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Chapter 1

Introduction

In the first part of this chapter we explain in general terms the main theme
of this thesis and provide a chapterwise summary of its principal results.
The second part recapitulates some of the known notions and results used
in the subsequent chapters. The numbers given in parentheses correspond
to those in the list of references on page 70.

S. Mazur [40] was the first to consider the following smoothness property
in normed linear spaces, called the Mazur Intersection Property (MIP), or,
more briefly, the Property (I) :

Every closed bounded convez set is the intersection of closed

balls containing it.

He showed that any reflexive Banach space with a Fréchet-differentiable
norm has this property.
Later, R. R. Phelps [42] provided a more geometric insight into this
property by showing that
(a) A normed linear space X has the MIP if the w*-strongly exposed points
of the unit ball B(X*) of the dual X* are norm dense in the unit
sphere S(X*).

(b) If @ normed linear space X has the MIP, every support mapping on X
maps norm dense subsets of S(X) to norm dense subsets of S(X*).

(¢) A finite dimensional normed linear space X has the MIP if and only
if the extreme points of B(X*) are norm dense in S(X*).
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He also asked whether the sufficient condition (a) is also necessary. To
date, this remains an open question. )

Nearly two decades later, Phelps’ characterisation (c) was extended by
J. R. Giles, D. A. Gregory and B. Sims [21] to general normed linear spaces,
developing an idea due to F. Sullivan [51], and they proved, inter alia,

Theorem 1.1 For a normed linear space X, the following are equivalent :
(a) The w*-denting points of B(X*) are norm dense in S(X*).
(b) X has the MIP.
(¢) Every support mapping on X maps norm dense subsets of S(X) to
norm dense subsets of S(X*).

They also showed that in dual Banach spaces, the MIP implies reflexiv-
ity and considered the weaker property that évery weak* compact convex
set in a dual space is the intersection of balls (w*-MIP). Investigating the
necessity of Phelps’ condition (a), they showed that it is indeed necessary
if, in addition, the dual X* has the w*-MIP, or, X is an Asplund space.
They now asked whether the MIP necessarily implies Asplund. To date,
this also remains open.

Notice that if X is separable and has the MIP, Phelps’ condition (c)
(or, Theorem 1.1(c) above) implies that it has a separable dual and hence
is Asplund. So one asks, is the MIP hereditary, i.e., inherited by subspaces ?
The answer, unfortunately, is no. In Chapter 4, we give an example and
discuss the subspace question in more detail.

However, since the Asplund Property is invariant under equivalent
renorming, a more pertinent question is whether the existence of an equiv-
alent norm with the MIP is hereditary. Some discussions on MIP-related
renorming questions may be found in [9], [47], [54] and [57]. However, in
this work, we do not discuss any renorming problem but concentrate instead
on some of the isometric questions that arise.

Recently, there have appeared several papers dealing with similar inter-

section properties for compact convex sets [54,47] (called the Property CI),
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weakly compact convex sets [57] and compact convex sets with finite affine
dimension [49].

In Chapter 2, we give a unified treatment of the intersection properties
for these diverse classes of sets by considering the MIP for the members of
a general family — subject to some mild restrictions — of closed bounded
convex sets in a Banach space and recapture all the known results as special
cases. We also introduce a new condition of separation of convex sets which

is a variant of the following :

Disjoint bounded convez sets are contained in disjoint balls

and this apparently stronger condition turns out to be equivalent to the
intersection property in all known cases. This strengthens the results of
Zizler [56]. We should point out that our proofs in this chapter are usually
modifications, refinements and adaptations to our very general set-up of
arguments for particular cases to be found in [21], [47] and [54]. This
chapter, which is essentially contained in (3], also provides much of the
background for what follows in the later chapters.

Whitfield and Zizler [55] have also defined the Uniform Mazur Inter-
section Property, a property somewhat stronger than the MIP. But in this
thesis, we only briefly touch upon their work.

In Chapter 3, we discuss the question of lifting the MIP and the CI from
a Banach space X to its associated Bochner L” space and their stability
under & sums, 1 < p < co. In particular, we prove that the £% sum of a
family of Banach spaces has the MIP (or, the CI) if and only if each coor-
dinate space has it; that the Bochner L” space for the Lebesgue measure
on [0, 1] always has the CI, while the MIP in X is equivalent to a weaker
intersection property in the Bochner L? space which turns out to be equiv-
alent to the MIP if and only if X is Asplund. Most of these results have
already appeared in print in [4].

In Chapter 4, we present a collection of partial results relating to various
aspects of the MIP that raise more question than they answer. Apart

from the subspace question mentioned above, in this chapter we discuss
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the relation between the MIP and a farthest point phenomenon that was
observed by K. S. Lau [35], but seems to have passed largely unnoticed
since then. Lau had shown that in a reflexive space the MIP is equivalent
to the following :

Every closed bounded convez set is the closed convez hull of its

farthest points.

We extend this result to characterise the w*-MIP in w*-Asplund dual spaces
using a result of Deville and Zizler [10]. As far as we know, besides the
work of Tsarkov (53] — who has characterised the MIP in finite-dimensional
spaces in terms of convexity of bounded Chebyshev sets — this is the only
attempt at an intrinsic characterisation of the MIP. We also point out some
new direction of investigation that is indicated by our result.

In this chapter, we also discuss the MIP in projective tensor product
spaces. Ruess and Stegall [46] have shown that the injective tensor product
of two Banach spaces of dimension > 2 never has the MIP. And Sersouri
(48] has shown that in fact there is a two-dimensional compact convex set in
X ®. Y that is not intersection of balls. The situation appears to be much
more difficult for projective tensor product spaces. Here we show that the
projective tensor product of two Banach spaces X and Y never has the
MIP if X and Y are Hilbert spaces or are two-dimensional £? spaces for a
large range of values of p. For this purpose, we characterise the extreme
contractions from £3 to €] and obtain their closure. The technique used is
similar to [34]. In the process, we reestablish relevant special cases of the
results obtained in [25,26,28].

Chapter 5 is somewhat independent of the rest. Here we discuss the fol-
lowing phenomenon : For a closed bounded convex set K in a Banach space

X and a point z, € K, the following implications are easy to establish :

z, strongly exposed =—> z, denting point

4 4
z, exposed and PC => gz, extreme and PC
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where by PC we mean a point of continuity (defined more precisely later).
A recent result (see Theorem 1.5 below) is that z, is denting if and only
if z, is extreme and PC, i.e., the implication down the right hand side
above is reversible. This naturally leads to the conjecture that the impli-
cation down the left hand side above, too, can be reversed, i.e., if z, is
exposed and PC (or, equivalently, z, is an exposed denting point) then z,
is strongly exposed.

We show that the conjecture is false by constructing a counterexample
in the Banach space €' and provide a characterisation of strongly exposed
points among points of continuity of a closed bounded convex set. As a
corollary, we deduce that the conjecture is true for the points of weakly
compact sets. We also show that the counterexample, in some sense, is
actually typical of £!, i.e., we characterise Banach spaces containing £! in
terms of the validity of the above conjecture. We also briefly touch upon
the necessity of Phelps’ condition (a) in the light of our characterisation of

(w*-) strongly exposed points. This chapter is a revised version of [2].

Notations, Conventions and
General Preliminaries

General reference to this work are the monographs (7], [13] and [20].
We work only with real Banach spaces. Unless otherwise mentioned, by a
subspace we always mean a norm closed linear subspace. The closed unit
ball and the unit sphere of a Banach space X will be denoted by B(X) and
S(X) respectively. For 2 € X and r > 0, we denote by B,[z] (resp. B,(z))
the closed (resp. open) ball of radius r and centre z.

For z € S(X), D(z) = {f € S(X*) : f(z) = 1}. The set valued
map D is called the duality map and any selection of D is called a support
mapping. For f € S§(X*), we similarly define the inverse duality map as
D) ={z€S(X): f(z) =1}.

For a bounded set K C X, denote [K] = N{B : B closed ball containing
K} and following Franchetti [19], call a bounded set admissible if K = [K].
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In this terminology, a Banach space X has the MIP (resp. the CI) if every
norm closed bounded (resp. norm compact) convex set is admissible.

For K C X, f € X* and a > 0, the set S(K, f,a) = {z € K : f(z) >
sup f(K) — a} is called the open slice of K determined by f and «. For
A € X, denote by co(A) (resp. aco(A4)) the convex (resp. absolutely convex)
hull of A and by int(A), the norm interior of A. For 4 C X, f € X*,
[[£lla = sup{|f(2)| : = € A}, A° = {f € X* : ||f|la < 1} and for B C X*,
A-dia(B) = sup{||by — bzls : b1, b2 € B}. For A;, A, C X, dist(A,, A;) =
inf{||zy — z2|| : z; € Ay, ¢ = 1,2}. For A C X, A° denotes the closure of A
for the topology 0. Whenever the topology is not specified, we mean the
norm topology.

We identify an element z € X with its canonical image £ in X**. Let
K be the image of a closed bounded convex K C X under this canonical
embedding of X in X**. We denote by K the w*-closure of K in X**. K is
of course a w*-compact convex set.

For a measure space ({2, £, u) and A € &, we denote by x4, the indica-
tor function of A, and by |4 the restriction of the measure u to the o-field
of measurable subsets of A.

Let X be a real Banach space, let F be a total subspace of X* (i.e.,
I separates points of X). Let o denote the o(X, F) topology on X. For a
closed bounded convex set K C X, recall that z, € K is called

(a) a o-denting point of K if, for each € > 0, z, ¢ To° (K \ B,(z,)).

(b) ao-point of continuity (o-PC) for K if the identity map, id : (K,0) —

(K, norm) is continuous at z,.

(c) a very strong extreme point of K if, for every sequence {z,} of
K-valued Bochner integrable functions on [0, 1] with respect to the
Lebesgue measure, the condition

n—oo

1 1
lim ||/; Za(t)dt — || = O implies ,‘13&/" | (£) — zo]ldt = 0.

d) an o-ezposed point of K if there exists f € F such that f exposes z,,
ie., f(z) < f(z,) for all z € K \ {z,}.
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(e) a o-strongly ezposed point of K if there exists f € F such that f
exposes z, and for any sequence {z,} C K, li,r_nf(z,.) = f(z,) implies
that lim ||z, — zo|| = 0.
In the sequel, whenever o is the weak topology, i.e., F = X*, we omit
the prefix o while referring to the above concepts.
The following lemma is very well-known and can be found in (8, Propo-

sition 25.13] or more recently in (45, Lemma 1.3] :

Lemma 1.2 Let E be a locally convez space, K be a compact convez set
in E and z € K. The following are equivalent :
(a) z is an eztreme point of K.
(b) The family of open slices containing = forms a local base for the
topology of E at z (relative to K ).

In Chapter 5, we note an analogue of this lemma for exposed points.
The following characterisation of a o-denting point is an immediate

consequence of the Hahn-Banach Theorem :

Lemma 1.3 Let X be a Banach space, F be a total subspace of X*, K be a
closed bounded convez set in X and z € K. The following are equivalent :
(a) z is a o-denting point of K.
(b) The family of o-open slices containing = forms a local base for the

norm topology at = (relative to K).
The following lemma is also well-known :

Lemma 1.4 Let K be a closed bounded convez set of a Banach space X.
Then z** € K is a w*PC if and only if z** = % for some z € K and z is
a PC.

The following characterisation of a denting point of a closed bounded
convex set in a Banach space is a consequence of the two lemmas above
and is essentially contained in [38] and [39] :



Theorem 1.5 Let z be an element in a closed bounded convez set K of a
Banach space. Then the following are equivalent :
(@) z is a denting point of K.
(b) % is a w*-denting point of K.
(¢) =z is a very strong extreme point of K.
(d) For any probability space (0, %, 1) and any net {z.} of K-valued
h int ble functi on 1, the condition
lun“/ zn(w)du — z|| = 0 implies llm/ ||Za(w) — ||du = 0.

(e) z is an eztreme point of K which is also a PC.

Let X be a real Banach space, let F" be a norming subspace of X* (i.e.,
lI2llary = ll=|l, for all z € X). Then B(X) is o(X, F) closed and B(F) is
w*-dense in B(X").

We will need the following generalisation of Lemma 1.4 and Theorem 1.5
(a) <=> (¢) in the sequel.

Lemma 1.6 Let X be a Banach space, F be a norming subspace of X*.
(a) A point z; € B(X"*) is a w*-PC of B(X"*) if and only if z} is a
w*-PC of B(F).
(b) A point z3 € B(X*) is a w*-denting point of B(X"*) if and only if
z; is an eztreme point and a w*-PC of B(F).

We will also use the following well-known results :

Lemma 1.7 [42, Lemma 3.1] Let X be a normed linear space and € > 0.
If f, g € S(X*) are such that z € B(X) N f~(0) implies |g(z)| <.€/2, then
either ||[f —g||<eor|f+g|<e.

Lemma 1.8 [20, p 205] Let K be a closed bounded convex subset of a
Banach space X. Given f € X* \ {0} and z, contained in a slice S of K
determined by f, there exists € > 0 such that whenever ||f — g|| < €, there
is a slice S' of K determined by g such that z, € S'C S.



For a Banach space X, a function F : X — IR is said to be
(a) Gateauz differentiable at a point z € X if there exists an f € X*
such that

lim
A0t

F Ay) —
(Z—Jr-‘f\)—w — f(w)| =0 for all y € B(X)

and (b) Fréchet differentiable at z if the convergence is uniform over
y € B(X).

In particular, if F' is the norm, we have the following duality result :

Theorem 1.9 (20, Theorem 3.5.4] In a Banach space X
(a) the norm is Gateauz differentiable (or smooth) at a point z € S(X)
if and only if D(z) is single-valued and in that case, = w*-ezposes
D(z) in B(X").
(b) the norm is Fréchet differentiable at =z € S(X) if and only if D(z)

is single-valued and z w*-strongly ezposes D(z) in B(X*).

Recall that a Banach space X is Asplund if every continuous convex
function F : X — IR is Fréchet differentiable on a dense G4 subset of X, and
a dual space X* is w*-Asplund if every continuous w*-lower semicontinuous
convex function F' : X* — IR is Fréchet differentiable on a dense G subset
of X™.

The following characterisation theorem is a classic [7]:

Theorem 1.10 For a Banach space X,
(s) the following are equivalent :
(a) X is Asplund.
(b) Separable subspaces of X have separable dual.
(¢) X* has the Radon-Nikodym Property (RNP).
(d) X* has the RNP with respect to the Lebesgue measure on [0, 1].
(3%) the following are equivalent :
(a) X* is w*-Asplund.
(b) X has the RNP.



If X is a Banach space and (f1, T, 1) a measure space, let L”(u, X) denote
the Lebesgue-Bochner function space of p-integrable X-valued functions
defined on (1, 1 < p < o (see [14]). Recall (from [13]) that if 2+ 2 =1
(1 < p < o), the space L?(u, X*) is isometrically isomorphic to a subspace
of LP(u,X)* and that they coincide if and only if X* has the RNP with
respect to p. Also recall (from [14] and [31]) that L?(u, X)* is isometrically
isomorphic to the following two spaces :

(1) Vg(u, X*) = the space of all vector measures F : & — X* such that
the g-variation of F is finite, i.e.,

IFl, = sup{z ”F(,?))li u(E) : 7 is a finite partition of n}l/q < oo,

er
and (2) L(u, X*; X) = the space of all w*-equivalence classes of X*-valued
w*-measurable functions h, such that the real-valued function |h(-)|| €
L%(p, IR). Only the representation given by (1) will be used by us.

[13, Chapter VIII] contains all necessary information on tensor product
spaces. We just recall here that the dual of the projective tensor product,
X®,Y, of two Banach spaces X and Y, is L(X, Y*), the space of continuous

linear operators from X to Y*.
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Chapter 2

The Mazur Intersection
Property for a Family of
Closed Bounded Convex Sets

2.1. The Set-up and Main Result

Let X be a real Banach space, let F' be a norming subspace of X* and let
A={K C X : K is admissible}

Then A is a family of norm bounded, o(X, F)-closed convex sets that is
closed under arbitrary intersection, translation and scalar multiplication.
Naturally, A contains all singletons and all closed balls. In this chapter, we
denote the o(X, F) topology on X simply by o. '

Taking A as our model, we let C be a family of norm bounded, o-closed
convex sets with the following properties :

(A1) C is closed under arbitrary intersection, translation and scalar
multiplication.

(A2) C,C, € ¢ = aco’(CLUCy) € C.

(A3) C € C, C absolutely convex and f € F => Cn f~1(0) € C.
Note that (A1) implies that C contains all singletons.

EXAMPLES : (i) C = {all closed bounded convex sets in X}, F' = X*

(ii) X = Y*, € = {all w*-compact convex sets in X}, F = ¥

(iii) ¢ = {all compact convex sets in X}, F = any norming subspace

(iv) € = {all compact convex sets in X with finite affine dimension},

F = any norming subspace
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(v) € = {all weakly compact convex set in X}, F = any norming
subspace. :

Let ¥ = {C°: C € C}. Then ¥ is a local base for a locally convex
Hausdorff vector topology 7 on X*, the topology of uniform convergence
on elements of C. Clearly, 7 is stronger than the w*-topology on X* and
weaker than the norm topology.

DEFINITIONS : (1) Denote by E,, the set of all extreme points of B(X*)
which are also points of continuity of the identity map, id : (B(X*),w*)
— (B(X*),7).

(2) For C € C, C absolutely convex, € > 0 and § > 0, we say that a
point z € S(X) belongs to the set Mg, s(X) if

sup

lz+ vl +lle = Al =2 _
veC,0<A<6 A

For C = B(X), we write Mc,.,s(X) simply as M, s(X). Let Mg, .(X) =
Us>0Mg,e,5(X) and for C = B(X) write Mg, .(X) simply as M,(X), or
even as M, whenever there is no scope of confusion. Similarly, Mc,.(X)
will often be abbreviated as Mc,.. Notice that N,5oM,(X) gives the set of
points of S(X) at which the norm is Fréchet differentiable.
(3) H, = n{D(Mg,(X)) : C € C, C absolutely convex, C C B(X)
and € > 0}.

Lemma 2.1 For any absolutely convez C € C, C C B(X), z € S(X) and
6 >0, let

(G d) = wwp lzrMlrlz=i-2
YeC,0<A<E A

d5(C, 7, 6) = C-dia S(B(X"),%,6)

d3(C, z,6) = C-dia [U{D(y) :y € S(X) N Bs(z)}]

Then for any o, § > 0, we have,
() d2(C, =, @) < di(C, T, 6) + =
(i) ds(C, =, 6) < da(C, z, 6)
(5#%) di(C, =z, §) < ds(C, =, 26)
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Proof : (i) Fix a, § > 0. Put d, = d,(C, =, 6) and d;, = dy(C, z, a).
For each n > 1, we can choose fn, 9g» € S(B(X"), 2, @) such that
[lfa=gnllc > d2— L. Choose y, € C such that (fn —gn)(yn) > d2— L. Then

-

llz + 8ynll + ll= = 8ynll =2  falz + 6yn) + gn(z — byn) =2 1_2a
5 - 6 = n
Thus, dy > dy —
(ii) lmmedla,tely follows from the observation that U{D(y) : y € S(X)Nn
Bo(@)} € S(B(X"), 2, §).
(iii) Let A < 6. Observe that for any y € C C B(X),

z+ Ay
-z
[l= & Ayll

z+ Ay
[EXR]
[ llzll = ll= £ Ayl 1+ A< 2

—(zi,\y)“JrA = |1—Jlz£Xy] |+ A

T+ Ay z—
Let f € D(m) and g € D(“z ). Then

/\yII
lz+ vl +llz =2l =2 _ flz+X) +g(z—Ay) —2
h k

X
(f=9)w) < IIf —dlc

IA

And we immediately have :

Lemma 2.2 For any absolutely convez C € C, C C B(X), z € S(X) and
€ > 0, the following are equivalent :
(5) =€ Mc,(X)
(#%) There is a § € (0,1) such that the C-dia S(B(X*),%,6) <e
(#55) There is a 6 € (0,1) such that C-dia [U{D(y) : y € S(X) N
B;s(z)}] <e.

Corollary 2.2.1 For any absolutely convex C € C, C C B(X) and e > 0,
Mc,.(X) is an open subset of S(X).

Proof : Follows immediately from the Lemma above and Lemma 1.8. M
REMARK : In the case of C = B(X), Lemma 2.1 is quantitatively more
precise than Lemma 1 of [55].
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Now we have our main result :

Theorem 2.3 If X, F and C are as above, consider the following state-
ments :
(a) FCRTE,
() FCRRYH,
(¢) If C1,C; € C are such that there exists f € F with sup f(C1) <
inf f(C2) then there exist disjoint closed balls By, B, such that
CiCB;,i=1,2.
(d) Every C € C is admissible.
(e) For every norm dense subset A of S(X) and every support mapping
$:5(X) — S(X*), FC R $(A) .
Then we have (a) = (b) = (c) = (d) = (e).

(For the reverse implications, see corollaries and remarks at the end of
this section.)

Proof : (a) = (b) Enough to prove E, C H,.

Let f € E,. Let C € C, C absolutely convex, C C B(X) and € > 0. We
want to prove f € D(Mg,,) . Let K € C and 0 < 1 < . We may assume
K C B(X). Let K, = 360 (K UC). Then K, C B(X) as B(X) is o-closed.
Note that K, € C by (A2).

Since f is an extreme point of the w*-compact convex set B(X*) and
id : (B(X*),w*) — (B(X"),r) is continuous at f, it follows from Lemma 1.2
that w*-slices of B(X") containing f form a base for the relative r-topology
at f. Thus there exist z € S(X) and 0 < 6§ < 1 such that f € S =
S(B(X*),,6) and K,-dia(5) < 5.

Now, by Lemma 2.2, z € Mk, ., C Mc,. and for any f, € D(z),
f+ € D(Mo,.) and f. € 5, 50, || — Fullxe < [IF = Follxe, < 1.

(6) = (c) Let C1,C; € C and f € S(F) be such that sup f(Cy) <
inf f(Cz). Let z € X be such that f(2) = 1(sup f(Cy) + inf f(C;)) and
put € = F(inf f(Cz) — sup f(C1)) > 0. Then, inf f(C; — 2) > 5¢ and
inf(~f)(Cy — 2) > 56. We may assume without loss of generality that
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2=0,C C B(X),i=12and |f|| = 1. Let K = aco°(C; U C), then
K € C, K is absolutely convex and K C B(X).
By (b), there is A > 0 and g € H, such that ||f — Ag||x < e. If A =0,
we have || f||x < € and hence, infg, f < ¢, a contradiction. Thus, A > 0.
Now, g € H, C m So, we can find z € Mk,./» and h € D(z)
such that ||g — ||k < €/A. By definition, there is a § > 0 such that
z+ ay|| + ||z —ay|| —2 €
L Iz + ay]] ‘l’l( vl -2 _ <
Choose an integer n > ;"5-. The proof will be complete once we show
that By = B(n-1)e/s [—nez/A] and B; = B(n_1)/» [nex/A] work.
Clearly, By and B; are disjoint. Suppose, if possible, y € C; and y & B,.
Then y € K. Take oo = 2 < 6 and observe that

llz + oyl +'|lx*ayﬂ w2 b [lz+aL[/x|| — =l +”§ —yl- i
(n—1)e ne €
> h(.l/)+2—>‘ —T=h(y)*x
> g(y) — TE = %[Ag(y) —2¢]
1 : 1 2
> $lfw) -3l > Jlse—3e] = 5

This contradicts the fact that z € MK, e/x- The other inclusion follows sim-
ilarly once we note that K, and hence Mk, ¢/x, is symmetric and h € D(z)
implies (—h) € D(—z).

(¢) = (d) Since singletons are in C and every C € C is o-closed,
(d) follows from (c).

(d) = (e). (We adapt Phelps’ [42] arguments) Let A be a norm dense
subset of S(X) and ¢ be a support mapping. Let f € S(F), K € C and
0 < & < 1. We may assume K C B(X) and further that K is absolutely
convex and ||f|lx > 1 —¢/2 (Let z € B(X) such that f(z) > 1 —&/2. Let
L =3aco’[{z} UK]|. Then LC B(X),LeCand |-|z > | -|lx). Let u € K
be such that f(u) > 1 —¢/2. Put v' = eu/4 and D = KN f~1(0). Then
D € C [by (A3)] and u' &€ D. By (c), there exists z € X and r > 0 such
that D C B,[z] and [|v' — 2| > r.
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Let p = ||u' — 2| —r > 0. Put w = ﬁ(ru' + pz). Then ||w — 2| = r.
Put z = }(w — 2) € S(X). Let C = o[{u'} UB,[2]]. Let 0 < 6 < £ .

r+n)"
If p € B,s[w], then ||p — w| < T 50, P =w+ 715+ y for some y € X,
llyll < 1. Thus, p = 7 + (2 +ry). Now, z + ry € B,(2) and hence,

p € int(C). So, Bys[w] C int(C).

Let y € Bs[z]N A and g = ¢(y). Put v = ry + 2. Clearly, |[v —w]|| < ré,
hence v € int(C) and g(v) = supg(B,[2]). Now, v € int(C) = there
exists t € (0,1) and v' € B,(2) such that v = tu’ + (1 — ¢)v’. Thus,
9(v) = tg(uw') + (1 — t)g(v') < tg(v') + (1 — t)g(v). Also, 0 € D C B,[z] =
0 < 9(v) < 9(w!) = beg(w) < Je- llgllx- So, 0 < llghe < lgll = 1. Put
A =1/llgllx. Then sup Ag(D) < sup Ag(B,[2]) = Ag(v) < Le- ||Ag|lx = €/4.
By symmetry of D, ||Ag|lp < €/4.

Now, by Lemma 1.7 applied to the linear space sp(K), spanned by K,
equipped with pux, the gauge or Minkowski functional of K, we have

Sgor Ag

I+

f €
A <£
171l x 2

But v € K and € < 1 implies f(u)/||fllx > f(u) > 1 — €/2 > €/2 and
Ag(u) > 0. Thus, ”W — Agllk < €/2. Then we have

K

=€

€ f € € €

=Mk < s+ |5 — =-+(1- <s+o

1 =dobe < 5+ A== 1] =5 ra-im0 s £

Corollary 2.3.1 If in the set-up of Theorem 2.3, we have that the set
A={z € S(X):D(z)N E, # 0}

s norm dense in S(X), then all the statement in Theorem 2.3 are equiva-
lent.

Proof : We simply note that in this case there is a support mapping that
maps A into E, and hence, (¢) = (a). u
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Corollary 2.3.2 [54,47,49] In the case of ezamples (iii), i.e., C = {all
compact convez sets in X}, F = any norming subspace, and (iv), ie., C
= {all compact convez sets in X with finite affine dimension}, F = any
norming subspace, all the statements in Theorem 2.3 are equivalent and (c)
can be reformulated as

(¢') Disjoint members of C can be separated by disjoint closed balls.

Proof : In example (iii), 7 is the bw* topology (see [16] for more on bw*
topology) and in example (iv), 7 is the w*-topology on X* and in both cases
F" = X*, so we may as well take F = X*. Further, as the bw* topology
agrees with the w*-topology on bounded sets, in both the cases, E, =
{extreme points of B(X*)}. Clearly, in both cases A as in Corollary 2.3.1
is S(X) and so, in Theorem 2.3 all the statements are equivalent.

Since members of C in both cases are o-compact, (¢) <=> (c'). u

REMARKS : 1. In example (v), i.e., C = {all weakly compact convex
set in X}, F = any norming subspace, 7 is the Mackey topology on X* (see
(8] for further information) and again, 7" = X*.

In this case, we do not know whether any of the implications in Theo-
rem 2.3 can be reversed. However, we note that (a) = (d) in Theorem 2.3
gives a weaker sufficiency condition for MIP for weakly compact sets than
the one used in [57]. And in this case, too, (c) and (c') of Corollary 2.3.2
are equivalent.

2. It seems unlikely that, in general, the implications in Theorem 2.3
can be reversed. Nevertheless, it appears to be an interesting and difficult
problem to find conditions on X, F, and C under which this can be done.
In particular, when is the assumption of Corollary 2.3.1 satisfied ? In this
context, the work of Namioka [41] on neighbourhoods of extreme points
may conceivably be relevant.

However, there is yet another situation when the statements can
actually be shown to be equivalent. And particular cases of this yield
the characterisations of MIP and w*-MIP, i.e., examples (i) and (ii). This

we take up in the next section.
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3. Note that the subspace F C X* was assumed to be norming in order
to ensure that o-closure of norm bounded sets remain norm bounded which
is implicit in (A2). However, if (A2) is satisfied, as in examples (iii), (iv)
and (v), for any total subspace F, our results easily carry through with

only minor technical modifications in the proofs.

2.2. The MIP with Respect to a Norming
Subspace F

Our standing assumption in this section is that F is a subspace of X*
such that

the set Tp = {z € S(X) : D(z) N S(F) # 0} is a norm dense
subset of S(X)

(we shall write simply 7" when there is no confusion). Then F is necessarily
norming. However, one can give examples (see below) of norming subspaces
where this property does not hold. Let C = {all norm bounded, o-closed
convex sets in X}. We say that X has F-MIP if every C € C is admissible.

EXAMPLES : (i) F = X*, T = S(X) and we have the MIP.

(i) X =Y*, F = ¥, T = D(S(Y)), which is dense by Bishop-Phelps
Theorem (5], and we have the w*-MIP.

Now, since B(X) € C, 7 is the norm topology on X* and E, = {w*-
denting points of B(X*)}. We need the following reformulation of Lemma
2.2:

Lemma 2.4 For z € S(X), F, T as above and € > 0, the following are
equivalent :

(5) ze M,

(%) z determines a slice of B(F) of diameter less than e

(i1%) There exzists 6 > O such that

dia[U{D(y) N S(F) : y € TN Bs(z)}] < e.
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Proof : (i) = (i) = (¢17) follows as easy adjustments of Lemma 2.1.
(##4) = (i) Let 6 > 0 be as in (44i). Let d, = dia[U{D(y) N S(F) : y €

T N Bs(z)}] < e. Choose 6, > 0 such that 62 + 26, < 6§ and 62 + 26,/ <

1—d,/€). Let y € S(X), 0 < A < §,. Then as in the proof of Lemma 2.1,

z+ Ay

llz =+l ™
Find z1,z; € T such that nﬁiﬁ —zx" < A? and "":%:5“ —zz" < A2

Let fi, f; € S(F) such that f; € D(x;), ¢ = 1,2. Observe that ||z; — z|| <

A? 42X < 62426, < 6, i.e., 1,72 € T N Bs(z). Thus ||fi — f2|| < d,. Now,

osl—h(ﬁ):ﬁ(“_ﬁ)s

So, fi(z+Ay) = (1 —A?)|lz+ Ay||. Similarly, f2(z— Ay) > (1—A?)||z—Ay||.

So, we have

zf| < 2.

z+ Ay 2
——— — <AL
ll= -+ Ayll -

Z1

lz+ Ml +lz= 2l =2 _ falz+2) + fa(z = dy) —2(1 = 2?)
X = 1= A7)
(fi+ f2)(2) =24+ A(fr— f2)(y) +22*
AL = 2)
IIfi = fall + 22 d, + 2 d, + 26,
< 1- 2 S1ox S 1=g

do + 2X
(since + is increasing in A). Thus,

1—-22

wp  lztMlltlz=dyl -2 _ di+26
veS(X),0<A<60 A 1-62

by the choice of 6,. u
DEFINITION : Let Df : T — S(F) be defined by Dr(z) = D(z) N S(F).
We say that Dr is quasi-continuous if for every f € S(F) and € > 0, there
exists £ € T and § > 0 such that y € Bs(z) N T implies Dr(y) C B.[f].
Notice that for X = Y* and F = ¥, Dy is the inverse duality map.
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Now, we are in a position to prove :

Theorem 2.5 If X, F and T are as above, the following are equivalent :

(a) The w*-denting points of B(X*) are norm dense in S(F).

(b) For every € >0, D(M.) N S(F) is norm dense in S(F).

(¢) If C1,C; € C are such that there ezists f € F with sup f(Cy) <
inf f(Cz) then there ezist disjoint closed balls B,,B, such that
C; C B;, 1 =1,2.

(d) X has the F-MIP.

(¢) Dp is quasi-continuous.

(/) For every support mapping ¢ that maps T into S(F) and for every
norm dense subset A of T, $(A) is norm dense in S(F).

(Observe that since M, is open and T' is dense, D(M.) N S(F) # @
whenever M, # 0.) 5
Proof : (a) = (b) Let f be a w*-denting point of B(X*) and ¢ > 0.
As noted above f € S(F). Proceeding as in Theorem 2.3 (we may take
K = B(X) and so, K, = B(X)), for any 0 < 1 < &, there is z € S(X)
and o > 0'such that f € § = S(B(X*),#,a) and dia(S) < 7. Since T
is dense in S(X), by Lemma 1.8, there is y € T and § > 0 such that
fe€S8'=5(B(X"),§,6) and S' C S. Again as in Theorem 2.3, y € M,NT
and for any f, € D(y) N S(F), |f, — fll <n.

() = (¢) = (d) = (f) Just a simplified version of the implication
(6) = (c) = (d) = (e) in Theorem 2.3 where we replace K by B(X).

(e) = (f) Follows from definitions.

(f) = (e) Suppose Dr is not quasi-continuous. Then there exist f €
S(F) and € > 0 such that for all z € T and § > 0, there exists y(z, 6) €
Bs(z) N T such that Dp(y) € B.[f].

Let A = {y(z,6) : £ €T, 6§ > 0}. Then A is dense in T and we can get
a support mapping ¢ that maps T into S(F) and ¢(A4) N B,[f] = 0.

(e) = (b) Let f € S(F) and € > 0. Let 0 < n < &/2. By (e), there exists
z € T and 6 > 0 such that y € T N Bs(z) implies D(y) N S(F) C B,[f].
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But then dia[U{D(y) N S(F) : y € TN Bs(z)}] < 27 < €. So by Lemma 2.4,
€ M,NT and f, € D(z) N S(F) implies ||fz — f|| < 7.

(b) = (a) For n > 1, let D, = {f € S(F) : f is contained in a w*-open
slice of B(F) of diameter < 1}. By Lemma 2.4, D(My/n) N S(F) C D.
Thus, for all n > 1, D, is norm open dense subset of S(F) and by Baire
Category Theorem, ND,, is dense in S(F). But, it is easy to see that ND,, =
{w*-denting points of B(X*)}. ]

For completeness, we record in full the following immediate consequences,

most of which are well-known results in the MIP literature.

Theorem 2.6 [21, Theorem 2.1 and 3.1] For a Banach space X
(1) the following are equivalent :

(a) The w*-denting points of B(X*) are norm dense in S(X*).

(b) For every € > 0, D(M,(X)) is norm dense in S(X*).

(¢) Whenever C,,C, are cloaeé bounded convez sets in X with
dist(Cy,C3) > 0, there exist disjoint closed balls By, B; such
that C; C By, i = 1,2.

(d) X has the MIP.

(e) The duality map is quasi-continuous.

(f) Every support mapping maps norm dense subsets of S(X) to
norm dense subsets of S(X*).

(2) the following are equivalent :

(a) The denting points of B(X) are norm dense in S(X).

(b) For every € >0, D™'(M.(X")) is norm dense in S(X).

(¢) Disjoint w*-compact convez sets in X* can be a‘eparatad by
disjoint closed balls.

(d) X* has the w*-MIP.

(e) The inverse duality map is quasi-continuous.

() Every support mapping that maps D(S(X)) into S(X) maps
norm dense subsets of D(S(X)) to norm dense subsets of S(X).
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Proof : (1) Let dist(Cy,C3) = 6 > 0. Let K; = Cz + Bs/2(0). Then C; and
K are disjoint closed convex sets and K, has non-empty interior. Now,
f € X* that separates C; and K, strictly separates C; and C;. Thus (1)
follows from Theorem 2.5.

(2) Observe that {# : z is a denting point of B(X)} = {w*-denting
points of B(X**)}. Now (2) is immediate from Theorem 2.5. |

REMARK : Since disjoint closed balls always have positive distance, this
result cannot be strengthened. Note that this Theorem and Corllary 2.3.2
considerably strengthen Corollaries on p 341 and p 343 respectively of [56].

In the following proposition, we collect without proof some observations
regarding the MIP. Recall (from [22]) that a norming subspace of X* is

minimal if it is contained in all norming subspaces.

Proposition 2.7 For a Banach space X

(a) If the norm is Fréchet differentiable at all z € S(X), then X has
the MIP and is Asplund. If the norm is smooth at all z € S(X), then
X has the CL

(b) [42] If X is finite dimensional, then X has the MIP (equivalently,
the CI) if and only if the eztreme points of B(X*) are dense in S(X*).
In particular, a 2-dimensional space has the MIP if and only if it is
smooth.

(¢) [42] If the w*-strongly ezposed points of B(X") are dense in S(x),
X has the MIP.

(d) [21] If X has the MIP and the norm is Fréchet differentiable on a
dense subset of S(X), then the w*-strongly ezposed points of B(X*)
are dense in S(X*). In pariicular, this happens when X has the MIP
and either X* has the w*-MIP or X is Asplund.

(e) [51] If X is separable and has the MIP, then X is Asplund.

() If X has the F-MIP, then F is the minimal norming subspace of
X*. Hence, if X has the MIP, then X* contains no proper norming
subspace. In particular, X* has the MIP implies X is reflezive.

(9) X has the MIP implies X** has the w*-MIP.
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REMARKS : 1. Apropos (d) above, does X has the MIP imply X is
Asplund ? In this context, Sullivan [51] has shown that if for some € > 0,
M, = S(X), then X is Asplund.

2. As a strengthening of (f) above, he has also proved that if X is the
range of a norm one projection in a dual space and for some 0 < € < 1,
D(M,) is dense in S(X*), then X is reflexive.

3. On the other hand, Godefroy and Kalton [22] have proved that if
X is the range of a norm one projection in a dual space and every closed
bounded convex set in X is the intersection of finite union of balls, then
X is reflexive.

4. Does the minimal norming subspace of the dual, if it exists, always
satisfy our standing assumption of this section ? Does there exist a subspace
F of X* satisfying our standing assumption that is minimal with respect
to this property ?

5. Is the converse of (g) above true ? -

2.3. A Digression

In [21], a version of Lemma 2.4 was proved for X = Y*, F = ¥ using
the Bollobds’ estimates for the Bishop-Phelps Theorem (see [5] and [6]).
Specifically, the authors of [21] used the fact that in this case the following
holds :

For every z € S(X) and every sequence {fn.} S(F) such
(*){ that fa(z) —> 1, there ezists a sequence {z,} T and

fzn € D(z,) N S(F) such that ||z, — z|| — 0 and || fz, — fal| — O.

<
<

In fact, one can show that in this situation, the following stronger prop-
erty holds (see [20]) :

For every z € S(X), f € S(F) and e > 0 with f(z) > 1 — &?
(*x) { there ezists y € T and f, € D(y) N S(F) such that ||z —y|| <€
and ||f = fyll <e.
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Using the fact that (+x) holds for F = X*, one can show that () also
holds if F is an L-summand in X*, i.e., there is a projection P on X* with
P(X*) = F such that for any f € X*, ||f|| = |Pf]| + ||f — Pf||. Here is a
quick proof.

Let z € S(X), f € S(F) and 0 < € < 1 be given such that f(z) > 1—¢?.
Then there exists y € S(X) and y* € D(y) such that ||z — y|| < € and
IIf = vl <. Note that ||f — Py*|| < ||f —y*]| < & <1, so that Py* # 0.
If y* = Py*, we are done. Otherwise observe that

1 = |lv’ll =Pyl +]lv" — Pyl and
1 v'(v) = Py'(y) + (' = Py)(v)
. . y' - Py’
1Pyl ||Py 1 (v) + v = Pyl (l[y'——ﬁs;'—ﬂ) (v <1

Thus, Py*/||Py*|| € D(y) N S(F), whence y € T'. Further

Il

I

Ilf = Pyl + @ = 1Pyl
If =Pyl +lly = Pyll=lf -yl <e

IA

-

Clearly, if (**) holds for the pair (X, F), it also holds for the pair (F, X).

In particular, () holds for each of the following :

(1) X = C[0,1], F = {discrete measures on [0, 1]},

(2) X = C|0,1], F = {absolutely continuous measures on [0, 1]},

(3) X = L'(0,1], F = C[0,1].
So, in these cases, (*) also holds and the proof of [21] can be used to prove
Lemma 2.4.

Another example of a situation in which (*x) is satisfied is furnished by
Proposition 3.4 in the next chapter.

However, one can construct examples (see below) to show that (xx)
does not, in general, follow from the density of T in S(X). It would be
interesting to know whether () does. Also it would be interesting to find
general sufficiency conditions for () to hold which would cover at least
the case X = Y* and F = ¥. In particular, is the following obviously
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necessary condition also sufficient for (**) to hold :
T is dense in S(X) and D(T) N S(F) is dense in S(F) ?

But these may be difficult problems.

EXAMPLE : Let X be a non-reflexive Banach space. Let FF C X* be a
norming subspace which is an L-summand in X*. Let P be the correspond-
ing L-projection. Let f, € (I — P)(X") such that ||f,|| = 1 and f, does not
attain its norm on B(X). Let F; = F @, IRf,. Then F; is a norming sub-
space of X* and f, € S(Fy). Let 0 < € < 1. Suppose there exists z € 5(X),
g € S(Fy) such that ||f, — g|| < € and g(z) = 1.

Now, g = f + af, for some f € F, a € IR. We have

1=llgll = Il7ll + llafoll = I /1l + |l

If «a =0, g = f and we have
e>|lfo—gll 2 |Pfo — Pyl = llgll =1

So, a # 0. Also, f = 0 implies g = af, and so f,(z) = %1, a contradiction
as f, does not attain its norm. Thus, f # 0.
But then,

1= 0(e) = 1(6) + afole) = 11 @ + lelse (7] <+ hot = 1

This implies f, (ﬁ) = 1. Again, a contradiction.

As noted earlier, the pair (X, F) satisfies (), so T is dense in S(X)
and D(Tr) N S(F) is dense in S(F). Now, clearly Tr, 2 Tr, but the above
shows D(TF,) N S(F) is not dense in S(F;). Consequently, though T, is
dense in S(X), () is not satisfied.

Also, interchanging the roles of X and Fj, the above shows that though
X is a norming subspace of Fy, Tg = D(Tr,) N S(Fy) is not dense, i.e., our
standing assumption is not satisfied.

Finally, we note that X = C[0,1], F = {discrete measures on [0, 1]}
and f, = Aljo,1/2) — Alj1/2,1) satisfies the hypothesis of the above example,
where A denotes the Lebesgue measure.
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Chapter 3

Bochner LP Spaces and
The ¢ Sums of Banach Spaces
with the MIP

3.1. The  Sums

That the existence of an equivalent renorming with the MIP or the CI is
stable under ¢, or ¢’ sums for 1 < p < oo was established by A. Sersouri
[47] using a renorming result for the MIP by R. Deville [9] and for the CI
by himself [47].

We can, however, prove the following direct result for the ¢ sums,
1<p<oo.

Theorem 3.1 Let {X, : a € T} be a family of Banach spaces. Then the
space X = (Qaer Xo)er with the usual £P-norm (1 < p < oo) has the MIP
(resp. the CI) if and only if for all a €T, the space X, has the MIP (resp.
the CI).

Recall that if X is as above, X* = (@aerX}) e, where

following lemma is well-known :

+§=1. The

1
»

Lemma 3.2 [50, p 154] Let {X,} and X be as above. A point z = (z,) €
S(X) is an extreme point of B(X) if and only if for all « € T, either z, =0
or z4/||zal| is an eztreme point of B(X,).

[50] also contains similar characterisations of various other types of

extreme points of B(X). In the dual situation, we can prove

26



Lemma 3.3 Let {X,} and X be as above. A point z* = (z}) € S(X*) is
a w*-denting point of B(X") if and only if for every a, either z}, = 0 or
z,/||zs|| s @ w*-denting point of B(X}).

‘We postpone the proof of Lemma 3.3 till the next section where similar
results will be proved in a more general setting.
Proof of Theorem 3.1 : (The MIP) : Let for all & € T', X, have the MIP.
Let z* = (z,) € S(X*). Fixe > 0. Let T, ={a €T : 2z}, #0}. For a € T,,
z3/||lzell € S(XZ) and since X, has the MIP, there exists yj, a w*-denting
point of B(X;), such that |3 — 12| < . Define 2* = (22) by

X { llzsllvs if a€T,
2z, =

[ otherwise
By Lemma 3.3, 2* is a w*-denting point of B(X*) and ||z* — 2*||; < &.
Conversely, if X has the MIP, let a, € [ and =z, € S(X;). Fix
0 < & < 1. The point z* = (z,) defined by
o= z,, if a=oa
0 otherwise
is in S(X*) and hence there exists y*, a w*-denting point of B(X*), such
that ||z* —y*||; <e.
Clearly, ||z}, — vy |l < € < 1 and so, y;, # 0. Also, by Lemma 3.3,
va/lluz, | is a w*-denting point of B(Xz,). Now,
Yoo

zt - Y
0 lyall

S 2l = vall + 11 = llvall < e + =i, Il = llva Il

< e+|z;, —vall <2¢

Hence, X,, has the MIP.

(The CI) : Let for all @ € T, X, have the CL

Let z* = (z}) € S(X*). Let K be a compact set in X. We may assume
K C B(X).

Let mq : X — X, be the co-ordinate projection. Then K, = 7 (K) is a
compact set in X,, for all @ € T. Fix € > 0. Choose ', C T', T, finite, such
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that ||z*xr\r,|l; < € and for all @ € T, z;, # 0. For a € T',, there exists yg,
an extreme point of B(X}) and a, > 0 such that ||z} — aayl|lk. < €llzi]l%,

where ||2}||x, = sup{|z%(ka)| : ka € Ka}. Define u* = (u}) by

Ug

. _ ) @ys if a€T,
o otherwise

Clearly, u,/||us|| = y is an extreme point of B(X}). So, by Lemma 3.2,
u*/||u*||y is an extreme point of B(X*) and for any k = (k.) € K, we have

|z —u)(k)| = | Ee:r(zf. —ug)(ka)|

ZL; (=% — aaya) (ka)| + ; |z (ka)|

< 3 sk = aavillxa + (X =2l (X Ilkall?)?
a€lo aglo aglo

< e 3 Nl + (X Ikall?)? < elllz"lIg + l1Kllp) < 26
a€lo aglo

IA

since z* € S(X*) and k € K C B(X). Hence ||z* — u*||x < 2e.

Conversely, let X have the CL Let a, € T, =}, € S(X5.), Kay S Xa
compact. Define z* € S(X*) as in the case of the MIP. Define K = {(za) :
Za, € Ka, and zo = 0 for o # o,}. Clearly, K is compact and for any
2" e X |21k = ll25, ll ko

Now, the CI in X,, clearly follows from that in X. n

REMARK : It follows from Proposition 4.1 of the next chapter that if
the ¢, or the £*° sum of a family of Banach spaces has the MIP (or the
CI), then each of them has the MIP (the CI). The converse is not true in
general as the finite-dimensional spaces £2,n > 1, fail the CL.

See also Proposition 4.2 below.

3.2. Bochner L? Spaces

Let X be a Banach space, (Q2,%, 1) a measure space, 1 < r < oo. Let
A C S(X). Define
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M. (4) = {feS(L(u,X)): fis of the form f = ix;x,;.. withn > 1
arbitrary, E; € T and z;/||z:|| € A for al‘i:il— 1,2,...,n}
P(A) = {fe S (uX)): fis of the form f = Ez.xg with E; € &
and z; = 0 or z;/||z:|| € A for all ¢ > 1} and
N(A) = {feS(L(n,X)): for almost all t € 1, either f(t) =0 or
F@&/1£@1 € A}
Note that M,(4) C P(4) € N.(4) C S(L" (4, X)).

The following results are well-known :

(1) If A = {extreme points of B(X)} then N,(4) C {extreme points of
B(L" (1, X))}. (See, e.g., [52]).

(2) If A = {strongly exposed points of B(X)} then N,(4) 2 {strongly
exposed points of B(L" (i, X))} 2 M.(4) ([32,23,24]).

(3) If A = {denting points of B(X)} then N,(A) = {denting points of
B(L" (4, X))} [37).

A survey of similar results may be found in [50]. In the dual situation,
we note that :

(1) If A = {extreme points of B(X*)} then N,(A) C {extreme points of
B(L(u, X*))}. In the following we prove a stronger assertion.

(2) Any w*-denting point or w*-strongly exposed point of B(V,(u, X)),
being a w*-PC, necessarily belongs to L(u, X*)) (see Proposition 3.4
below). And it is implicit in [32] that if A = {w*-strongly exposed
points of B(X*)} then M,(4) C {w*-strongly exposed points of
B(L(u, X*))}. Below, we prove by different methods, a similar result
for w*-denting points of B(V,(u,X")), the proof being more involved
than that for w*-strongly exposed points.

But, first we note the following :

Proposition 3.4 Let Y = LP(u,X) and F = L (4, X*), 1 < p < oo,
£+% = 1. Then every simple functionin S(Y) isinT, whereT ={z € Y :
D(z) N S(F) # B}). So, T is dense sn S(Y), F s normsng and we are in
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the set-up of section 2.2. Moreover, the pair (Y, F) satisfies (x*) as defined
in section 2.3.

Proof : Let z = X, z;xg, be any simple function in S(Y) and
¢ : S(X) — S(X*) be any support mapping. Define

2(2) = Euz. [P~ ’4’(”: ”) XB:

Then, ®(z) € S(L(u,X")) S S(Ve(u,X*)) and (z, ®(z)) = 1. Thus,
@(z) € D(z) N S(F). This proves the first part of the Proposition.

Now, let z € S(L*(X)), f € S(L?(X*)) and € > 0 be such that f(z) >
1—¢&?. Choose 0 < 1 < & such that 0 < n[2(e+1) —n] < f(z) — (1—¢€?). Let
z and g be simple functions in S(L?(X)) and S(L9(X")) respectively such
that ||z — 2|, < and ||f — g||; < n. Refining the partitions if necessary,
we may assume that there is a finite partition {Ey, Es,..., E,} of Q1 such
that 2 = XL, zixg; and ¢ = T, 2/ xg;, where z; € X, 2z} € X*. Now,
9(2) = T, 2 (2)u(E:) > f(z) —2n > 1 — (e — n)?, by the choice of n.
Now, consider the discrete measure space Q' = {1,2,...,n} with measure
P, where P(i) = u(E:). Then z and g can be isometrically identified
with elements of S(LP(P,X)) and S(L?(P,X")) respectively. But as P
is discrete, L?(P, X)* = L7(P, X") and so (x*) is satisfied, i.e., there exists
vectors (y1,¥2,---,¥n) and (v3,93,...,¥;) in S(L?(P, X)) and S(L(P, X))
respectively such that %, i (%) P(i) = 1 and [T, ||z — w|PP()]/? <
(e = n) and [TF, ll2f — % [*P()]** < (e — n). Put y = TI, vixs, and
Ju = Siavixe, Then y € S(L7(w, X)), fy € S(L (4, X*)) and J,(y) =
Further ||z — ylly < (e —n) + 1 = ¢ and IIf = fylly < e =

The CI

Lemma 3.5 Let X be a Banach space, (Q,5,4) a measure space and
1< g<oo. Let A = {extreme points of B(X*)} C S(X"). Then

(a) Mq(A) = M(S(X*))N {exstreme points of B(Vy(u, X*))}.

(b) P(A) = P(S(X*))N {extreme points of B(Vy(n,X*))}.
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Proof : We prove (a), the proof of (b) being an easy adjustment.

Let FF = YL, z{xa;, € Mq(A). Suppose that there exist G1,G; €
B(Vy(, X*)) with F = 1(G1 + Ga).

We will prove that F' = G; = Gy, i.e., for any E € & with u(E) > 0,
F(E) = G1(E) = G;(E). Fix any such E € £. Put 4, = 0\ (UL, A4,).
Then m = {A,, Ay,...,An} is a partition of Q. For i = 0,1,...,n, define
Eq=EN A; and E, = E° (0 A;. Put 25 = 0.

Now, for any ¢ = 0,1,...,n and j = 1,2 with u(E;;) # 0, we have
= u(By) = F(E;j) = 3(G1(Ei;) + Ga(Ey)] or,

R [Gl(E-'J') + Gz(E-‘j)]
to2 w(Eij)
So,

el < % [Hcl(Eu)Il + IIGz(Eu')II]

and hence

ezl < X [NCv‘x(I‘Ju)IIq + NG:(E-:)W]

by the convexity of the map t — ¢ (¢ > 1). But then

1= ||F||3=§nz:||m(m)
- Sl uE) = X el
i=0 j=1 {(5.5):n(E:5)#0}
1 I Ba)le lexElE
P R )

1
< sl +liGalg <1
So, we must have

22 = [“GI(E':)“" + NGB gor al1 4,7 with u(Ey) #0

u(Eyj)
Then the strict convexity of the map t — 7 gives
o= UGB _ NGB
z|| = w(Ei) #0
leill = S = ey (5y)
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Thus,

whenever u(E;;) # 0

= 1[G(E) Ga(£,
ll=1l G2(E) + TGa(Es

)l
Now, the extremality of z;/||z}|| implies

z Gi(Ey) _  Ga(Ey)
izl NG (B G2 (E)l
whence
. _ Gi(Ey) _ Ga(Ey)
LB By whenever u(E;;) # 0
So,

F(E) = 2%’#(@:) - g Gi(En) = Gu(B)
Similarly, F(E) = G;(E).

The reverse inclusion being obvious, this completes the proof. u

Theorem 3.6 For any Banach space X, any finite non-atomic measure
space (0, %, ) and 1 < p < oo, the space L?(u,X) has the CIL.

Proof : Let 7 denote the topology on V,(u, X") of uniform convergence on
compact subsets of L?(u, X). By Proposition 3.4, B(L?(u, X*)) is w*-dense
in B(Vq(k, X*)), so L¥(u, X*) is r-dense in V,(u, X*), and simple functions
are norm dense in L?(u, X*). Thus it suffices, by Lemma 3.5(a), to show
that given any simple function F € S(L?(u, X*)), any compact subset K
of LP(u,X) and any € > 0, there exists a function F; € M,(A) such that
||FF — Fi||x < e, where A = {extreme points of B(X*)} C S(X*).

Now, since K is compact and simple functions are dense in L”(u, X),
there exists simple functions {g1,92,-..,9m} such that K C UZ, B,/4(g:).
Suppose we have found a function F; € M,(A) such that [(F—F;)(g;)| < /2
for all j = 1,2,...,m. Then for any g € K, there exists g; such that
llg = gilly < €/4. So, |(F — F1)(g)| < |(F— F1)(9)| + |(F — Fi) (9 — 95)| <
Lot (IF ], + I15l) - llg = g5lly < de+2 - 3e = &, since | Flly = | Flly = 1.

Therefore we may as well assume K is a finite set {g1,92,...,gm}. Fur-

ther, passing to finer partitions if necessary, we may assume there exists a
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partition Ay, Aa,..., A, of (1 such that u(4;) >0forall¢=1,2,...,n and
each of the functions g1, ¢2,...,9m and F take constant values on each A4;,
i.e., the functions ¢1,9z,...,gm and F have the form F = ., iz} x4, with
z; € §(X*) forallt =1,2,...,nand g; = X0, ZijXa, forallj =1,2,...,m,
where some of the ¢;’s and z;;’s may be zero and the e;z}’s and z;;’s need
not all be distinct. Then,

F(g;) = > oz} (zij)u(As) for all j = 1,2,...,m
=1

Now, u is finite implies ||F|l; = £, |ai|s(4A) < co. Fix 0 < n < &/||F||s.
Since B(X*) is w*-compact and convex, by the Krein-Milman Theorem we

have :

for each? =1,2,...,n, there exists A\;xy > 0,k =1,2,..., N with
iy A = 1and 7}, zf,. . ., 7]y, extreme points of B(X") such
that

N
|(z; =3 Aikzli) (zre)| <nm forall r =1,2,...,n, s =1,2,...,m.
k=1

Since p is non-atomic, for each i =1,2,...,n, there is a partition {4,
Aizy..., Ain} of A; such that u(Ai) = Aixp(A;) for all k = 1,2,...,N.
Define

n N
Fy=3"3 oi%iXaa
i=1k=1

Then
Il = 2 Jul" 3= () = Z losloua(43) = 1F = 1

and since each zj, € A, Fy € M,(A). Further, for all j =1,2,...,m

Fi(g;) = Xn: i iz (i) u(Ai) = z": i iz (i) Ak (As)

i=1k=1 i=1k=1

5 a.»u(Ai)(i Narzi) (215)
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and so,

n N
|(F - F) ()] = ]g aip(A4)[z; — E Aixzi](zi5)|
n N
< el w(4)) - llai - gf\ik’:fz](z-‘iﬂ
< o3 lelu(a) = nlFls <e

u

REMARKS : 1. This shows that the CI is indeed much weaker than
smoothness, as L”(u, X) is smooth if and only if X is (see [36]).

2. If the existence of an equivalent CI renorming is hereditary, it would
follow from Theorem 3.6 that every Banach space admits an equivalent CI
renorming. This was also noted by Sersouri [47], although in a different
context.

The MIP

Coming to the question of the MIP, we need the following well-known
result :

Lemma 3.7 [50, p 158] Let (0, T, u) be a measure space, X a Banach
space and 1 < p < co. For {fn} and f in L?(u, X), if || fall, — ||f]lp and
fn— [ ae. [p], then || fn = fll, — O.

Lemma 3.8 Let X be a Banach space, (£2,5,u) a measure space and
1<p<oo, £+ ql = 1. Let A = {w*-denting points of B(X*)} C S(X*).
Then Py(A) = P(S(X*))n {w*-denting points of B(V, (1, X*))}.

Proof : Let ¢ = 2, z{xr; € P,(A). Then by Lemma 3.5(b), g is an
extreme point of B(V,(u,X")). So, by Lemma 1.6, it suffices to show that
g is a w*-PC of B(L(u,X")), i.e., to prove that if {ga} € B(L?(1,X")) is
a net such that g, - g then llga — gllg — O.
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Put E, = 0\ UZ,Ei. Then gaxe, - gxz, = O and gaXo\z, ~

gXa\e, = g. Now, by the w*-lower semicontinuity of the norm we have :

1= lglle < liminf [|gally < limsup|lgalle < 1
and hence
lim [|gally = 1= llglls
Similarly, we have
lim [|gaxa\z.llo =1
Now,
lgall§ = llgax. |3 + llgaxo\z, I3
so that
limsup |lgax, [} = lim(lgall; — llgaxa\z[I) = 0
Thus, it suffices to show that ||gaxn\£, — gllg = 0.
So, we may assume without loss of generality that (Q2,Z, u) is o-finite,
and for almost all ¢, g(t) # 0.
Fix € > 0, choose N > 1 such that =2y, ||z} ||74(E) < €. Put F =
UN, E;. We have,

llgxrll} < liminf ||gaxr|I§ < limsup llgaxr I3

and,
llgxarrllf < liminf [lgaxo\r[I§ < limsup [lgaxa\r|l}
Suppose
loxell < timsup gl
Then there exists a subnet {gg,} of {ga} such that
lim |9 xr [l = limsup [lgaxr I and lim [lgpaxa\F I exists.

Then
1= ||gaxrll§ +I9axa\r |3 < lim|lgp.x#[§ +lim |lgs. xa\r|l] = lim|ge.[I§ < 1
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a contradiction. So, we have,

llgxrIf = lim [|gaxrll

Similarly,
llaxavel§ = lim [lgaxa\r[I§
Now,
lloa = ally = ll(9a — 9)xrll + lI(9a — 9)xarrll§
< g = 9)xrll§ + [llgaxa\rlle + llgxarels)?
< Il ga = 9)xrllg + 227 [llgaxare lIE + lloxa\rlI2]

(by convexity of the map t — 7).
So, if ||(¢9a — 9)Xrllq — 0, and € > 0 is given, we can choose a, such
that for all a > a,,

(9 = 9)xFll} < € and [|gaxa\rll] < loxavrll] +€

i.e., we have for a > o, ||ga — g||7 < €+ 2971 - 3e.

Thus, it suffices to prove ||(ga — g)XxFllq — 0. So, again, without loss
of generality, we may assume u is finite and g is of the form L, z{xk; €
S(L3(, X*)) with {Ey, By, ..., E,} a partition of f1.

Suppose now, that ||go — g|l; 7 0. Then there exists €, > 0 and a
subnet {gp,} with B, > a for all a, such that ||gs, — g|l; > &, for all a.
For notational simplicity, put Ga = gg,. Then Ga € B(L(u, X)) for all
@, Go 5 g and ||Ga —gllqg > €, for all a.

As noted earlier,
lim [|Galle = 1 = llglls ®

Fix A € 5, u(A) > 0. Put A4y = ANE; and Ay = E; \ Ay, Fix Ay
such that u(4;;) > 0. For any z € X, zx4,; € LP(u, X), 50, {(2X 4,5 Ga) —
(€Xai759), ie., (2, [4,; Gadp) — (z,2})1(Ai;). This implies

1 w
—_— Gadp — z
WA Jay 7
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whence

[EA

<

IA

1 1
lim inf —— Gadyl|| < liminf —— G.|ld
yind ol [, Gadul < limint s [ 1Galdn

1/q
1
liminf | —— Gol|?d
« [ﬂ(A-‘i) /A-'i Il M]

Thus, we have

Nz 18 (As) < limnt [ , [Gall'du for all 4,5

Adding, we get

So,

A

n 2 n 2
llolly = 3= 3 s I*u(Ay) < 33 timinf [ [|Gall?du
15=1 i=1j=1 Aij

n 2
. aqy = lim i @ <
lim inf .-=§ ”§=1 /A“i ||Gall?dp = lim inf ||Gall§ < T

el ss(A) = limyint [, |Gl for all 5

Suppose, for some %,, j,, we have

Then,

Nl 190 (Ass) < llmsup/

I3, 176 (4iz) - <

making

1 — liminf > / ||G 19dp
1- > lm}’meHHGa”qdu

(5,3)#(80id0)

(5.9)#(30.30)

1-—

> llsilite(as)

(5,3)#(io1d0)

IG [1*du

19)#(i01d0)

1= |glly = §§1|z3||«u(A;f) <1
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So, we must have
=27 e(Ay) = lign/';‘j |G all*dss for all 4,5
Now, by (2) above and by the limsup-version of (2) we have that for all
%7,
Nl lu(45) =i [, 1Gelldn
Thus,

L ol = 3= ezl Aa) = 13 [ 1Gu0)ld = tin [, G (0

Since A € ¥ was arbitrary with u(A4) > 0, we have that for all A € £ with
u(A) >0,
tim [ 1Ga(@)lld = [, la(®)lldu

whence, in L (g, R), [|Ga()|| 2> [lg(-)|l. Now, since the space L?(u, IR) is
uniformly convex and ||g(-)|| € S(L?(x, R)), ||g(-)|| is a w*-denting point of
B(L?(u, IR)) and hence a w*-PC. So, we have

L 11Ga(e) Nl (e}l 17die — 0 ®
Again, fix A;; such that u(4;;) > 0. Then

1 .
i Gadp 5
w(4i;) Jay

and
i
—_— Galldu — ||z}
iy o, 16eldn — lsi]
so
L, Golt e
Jai; IGalldn [EH

Since z}/||z{|| is a w*-PC of B(X"), this means

z} _ fA,,Gad}‘
=il Ja,; IGalldu

Jay; Gadp

— Oor =i e
ll=fll wld)ll=]l

— 0 (as & — o0)
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Choose a net {€,} such that £, > 0 for all & and €, — 0. We have

/' Galt) / Ga(t) ,
i TG+ e ™ Tl
st = [Ga(t)] — e :
o0 [[Emeit=s] +4
ﬁ [, 111 = 1Ga(0)] - eulan
1 R
i [u(A,,) {5y Lo, N1o0 = 6@ P} +u(A.-,->s.,]
: 1/q
< Hau) [{ﬁ [, st - hGa(ol 14} m}

Now, by (3) and as e, — 0, we conclude that

IA

IA

Gal) G0l _,
L Tewrre® L T :
whence 1 G (t)
Tt~ As) Jas TGO +sa"“|i -°

Now, z}/||z}|| is a w*-denting, and hence denting, point of B(X*), so by
Theorem 1.5(d), we get

[, llzi = Ga(®)llan
= =1,
Galt)

alf = - Gao
< W[, i - et

Gl L=l = IGa(ll| +ea ,
+f~, TG+ e [E] ]

The first term of the sum goes to zero by (4) and the second by (3). Hence

we have

[, st = Galt)ldis — 0 0r [ flg(t) = Ga(t)ldi — 0

= Ga®)
- T —o @

Now,

3 Ga(t) Gal(t) a(t)”
Tl ~ TCa® +ea  TGa® +ea Tl

A

du
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Now, since A;; and A were arbitrary, we have actually proved that
96 = Ga(@)lldu — o

Using this fact and (1), we can choose {a,} such that both G,,(t) — g(t)
a.e. [u] and ||Ga,[lq = |lglle- Hence, we have, by Lemma 3.7, ||Ga, —g|l; — O.
But this contradicts the choice of {Gq}.

The converse follows immediately from Lemma 1.6, Lemma 3.5 and the
observation that if g =2, zixs; and {y}} C B(X"), vy, *> z,‘/Hz,‘” for
some k then go ' ik zixm, + |23 1viXE, € B(Vy(4, X*)) and gu 5 9. W
Proof of Lemma 3.3 : In the set-up of Lemma 3.8, put X = (@aerXa)er,
@ =T, & = Power set of I' and 4 = counting measure. Then L”(u,X) =
£(X) and LP(u, X)* = £2(X*) = L%(u, X*). Now,

£(X) = {((zap)aer)per : Z Z lzas]” < oo}
Identify X with the subspace {((2abap)aer)per} S €°(X), where

0 if a#p4
bap = .
1 if a=p
Then X* gets identified with the subspace {((z}6ap)acr)per} S £9(X*).
Observe that with this identification, a net {2} C B(X") is w*-convergent
to a point z; € S(X*) if and only if the net {z;} C B(£&(X")) is w*-
convergent to z} € S(£7(X")).
Now, Lemma 3.3 follows immediately from Lemma 3.8. u

Lemma 3.9 Let X be a Banach space, (0, Z,1) a probability space and
1<r<oo. Let AC S(X). The following are equivalent :

(a) A is norm dense in S(X).

(8) M, (A) is norm dense in S(L" (4, X)).

(¢) P(A) is norm dense in S(L" (1, X)).

(d) N.(A) is norm dense in S(L"(u, X)).

Proof : Since simple functions in S(L"(u, X)) are norm dense (a) implies

(6), and since M,(4) C P.(A4) C N,(A), (b) = (c) => (d).
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Now, if z € S(X), zxa € S(L"(k,X)). So, by (d), there exists a
sequence {fn} C N.(A) such that ||fa — zxal — 0. But then some
subsequence {fn,} converges to zxa a.e. [u]. Now, if t € Q2 is such that
|| fnr(t) — zxa(t)|| — O, then || fn,(¢) — z|| — 0. Since ||z|| = 1, for all
sufficiently large k, || fa,(t)|| # O and

I
it —
As fn, € N.(A), all such f,, (t)/||fa,(¢)|| € A. Hence (a) follows. u

Theorem 3.10 For any Banach space X, finite measure space (11,5, u)
and 1 < p < oo and ,{w‘— % =1, the following are equivalent :

() X has the MIP

(#) LP(u, X) has the L(u, X*)-MIP.

Proof : Define Y, F and T as in Proposition 3.4. Suppose LP(u,X) has
the F-MIP. Let A be a norm dense subset of S(X) and ¢ : S(X) —
S(X*) be a support mapping. By Lemma 3.9, M,(A) is norm dense
in S(LP(n,X)). Let z = Y, zixe; € M,(A), define &(z) as in the
proof of Proposition 3.4. Then, & can be extended to a support map-
ping & : S(L7 (1, X)) — S(Vy(u, X*)). Now, & maps T into S(F), M,(A)
is norm dense in S(LP(u,X)) and LP(u,X) has the F-MIP, so by The-
orem 2.5, $(M,(4)) = ®(M,(A)) is norm dense in S(F). Observe that
Mq(#(A)) 2 ®(Mp(A)), so that My($(A)) is norm dense in S(L?(u, X*)).
Now, Lemma 3.9 implies that ¢(A) is norm dense in S(X*).

Since A was an arbitrary dense subset of S(X) and ¢ an arbitrary
support mapping on X, Theorem 2.6 implies X has the MIP.

Conversely, let X have the MIP. Let A = {w*-denting points of B(X")}.
By Theorem 2.6, A is norm dense in §(X*). By Lemma 3.9, M,(A) is norm
dense in S(L%(x,X"*)). And by Lemma 3.8, M,(A) € {w*-denting points
of V,(u, X*)}. Again by Theorem 2.5, L”(u, X) has the F-MIP. |

Theorem 3.11 For any Banach space X, any finite measure space (2, %, 1)
and 1 < p < oo, the space L?(u, X) has the MIP if and only if X has the
MIP and X* has the RNP with respect to p.
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Theorem 3.12 For any Banach space X, any finite measure space (2, T, 1)
and 1 < p < oo, X* has the w*-MIP if and only if L?(u,X)* has the
w*-MIP.

Proof : As observed earlier, if A = {denting points of B(X)} then N,(4) =
{denting points of B(L”(u,X))}. Now, the result is immediate from The-

orem 2.6 and Lemma 3.9. u

Corollary 3.12.1 Let X be a Banach space, let A denote the Lebesgue
measure on [0, 1], let 1 < p < oo and % + %. Then
(a) LP(X, X) has the CI
(b) X has the MIP if and only if L?(A, X) has the LI(A, X*)-MIP.
(¢) LP(A, X) has the MIP if and only if X has the MIP and X is
Asplund.
(d) . X* has the w*-MIP if and only if LP(), X)* has the w*-MIP.

REMARK : If X has the MIP implies X is Asplund — which is a long-
standing conjecture — then we must have L?(), X) has the MIP. However,
in the light of our results, this would be tantamount to showing that if
L?(A, X*) is the minimal norming subspace of V,(A,X*), then it must be
the whole of the latter space. But that seems unlikely.
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Chapter 4

Miscellaneous Results

4.1. The Subspace Question

Phelps [42] noted that a two-dimensional space has the MIP if and only
if it is smooth. Now, if the MIP were hereditary, a space X having the
MIP would then have all its two-dimensional subspaces smooth and hence
X itself would be smooth. However, Deville [9] sketches an argument to
show that it is possible to construct a non-smooth norm on IR® with the
MIP and Tsarkov [53] has produced one such norm. Below, we produce a
non-smooth norm on IR® with the MIP that is much éimpler than the one
given by Tsarkov.
EXAMPLE : In IR®, consider the following set

U={(z,9,2) : o] < 1,|2| < L,y* < (1 - 2*)(1 - %)}

U is a closed bounded symmetric convex set with non-empty interior.
Hence the Minkowski functional of U defines a norm on IR® equivalent to

the Euclidean norm. The norm turns out to be
1
1@ v, 2l = 5H(Ial +12)? + 4"} + {(Ial - =) + v

The corresponding pre-dual norm on IR® with the above as the dual

norm is given by
lax| + |az| if af < |aias|

_ 1/2
(a1, a2,05)| = { [(a2 + a%)gag +a}) sy
a2
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Observe that the surface of U is given by all those points where one
of the defining inequalities is an equality, and that except for points on
the plane y = O (where the restricted norm is the £ norm on IR?) all the
points on the surface are exposed and hence extreme points of U. So, by
Phelps’ characterisation, the pre-dual norm indeed has the MIP. Moreover,
the part of the sphere lying on the plane y = 0 is a square and hence, the
pre-dual norm is not smooth.

And if we consider the subspace a; = 0, the inherited norm is the rA
norm on IR?, which clearly lacks the MIP.

Observe further that the usual projection onto this subspace is a norm-1
projection. So, neither complemented subspaces nor even those comple-
mented by norm-1 projections necessarily inherit the MIP.

We, however, have the following :

Proposition 4.1 If X has the MIP (resp. the CI) and a subspace Y of X
is the range of an M-projection P, i.c., ||z|| = max{||Pz|, |z — Pz||} for all
z € X, then Y has the MIP (resp. the CI).

Proof : Let K be a closed bounded (resp. compact) convex set in Y. Since
X has the MIP (resp. the CI), there exist {;}ier C X and {ri}ies with
ri > 0 for all i € I, such that K = NierBy,[z:], where B,[z] = {z € X :
||z —z|| < r}. Let z € K CY, then for all i € I,z — x| < ri so that
lz = Pzil| = ll(z — 2:) = P(z — ) || < [l& =zl < r

CLAM : K =Mier{y €Y : |ly — Pxi|| < i}

Firstly, since || P|| = 1, we have K = P(K) C P[NerBy,[zi] C MNier{y €
Y : |ly — Pzl < ri} = RHS. Conversely, if z € RHS, for all i € I,
lle — zi|| = max{||lz — Px|,||z: — Pzi||} < ri, as ||z — Pxil| < ri. Thus
z € MierBr,|zi] = K. | |

REMARK : All the known examples where the heredity of the MIP fails

are non-smooth spaces. So, it is pertinent to ask :
Is the property of being a smooth space with the MIP hereditary ?
We note that no counterexample is possible in finite dimensions as smooth-

ness is hereditary and implies the MIP in finite dimensions.
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Recall that a property (say, P) is called three space property if for a
Banach space X and a subspace Y of X, Y has P and the quotient space
X/Y has P together implies X has P.

Proposition 4.2 For any two Banach spaces X, and X,, the space X =
X1 @ X, fails to have the MIP. And hence, the MIP is not a three space
property.

Proof : The dual of X is given by X* = X @~ X;, the extreme points of
B(X*) are of the form (zj, z}), where z} is extreme in B(X}), which are
‘far enough’ from norm 1 elements of the form (z*, 0).

Observe that in this case, for Y = X;, X/Y = X, and the above shows
that even if both X; and X, have the MIP, X does not. u

4.2. The MIP and Farthest Points

For a closed and bounded set K C X, define
(i) rx(z) = sup{|lz —y|| : y € K}, z € X. rx is called the farthest

distance map,

(i) Qx(z) = {v € K : |lz — y|l = rx(2)}, = € X. Qx is called the
anti-metric projection,
(iii) D(K) ={z € X : Qx(z) # 0}, and
(iv) 8(K) = U{Qk(z) : = € D(K)}, i.e., b(K) is the set of all farthest
points of K.
Call a closed and bounded set K densely remotal if D(K) is norm dense
in X. We note the following :

Lemma 4.3 [35,10] A closed and bounded set K is densely remotal with

respect to any equivalent norm if and only if K is weakly compact.

Lemma 4.4 [10, Proposition 3] If a dual space X* is w*-Asplund, then

every w*. t set in X* is d ly remotal with respect to any equivalent

dual norm.
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The proofs of the following Lemma and Theorem are essentially already
contained in [35] and [17]. For the sake of completeness, however, we include

the proofs which have been recast using our terminology.

Lemma 4.5 Let X be a Banach space and F be a norming subspace of X*.
If there exzists a o(X, F)-closed, norm bounded convez set K C X that is
not admissible, then there ezists a o(X, F)-closed, norm bounded convez
set Ky C X with non-empty norm interior (i.e., int(K;) # @) that is not

admissible.

Proof : Let K be as above. Let z, € [K]\ K. Since K is o(X, F)-closed,
there exists f € F such that sup f(K) < f(z,).

Let B be a closed ball such that sup f(B) < sup f(K). Let K; =
co’XF)(K U B). Then, K, is o(X, F)-closed, norm bounded convex set
with int(K,) # 0 and K C K;. Now, z, € K] C [K,] and sup f(K;) <

sup f(K) < f(,), ie., z, & K. u

Theorem 4.6 Let X be a Banach space and F be a norming subspace
of X*. Consider the following statements :
(a) Any o(X, F)-closed, norm bounded convez set in X is the o(X, F)-
closed convez hull of its farthest points.
(b) X has the F-MIP.
(¢) Any o(X, F)-closed, norm bounded, densely remotal convez set in
X is the o(X, F)-closed convez hull of its farthest points.
Then (a) => (b) = (c).

(The statements can be shown to be equivalent in some special cases. See
corollaries below.)
Proof : (a) => (b) Suppose there exists a o(X, F')-closed, norm bounded
convex set K C X that is not admissible. By Lemma 4.5, we may assume
int(K) # 0.

Let z, € [K]\ K and y, € int(K) C int([K]). Since [K]\ K is norm
open in [K], there exists 0 < A < 1 such that 2, = Az, +(1— )y, € [K]\ K.
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Note that z, € int([K]), and hence, so is any point of the form
(*) az, + (1 — a)z, a € (0,1], z € K.

Let Ky = co(K U{z,}). Then K, is o(X, F)-closed, norm bounded and
convex. The proof will be complete once we show that b(K;) C K.

Let z € X. Then B = By,(s)|z] is a closed ball containing K, and
so, contains [K]. Since each point of the form (*) is in int([K]), it is
in int(B), i.e., its distance from z is strictly less than rx(z). Note that
rx(z) < rx,(z) < rix)(z) = rx(z). Thus, Qx,(z) C K. Since z € X was
arbitrary, b(K;) C K.

(b) => (c) Let K be a o(X, F)-closed, norm bounded, densely remotal
convex set in X. Clearly, co®*¥)(b(K)) C K. Suppose there exists = €
K \ ©°X:F)(b(K)). Since X has the F-MIP, there exists y € X and r > 0
such that co”XF)(b(K)) C B,[y] and ||z—y|| > r. As K is densely remotal,
there exists z € D(K) such that |ly — 2| < }([lz—yl| — 7). Let z; € Qx(2).
Then z; € b(K) and hence, ||z — y|| < r. Now, since z € K, we have

lz=oll < llz =2l +llz =yl < 7x(2) + 2 = yll = ll=2 = 2l + ||z = vl
2 2 1
< =yl +2lz -yl <r+3(lz —vll =) = gllz —vll + 37
But this implies ||z — y|| < r, a contradiction that completes the proof. M

Corollary 4.6.1 If X* is a w*-Asplund dual space, then X* has the w*-
MIP if and only if every w*-compact convez set in X* is the w*-closed
convez hull of its farthest points.

Proof : Since X* is w*-Asplund, by Lemma 4.4, every w*-compact convex

set in X* is densely remotal and the result follows from Theorem 4.6. M

Corollary 4.6.2 [35] If X is a reflezive Banach space, then X has the MIP
if and only if every closed bounded convez set in X is the closed convez hull

of its farthest points.

REMARKS : 1. In studying the farthest points, the emphasis so far

seems to be on finding conditions on the sets to ensure existence of farthest
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points. In view of Theorem 4.6, a natural question is can one give conditions
on the norm to ensure that a ‘reasonably large’ family of sets admit farthest
points ? As far as we know, this line of investigation has rarely (see e.g.,
[18]) been pursued in the past. In particular, does the F-MIP imply every
o(X, F)-closed, norm bounded, convez set in X is densely remotal ? Is the
condition X* is w*-Asplund necessary in Corollary 4.6.1 ?

In this context, notice that if the norm is strictly convex (respectively,
locally uniformly convex), any farthest point of a closed bounded con-
vex set is also an extreme (resp. denting) point. So, if the MIP implies
every closed bounded convex set admits farthest points, then strictly (resp.
locally uniformly) convex spaces with the MIP must necessarily have the
Krein-Milman Property (KMP) (resp. the RNP) (see [7] or [13] for
details). However, the space ¢,, which does not have the KMP, admits
a strictly convex Fréchet differentiable norm (see e.g., [11]). Hence, the
answer must generally be no. Now, is the answer yes, if in addition, the
space has the RNP ?

2. As noted before, X has the MIP implies X** has the w*-MIP. And
if it also implies X is Asplund, then by Corollary 4.6.1, every w*-compact
convex set in X** is the w*-closed convex hull of its farthest points. Can

this be proved directly ?

4.3. The MIP in Projective Tensor Product

Spaces

For two Banach spaces X and Y, the dual of X ®, Y is £(X, Y*). Now,
the extremal structure of such operator spaces are known only in some very
special cases. See [29] or [34] for a survey. Here we only recall that the ex-
treme contractions from a Hilbert space to another has been characterised,
by Kadison [33] in the complex case (see also [30]) and by Grzaslewicz [26]

in the real case, as :
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Theorem 4.7 For Hilbert spaces E and F, T € L(E, F) is an eztreme

contraction if and only if T or T* is an isometry.
As a corollary we deduce :

Theorem 4.8 For real Hilbert spaces E and F of dimension > 2, E®, F
never has the MIP.

Proof : We simply note that the set of extreme contractions is closed and

is not the whole of S(L(E, F)). | |
Coming to 2-dimensional £P-spaces, some notations and preliminaries
first. For 1 < p < o0, z = (z1,%2) € £ with ||z|| = 1, define 2P~! =

(sgn(z1)|z1|P~1, sgn(z2)|z2[P~!) and 2° = (—z2,z;). Notice that, in general,
zP~! is the unique norming functional of z and {z, (z°)*~} is a basis for £,
and if p = 2, 2"~! = z and {z, z°} is orthonormal. Assume z; > z, > 0.
Now, for r € IR, denote by f,(z,r) = z+r(2°)?~ and F,(z,r) = || f,(z, 7).

Then Fy(z,r) = |z1 — ra§ P + |z, + ra§ '[P Clearly, Fp(z,7) = 1+ |r|?
if p =2 or z; = 0. Otherwise,

Fp(z,r) = 27 |raf — mizol’ + 27 - [raf + myzof?

= z;7G(rzh — z122) + 217G (rz} + z122)

where G(u) = [u[°. Thus

a
;3—,_5;:(3»”) = G'(ra} — z:33) + G'(re} + z122) 1)

and G'(0) = 0, G'(u) = p- sgn(u) - [u|P~1. Clearly, (1) also holds if p = 2 or
zz3 = 0.

Now, G'(u) is an odd function, positive and strictly increasing for u > 0.
Since the two arguments of G’ in (1) add up to r, we have if r > 0 (resp.
r < 0), the one larger in absolute value is positive (resp. negative), and
50, £ Fy(z,r) is positive (resp. negative), i.e., F,(z,r) is strictly increasing

(resp. decreasing) in r > 0 (resp. r < 0).
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Further, if p # 2 and z, # 0

F,(z,0) = 1
%F,,(z,o) = 0 .
25Fy(2,0) = p(p—1)(z122)P"? @
Z5Fy(2,0) = p(p—1)(p — 2)(2122)*~%(s — 3]
2eF(2,0) = p(p—1)(p —2)(p — 3)(z122)P*[1 — 3(z122)7)

and so, if 1 < ¢ < oo, for Hpe(z,r) = [Fy(=,1)]/?, we have,

Hpo(2,0) = 1

2 Hp(2,0) = 0

ZiHp(2,0) = g(p—1)(z122)7 ®
S Hp(2,0) = a(p —1)(p — 2)(z122)P~3(2% — 2]

2iHyy(2,0) = q(p—1)(z122)"4[(p— 2)(p — 3)

—3(zz){(P—-2)(p—3) + (P~ 9)(p — D}
Now, let 1 < p, g < co. Let T : £§ — £, ||T|| = 1. Then there exists
z = (z1,%,) € € such that ||z|| = 1 = ||Tz||. Let Tz =y = (y1,y:). Let
v = {T : ||T|| £ 1,Tz = y}. Thenforany T € Iy, (T —2°" 1 ® y)
annihilates z and so is of rank < 1, whence (T — 2! ® y) = 2° ® u, for
some u € £5. Further, T*(y?"!) = z*7%, that is (T'* — y ® z*~!) annihilates
y?~!, whence (T* - y® 2P ') = (y°)7" ! ® v, for some v € £§. Combining,
T must be of the form

T, =2z""' @y +s2° ® (y°)?*, for some s € R

In other words, I, = {T, : s € I, ||T3]| < 1}.

As in [34], pre- or post-multiplying by diag(sgn(z:), sgn(zs)),
diag(sgn(y1),sgn(yz)) and permutation matrices, if necessary — each of
which is an isometry — we may assume z; > z; > 0, y; > y2 > 0.

Now, T,(fy(z,7)) = f;(v,7s), and it follows from the above discussion
that for any r # 0, | T,(f,(2,7))||? = Fy(y,rs) is strictly increasing in s > 0
and strictly decreasing in s < 0, and Fy(y,rs) is unbounded in s. Now,
ifr#0, i

Fy,0) =1 = [F @0 < [Fy @]
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s0, there exists unique s, (z,y,r) > 0 and unique s_(z,y,7) < 0 such that
Fy(,rs5) = [Fy(z,r)]/" O]

And the quantity on the LHS becomes smaller or larger than the one in the
RHS according as |s| gets smaller or larger. Evidently, such s also exist for
(z°)~%, which we denote by f,(z,0). In fact, in this case, |s+(2,y,o0)| =
(=)= 1I/11(¥°)*~*||. Notice that for fixed z, y, s+ is a continuous function

of r # 0 and elementary examples show that lim,_ s+(z, y,7) may not even

exist. Let
si(zy) = inf{si(z,0,r) :r #0} si(z,y) = liminfs(z,y,7)
st(z,y) = sup{s_(z,y,r):r #0} s*(z,y) = lims:ps_(z,y,r)
i
where liminf, o5, (2,y,7r) = sup,soinf{s;(z,y,r) : |r| < €} and

limsup,_,os-(2,y,7) = infyosup{s_(z,y,7) : |r| < €}. Clearly, s** <
st <0< s} <sy,and T, € I if and only if s* < s < s}, i.e., T,y are

end points of I, and hence are extreme. Also note that if J,, =

s: T, is
contractive in a neighbourhood of z}, then s** = inf Joy and s§* = sup J,.
Now, either s} equals s4(,y,r) for some r # 0 (including r = oo), in
which case s} # 0 and T,; attain their norm on two linearly independent
vectors, or s} = s}’, in which case |s}’| < o0, s}* € J,,, in fact, Ty € Ipy.
Note that T attains its norm on two linearly independent vectors if and
only if T* attains its norm on two linearly independent vectors. Moreover,
any such T is exposed, and hence strongly exposed.
Fix z, y.
CASE(I) : (i) p = 2 and either ¢ = 2 or y; = 0; (ii) ¢ = 2 and either
p=2o0rz;=0; (i) p#£2#gand 2, =0=y,.
T, is a contraction <= F,(y,rs) < [F,(z,r)]/? for all r
<= 1+ |rs|? < [1+ [rP]/? for all r

plolp _
- ]s|q$%forallr#0

Note that the RHS = 1 if p = ¢ and is strictly decreasing (resp. increasing)
in |r| for ¢ > p (resp. ¢ < p).
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So, if p = ¢, s+ = *1, and hence, s} = s}’ = *+1 and T-; are isometries.
And, if p # g, the infimum of the RHS over r # 0 yields

1 if ¢g>p
0 if g<p

So, if ¢ < p, s =0, hence I, = {Tv}, and

z®e if p=2>g¢g
To={ ei®@y if p>qg=2
ei®e if p>g, pF#2+#¢

is an extreme contraction which attains its norm at precisely one point.

And if ¢ > p, s} = sy(00) = %1 with Ty, attaining its norm at both
z and (z°)?~!. It is interesting to note that if p # 2 # ¢, T} in this case is
the identity operator.

In each of the following cases our basic aim is to find extreme contrac-
tions that do not attain their norm on two linearly independent vectors.
Then necessarily s} = s}'. So, we first assume |s}’| < co. If we reach a
contradiction, we conclude that s}’ = 0o, whence s} # s}’ and T,; is not
of the desired type. Otherwise, we check whether s}' € J;,. If it does not,
we are again done. And if it does, we further check whether T,;- gives a
contraction. If it does not, we are done, and if it does, we get an extreme
contraction. We then check whether it attains its norm in any direction
other than that of z and only if it does not, we get an extreme contraction
of the desired type. This is exemplified in the analysis below.

To calculate s3', let {r,} be a sequence of real numbers such that r, — 0
and si(rn) — s3'. Since |s}'| < 0o, {sx(rn)} is a bounded sequence. Now,
by (4),

Fy(,rss(rn)) = [Fp(=,a)]? (5)

CASE (II) : g # 2, y2 > 0 and either p =2 or z; = 0.
In this case, subtracting 1 from both side of (5), dividing by r2 and
taking limit as n — oo, we get by L’Hospital’s rule and (2) that LHS—
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39(g — 1)s*(y1y2)772, where s = s3* and

0 if p>2
RHS — { oo if p<2
g if p=2

So, if p < 2, we have a contradiction, whence s}' = *o0, so that T,;
is not of the desired type, and if p > 2, s} = s}’ = 0, I; = {To} and
To = €] @ y is extreme, and clearly of the desired type.

If p = 2, we have

sHg=1)(viwa)"? =1 (6
Now, if the s given by (6) belongs to J.,, we must have
Fy(y,rs) < [Fy(z,7)]"? for all small r # 0 (7)
By (2), the Taylor expansion of the LHS above around r = 0 is given by
L+ gra(a = D7 @)™ + grala = (g = 27 @) lo! - ]
+$q(q —1)(g — 2)(g — 3)r*s* (vav2) "1 — B(vav2) ) + -+
while that of the RHS is given by
1+ %(;{r2 + %q(q—Z)r‘+<~
Comparing the two, we see that the coefficients of 1, r and 2 on both sides
are equal, whence the inequality (7) for small r implies the corresponding

inequality for the coefficient of * on both sides, which, for r >0 and r <0,

leads to the following equality :
1 -
59°a(a = 1)(g = 2)(nava)* (vl — v8) = 0 ®)

Combining equations (6) and (8), we have yf = y§ = 1/2, s* = 15402/,

But again the equality in (8) forces the inequality of the coefficient of r4,

%q(q -2) = 21—4S‘q(q —1)(q — 2)(g — 3)(v12)"*[1 - 3(v1v2)%)
(a-2)(¢—3)
or  3(¢g-2) > TTa-10
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Now for ¢ < 2, this leads to a contradiction, so that si* & J,,. And
for ¢ > 2, by [28, Proposition 1], 7, with these parameters is a contraction
that attains its norm only in the direction of z. So, for ¢ > 2, T, with these
parameters is of the desired type and for ¢ < 2, s} # 1, so that T, is not
of the desired type.

CASE (III) : p # 2, 2 > 0 and either ¢ = 2 or y; = 0.

This is the situation dual to case (II) and hence, if ¢ < 2, s} = s3* = 0,
I, = {To} and Tp = z"~' @ e, is extreme and of the desired type; if ¢ > 2,
s% # 837, so that T,; is not of the desired type, and if ¢ = 2, then for p < 2,
sy = sy =£\/(p— 1) 2077, z, =, = (1/2)"/?, T is extreme and of the
desired type, and for p > 2, T, is not of the desired type.

CASE(IV) : p#2# qand z; >0, y; > 0.

In this case too, subtracting 1 from both side of (5), dividing by 2 and
taking limit as n — oo, we get by (2) and (3)

(g — 1) (v192)*%s* = (p — 1) (z122)""2 ®

where s = s3*. Now,

R

(¢ — 1) (v132)? z122
12
Put a = [(”—M] / , then s = £a %2 whence
(g — 1) (v1v2)? 122
T, = 2P '@y+s2°® (y°)7t
F 7y 2B vy [ viTlz —yiTlm
= -1, -1, +a q—1 g—1
27y 23y Z1zz | —yi 'z YTz
ziyr iy vl _wnyl
= R 3 to T, 3
zy: zhys Y
z, z z
v v
L(h £ aud) L(af F avl)
— 1 2

10)
v v (
:i(z'f F ayf) ;: =4 + ayf)
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To continue, in this case, by (2), the Taylor expansion of the LHS of (7)

around r = 0 is given by
Lt Sala = e () ™ + ga(a = 1)(a — 27 )™ lu] - o)
+%q(q = 1)(g - 2)(g = 3)rs* (vav2)"*[1 — B(vav2) ] + -+
while by (3), that of the RHS is given by
1+ alp = )P (1) + oo = D(p — (a1 —

1900 = D@zl (p — 2)(p = 3) — 3(eaz) -
{p=2p-3)+ (- -1} +--

So, if s € Jy, by similar arguments, we must have
s*(g = 1)(g — 2)(vav2) (v — vd) = (p — ) (p — 2)(2122)" (=} — 2f) (12)
and
s*(g = 1)(g — 2)(g = 3)(naw2) (1 = B(v1w2)*) < (p — 1) (za22)"™* -
[(p = 2)(p = 3){1 = 3(z122)"} = 3(p — 9) (P — 1) (z122)"] (12)

Eliminating s from (9) and (11) and using the fact that z, y are unit vectors,

we get

(g=27[ t _J_@=27[_1 _
5 e -5 [ .
Also, dividing (12) by the square of (9), we get
(g-2)(g—-3) [ 1 (v—2)(P-3)[ 1
e (o R R e (e
Notice that if p = ¢, we get from (13) that z; = y;, 7 = 1, 2, whence

-4 -3- a0

from (9), s = %1, and from (11), y; = yz = z; = z; for s = —1. Also, (14)
is consistent with (13) and equality holds. Now, in (10), @ = 1, and so,

1
T = e and T_; = 0
01 10
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and hence, clearly, are isometries.

Now, let p # q. From (13) and (14), writing (7%)? = A, we get
(P—2)*(a—3) @-2(@=3) _ (p—2)(r—3)
-4 T oy ST pon AT 30

[(ﬂ"'z)z((I—:}) »—2)(p _3)]

(¢—2)(p—-1) (p—1)

P =2%g=3) _3-2r=3) _(1-2)=3)

@ D=1~ -0 ~ @-n -9

B [3(p—2)2(q¥3) —3("*2)(1773)]+[(p—2)’(q—3)

(1 =2 - 1) -1 [CEDICESY
_@=2)(a=3)] _, _
(e-1) ] 3(p—q)

Simplifying we get

(a=p)(p=2) , 24a(a—p)(ra—p—0q)

(P—1)(¢-2) 7~ (p-1(a—1)(¢-2)

So,if (a) 1<¢g<2<p<oo,or,(b)l1<p<g<2o0r(c)2<p<g< oo,
we have

a<2la-p-9 ; =, , 20-2(ps-p-g+2)

-2 =TT e-296-D

(15)
Andif(d)1<p<2<g<oo,or,(e)l<g<p<2o0r(f)2<g<p<oo,
we have

2(pa—p—9q ;. 4> 20a-2)(pa—p—q+2)
29— " ATIET G-

Now, (1z2)? = 1/A and z§ + =z} =1,500 < 1/A < 1/4,ie, A >4 or
A—42>0. :

(16)

But since (pg — p— g+ 2) = (p—1)(g — 1) + 1 is always positive for
1<p,g<oo,ifl<g<2<p< oo, ie., in case (a) above, we reach a
contradiction at this point, whence T is not of the desired type.
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Summarising the results so far, we have the following

Theorem 4.9 For 1 < p, ¢ < oo, an operator T : £; — & with ||T|| =1
is an extreme contraction
(¥) [26] for p = q =2, if and only if T is an isometry.
(5%) (28] for p =2 # q, if and only if T satisfies one of the following
(@) T attains its norm on two linearly independent vectors.

(b) T is of the form

=] *® if ¢g<2
TRy +s2°® (¥°)7! if ¢>2
where z is any unit vector and, in the second case, |yi|? = } and
8=+ (‘ 5 20@-2)/a,
(#3) [28] for p # 2 = q, if and only if T satisfies one of the following
(a) T attains its norm on two linearly independent vectors.
(b) T is of the form
o] %®Y if p>2
P lQy+sz°Q@yY° if p<2

where y 1s any unit vector and, in the second case, |z;|P = % and

s =4/(p—1)2@-9)/p,
(iv) [25] for p = g, if and only if T satisfies one of the following
(@) T attains its norm on two linearly independent vectors.

(b) T is of the form

=] 4@V ¥ p>2 nw#0
P l@e; if p<2, T T #0

(v) for 1 < ¢ < 2 < p < oo, if and only if T satisfies one of the
Jfollowing

(a) T attains its norm on two linearly independent vectors.

(b) T = 2P ' @ y with z, y unit vectors and z1Z2y1y2 = 0.
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REMARK : In the discussion preceeding Theorem 4.9, the conditions
(b) and (e) are dual to (c) and (f) respectively. And in the cases (b) and (c),
the inequality (15) implies

1+ (17)

(@-2)(pg—p-9q+2)
a(pa—p—4)

while in cases (e) and (f), the inequality (16) implies

14+ /(0—2)(pq—p—q+2)]sﬂ<l (18)
a(pg—p—2q)

Now, in cases (b), (c), (e) and (£), we have from (11) that for s < 0, both

sides of (11) must be 0, i.e., we must have z§ =z} = 1/2 = y{ = y!. But

1
2

then in cases (e) and (f), we have a contradiction. So, in these two cases,
s* gives extreme contractions not of the desired type.
Also in case (d), (16) is always satisfied and (11) implies that for s > 0,
z§ = z§ = 1/2 = y{ = y}. Now, combining Propositions 2 and 3 of (28], we
see easily that for z§ = 2§ = 1/2 = y{ = y§ for both s > 0 and s < 0, we
have a contraction that attains its norm only in the direction of z, i.e., we
get extreme contractions of the desired type.
Thus, we are left with the following cases unsolved :
(1) Case (b) with z, satisfying (17) for s > 0 and z; = 1/2 for s < 0 with
vy given by (13).
(2) Case (e) with z, satisfying (18) for s > 0 with y; given by (13).
(3) Case (d) with 2§ > 1/2 and s < 0 with y; given by (13).
Notice that for 2 + 1 =1 (p < 2), (13) gives z¥ = y{, i = 1, 2, whence
in this case, T, — as given by (10) — has a comparatively simple form.
We proceed now to find the closure of the extreme contractions in the
cases described in Theorem 4.9. In case (i), the set of extreme contractions
is clearly closed. Also, in the cases (ii), (iii) and (v), the set of operators
of the form (b) is clearly closed. And in case (iv), the closure of the set of
operators of the form (b) contains only the operators e¢; ® €;, 7,5 =1, 2

in addition.
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Let us consider the set of operators of the type (a) in cases (ii), (iv) and
(v). Let {T.} be a sequence of operators of the type (a). Let T, — T in
operator norm. Let Z, = (Zn1,Za2) be such that ||z,|| = 1 = || Thzn|. Let

TnZn = Yp = (Un1,Yn2). Then T}, is of the form
T =27 ® Y + 51 (2n, Un) 7o ® (47)*

where s} (zn,¥,) is as in our earlier discussion. For notational simplicity,

write s}(Zn,¥,) = *s,. Passing to a sub if n Ys

Z, — z = (%1,%2), ¥, = ¥ = (y1,¥2) (by compactness of the unit balls of
€5 and £3), and all the s,’s have the same sign, without loss of generality,
positive.

Clearly, ||T|| = 1 and Tz = y, whence T is of the form
T=2""@y+sz°® (y°)"

Also, as Tn — T, sn = |Ta — 22 ® gull/llagl - )] —
I1T — zP=t @ yl|/|lz°|| - |(w°)*~2||, i-e., {sn} is convergent. Clearly, s, — s.

Now, since T, is of the type (a), there exists z, = zp + rn(23)?~* with
rn # 0 € IR such that ||T,za|| = ||2,]|. Again we may assume all r,’s are of
the same sign, in particular positive and r,, — r, where 0 < r < co. If 0 <
r < 00,2z, = 2z =2z+r(2°)?"' and | Tz|| = |||, i.e., T is also of the type (a).
Also, if r, — oo, let u, = 2,/||2,]|. Then u, — u = (z°)*~!/||(z°)?~|| and
||Tu|] = 1, so that T again is of the type (a).

Now, suppose r, — 0. Then from ||T,2.|| = ||za|| we have
Fy(Uns Tn5n) = [Fp(@n,ma)|/? = 0 (19)

For (ii), if p = 2 and ¢ < 2, since T}, is of type (a), we have yn1yn2 # O for
all n. And if ¢ > 2, we have two possibilities; either there is a subsequence
for which yn1yn2 = 0, or, eventually yn1ynz # 0. In the first case, we restrict
ourselves only to that subsequence, and we have, by case(I), s, = 1 for
all n, whence s = 1. Also, y192 =0. So, T =z®e€; +z° Q@ ¢; (¢ # ), and
it is clear that T is of type (a) (see case (I)). And in the second case, we
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assume Yn1Yn2 # O for all n. Then dividing (19) by r2 and taking limit as

n — oo, we get by L’Hospital’s rule
(4= 1)s*(nay2)** —1=0 (20)

If ¢ > 2, for y1y2 = O, this leads to a contradiction, whence either r, /4 0
(in which case we get an operator of type(a)), or y1y2 # 0. In the latter
case, (6) and (20) coincides, i.e., we have s = s}*(z,y). Now, our analysis in
case (II) (see p 53) shows that only for y{ = y§ = 1/2, s} gives a contraction
(which is an extreme contraction of type (b)). And in every other case, we
run into a contradiction, i.e., we must have r, 4 0.

And if ¢ < 2, for y1y; = 0, (20) makes sense only if s = 0. In that case,
T = z ® e, which, by case (I), is an extreme contraction of the type (b).
And for y1y; # 0, we again have s = s}’ (2,y) and our analysis in case (II)
shows that this case always leads to a contradiction, whence r,, /4 0.

So, in both the cases, the closure of the set of operators of the type (a)
contains at most operators of type (b), and therefore, the set of extreme
contractions is closed.

Since case (iii) is just the dual of case (ii), the set of extreme contrac-
tions, in this case too, is closed.

In (iv), i.e., if p = g, by duality, it suffices to consider p > 2. Since T}
is of type (a), we have three possibilities; either there is a subsequence for
which both z,1zn; = 0 and yn1y.2 = 0, or, there is a subsequence for which
ZTn1Tnz 7# 0 and Yn1Yaz = 0, or, eventually both Zn1Z,.2 # 0 and yn1ynz # 0.

In the first case, we again restrict ourselves only to that subsequence,
and we have, by case(I), s, = 1 for all n, whence s = 1. Also, z;z; = 0 and
y1y2 = 0. Now again by case (I), T is of type (a).

In the second and the third case, dividing (19) by r2 and taking limit
— through a subsequence if necessary — as n — oo, we get in the second
case

(z1z2)P"2 =0
and in the third case

(V192)"7%8* = (z125)P72
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So, in the second case, y;y2 = 0, and we have a contradiction unless
T3z, = 0. And in that case, T is of the form diag(1,s) upto isomet-
ric factors of signum or permutation matrices. Now, T is a contraction for
—1 < s <1 and is extreme (in fact, an isometry) only for s = *1.

In the third case, if z;z; = 0, we get a contradiction unless y;y, = 0 or
s =0. If y;y; # 0, s = 0 = s}(z,y), whence T is extreme. And if y1y, = 0,
we get the conclusions as in the second case. If 1z, # 0, y1y2 = O leads to
a contradiction (and therefore, rn, # 0), and if y1yz # 0, s = s}’'(z, ) (see
p 55), so that T is an isometry and hence is of type (a).

Thus, in case (iv), the closure of the operators of type (a), and so
the closure of extreme contractions, can have at most operators of the form
diag(1,s), |s| < 1, upto isometric factors of signum or permutation matrices
as additional elements. However, we do not have precise description of the
closure.

In case (v), i.e., if 1 < ¢ <2 < p < oo, since T}, is of type (a), we must

have Tn1Zn2Yni1¥nz # O for all n. And a similar argument leads to
s%(g — 1) (v1v2)* " = (p — 1) (z122)" "

If 2y, # O the only situation that does not lead to any contradiction —
either immediate or to the fact that T is a contraction — is both y;y; =0
and s = 0. And in that case, s = 0 = si(=,y), so that T is extreme.
And if z,z, = 0, we must have s = 0, in which case, by cases (I) and (II),
s = 0 = s3(z,y) and T is extreme. Thus in this case too, the set of extreme

contractions is closed.

Corollary 4.9.1 In each of the following cases of 1 < p, ¢ < 00, £; @, €3
lacks the MIP (equivalently, the CI) :

i) p and q are conjugate ezponents, i.e., * + L =1.
q

1
B
(i7) Either p or q is equal to 2.

(s53) 2<p, ¢ <oo.

Proof : The dual of & ®, £ is L£(£, £), where 1+ % =1 and the
closure of extreme contractions in each of the above cases does not contain
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norm 1 operators of the form zP~! ® y, where-z and y are unit vectors with
T1Z2y1Y2 # 0. L

REMARK : The fact that operators of the above form do not belong to
the closure of extreme contractions in any of these cases seems to suggest
that this is a general ph on. It is possible that this is happens in
higher dimensions as well. Can one give a proof of this without going

through the characterisation of extreme contractions ? What seems to be

required is a more tractable necessary condition for extremality, or, for
belonging to the closure of extreme contractions.
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Chapter 5

Exposed Points of Continuity
and Strongly Exposed Points

In this chapter, we make the following change in our notations. For a
Banach space X and A C X, by A°, the polar of A, we mean A° = {f €
X*: f(z) < 1forall z € A} (i.e., we do not take the absolute value of f(z)).

If K is a closed bounded convex set in X and f € X*, we will say that
f € X* supports K at z, € K if f(z,) = M(K, f) and we let S(K,z,) =
{f € X*: f(z) = M(K,[)}. Note that $(K,z,) is a w*-closed convex
cone with vertex 0. We may sometimes abbreviate $(K,z,) by $(z,) when
there is no scope of confusion.

Call z, € K a relatively ezposed point of K if for each z € K \ {z,}
there exists f, € S(K,z,) such that f(z) < fi(z,). Call z, a vertez of K
if for each z € X'\ {z,} there exists f; € S(K, z,) such that fz(z) # fz(z.),
or, in other words, S(K,z,) separates points of X. We can also define
w*-relatively exposed points or w*-vertices similarly. Obviously, a (w*-)

vertex is (w*-) relatively exposed.

5.1. The Counterexample

Let {6, : n > 1} denote the canonical basis of £!. Recall that £! as a dual

space has a w*-topology induced on it. Let
R § 1 1
K =to" [{;6‘4—6,.:nZZ}U{;iﬁx—zﬁ,.:nZZ}]

From Milman’s Theorem (see [43, p 9]) and the metrizable version of Cho-
quet’s Theorem ([1] or [43]), it follows that z € K if and only if z is of
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the form 1 1
1
z= gau(;ﬁ + 6n) +"ZZ:1pn(;2‘6l . n)

with an, Bn > 0 and Tpyz(an + Ba) < 1 (see [7, Example 3.2.5] for the
details in a similar situation). Observe that (—1,0,0,...) € ¢, C £* = (£!)*
exposes 0 = (0,0,...) € K. If f = (a,) € £° supports K at 0, then Lo, &
an < 0 for n > 2, from which it follows that a; < 0 and |a,| < %|a;], (n > 2)
and we see therefore that (a,) € c,. Since f(%61 + 6m) = La; + ap — 0
as m — oo, S(K,f,e) = {y € K : f(y) > —a} contains 16, + 6, for all
sufficiently large m, whence diam[S (K, f, )] > || 161 + 6m|| > 1, showing
that O is not strongly exposed.

Next, for m > 2, let f,, = (—l,—;l,,...,—m%,—;:;,-—; .) € £* where
the mth coordinate onwards of f,, has the value —% and consider the slice

m ={y € K : fm(y) > —;%} determined by f,.. Clearly, 0 € S,, and if

1 1 1
=3 an(=61+6,) + X Ba(=561 — =6,) € Sm
nz2 n2z L
we must have

m—1
_L<_Zanm +n za"
n=

Zﬂn e +Zﬂ,.
n=2

1 m_l n+1l mi+n m+n
LI ot .
T ey m(n+1)+§n°" nt1
ml n+1l m?—n n—m
+ e LAl R i
I S D fg”" e
nl n+1 n+1  m-—17% n+1 1
> . R L . SR
2 Loy +’§man +m+12 s s

on using successively the following easily verified inequalities :

I0) foraumzlandnsm,'ﬂn‘:';)zL
(ii) for all m > 1, +" >1.
1 —_ 2
(iii) for alln < m, n i , since ") is decreasing in n.*

(n+1)“m+1 +1
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n—m 1

(iv) for allm,n>1, 7 S4m'
Thus,
m+1 m+4 m+1 n+1 w2 n+1
2T
m—1 4m? = m—lg:z " +"§zﬂ" n?
nt+l 7= n+1
> > an- + > Bn—3
n>2 n=2
Now,
1
ol = 5 (%) Sen- 2| s Tan B e a2
n>z \ n>2 n>2 n
< (m+1)(m+4)+zﬂ _(m+l)(m+4) m+1
4m?(m 4m?(m — 1) “mr
= M<4foranm>z
4m(m — 1)

Hence, diam(S,,) < 15/2m — 0 as m — oo and we conclude that O is a
denting point of K.

REMARKS : 1. Let F, be a w*-cluster point of {16; + 6, : n > 2}
in K. Then F, # 0 since F,(f,) = 1 where f, = (1,1,...,1,...) € £*°. As
§(0) C c,, we must have F, € n{ker(f) : f € $(0)} and hence 0 is not w*-
relatively exposed in K. This observation proved useful in the formulation
(d) of Theorem 5.3 in the next section.

2. Since $(0) C ¢,, one in fact has $(0) = {(as) € ¢, : a1 < 0 and
lan| < Llas|, n > 2}. It is now easy to see that $(0) separates points of £!,

i.e., 0 is a vertex of K.

5.2. A Characterisation Theorem
We need the following lemma :

Lemma 5.1 Let K be a compact convez set in a locally convez space E.
Then
(a) z, € K is ezposed by f € E* if and only if {S(K,f,a) : a > 0}
forms a local base for the relative topology on K at z,.
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(b) A relatively ezposed point z, € K is ezposed if and only if z, is a
G5 point.

Proof : (a) The sufficiency is obvious and the necessity follows from the
compactness of K.

(b) [We follow [1, p 119]] If z, is exposed by f € E*, then {z,} =
Nn>1S (K, f, 1) is clearly Gs.

Conversely, let z, be relatively exposed and {z,} = Np»1W,, where
W, is open in K. Now, an easy compactness argument shows that for
any compact subset F' of K with z, ¢ F, there exists f € E* such that
f € S(z,) and f(y) < f(z,) for all y € F.

Since for all n > 1, W, is open in K, by the above argument, there
exists fn € S(z,) such that fno(y) < fa(z,) for all y € K \ W,. It is now
esay to show that f = 32,5, 7 fn exposes z,. | |

Theorem 5.2 Let K be a w*-compact convez set in a dual Banach space
X* and z; € K be a w*-PC. The following are equivalent :

(a) =, € K is w*-strongly ezposed.

(b) z; € K is w*-ezposed.

(¢) =, € K is w*-relatively ezposed.

Proof : Follows from Lemma 5.1 and the fact that a w*-PC is a w*-Gj
point. u

Theorem 5.3 Let K be a closed bounded convex set in a Banach space X
and z, € K be a PC. The following are equivalent :

(a) z, € K is strongly ezposed.

(b) %, € K is w*-strongly ezposed.

(¢) %, € K is w*-ezposed.

(d) £, € K is w*-relatively ezposed.

(e) X*/55(S(z0)) = 7[(K — z,)°] where 7 : X* — X*/5p(S(,)) is

the quotient map and the closure is with respect to the norm topology.

Proof : (a) <= (b) is immediate, while (b) <= (c) <=> (d) follows from
Theorem 5.2 and Lemma 1.4.
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(d) <= (e) : Using definitions, simple separation arguments and polar
calculations d la the Bipolar Theorem, each of the statement below is easily
seen to be equivalent to the next :

(1) %, is w*-relatively exposed in K.

(2) 0 is w*-relatively exposed in K;, where K=K —z,.

@) Kin[n{ker(f) : f € $(z)}] = {0}

() Ki°0[sB(S (=) = {0}, ()
(since N{ker(f) : f € S(z0)} = [6B(S (2.))]* = [5P(5(20))]° and K =
K{°)

(5) K7 USB(S(z.))]° = {0}.

(6) eo[K7 Usp(S(z.))] = X*.
This last condition implies that [5p(S(z,)) + K] = X* which in turn
means that
X*/5p(8 (2,)) = 7(K7). (%)
Conversely, suppose that (+#) holds and that ¢ € K n [5p(S(=z.))]°.
We get immediately
(a) ¢ € [sB(S(2.)))° = [X"/5P(S (2.))]", and
(b) M(K3,¢) < 1.
But (a) and (b) together give M (7 (K7),$) < 1 and using (**), we see that
¢ = 0, thus (%) holds. | |

Corollary 5.3.1 If K is weakly compact then z, € K is strongly ezposed
if and only if z, is exposed and PC.

Proof : Follows immediately from Theorem 5.2 or from Theorem 5.3, once
we observe that if K is weakly compact, K = K and that 2, € K is
w*-exposed if z, € K is exposed. | |

Corollary 5.3.2 (a) Let K be a closed bounded convez set in a Banach
space X. z, € K is strongly ezposed if and only if z, is contained in slices

of K determined by functionals from S(K,z,) of arbitrarily small diameter.
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(b) Let K be a w*-compact convez set in a dual Banach space X*. z; €
K is w*-strongly ezposed if and only if =, is contained in w*-slices of K

determined by functionals from S(K,z}) N X of arbitrarily small diameter.

REMARKS : 1. Note that the proof of (d) <=> (e) in Theorem 5.3 does
not use the fact that z, is a PC.

2. If z, is a PC and %, € K is a w*-vertex, or equivalently, z, is a
PC and sp(S(z,)) is dense in X, it follows from Theorem 5.3, that =z, is
strongly exposed. But, if z, € K is a strongly exposed point with a unique
(upto scalar multiples) exposing functional — this happens for instance for
any boundary point of the unit ball of the Euclidean space IR* — then
sp(S(z,)) is 1-dimensional and thus X* # 5p(S(z,)), i-e., this condition
is, in general, not necessary. And since 0 in our example is a vertex (see
Remark 2), the weaker condition that z, is a PC and z, € K is a vertex is
no longer sufficient for z, to be strongly exposed.

3. As pointed out earlier, NesoM, = {z € S(X) : the norm is Fréchet dif-
ferentiable at z} and by Theorem 1.9, D(N.>0M,) = {w*-strongly exposed
points of B(X*)}. We note the following consequence of Corollary 5.3.2(b) :

{w*-strongly exposed points of B(X*)} = Ne»oD(M,).

Now, if X has the MIP, for each € > 0, D(M,) is dense in S(X"). And
the necessity of Phelps’ condition (a) reduces to the question whether the
intersection of these dense sets is also dense. Naturally, if each of these sets

was a Gjs, the answer would be yes. So one asks :

Does the quasi-continuity of the duality map force the image of
M., an open set, to be G5 ?

5.3. A Geometric Characterisation of Banach
Spaces Containing ¢!

Let us say that a closed bounded convex set K in a Banach space X has

Property (P) if every exposed PC in K is strongly exposed; and that a
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Banach space X has Property (P) if every closed bounded convex set K in
X has Property (P).
It follows from the counterexample and Corollary 5.3.1 above that
(i) If X has the Property (P) then X does not contain a copy of £*.

(ii) If X is reflexive, then X has the Property (P).
The monograph [15] is an excellent introduction to the theory of Banach
spaces not containing £!. Here we show that a weaker version of the Prop-
erty (P) is equivalent to X not containing ¢!, while among a certain class

of Banach spaces, Property (P) implies reflexivity. Specifically we prove :

Theorem 5.4 Let X be a Banach space.
(a) X does not contain a copy of £' if and only if every norm bounded,
weakly sequentially complete convez set in X has Property (P).
(b) If X is weakly sequentially complete, then X is reflezive if and only
if X has Property (P).

Proof : (a) Since £! is weakly sequentially complete (see [16]), so is any
closed convex subset of it, in particular, so is the set K in our example of
Section 5.1. Note that if X contains £!, the set K above can be identified as
a norm bounded, weakly sequentially complete convex subset of X which,
by Section 5.1, lacks Property (P).

Conversely, if X does not contain a copy of £! and K C X is weakly
sequentially complete then K is weakly compact. Indeed, if {z,} is a se-
quence in K, then by Rosenthal’s £! Theorem (see [15] or [12, Chapter
XI]), it has a weak Cauchy subsequence which, by weak sequential com-
pleteness, is weakly convergent. And hence, by Eberlein-Smulian Theorem,
K is weakly compact and, by Corollary 5.3.1, K has the Property (P).

The proof of (b) is similar. L

REMARK : Can one relax the assumption of weak sequential complete-

ness in any of the two statements above 7
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