem 2.7.2: Let (T,m°) be an irreducible Markov chain. Let A = I-T and

*)™a = 0. Then a(e,1°,0) = A" and for 3 = Fwith 0@) = ] ©
jeg
#
det A
3 (02 aas me)
o n, 50 - = the expected number of steps token by
the process to leave J, given that
the process starts from J.
Preof: The proof easily follows by mnoting that the expression
en the L.H.S. above is identical with ((:° )7 A"t !
3. A ey )awy)

Mohan, Neumann and Ramamurthy (1984) showed that the Drazin inverse
of an M-matrix is a Po—matrix. They could not settle the question, whether
the Moore-Penrose inverse of an M-matrix is a Po—matrix. The following
example shows that the Moore-Penrose inverse of an M-matrix need not be a

P_-matrix.
)
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Example 2.7.1:

o o o o [J
o 1 -1 o o
A= 0 -1 1 o o
-4 -1 o 0.1 o
-6 0 -2 0o 0.1

3.92  -3.92 8.16  -3.7¢
-16.5601 16.5601 -23.98 16. 04
-11.4699 11.4699 . -23.98  16.04

-8.801  8.801 -15.204 10

5.802 -5.802 10 ~6.60-]

= -(10.1804)

o oo o

+
A is an M-matrix, but A" is not a P_-matrix.
It can be verified that any square matrix A can be reduced by .using a

suitable permutation matrix P to the form

B o o... o
B B 0. .. o
T . 22 (2.7.2)
pApT =
B Prarc Pyateer By |

Where B,;, i =1,2,...,k is irreducible or 1x1 null matrix.
We see that if A = I-T where T is a Markov matrix, then i1 the

reduced form (2.7.2) B, is a singular M-matrix and B.., j > 1is nonsingular

11 33
i and only if B 40 for some i < So, in this case we can assume
that A’is the form
B, o o o
T o 522..‘ o o
eap” = | - (2.7.3)
o 0O Bk o
B, B B,



where B,., i =1,2,...,k-1 is a singular irreducible M-matrix or a 1x1
null matrix, and By, is an M-matrix (see Berman and Plemmons (1979)).
Theonem 2.7.3: Let A € R™™ be an M-matrix of the form A = I-T where T is

a Markov matrix. Let P be a permutation matrix such that PAPT is of the

form (2.7.3). Then the Moore-Penrose inverse of A is a P_-matrix, if

rank (B ... By, 1] < 1.
Proof: For simplicity, let us assume that k = 3 because for the general

k the proof will be similar. -

So, let
. Po o o
PAP
o B, ©
B3y Bz By

Let n; be the order of By,, i =1,2,3; and n = n +n,+n,.

rank [By By,] =0

32
In this case [By) By)] = [0 0] and B, is an irreducible singular
M-matrix.
+
. By, o o
At o= 4
o 522 o
.
o o Bl
since (from Corollary 2.6.4) a:l, i=1,2,3 are p_-matrices we see that A" is a

P
S

. + 5
matrix and hence A" is a P_-matrix.

Case 2: rank [B31 532] 1.

: " . ix. : B
We note that By; is a nonsingular M-matrix. Since B), and B,, are

irreducible M-matrices, there exist positive vectors m(l) and w(2) such that

1,2. Let




a2

. -1 Lo
9(i) = - Byy By 2(), i=1,2

where (i) is the vector of dimension n; with all its elements unity.

Since By, < 0, (i), i = 1,2 are nonnegative vectors. Let

l'qr(l) o
E=
o -m(2)
o 0
and
2(1) o 7
P o 2(2)
6(1) 0(2)

Then R(E) = N(A") and R(F) = N(A). From Theorem 2.3.5 we see that

a

A (E,F,0)
For 3 R' and k € R' let g4k = {j+k {3 € J}. Any J € N can be written as
J=3u (J2+n1) U (Ig#+n +n,)

where J, < {1,2, .}, i =1,2,3. When J, or J, is empty

1

J
aet o = o. (2.7.4)
07 o
When neither J, nor J, is empty
E; ‘1 0L
aet - = det ° €22
(F; ) o c c c

where C;., i = 1,2, is of the fomm

—n(i)
(2.7.5)




ana
Cy = (B :
33 33 J3
Pis T By .
i
Cyy = By 0L,
37i
[CAS Iy

B)= (20))

L. = [0

Now
A C. o o
aet r & ol = et | 11

o ¢ o

T 22 .

L‘FJ )T o e e a

. 3 %32 a3

where

c,, ol

€33 = €33 7 31 a7 €3

-1
22la (2.7.6)

(2.7.6) is well-defined because C;; as in expression (2.7.5) is

nonsingular. It can be verified that

e >0, i=1,2.

“C31 Sl >

. N N -1 -1
s Li=,2, i - - .
ince rank C3i i 1,2, is either 0 or 1 we see that Czlclll‘l C32C2212
<an be written as v8” for somey,5 ¢ K.

Therefore,

= det C;; det C,, det C,
S

T
= det C), det C,,(det C,*8 (adj C,3)y) > 0 (2.7.7)

because det C; > 0, i =1,2,3. Thus (2.7.4) and (2.7.7) show that A'is alpmatvix

+
Hence A” is a P -matrix. —
The above theorem is incorporated in Eagambaram (1988a).



CHAPTER

LINEAR COMPLEMENTARITY PROBLEM

1. Introdurtion

x
Given M € R™ " and q ¢ R” the linear complementarity problem (LCP),

as already introduced in chapter 1, is the problem of obtaining a solution

(w,2), if it exists, to the following tystem of equations
Wwe-Mz=gq w,z>0 (3.1.1a)
wiz =0 (3.1.1b)

There are only two entities, namely, a matrix M and a vector q involved in

defining an LCP; therefore it is denoted in short as (q,M).

1f M e R™™ is such that (q,M) has a solution for all q ¢ R", then M

is called a Q-matrix. If M is such that (q,M) has a solution whenever (3.1.la)
vhas a solution, then M is called a Qo—mntrix. One of the directions of
research in LCP is to characterize Q and Qovmatxi ces.

Lemke (1965) proposed an algorithm for solving LCP, which is akin to
the simplex algorithm for solving the linear programming problem. The algorithm
does not solve all (q,M) for arbitrary M-and q. In another direction of
research, an attempt is being made to identify the largest class of problems
which’ can be solved by a‘pplyinq Lemke's algorithm. We make some observations
in this regard in Section 2, after describing Lemke's algorithm.

We observe in Section 2 that Lemke's algorithm applied to (q,M) with
the auxillary vector 4 > 0, gives rise to a set of solutions (w(t),z(t),zo (t))
that satisfy

w-Mz-zd=gq



Further, ((t), z(t), z_(t)) is continuous with respect to t & Ry and
||z(£)|| > = as t » =. The above result is an extension of Lemke's basic

existence theorem of complementarity. (See Eaves (1971b)). Using the akove

property we identify in Section 3 two subclasses of

A matrices via generalized
inverses. Lemke's algorithm may not be applicable to some matrices belonging to
these classes; but we give in Section 4 new algorithms that can solve (q,M) where
M belongs to either of these two classes. In Section 5 we examine solution
reys in the light of the remark of Cottle (1974). Some results

on LCPs involving N -matrices are given in Section 6.

2. Lemke's alﬂrithﬂ\

Lemke's algorithm seeks to obtain a solution to (q,M) with the help

of the auxillary system of equations:

w-Mz-zd=q, wazz >0 (3.2.1.a)
5 o =
W'z =0 (3.2.1p)
where @ is a positive vector in R', w,z ¢ R} and z_ ¢ ai. The algorithm

generates a sequence of solutions (X, 2%, z;), K =1,2,..., to (3.2.1) ana

stops at a solution (w", z%

z.) when either

(1) 27 = 0 in which case a solution to (q,M) is w", z5)
or (ii) it is not possible by the rules of the algorithm to proceed to
another solution to (3.2.1).

2. We require the following definitions for describing Lemke's algorithm.

Definition 3.2.1: For M ¢ R™™, ¢ ¢ R™™ is called a complementary matrix of

(I, -m) if ¢ ; e {1

i =1,2,...,n. A nonsingular complementary
matrix is called a complementary basis. Since a complementary matrix C is
characterized by the set J of columns of =M participating in C, we denote C

alternatively also as C(J).
Definition 3.2.2: A matrix B ¢ R™™ is called an almost complementary basis
(ACB) of (I, -M) with respect to d > 0 if B is a nonsingular matrix obtained

by replacing one of the columns of a complementary matrix by -

. If B is



obtained from C(J) by replacing its i-th column by -d then we denote B
alternatively as B(J,i).

n

Definition 3.2.3: For A € F"" PosA is defined as

PosA = {Ax : x > 0}
We see that Pos A is a cone.
Definition 3.2.4: The cone PnsC where C is a complementary matrix is called
a complementary cone. A complementary cone PosC is said to be degenerate if
det C = 0. PosC‘is said to be blunt if there exists O # x > 0 such that
cx = 0.
Definition 3.2.5: A vector y is said to be lexico positive if the first
nonzero component of y is positive. We say that v is lexicographically
greater than u if v-u is lexico positive. For a set S of linearly
independent vectors, the unique vector u* e S which is lexico-graphically
less than any other vector in § is called the lexico minimum of S.

3. Now we describe Lemke's algorithm applied to (q,M) with the
auxillary positive vector d.
Step 1: If q > O then (w,z) = (q,0) is a solution to (q,M). The algorithm

terminates.

Otherwise go to Step 2.

Step 2: TIdentify the index i that corresponds to the lexico minimum of

row vectors gld., 1,01, k = 1,2,...,n.
Let y = -M
X = B(¢, i)

Go to Step 3.



Step 3: Let j be the imdex that corresponds to the lexico minimum of the
row vectors {7 'y) 17 (¢ e, 1)1 where k is such that
-1
Ty, > 0.
If (x‘ly)k < 0 for k = 1,2,...,n

go to Step 5.

If j = a go to Step 4.

Otherwise let B be the ACB such that

B, =X, ok {{i,5)
Relabel X as old X
Redefine a, X and y as
a =3

X =B

y = the single element of {I j oo

1- {(c2a x)
-3
Go back to Step 3.
Step 4: Let C be the complementary basis obtained by replacing -d by y

in x. C lq gives rise to a solution to (q,M).
Step 5: The algorithm terminates without finding a solution.

4. Lemke's algorithm terminates in a finite number of steps. (Sce
Murty (1988) for proof.)

5. Let B, +k = 1,2,...r be the sequence of ACBs encountered by
Lemke's algorithm. TLet a(k) e {1,2,...,n} be such that (B) ., is the
auxillary vector -d. Tet uw; ¢ {w;,z;} be the variable corresponding to the
column (Bk)_1 for i # a(k). Let Yo (k) € (wu(k)' zu(k)) be the variable

: X . _
corresponding to the entering vector y & (I.u(k) MAu(k)) hen we
k k Kk

observe that the -triplet <, z, zL‘), w2 e RN, 2 e r! is a solution

to (3.2.1) where



= Pfu, =w,, i # alk)
i i
=0 otherwise
K _ -1 . _ .
2 = e, i i# ak)
= 0 otherwise
kK _ -1
%o = B Doy *
Lef
5, = max (6 : B @5y > 0, 6 > 0}
Tk s
ZD] be defined as
"k -1k " "
wy o= —(Eky ), ifug sw, i # a(k)
=0 if -
Sk o_ -1k :
R i a0
=0 ifu #z,
i e
“k N
Yoo T 1A 00 T Ve
= 0 otherwise
“x . _
Zago 1 A Yo T Zam
= 0 otherwise
bt S}
z, = (Bk Y
Then we see that (w , 0, 0) and
T (3.2.2)
>

"),z @), K6 = Wk,

is a solution to (3.2.1).

We see that



R, 2R, 2o = WTo, e, 25 on 6.2

6. If the algorithm terminates at the r-th iteration with a solution
to (a,M) then 5 is iinite and (W' (5, 27(5)) is the solution obtained by
‘the algorithm. If the algorithm terminates at the r-th iteration without

obtaining a solution then we see that

w", 25 + swt, 25, 25, §>0 (3.2.4)
° ° z
is a solution ray to (3.2.1). The solution ray
1 1
w', z0) + 6(a,0,1), 6 > 0 (3.2.5)

is called the primary ray of solution to (3.2.1) and (3.2.4) is called the
secondary ray. It is well known that the primary and the secondary rays are

different. (See Murty (1988)). We note that in the secondary ray (3.2.4)

@, 2%, 25) » 0, and in the primary ray 2= 0 because a > O.

7. The following argument shows that z® # O in case of secondary ray

termination.

Suppose z* = 0. Since (w", O, z:) satisfies (3.2.2) with k = r we see

i3 SryTor

that w© > 0. Then (w® + 6w’ )Tz® = 0 implies that z* = 0. This implies that

o, z;) lies on the primary ray which is a cotradiction.

Therefore z° # 0.~

8. The secondary ray can be of two types: We call (3.2.4) a type T

secondary ray if z{f:o and type IT secondary ray if z: #0. Termination of the

algorithm in type I secondary ray implies that (v, z¥) is a nonzero solution

to (0,M). Type IT secondary ray temmination implies that w°, z¥) is a

solution to (z3 d, M).

9. Let Ek, k 1,2,...,r be as introduced at para 5. Let Ck be the
complementary matrix obtained from By by replacing (By) ) by v* which is

the entering vector at the k-th iteration. If the terminal complementary



matrix C).’ be characterized by the set J so that Ct = C(J) then it has been
established (see Todd (1976)) that in the case of type IT secondary ray
temination det M < 0.

10 We say that (q,M) is processable by Lemke's algorithm if the
secordary ray temination implies there is no solution to (q,M). we say
M ¢ R™M is processable by Lemke's algoritmm if (q,M) is processable for
every g ¢ R™.

1. The following well known lemma due to Farkas is useful in
identifying classes of matrices processable by Lemke's alqorithm.
Lemma 5.2.1:  Given M ¢ R™™ und q ¢ R” either (3.1.1a) has a solution or
there exists a nonnegative vector 7 such that -7 y >0 amd 77q < 0; but
not both.

12. Suppose that the ACB Bk obtained at the k-th iteration of the
algorithm is such that

(3.2.6a)

and
(3.2.6b)
Then from the definition of z: and Farkas' lemma it follows that (q,M)
has no solution. We note that the above situation may occur before the
algorithm terminates (i.e. k < r).

13. Inview of the observation at para 9, we can preclude type IT
temination by imposing the condition that if (w,z) is a solution to (d,M)
with z # 0 then

"for every L such that {j:zj>0} csreflj 0} det M, > 0" (3.2.6)

The above condition is due to Todd (1976).
14. In case of type I temination we see that for €, as defined at

Ppara.9 PosC_ is a blunt cone and q + z: @ lies on the cone FosC_. If we



ensure that PosC_ lies on the boundary of Pos(I,-M) then there is no feasible
solution to (q,M). To do this we impose a stronger conditicn that if Pos C

is a blunt cone then there exists 0 # m > 0 such that

=0 ama (I, -M] > O

Conditinn (3.2.7) is due to Doverspike (1982).

15. For a given positive d e R" let us define T(d) as the class of
nxn

matrices in R that satisfy the condition (3.2.6).

Let A be the class of
matrices in R™" satisfying (3.2.7). Let T() = t(d) A A. We see that the

matrices in T(d) are processable by Lemke's algorithm with the auxillary

vector d.

16. Garcia (1973) introduced the following classes of matrices:

E (@) : M e E (@) if (w, 2), z # 0 is a solution to (d,M) then
there exist vectors O # x > 0 and y > O such that
y =M% x <z amdy <w. .

E@) : E (@)n E (0)

It is easy to verify that if M e E(d), @ > O then (d,M) has only one solution
namely, (d,0). IfM c E) (0) then it follows that all the blunt cones of
(I, -M) lie on the boundary of Pos(I, -M). Therefore, for d > 0 E @) g t@)

and E) (0) € 4. Hence E(d) < T(@).

17. The following classes of matrices are due to Eaves (1971a).

Moe L) if for every O # x > O there exists i such that x

>0
i
and () > O.

L, :MeL,if for some O # x > O, Mx > O and x'Mx = O then there
exist nonnegative diagonal matrices A and Q such that 0x # O
and (M + uT)x = o.

Loinn,.

It is easy to verify that L, = U E (d) and L, = E (0) and therefore
Y 2
aso * !

L€ T@) for all 4 > 0.



18. From para 15-17 we get the relationship that for @ > 0

L& E@) « T(d)

Doverspike (1982) shows that L, is a proper subset of A. Todd (197¢) showr

that E (@), @ ~ 0 is a proper subset of T(d).

19. As is described at para.5-7 of this section the set of almost
complementary solutions (w, z, z) generated by Lemke's algorithm applied to

(a@,M) with auxillary vector @ is:
s = (whe), e, e, 0 <6 < S k= 1,2, 00"

Because of the relationship (3.2.3) we see that S is connected.

Si, k=1,2,...,r;
i
t_ =0
°
and for t, <t < € .
Wt), z(t), z_(£)) = wNee-t), 2Kt ), 2N-t ) (3.2.8)
’ ) k' k" "o k

We see that (w(t), z(t), z(t)) is continuous with respect to t & [0, t )

with z(0) =

We make use of the above form in proving the following theorem.

Theonem 3.2.

For a given ¢ > 0 and positive vectors m,d e R" there exists

a0, € R such that there is a solution (i, Z) to (q+0_d,M) with 7'z = c

Pro0f: Case 1: There is a © © R such that (q+6d,M) is not solvable by Lemke's
algorithm using the artificial vector d.

Applying Lemke's algorithm to (q+§d,n) with the help of the artificial
vector d we see that the algorithm temminates without finding a solution at
the r-th iteration. From (3.2.4) we see that |[[z7(8)|| » = as 6§ + = because
2¥ # 0. (See para 7). So, the continuous function, z(t) defined ot (3.2.8)

is such that [[z(0)[| = [[z']] = 0 ana [|z(t)|| » = as t > =. = being a

T
positive vector, there is a t* > 0 such that m z (t*) Now we have



WEr) - Mz (%) -z (£%)d = g+ia.

By taking € = 0 + z (t*), Z = z(t*) and w = w(t*) the theorem is established.

Case 2: Lemke's algorithm solves (q+6d, M) for all § € R with the

artificial vector d.
Let Lemke's algorithm produce solution to (g+0d,M) at the r-th iteration.
From para 6 we mote that (w' (5), 2" (5)) is the solution to (q+6d,M) obtained

by the alaurithm. (Note that r deperds on 0). We shall show Lhat

[lze |l > = as 0 > - (3.2.9

Suppose (3.2.9) is mot true. ||q+0a|| > ® as © > -= implies that

w55 =1 25| > = am hence [[w" (6 D[] » = as 6 > == Let

|Im z’(st)H < ¢, for allp e R. Let 0eR be such that q+84 < 0 and the algorithm
applied to solve (q+64,M) teminate at the r-th iteration with ||w(3)[] > nc .

€ {1,2,...,n) such that W' (5:.)), > c .
P07 %

This implies that there exists an i

. T
since [Mz'(5)[| < ¢ we get a contradiction that lw'(s3) - ma'(
r

Theretere (1.2.0) s astoblishod.

*
Since m > 0 we can find a 0" € R' such that Lemke's algorithm applied

T

to (q+6*d, M) temminates at the r*-th iteration with n z" (8,,) > c. Now from

the definition of z(t) at (3.2.8) it follows that 1'2(0) = 0 and Wzt ,) > c.
2(t) being continuous there exists a € € [0, £_,) such that mz(E) = c. We have
w(E) - M2(E) -z (B)a = grora.

By taking 0 = 0% + zc(E), w =w(f) and z = z(E) we establish tho fhooran.
We See that the continuous functions z(t) and 7'z (t) are more general
than the functions identified under the basic existence theorem of complement—

arity which we explain in para 20 below.

20. Let T< R" be a convex set and let f: T > R”. Let for x e T



T
S(x) = 1y: y e T, y £(x) 1sz(x), ze T}

We say that x is a stationary point of (f,T) if x € S(x). We mote that if

a N nxn n N N
f be the affine function f£(x) = Mx+q, M € R ", q € R" then x is a stationary
point of (f, R:) if am only if there is a y ¢ R} such that (y,x) solves
(@M). Further, if (y,x) solves (q,M) amd x'd < k where 4 is any positive
vector, then x is a stationary point of (£,Df) where DY = {y: y'd < k}. The
above definition and remarks, and the following theorem are available in

Caves (1971b).

Theonem 3. (Lemke): Let f : R:’ + R" be the affine function f(x) = Mxicq.

‘= algorithm is applied to (q,M) with the auxillarv vector d > 0,

the algorithm constructs a piecrvise affine function X : Ri > R} such that

When Lem*

(i) each X(*) is a stationary point of (f, DY) where k = d'x(t) and (ii) given
a rea) number k, there exists a t such that X(t) is a stationary point of

n
(£, D).

We observe that Theorem 3.2.1, in a sense, is an extens
Theorem 3.2.2.

21. Let C(7), J € {1,2,...,n}lkea complementary basis of (I,-M). (See
Definition 3.2.1). Then M = -(C(3)) ™ C(3') is called the principal pivot
transform (PPT) of M with respect to C(J).

Theorem 3.2.3: Let M be the PPT of M with respect to the complementary basis
C(J). Then forXK < {1,2,...,n}

det M,

o KA T
‘=
det M ==

EM)

where 'A' stands for the symmetric difference of two sets.
c) cI)

Proof: We note that
L1 o

] is nonsingular and



-1
cw)  cw@) o 1
. o |7 Loewn M (3.2.20)
Applying Theorem 2.5.1 to (3.2.10) we get for K< {1,2,...,n }
cw@y @) .
det
o
det Mk =
Tecwn c@)
det
1 o
@) C(KAJ1‘|
det
I, 0
- (_l)(n—ulx\ X
0 0 T e )
n |3l

-1 (-1) det M, o

(-1) ) det M,

det M, o O
det M

3. Generalized Inverse and some classes of LCT

nxn _ .
Let M € R be of rank n-1 and M be a {l}-inverse of M. Then

according to Theorem 2.3.2 there exist vectors g, h and a real mumber c

such that M = M(qg,h,c) and
M g7t a
hT . = "T o (3.3.1)
where d and m are null vectors of M and M| respectively.
Consider the equations relating to the LCP (q, M ) :
(3.3.2a)

w=-Mz =g w,z >0

T (3.3.2p)




Premultiplying (3.3.2a) by M and re-arranging the temms in conjunction with
(3.3.1) we get
T

zZ-Mv=-Mg+g Tz, z,w>0 (3.3.3a)

2T w=o0 (2.3.3p)
So, we see that if (w,z) is a solution to (g, M ) then (z, w) is a solution

T X . .

to (-Mg + g m z, M). By using this relationship and Theorem 3.2.1 we
identify in this section two subclasses of Q -matrices of order n and rank n-1.

x T
Theorem 3.3.1: TLet M ¢ R™™ of rank n-1 be such that Md = O and 7'M = 0
for vectors 4, % > 0. Then M is a Qofmatrix.

Proof: From Theorem 2.3.1 and Remark 2.3.2 we see that there exist vectors
g anrd h such that

M g1t M a
- (3.3.4)
n’ o L

If (w,z) is a solution to (g+0d, M ) so that

w - Mz = q+8d (3.3.5)
then we see that

- T

z - Mw = -M3 + g(mz). (3.3.6)

We shall show that
n - = n

p) = {q ¢ R"[g'= -Mg + cg, G € R", ¢ > 0}. 3.3.7)

since g { R(M), we have

fqerq=-M3+cg, ger”, ceR) =
q

Suppose that for q = -M3 + cg, @ € R'; ¢ < 0 and (g,M) has a solution (w,z)
then

w-Mz = -M3 + cg (3.2.8)

Multiplying (3.3.8) by 7" on the left we get



ez cnlg=c<o
which is a contraction, because m > 0. Therefore
n - = n
DM < {g ¢ R q=-Mg +cg, geR, c>0} (3.3.9)

Now from Theorem 3.2.1 for c ¢ Ri we get a 8_ € R such that there is a
T

solution (w,z) to (g + 0 d, M) with 7'z = c. In view of (3.3.5) and (3.3.6)
we get

z - Mw = -Mg + cg. (3.3.10)
(3.3.10) shows that every point q of the set on the right hand side of

(3.3.9) is in D(M). This establishes (3.3.7). Since D(M) in (3.3.7) is a
convex set M is a @ -matrix.

Remark 3.3.1: Every PPT of a Q,matrix is a O,-matrix. So we see that if
there exists a PPT of M, say M, such that M satisfies the conditirns of

Theorem 3.3.1, then M is a Q -matrix.

Rematk 3.3.2: We see that if M satisfies the conditions of Theorem 3.3.1
then D(M) is a half space.
We now give examples to show that neither the rank condition nor

the condition that d,m > O can be relaxed.

Exampfe 3.3.1: The following example shows that the rank condition in

Theorem 3.3.1 rannot be dropped

Let
1 o -1
M= [-1 o 1
1 o -1
Rank (M) = 3-2 = 1. Note that 7" = (1,2,1) and a® = (1,1,1) satisfy the

condition 7'M = 0 and MA =
-1
Take q ={ 2 |~



It is easy to verify that q does not belong to any of the eight complementary
T N
cones. Hence g § D(M). Note also that mgq > O. It is easy to check that

q € Pos(I, -M). It follows that M is rot a Q -matrix.

Example 3.3.2: The following example shows that the requirement that d be

strictly positive in Theorem 3.3.1 cannot be dropped even when M has rank n-1.

Let
1.3
M 1 1
1 1A

The rank of M = 2 = 3-1. Note that " = [1, 2, 1] ard A"

(1, 0, 1] are the
) s . i fui T
unique vectors (unique upto scalar multiples) satisfying m M = O and Md = O.
5 T i
Taking qF = (-1, 2, -2] we can verify that g } D(M) but q € Pos(I, -M). Thus
M is not a O -matrix.
Examplfe 3.3.3: The following example shows that the requirement that w be

strictly positive in Theorem 3.3.1 cannot be relaxed even when M has rank n-1

and @ > 0.
Let
o o
M=
1 -1
T T
The rank M = 1. We can take d as [1, 1]. The vector n° = [1, 0] satisfies
T

matrix.

+TM = 0. It can be easily verified that M is not a O

Lemma 3.3.1: Let G be an nxn P-matrix. Givend > 0, @ e R, g € R let
(w(0), z(0)) be a solution to (g+0d, G) which exists and is unique because G
is a P-matrix. Let J = {i: a; > O}. Then (i) there exists a 0* ¢ ®' such that

for 6 > 0%, 2,(0) = 0. (i) HZJ(U)H > @ as 0 > —o.

Proof: Let (Wi, ) be the unique solution to (q ,, A;.). Let

= mi : z w = z [; .
0% = min{0 : Gy, Z;, +ay + 045 > 0} Let W;(0) = Gy, Zy, *q; + (d;. Then
we note that (w(0), z(0)) with w (0) = & (0), w (1) = W;,, 25(0) = 0 and

2., (0) = 7, is a solution to (g + 0d, G) for all © > 0*. This proves (i).



Let C be a complementary basis corresponding to the solution to

(q+ 63, G) for 6 € R. Then

g+ octa >0 (3.3.11)

&

inf {0: ¢ Yq + oc ta > 0}.

It follows then, that

cq+octat o for o< o (3.3.12)

Now let C, be the complementary basis corresponding to the solution to

1
(@ + (B*+e)d, G) for a very small € > O so that

8* = min {0 : Cxlq + "CI a > o}.

Put Gl = 0%
Let C, be the complementary basis corresponding to the solution to

(@ + (9 - €)a, G) for a very small e > 0. Let

0 inf{o : C;lq + 6C,a > O} (3.3.13)

2

2

If 0, # -= we can proceed to obtain C, and 0, as at (3.3.13). The process of
obtaining C_ and 0 as described above cannot go on indefinitely because
there are only 2" distinct complementary bases and by (3.3.12) no two
~omplementary bases obtained in the process can be identical. So, let the
process stop at the m-th step with the complementary basis Cm and ﬂm = —co,

This implies that

-1, 1
cGla+ocla>o foralle<iq (3.3.14)
(3.3.14) shows that
—clas>o (3.3.15)
a2

Without loss of generality we can assume that



a" = @} 01 ama
% S

G =
Srva Co

(3.2.14) leads to a solution (w, z) to the problem (-d, G) with the

complementary basis C . That is
m

G G

(3.3.16)

Since G is a P-matrix it is easily seen that in (3.3.16) z  # 0. This

implies that (~-c';1d)k > 0 for some k ¢ J. This shows, in view of (3.3.14)

that [[z(0) || » = as 6 > -o.

L

Hence the lemma.

Theorem 3.3.2: Let M be a square matrix of order n and rank n-1. Let d,n

s 5 T,
be nonnegative nonzero vectors in R" such that M = 0, Md = 0 and

> 0}. If M has a g-inverse G which is a P-matrix

then M is a O -matrix.
n

Proof: By Theorem 2.3.2 and Remark 2.3.2 we see that there exist a,f &£ R
and x ¢ R such that
M aqt G a
= T ° (3.3.17)

We shall prove the theorem by showing that
DM) = {q : g = -M3 +5a for g € R", § > O}.

Proceeding as we did in the proof of Theorem 3.3.1 we see that



pM) < {q:q=-M3 +Sa, g R, &> 0}

Now, let q ¢ R be such that

where g ¢ R" and § > 0.
Iook at the problem (q + 6d, G). Since G is a P-matrix (q+6d,G) has a unique
solution for each O and for each fixed g. Let (w(0), z(0)) demote the solution

to (@ + 04, G). We have

w(8) - Gz(0) =g + 0d.

From here it follows that
= T,
z(8) - Mw(B) = -Mq + o 7 z(8) (3.3.18)

By the hypothesis of the theorem if J = {i : @; > O} then n, > 0 if and only if

i £ J. By Lenma 3.2.1 we see that as 0 + -» there exists a k £ J such that

2,(0) > = Thus 172(0) > = as 0 > -=. Also there is a 0% such that for © - %

2,(0) = 0 which implies that for 0 > 0%, 77z (9) = 0. Further by a result in
parametric linear complementarity theory z(0) and hence 7'z (0) is a continuous
function of 8, -» < 8 < o, (See for example Exercise 6.4 in Chapter 10 of

Berman and Plammons (1979)). These facts imply for a given § > O there is a

6 such that 'nTz(G)V 8. (3.3.18) shows that (z(8), w(8)) is a solution to
(q,M). Thus
pM) = {q : g = -M3 + Sa, g € R", & > 0}.

It follows that D(M) is convex and hence M is a O -motrix. |

Remark 3.3.3: Theorem 3.3.2 shows that a {2}-inverse G(d,m, 0) of a P-matrix
G is a @ -matrix if d and 7 ore nonnegative such that d; > O if and only if
W >0 fori = 1,2,...,n.

We mote that Theorem 3.3.1 is a generalization of Lemma 3 and Theorem 1

of Ramamurthy and Mohan (1987) who prove under assumptions stronger than thc£e of

Theorem 3.3.1, that M is a Q_-matrix.
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A P -matrix M with exactly one zero principal minor is called a

P -matrix. We have

Conolfany 3.3.1: (Cottle and Stome (1983). Let M be a P -matrix and mot a
g-matrix. Then D(M) is a half space.

Proof: Let det M , = 0, and J = {1,2,...n} - J' where n is the order of M.

If we take PPT with respect to the complementary basis C(J), then it follows
from Theorem 3.2.3 that the PPT M is of rank n-1 ard every proper principal
minor of M is positive. If d is a null vector of M, then d does not have any
zero component. If d has mixed signs, then (I, -M) does not have any blunt
conme. In this case, M being a P -matrix, we see that M is a o-matrix.(Also
see Nganagic and Cottle (1979)). But then M should be a Q-matrix, which is a
contradiction. Therefore we may assume that d > O and now it follows from
Corollary 2.6.1 that there exists a vector m > 0 such that 7T = 0. Therefore

Remark 3.3.2 shows that M and hence M is a Q_-matrix with D(M) half space.

4. Algorithms
We present two algorithms in this section, Algorithm I and Algorithm II.
Algorithm T solves (q,M) where M is a n¥n matrix of rank (n-1) with positive

e fui T
vectors m and d satisfying ™M = O, Md = O. Algorithm II solves (g,M) where

M is a nxn matrix of rank (n-1) =atisfying the conditions statedin Theorem 3.3.2 .

Algorithm I

Step 1: If g > 0, a solution to (q,M) is w = 0. The algorithm

temminates. Otherwise go to step 2.
Step 2: For any two positive vectors a and § compnte’

M a
Let it be . Go to step 3.

o

Step 3: Compute ¢ = 7'q. If c < O there is no solution to (q,M). The

algorithm terminates. Otherwise go to step 4.
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Step 4: Compute @ = -M 4. If ¢ = O let 6 > 0 be any number such that
G+063 >0. w=0,z=g+ 03 is a solution to (q,M). The algorithm terminates.
If c> 0 go to step 5.

Step 5: Apply Lemke's algorithm to (q, M ) with the artificial vector d.

kK ok ok
Let (w', 2z, 2) be the almost complementary solution obtained at the k-th
=T _k
7'z

iteration. Compute ¢, =
(@) If c < c and the algorithm does not temminate in a secondary ray
at the k-th iteration then continue with the (k+l)-th iteration.

(b) If ¢, < c and *he algorithm temiantes in a secondary ray at the

k-th iteration let r = k and go to step 6.
(¢) If ¢, > c then go to step 7.

Step 6: Let (W', 2", z0) + sw’, z
Step © ©

. 25), § > 0 be the secondary as

r

defined at (3.2.4). Let §* > O be such that 7' (z'+6*% z7) = c. (2" ,w')+
§*(z",w") is a solution to (q,M). The algorithm terminates.

Step 7: If ¢ = c then ", w*) solves (q,m). If ¢, > © then let

W5y, 2¥7), 2¥71(6)) pe as definea at para 5. Tet 6% be such that
T = e since T TN0= T = ¢ | < ¢ such a 6% exists.

k-1 k-1 . i "
(z (5*), w (i*)) solves (q,M). The algorithm terminates.

Theonem 3.4.1: Algorithm I either computes a solution to (q,M) or decides

that there is ro solution to (q,M) in a finite number of steps

Proof: Step 3 of the algorithm decides if g £ D(M) or not correctly in view
of Theorem 3.3.1. Step 5 terminates after a finite number of iterations of
Lemke's algorithm in one of the four possibilities a,b,c,or d: the algorithm

. ; . - I
terminates with a solution (%, 2%) to (G, M) and ¢ = 72N <« 7Ty = c.

-0

Lence

However, in this case since 1= 0. Whin implies that

- - k - =T _k
Thus § = -M z". Thercfore (z5,0) solves (-M3 + (72") o, M).

Thus we obtain

Komg e T a s 0
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since 7"q > 772% it follows that -Mg + (7lq) a = q > O.

However, by step
(1) of the algorithm we reach step 5 only if q } 0.Thus case (4) does nct arisc
In each of the other cases we obtain a solution to (q,M) via steps 6 or 7.

This completes the proof.

=
Exampte 3.4.1: Letm = |t 1| gt 2| . Takea=p=|71|[.
1 =1 -1 1

S1o1 -0.25 0.25  0.50

1 -1 1 = 0.25  -0.25 0.50

1 1 o 0.50 0.50 o
We have d = 7 = (0.50) | 1 [ .

1

According to step 3 of the algorithm, since c =

= 0.50 > O we go to step 5

and apply Lemke's algorithm to (3, M ) where

-0.25 0.25

and § = -M q =(0.75)
0.25 -0.25 -1

We obtain the following tableau:

‘TABLEAU
w, z) zq q
1 o 0.25 =-0.25 =-0.50 0.75
o 1 -0.25  0.25 =-0.50 =-0.75
vy 1 -1 0.50 -0.50 0 1.50
2, o -2 0.50 -0.50 1 1.50
Lemke's algorithm terminates at this stage with c, = 0. From step 6

3
T T X
we see that (1.50, 0, 0, 0, 1.50)" + §(0.50, 0, 0, 1, 0.50)", 6§ > 0 is a

- T_= =T k
solution to w -~ Mz - 2.d = . Now Tz (6%) = 0 + 0.50 6* =

0.50 implies
s T
that 6* = 1. The solution to (q,M) is ([0, 117,(2;017). Note that

Lemke's algorithm does not solve (q,M).



Algorithm TT:

. n :
We are given a vector q € R, a matrix M, vectors a and £, and a

real number x such that
M n‘[’l e a
oo ) o
where G is a P-matrix; d and T are vectors satisfying the hypothesis.of
Theorem 3.3.2. We are required to solve (q,M).

Step 1: 1fgq > 0, w=gq, z = 0 solves (q,M). The algorithm terminates.

Otherwise go to step 2.
T
Step 2: Let ¢ = mq. If c < O then (g,M) has no solution; the

algorithm terminates. Otherwise go to step 3.

Step 3: Let g = -Gq. Let d be such that a; > 0 and ag,

(W , z) be the unique solution to (d;,, G;,). Choose 7 large so that

W =gy + Gy, 2+ 0d; > 0. Let (w,z) be defined by w; = w,
zy, = 2. (w,z) is a solution to (@ + 6d, G). If c =0 go to step 4.
Otherwise go to step 5.

cre w and z are as defined in step 3.

Step 4: (z,w) sblves (q,M) wl
The algorithm terminates.
Step 5: Let C| be the complementary basis corresponding to (w,z) in

step 3, so that C;l:] + Ocild > 0. Tet 0 = min{0: C;15+ﬂc11d > 0} let

-1 =2, 1 = : . o
K= (et + oy (cTla), = 00 (€T, > 0) and b= max ks k Now

ret the

Eh column oF € by Fhe vector complementa

replace the

complementary basis be C,. We repeat the above procedure to get next basis

For the basis C, obtained in this process let 0, = min {0 c;’ (g+6a) > o).
" 2X uhere (*, z¥) solves (G + 0,4, ©. If . < c go on o the

next basis. Otherwise go to step 6.
Step 6: If (w(8), z(8)) is the solution to (3 + 63, G) then z(6)

is continuous with respect to 0. Therefore let 0* ¢ ( 0, ,,0 ] be such that




There (z (8*, w(0*)) solve (q,M). The algorith terminates.

Lemma 3. The complementary bases c,c.,... of the above' agorithm
are distinct.
PROOS: oo wuvty (1985, pp. 280-285). B

O

Theorem 3.4.2:  Algorithm II terminates in a finite number of steps.

Proof: This follows from Lemma 3.3.1, Theorem 3.3.2 and Lemma 3.4.1.

(See also Murty (1988)). i}

Example 3.4.2: cConsider

-6 3 -1
M 6 -3 1
-2 1 o

Note that ramk (M) = 2. Here we can take m = (1, 1, 0),

aT = @, 2, 0). Also we have
-6 3 -1 2 o 1
6 -3 1 1 12
-2 1 0 3| T 2 3 o
3 -1 9 1 1 o o

where we have taken a’ = (11, -10, 3), 8% = (-5, 3, -1) amd x = 0.

1 2 o
Note that -1 1 1 | is a P-matrix.
1 2 3

Algorithm IT applies to this example, since all the hypothesis of Theorem 3.3.2
hold. Note that M is an No—mntri)h For such a matrix Lemke's algorithm does
rot apply. See Saigal (1972). Also there is no known method other !han

enuneration methods, to solve the LCP with such a matrix.



Let

T, s
q £ D(M) because mq = ¢ = 1 > 0. Hence algorithm TI takes us to

_ 1 2 2 2
Now § = -Gq - | _; N N o =
1 2 3 1 -3

Algorithm IT produces the following tableau.

2, =, 3 a

wy 1 o o -1 -2 o o 1

w, o 1 o 1 -1 -1 2 2

Wy o o 1 -1 -2 -3 - o

wl 1 o o -1* -2 o o 1

w, o 1 -1/3 4/3  -1/3 o 3 2

= o o -1/3 1/3 2/3 1 1 o

Now the above tableaux gives us a solution to (g + 0d, G) whenever & > O.

o T T

For 0 > O note that z(8) =| O |. We take 01 0 amd 2(31)‘61 0 < v q =

1
Hence we continue with the algorithm by introducing the complement of w,,
i.e. z) into the basis, since w, (0)) = 0. The * entry in tableaux 2 is

used as pivot element.

Y1 Y2 Y3 Z3 a a
z. -1 o 0 1 2 o o -1
v, 4/3 1 ~1/3 o -3 o 3 10/3
EN 1/3 [ -1/3 o o 1 1 1/3

The akove tableau gives a solution to (q + 6d, G) for -9/10 < 6 < 0. Hence

0, = =9/10 and w, drops out. nszz) = 9/10 < c. Hence we continue by

pivoting in z,



w w w z z z E a

1 2 3 1 2 3
2, -i/er 23 O 0 0 2 11/9
z, ~-4/9 -1/3 1/9 o 1 o -1 -10/9
zy 1/3 o -1/3 o o 1 1 1/3

The above gives a solution to (3 + 6d, G) for -18/11 < 6 < -9/10.

-18/11, n'z(-18/11) = 9/11 < 1. At 0 = -18/11, ) reduces to O and

w, enters the basis.

1
v, Wy N z, EN a a
Wy 1 -6 2 -9 ) o -18 -11
z, o -3 1 -4 1 o -9 -6
zy o 2 1 3 o 1 7 a
The above tableau gives us a solution to (g + 0d, G) when
-7/4 <6 < -18/11 8, = -7/4, sz(ﬂa) = 6/4 > c = 1. Thus, the desired 8%

is in the interval [-7/4, -18/11]. We find that -9 -6 9* = 1 gives us the

1/3 0
solution 6* = -10/6. Now w (%) = ° sz%) = | solves (q+t*q,G).
o 1/3

Thus (z (0%), w(0%)) solves (q, M). Hence the algorithm produces the
solution (z(8*), w(6*)) for (g,M).(Note that algorithm I cannot be applied to

this problem).’
All the results of Section 3 and Section 4 are available in Eagambaram
and Mohan (1987b).

5. Solution rays
If (w + Au, z + Av) with (uv) > 0, v # 0 is a solution to (q,M)
for all A > 0, then (w,z) + A(u,v), A > O is called a solution ray to (q,M)
at the solution (w,z) to (q,M).
The following lemmas are easy to verify.
Lemma 3.5.1: Let q € D(M). There is a solution ray to (q,M) at the solution

(w,z) if and only if there is a complementary matrix C of (I, -M) such th.c



its columns, g € PosC and PosC is a blunt cone.

Lemma 3.5.2: Let PosC be a blunt cone of (I, -M). Then for q e PosC
(a, M) has a solution ray.
Let s(M) = {q : (q,M) has a solution ray}
and s*M) = {q : (q,M) has a solution ray at every solution
w,z) to (q,M)}
We see that

S*(M) € S(M) = the union of all blunt cones of (I, -M) (3.5.1)

Let D(M) denote the boundary of D(M).
Cottle (1974) provea Theorem 3.5.1 for a copositive plus matrix
which is defined as the matrix M that satisfies the following conditions:
(i) x" Mx > 0 for all x > 0 and
(i) x™Mx = 0, x > O implies that (M + MT)x = O.
Theorem 3.5.1: Let M be a copositive plus matrix. Then S*(M) = B(M).
After proving the above theorem Cottle remarks : "Ideally one would
like a theorem which completely characterizes the class of matrices for
which the result established here is valid". (See Cottle (1974) pp. 69).
In this section we give a nearly complete answer to Cottle's remark
by obtaining a necessary and sufficient condition for D(M) < S*(M) when
M is a O -matrix. We prove that when M & T(d) or M satisfies the conditions
of Theorem 3.3.1, D(M) = S(M). We also show that S*(M) = D(M) when M
satisfies the conditions of Theorem 3.3.1.
Theonem 3.5.2: Let M c R™™ be a o -matrix. Then D(M) € S*(M) if and
only if the following condition (a) holds.
Condition (a): Suppose C; is a nxk submatrix of a complementary

T
matrix of (I, -M) and suppose there is a 0 # x > 0, x ¢ R such that x'C,=0,



T .
-x'M > 0. Then there is a complementary matrix C of (I, -M) containing

the columns of C) and a 0 # u > 0, u € K" such that Cu = 0.

Proof: Let M be a Q,-matrix and condition (a) hold. ©Let g e D(M) and (w,z)
be a solution to (q,M). We shall prove that condition (a) is sufficient by

showing that there is a solution ray at (w,z).

Since q € P(M) and D(M) is a convex set there is a supporting

hyperplane to D(M) containing g. In other words there exists a 0 # x > 0 with

-x™ >0, x'q=0 (3.5.2)

Let C, consist of the columns {I 35 Yy > o} u {-M 3575 7 0}. Clearly ¢, is
a submatrix of a complementary matrix of (I, -M) and from (3.5.2) it follows
that

xTe, =0, x™ 20, 0fxzo0 (3.5.3)

From Condition (a) we see that there is a complementry matrix C and a
0#u >0, ucr" such that Cu = 0 and C contains all the columns of C, .

This u gives rise to a solution ray at (w,z) by lemma 3.5.1.

Suppose now for each g e D(M) there is a solution ray at each solution
to (q,M). We shall prove that Condition (a) holds.

Let C, be a n¥k submatrix of a complementary matrix of (I, -M).

Suppose there is a 0 # x > 0, x ¢ K" such that x'C; = 0, -x'M » 0. TIet

k
) (C,) .. Clearly x'q = 0. From the properties of x and the fact that
a 1) 5 a P

3 -
D(M) is convex it follows that g € D(M). Without loss of generality we can
assume that

Qe et

Let for r e {1,2,...,k}

1Af () =T

= o otherwise



z, =1 if (¢ =
= 0 otherwise

=0 for j £ {1,2,...,k}. Then (w,z) is a solution to (q, M).

By our hypothesis there is a solution ray (w,z) +.A(1,v) to (q,M). Let <,
be the submatrix of (I, -M) defined as follows:
is a olumn of C, if and only if Gj >0

is a column of C, if anl only if Gj > 0.

Let € be any complementary matrix of (I, -M) containing the columns of C,

and C,. From the fact that (w+)u, z+)v) solves (q,M) for all X > 0, it is

clear that such a C exists. It is easy to see that for u = u+v Cu = O.

This completes the proof of the theorem. ja|

Theoxem 3.5.3: Let M ¢ T(d), @ > 0. Then S(M) = D(M).
Proof: T(d) = t(@) O A (See para 15 Section 2). From the definition of A
it follows that S(M) & D(M). TIet q ¢ D(M). The point q-a § D(M) otherwise
we would get a contradiction that g is in the interior of D(M) because D (M)
is comvex. If we apply Lemke's algorithm to (q-d, M) with the auxillary
vector d the algorithm terminates in type I secondary ray termination. This
implies that th‘ere exists & solution ray (w,z) + A(u,v), X > 0 to the 1CP
(q-a+6da,M) for some 6 > O. (See para 6-8 of Section 2). Invoking lemma
3.5.1 we find that g+(0-1)d lies in a blunt cone PosC. Since M ¢ A;\y
POSC & D(M) and hence q+(0-1)d ¢ D(M). This can hapnen only when 0 =1.
Therefore q = S(M). Hence D(M) € S(M). This completes the proof.

O
Theorem 3.5.4: Let M = T(A), @ > 0. Then S*(M) = D(M) if and only if

Condition («) of Theorem 3.5.2 holds.



Proof:  From Theorem 3.5.3 we see that S*(M)< D(M). From Theorem 3.5.2
we find that ondition (a) is necessary and sufficient for D(M) & S*(M).

Hence the theorem. |

Remark 3.5.1: Doverspike (1982) gives an example of a matrix M € E(d),
a4 >0, ag e D(M) and a solution (w,z) to (q,M) such that at (w,z) there
is no solution ray. So, ~ondition (a) in Theorem 3.5.4 cannot be

dispensed with.

Remark 3.5.2: It may be tempting to extend the result of Theorem 3.5.3

to the class of matrices which are processable by Lemke's algorithm.
However, the following example of an Z-matrix which is processable by
Lemke's algorithm (see Saigal (1970)), shows that a blunt cone Pos (-M)

: : : . . 4
has nonempty intersection with the interior of R,.

Example 3.5.1:

2 -2 -2 o
=1 1 -1 0
"= 0 -3
] -4 -2 |
Theonem 3.5.5:  Let M & R™™ be of rank n-1 with 7'M = 0 and Md = O where

v and d are positive vectors. Then (i) M € A and (ii) S*(M) = D(M).

Proof: (i) Suppose PosC(J), J  {1,2,...,n} is a blunt cone. Then there

exists a vector 0 # x > 0 such that C(J)x = 0. This implies that My > O for v
such that y = x_and y_, =

T
, . 0. But we see that m My=0 and so My=0. The rank of

M being n-1 we see that y =d. Thercfore the only blunt cone of (I,-M) is Pos (-H).By
Farkas' lemma we have, by virtue of 7'M = 0, that Pos(-M) < D (M) and hence
M e A.

(ii) Suppose C; is a sulmatrix of a complementary matrix of (I,-M) such

Phat there existan v

07520 st infying ¢ 0 and - MZ0L Phen we find that




S0, € consists of columns of -M only and hence M=C is a complementary matrix

with Cd = 0. Therefore we see that Condition (v) of Theorem 3.5.2 is satisfied
by M. M being a ()ﬂ-matr)’x (vide Theorem 3.3.1) Theorem 3.5.2 shows that
S201) = D).
A1l the resnlts of this section, excepting Theorem 3.5.%, are cssentially
taken from Eagambaram and Mohan (1987a).
6. LCP with No—matri::es
In the process of examining the properties of Lemke's algorithm we
could identify two subclasses of Q_-matrices in Section 3. Further we four!
that Lemke's algorithm is not applicable to these classes of matrices.

However we obtained algorithm via generalized inverse.

In this section we examine No—matrices in the liaht of Lemke's
algorithm via principal pivot transforms. Saigal (1972) showed that an
N-matrix with at least one positive entry is a Q-matrix and for obtiining
a solution to (gq,M) when M is a N-matrix, lLemke's algorithm can be applied

_y -
to (- lq, M 1), A solution to (M 'q, M) leads to a corresponding

solution to (q,M). Here we show a similar result in respect of a monsingular
N_-matrix.
o

Let us define

Condition (i There exists a J=({1,2,...,n}, J # ¢ such that

det My # 0 and M, contains at least one positive entry.

n

It is easy to check that if M ¢ R™." is a Q-matrix then R" is the

union of all nondegenerate cones of (I,~M). If for all det M  # OM _ < 0

then we see that the union of nondegenerate cones is contained in R:“ .

Therefore Condition (£) is a necessary condition for M to be a Q-matrix.

x
Lemma 3.6. Let M ¢ R™™ pe an N -matrix satisfying Condition (). Then

there exists a PPT M of M and a positive vector d such that M ¢ t(d)



Proof: vLet J < {1,2,...,n}, J # ¢ be such that ‘ot My < 0 and M_; contains

at least one positive element. Let S be the union of the boundaries of

all the complementary cones of (I, -M). S is a closed set. We see that
(PosC(J) - R}) - 'S is an open set. Let M be the PPT of M with respect to
1

C(3). Then it can be verified that C(K) = (C()) cw & K), K & {1,2,...,n}
are the complementary matrices of (I, -M). So, Pos(C(J)) is transformed
into R} and R} is transformed into Pos(C(J)). Let @ be a vector in

(Pos (C(I)) = R}]) - S. Then the PPT transforms d into a > 0. Againa } R,

implies that d | Pos(C(J)). Also we see that d does not lie on the boundar:

of any cone of (I, -M). Now, from Theorem 3.2.3 we see that
det C(K) > 0 for all K # J.

Therefore M ¢ t(d). ja]

Remark 3.6.1: If£M e 4 and satisfies Condition (R) then there exist a PPT M
of M and ad > 0 such that M ¢ T(d), and therefore M is a Q -matrix.
A matrix M is said to be an R -matrix if there is no blunt cine of

(I, -M). Now we prove

o
Theonem 3.6.1: A nonsingular N -matrix M R™™ with at least one positive

entry is a Q-matrix if and only if M is an R -matrix.

Proof: Sufficiency: M satisfies Condition (8) and so by Lemma 3.6.1

M € t@) for somed > 0. IfM is an R -matrix so is M . Therefore

Ml eT@). For any g ¢ R”, Lemke's algorithm applied to (q, M ') does not

end up with a secondary ray and hence obtains a solution to (a, M ).
-1 X AP i

Therefore M~ is a Q-matrix which implies M is also a Q-matrix.

Necessity: Suppose M is not an R_-matrix. Then M = M 1 s also not

an R -matrix. Let Pos C(K) be a blunt cone contained in D(M), which gives

rise to a nonzero solution (u,v) to (O,M). This means



= (3.6.1)

u-
K M-

wherex € {1,2,...,n} and ¥ = {1,2,...,n}- k. Let q ¢ R" be such that

-Adimensional

g =-e(k) amd g= = e(K) where e(L), L € {1,2,...,n} is an

vector with all its elements unity. We claim that (q, M) has no solution.
Suppose there is a solution (w,z), then
(wy_ J'Mv M,
Lw? LM?K

From Theorem 3.2.3 we see that when L is a proper subset of {1,2,...,n},

2 —e(®)
. (3.6.2)

e (k)

My is a P -matrix. It is krown that a P_-matrix has sign non-reversal

property. That is, if A is a P_-matrix then for any nonzero vector x

there exists an index i such that x5 # 0 and xi(Ax)i >0. (See Berman and

Plemmons (1979)). This shows that z, # 0 otherwise we would get a

contradiction that the P_-matrix I;lk violates the sign non-reversal property
-0z, >0

in respect of zy. Let a be the positive number such that v Kk >

and at least one component of v, - az, is zero. We see that

(g - cws +ae (K > Owhenever (zg), > 0, i ¢ 7. Now from (3.6.2) we
see that a proper principal submatrix of M voilates the sign non-reversal
Yk T % % This contradicts the fact

property in respect of the vector
- a2
K
that every proper principal submatrix of M is a P_-matrix. Therefore the

assumption that there is a solution to (g, M) is untenable.

Hence the theorem. O
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