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Chapter 1

Introduction

In Stalistics, a classical problem is that of estimating the regression function which is defined
as
m(t):= E(Y|X =), 1€ R,
“or two random variables X and Y such that E]¥| < oo. The estimators are constructed
based on a sample {(X;, ¥4)},1 € i < n,n > 1, from the distribution of {X,¥). Throughout
thiis thesis, we assume X and ¥ to be real-valued for the sake of convenience.
The classical approach to this problem is to assume a parametrized, polynomial form for

m(-), i, m(t) == fo + Shoy Ait7, p 2 1, and obtain estimates of the unknown parameters

Ao.B5, 1 < j < p. Later, with the of for non-parametric density

estimation, it was sought to extend these techni to ion estimation. Heuristically,
the two problems can be seen to be related as follows : let fi(+) be the marginal density of

X and note that
ELX <) = /’ filt)dt, z € R, (1.0.1)

whereas

EY1U(X <2)= /j, m(B)fi(1)dt, 7 € R (1.0.2)

In other words, (1.0.1) can be looked upon as a special case of (1.0.2), with ¥ = L. (This

similarity, as we shall sec later on, has been the underlying theme in Chapters 2 and 4
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of the present work.) The following non-parametric regressi was proposed

independently by Nadaraya (1964) and Watson (1964):
mN V(1) = ma(¥, 0 /ma(1, 1), £ € R, (1.0.3)

where

ma(¥i) = (ne) T Y.-K((t—x.)/m,} (Lo

ma(L,t) = (na) 'S, K((U— X /an).

Here K(-), the so-called kernel function, is chosen to satisly various analytical conditions
(typically, K(-) is taken to be a density function), and a, | 0 are the bandwidths which
go to zero sufficiently slowly (e.g., naa—00 as n—co0) in order to ensure consistency of the
estimator m{* (-). The intuition behind such an estimator is that mu(Y,-) is an estimator
of m()fy(-) while m,(1,-) estimates the density fi(-). See Prakasa Rao (1983), Chapters
1-1. for an introduction to non-parametric density and regression estimation.

Now, m(t) is a functional of the conditional distribution of ¥, given X = ¢. A natu-
12l seneralisation of the regression cstimation problem seems to be the estimation of the

following functionals:

ety k) = B{R(Yay e Vi) | Xy =ty Xe = 8}, (0, f) € BR5 B 2 1, (10.5)

where h 1 IR*— R is such that EJA(Yq, ..., ¥2)| < co. A similar gencralisation led Hoeffding

(1948) from the sample mean to the theory of so-called {J-statistics, in the unconditional
set-up. The estimation of (1.0.5) were considered, for the first time in published form, in

Stute (1991) where the following conditional U/-statistics were proposed as estimators:
Ul(t) = Un(hy t)/Un(1,8), t = (b1,..., L) € R¥, (1.0.6)
where

Un(hyt

A
et 5 40 Vo) [T = Xown)/ohm 2 b,
=1



and Up(1,t) is obtained by putting h = 1 in Ua(h, t) as beflore. Here

B(k)) + 1 < B() < n, BR) # BG). Y # 5},
I

Bln, k) = {(B(1),..
(n)x = card(B(n, k) = nl/(n —

Earlier, however, in the thesis of Bochynek (1957), a student of Stute, nearest neighbour

conditional {/-statistics were considered. Those were as follows :

N .
On(e) == ()gtad® 57 k(Y- Yow) [1 K ((Falts) = FulXpp))/an)n > &,
k) it

where F(-) := n™' L, 1(X; £ ) denotes the empirical distribution function (e.d.f).
i=1

Bochynek discussed the asymptotic normality of conditional U- and V-statistics and per-
formed simulation studies on them. Stute (1991) established weak and strong poinlwise
consistency and asymplotic normality of UA(t). Liero (1991) studicd uniform strong con-

sisteney of conditional Us-statistics and established asymptotic normality of the integrated

squared error (ISE) statistic:
/‘(U,’,‘(t) — m(t)w(t)dt

for suitable A C JR* and weight function w(-).

We quote the (ollowing cxamples to illustrate the possible use of conditional U-statistics.
See Stute (1991) and Bochynek (1987) for other examples. Throughout this thesis, our sct-
up will be as follows: {(Xa, Ya)}up: is a bi-variate i.i.d sequence, with (Xy, ¥;) having joint

density f(-,-) and X, having marginal density f,(-). Consequently,
& x -t
mh(t) = /ﬂz‘ By ) (1‘[ f(z,.,.v,)) (H /x(h)) dyy ... dy. (1.0.7)
J=1 J=1

In the sequel, however, we drop 4’ from the superscript of m(-).

Example 1.1. (Stute (1991)). Suppose we want to estimate var(¥;]X; = t). Let

Ay, y2) = (n — v2)*/2-



Then
m{t,1) = E(h{(Yo, Yo)IX, = 1,5, = £) = var(¥i| X, = &),
and the corresponding U%(t) can be used as an estimator.

Example 1.2. (Bochynek (1987)). Let
Ay, 2,98) = Ly —y2 ~ 33 > 0)-
(Here, and elsewhere in this work, 1{) denotes the indicator function.) Then
m(t,t,t) =PV, > Vo + ValX, =, X, =, X3 = ¢),

and the corresponding UA(t) can be looked upon as a conditional analogue of the Ilollander-
Proschan test-statistic (Hollander and Proschan (1972)). It may be used to test the hy-
pothesis that the conditional distribution of i, given X = ¢, is exponential, against the
alternative that it is of the NBU (New -Better than-Used) type.

Stute (1991) remarks, ”Generally speaking, we may take for & any function which has
been found interesting in the unconditional set-up; ...”

In Chapter 2 of this work, we establish uniform strong consistency of U (t), i.c., almost
sure convergence to zero of

sup [uA () - mio)],

where C belongs to a class of compact subsets of I*. We take the following approach: just

s ma(1,1) in (1.0.4) can be expressed as
e, ,
ma(1,1) _/]Ruﬂ K((t - 2)/an)dFr(x),

where F,() is the e.d.f., we can similarly write

13
T1 x((t = 2))/an)pn(dxlR),

i=t

Uallt) = [pea

where f1,,(dx]|k) is the empirical measure defined in Section 2.2, Chapter 2. We then obtain

an exponential tail-probability bound for a(:|h), similar to the DKW bound for Fy(-) (see
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Dvoretzky, Kiefer and Wolfowitz (1956)). We apply this bound to

|Un(h,t) = EUL(h,8)]

via an intcgration by parts. As a tool, we employ a probability inequality for cmpirical
processes, due to Alexander (1984). In order to introduce and verify the conditions of his
result, we present a bricf review of the Vapnik-Chervonenkis theory of empirical processes
on general spaces, as well as a simple lemma, in the Appendix of Chapter 2.

In Chapter 3, we study the limit distributions of U2(t) for a fixed t. Stute (1991)
obtained conditions for asymptotic normality of U%(t). We may term this the ‘first order’
case. In Obscrvation 2 in the introduction of Chapter 3, we show by an example (in fact,
Example 4.1 of Stute (1991)) that ‘degeneracy’ (i.e., the variance of the limiting normal
distribution being zero) can occur in the case of conditional U-statistics also. So, following
Dynkin and Mandelbaum (1983) who considered classical {/-statistics, we give a general
description of the limit distributions in terms of mulliple Wiener integrals upto order I

(order 1 corresponds to asymptotic normality). While we use the classical multiple Wiener

=iy =t

integral when t = (#1,...,1x) has all its components identical ({; = say). we
have to use a generalized version of the integral when the components are not identical
Through the use of Wiener integral we get, in particular, a belter insight into the expression
for limiting variance in Theorem 1 of Stute (1991). It turns out to be the second morent of
the Wiener integral (of order 1) of an appropriate function (cf. Theorem 3.4.1 in Chapter
3).

In Chapter 4, we consider the sitnation where the data (i.e., the sequence {(X,, Ya)}nz1)

amples of bivariate censoring include:

is subject to bivariate right random ccnsoring. )
times for two Lypes of non-catastrophic failure in a complex system (Cuzick (1952)), life-
times of relatives and response times in two successive courscs of treatment for the same

4 to

patient (Mielniczuk (1991)). The censoring meck is explained in the i
Chapter 4. This chapter is different in spirit from the previous two, in that it deals primarily

with regression estimation - which is a special case of (1.0.5) (with & = 1) — and contains



basically a negative statement on the case k > 2. The regression problem was also studied
by Mielniczuk (1991). Here, we employ ‘martingale methods’. In the regression case, we
get hold of an empirical submartingale Pa(t),t > 0, whose compensator Aq(t), t = 0, is
the integral of the product of m(-), the so-called hazard function and a certain predictable
process. Motivated by this fact, we construct a kernel estimator for m(-), along the lines
of Ramlau-Hansen (1983) who proposed a kernel estimator for the intensity of a counting

process. Using Doob’s maximal inequality and a central limit theorem for semi-martingales,

due to Liptser and Shiryayev (1980), we establish weak uniform consistency and asymptotic

normality of onr estimator. However, the unkiown survival function of the censoring dis-
tribution occurs in the definition of our basic sub-martingale, and it has to replaced by its
Kaplan-Meier estimator. This creates a problem for our analysis, and we are forced to use

ions (4.3.5) and (4.3.18).

the unnatural-looking cond:

For the general case, we first restrict our attention o & = 2. In this case, the natural ana-

togues of the basic sub-martingale above and the compensator are Lwo-parameter processes
A< a further simplification, we consider only those A (cf. (1.0.5)) which have a produst
structure, be., Ay, 92) = ¢(3)e(y2): But even in this simple case, the ‘sub-martingale’

minus the ‘compensator’ (i.e., the process Ln(1, tal) in Section 4.1) fails to satisfy even

the weakest form of two-parameter martingale property (the so-called weak martingales -

Definition 4.4.2 in Chapter 4). The problem is caused by what scems to be the natural

choice for an appropriate twa-parameter filtration. Hence there does not seem to be much
hope for an extension of the ‘martingale methods’ to the case k > 2. As a by-product of our
efforts, however, we obtain a Wong and Zakai (1976)-type decomposition of ‘Lij(Ls, t2|),
where

Lu(titale) = 3. Lij(ts tale)-

1A
“The decomposition gives a version of Doob’s inequality for Li;(t1, t2|), but evidently, pool-
ing the bounds together to obtain a similar incquality for Ln(ti, t2]) leads to too large a

bound.



Finally, in Chapter 5, we describe two problems for further investigation. The first is the
problem of obtaining a law of the iterated logarithm (LIL) for UA(t) for a fixed t. We ontline
a Lentative program for attacking the problem. The second problem is that of deriving the

limit disttibution of the uniform absolute deviation criterion
sup [UA(E) —m(8)]
teC
for a suitable compact set C, with suitable normalization. Here we suggest an use of strong

approximation of the empirical process pa((—oo,x}j[k) — u({(—co,x]|h), x € IRX, by an

appropriate Gaussian random field.



Chapter 2

Uniform Strong Consistency of

Conditional U-statistics

2.1 Introduction

In this chapter, we derive uniform strong consistency rates for Uf(t) under suitable assump-
tions. Qur proofs are based almost entirely on the results of Alexander(1984). We make
use of a certain ‘randomly weighted’ empirical process on IR¥, which also has a U-statistic
structure. Empirical processes of the U-statistic structure have been studied, among oth-
ers, by Janssen(1988) and Schneemeier(1989). See the former for an account of statistical
applications of such processes.

In Section 2.2, we state the basic assumptions and give some preliminary results. Section
2.3 contains the main result. It is in this section that we make usc of the afolremcntioned
empirical process. A discussion of some elementary concepts from the theory of empirical
processes on general spaces may be found in the Appendix. The Appendix also contains a
simple lemma which is rather crucial for our proofs. Finally, a few supplementary remarks

are included in Section 2.4.



2.2 Assumptions and preliminary results

In order to prove uniform strong consistency results for U} (t),t € IR*, we shall consider
the numerator and denominator of U%(t) separately. Recall
&
Ualht) T WV You) [LK(G - Kglfan) (221)
ﬁ(n k) j=1
and

UR(t) = Un(b )/ Un(1, 1),

i.e., in the denominator A = 1. Consider the following decomposition:

UA(t) = m(t) = Run(t) + Ran(t), say, (22.2)
where
_ Ualht) = m(t) [Thy Alty)
Hm(t) = W
Raa(t) =

We shall obtain rates of a.s. uniform convergence of Rin(t),i = 1,2, to zero, which will
establish our main result.

To begin with, we shall assume that m(-) € Leo(IR¥), fi(-) € Loo(IR), which imply that
both m(-) [T52, fi() and [T5.; /i) belong to Loo(IR¥).

Further, without loss of generality, we may take &, and consequently m, to be non-
negative. Otherwise, let A = A* — A~ and m = m* —m~. This will not change the
consistency results, as is evident from (2.2.2).

Now consider
Un(ht) =m(&) [T Alt) = Un(hst) = EUn(h,t)

4 BUq(h,t) —m(t f[ (223)

11



Note that

&
- Ye) H R((t; = X3)/an)

EU(h,t) =

&
@y T) 1‘[ —.t,)/a,.)f.(x,)] duy ... due

We can write

Un(h,t) = /le a

where g, (dx | k) is an empirical measure on R* given by

f[ K((t; ~ 75)/anitn(dx | ), dx = dzy ... dzg,

#a ((—00,x] | )
= (F S R(Vaan---r Vo) l(eeom(Xatm, - -+ Xaw))y x € I
Alrk)

Consequently, EUy(h,t) can be written as
\
Ualho8) = [z IR = )/ aadpteb L0,
here

(o0, xllh) = Epn((=c0,x] | b)
k
= ./(7mX]7n(u,,...,uk.)Hfl(v,)llv,...d’uk

We shall establish a.s. uniform convergence to zero of Un(h,t) = EUn(h, t), the stochastic

part in (2.2.3), by obLaining an exponential bound for :
h-{ sup. len((—00, X]|k) — (=00, x]|1)] > (} o> 0.
xelR*

The deterministic part £Un(k, €)—m(t) [T5, fa(t;) will be taken care of by certain standard
analytic assumptions. The convergence of Un(1, t) —[Tic, f1(t;) will then follow immediately

as a special case, with k = 1. Finally, the convergence of Rin(t),i = 1,2, in (2.2.2) will be

dealt with using the assumptions referred 10 above, and some more.

12



We shall now state our basic assumptions. These will be followed by a lemma and an
estimate, which will conclude the present section. We shall invoke other assumptions as
and when they are needed.

Al.

() € Loo(RY), fo() € Lool IR)-

A2,

Jm(x;) = m(x2)] < Cillxy = xall,x; € B5i=1,2;

i) = i)l € Calyi -y € RByi=12

here C; > 0,1 = 1,2, and [|x]| := Jos| + -+ + |z for x € R*.
Note that by A2 and A1,

k k
[m(x) Ij Silws) =mly) I:I L)l € Clix=yll, x,y € ',

for some C = C(m,g,k) > 0.

A3.

K()20, [RpK@de=1, [plulK(u)du < co. Further, K(-) is of bounded variation
with 22, [dK (2)] = V, say.

By Al - A3, we immediately obtain the following bound:

Lemma 2.2.1.

sup |EUd(h,t Hf.(t ) = O(aa)-
el

Proof: Observe that (use [y ITicy K(z;)dx = 1)

&
sup, |EUL (R, t) — m(t) TT fi(&;)|
=1

telR
k
= sup | [ mlt =t o) LA = e Ky
3=1
k
-m(© I A()




N
m(ty = datre s b = anyi) I Ai(t = anys)
jei

< sup [
eI

() T (4

N
I Asdy
i
L
< Can fpllnl+-o + lnuh) T1 K(w3)dy, from A2 and AL,

= cd,.k/m\yu\'(y)dy
= O(ay), from A3.0

Further, we obtain the following key estimate. Consider
Un(h,6) = BU(h,t)
3 I3
= /W u;k,'l;1| K((t; — 25) /e )pen(dx|h) — /111‘ (.;‘]1:[‘1\'((:1 - w) @il dxth)
= T, — 13, say.
Then

5

1’[ (t ~ 5 /a,,)[/[z K((tr = 1)/ @ Ypin(ds - - dulh)]

o= /mk,,a
Jowet 1l

7/1”(11\ (4 = z) an)palzrdes . .m\n)]

by applying integration by parts to the integral inside the square-brackets, using A3. Notc

H K (5 — @5)/an) [K((t = @1)/an)pn(@idas - - dze|h)| 2

that
. ;L,.(Ar,ll.v%‘.d.rdh):1 oyl daelh)
is an empirical measure on IR*™' for cach 2, € 2. Now, our assumptions on K(-) imply
that lim;— 40 K () = 0. Further,
limg, o sta(x1d2 .. dailR) = O
cdath) = it Sy h(Ypays - Yan)-
10 X3 € daa,. .., Xpgry € dax)

litme, oo fin (2122 -



These arguments imply that

K((ty — @) an)itnlerdes .. day]h
Repeating the above arguments,
.
7y = (=1)*az* [, seal(—co,x]|k) [T dK((t; — ;) an)-
; Jr Tt -

Similarly,

.
Je (=0 X1y TTa (e = /)
Thus

sup, [Un(ht) = EUn(h,8)]

teli
&
< az* sup |pn((—oo,x]lh) fﬂ((—mYX]l/l)\/”{u TL R = =) @)
xelit =
= Vi *D,

D= sup |pa((—o0,x){R) — s({(—o0,x]|2)|-
xe "

1), we shall now proceed to obtain an almost sure order

Hence, in view of estimate
bound for Dn.

In doing so, our main tool will be a sharp probability inequality proved by Alexan-
der(1984). We apply his result in the next section. A few elementary definitions and
facts from the Vapnik-Chervonenkis theory of empitical processes on general spaces, which
are needed for an application of his result. are presentod in the Appendix for the sake of

completencss.

2.3 The main result

We begin with the following lemma. which is an easy consequence of Theorem 2.11 of

sntary concepts from the theory of empirical

Alexander(1984). In this section, some




processes on general spaces have been used. See the Appendix for a discussion, and for the

meaning of the technical terms (emphasised) used in this section.

Lemma 2.3.1. Let (X, S) be a measurable space. Let (Xi, UYL be a sample of indepen-
dent, identically distributed bivariate random vectors such that X; € X,0 S Ui < My, 1 <
i<nas., where0 < M, T asn — oco. Let AC S be a V-C class such that v(A) = vo and
the class of functions

palzu) = ﬁlg( ) A€ A

is deviation measurable. Then
()
Pr {sup geq 7! LI, UiLa(X3) — BUL4(X0)| > €}
< 16(rM2) 0 exp(—2n A7), for € > 8M//r.
(i5) Let G = sup geq [n7' iy ULa(X:) — EULA(X)|; then ¥ 0 < s < 2,
Eexp((2 — s)nM72G%) < Kols,vo)

where Kols, vo) is a constant depending only on s and v.
Proof:
(i) Note that

Pe {sup [n7! S UiLa(X0) ~ BULa(X)] > (}

=
= {sup > cM""} .

Now the class of functions {p, : A € A} satisfies 0 < 4 < 1VA € Aand is a V-C graph

n”! Z —1A(,\ E[%‘lA(x,)

class by Lemma 2-A of Appendix, with the graph region class having V-C number vo. Hence
the inequality follows by Theorem 2.11 of Alexander (1984).
(i1) Using (i), we get

/1m Pr{exp((2 — s)nM?G?) > 6}d0

16



- /‘m Pr{G, > (M. /V/a)/In0/(2 — s)}do

et f
< e 4 /:H 16(In 0/(2 — )" exp(—=2(2 ~ )~ In 0)d0;

e last i lity. Note that the ial bability bound

the result now follows from tl
in (i) is valid for the range € > 8M,/y/n only, hence the splitting of the integral at the second

equality above.O

Obscrve that
Hal(—o0, X]IR), x € IR¥,

is an empirical process of ‘U-statistic structure’. In order to be able to use the above bounds,

we take recourse to the so-called ‘Hoeflding decomposition” which expresses i ((—co, x]14)

as an average of empirical processes of iid structure.

Let , = { all permutations of {1,2,...,n}}. For o € E,, define

#a{(—o0,x]lh) =

r/kl-1
/KT 32 A¥agornn- - Yotiei) icsosd(Xothie s -+ Xotigwts 1o
=1

Here [2] := the greatest intcger < x,x € JR. Lel
Df = sup {p5((—c0,x]lk) = p((—o0, x]|4)].
xe it
Then D¢ has a structuze similar to Gy in Lemma 2.3.1. Recall
Dn = sup |ua((=00,x][h) — p((—co, x]IR)]-
xelR"

Then we have

Lemma 2.3.2.
(i) The following holds:

fal(=00, ) = (0117 5 w((—o00, XIIR).



(ii) For all § >0,
Eexp(0D?) € Eexp(8(D2)?), Va € E,.

Proof:
(i) This is just the Hoeflding decomposition. For a proof see, for example, Serfling
1950), p. 180.
(i) From (i), by monotonicity and convexity of the functions y? and exp(0y) for y >

9.6 > 0, and Jensen’s inequality,
exp(002) < (1)1 T exp(8(D2)?)-
BN

The result follows by taking expectations on both sides. Note that the measurability
of Do and Dg can be casily cstablished, by considering, for each x € IR*, rationals

v such that r™ | 2,1 < i <k, as m — 00.0

Lemma 2.3.3.
0s Suppose IM > 0 such that 0 < h < M a.s. and na¥(logn)™' — oc as n —+ x.
Then
sup 1Unlhy ) = EUn(h,£)] = O(az*[n/ k)2 (log n)'/?), a.s.,
te

as n — co. In particular,

sup [Un(1,t) — EUL(L,t)] = Oaz*[n/k]7?(log n)'/?), a.s.
telR*

(i) Suppose Eh? < o, and nai(logn)~! — oo as n — oo. Then

sup |Un(h,t) — EUn(h, t)] = O(az*[n/k]" " (logn)*) a.s.,
relR*

asn — oco.



Proof:

(i) Consider the class of functions

1M ((—o0,x]1h) =
n/k]-1

¢
/K7 M R(Yaggan, - Yousan) Lcam(Xotiens - Koo)X € Y,
=

whete o € £, as in Lemma 2.3.2.
Here (refer to Appendix) & = I, A = {(—c0,x] : x € R}, and for each & € ., this
class satisfies the hypotlieses of Lemma 2.3.1, with vo = & + 1 (cf. Example 2-A.1 in the
Appendix) and M, = AL The dev

the rationals as in Lemma 2.3.2. Hence by Lemma 2.3.1(ii) and Lemma 2.3.2(ii), with

blish, by considering

is casy to

M, =MV¥Yn 21, wehave V0 <s <2,

Eexp((2 = )n/KM™2D2) < Eexp((2 — 5)[n/kM~2(D2)?)

< Ko, n2k,

where Ko depends only on k and s.

Now by an ication of Markov’'s i lity, for all B> 0, 0 < s < 2.

Pr{D, > Bln/k]"V/*(logn)"/?}
< Koexp(—B%2 — s)M~?logn).

Now fixing 0 < s < 2 and choosing /3 > 0 large enough, and by Borel-Cantellj Le

the proof of (ii) below),
D, = O([n/4)""*(log n)"/?) as., n —» co.
The result then follows from (2.2.4). from which

sup |Un(h, t) — EUL(h.t)] = O(az*Dy) as.
el



(i5) This involves a little more work. The idca is adapted from Hardle et al. (1988). Let
M, = ([n/k}/log n)*4. With

()5 30 AL(h € M)l ceomt (Ko - - » Xory)
Bln k)

—BhL(A S M)LCoopg(Xis > X,

Da(Ma) = sup,
xelit*

we have

Dy = sup lua((—oo,x]Ih) = p((—co,x]IR)]
xelR*

< Da(Ma) + sup
xelR*

()i Z h(Yaay,- -+ Yo )10k > Ma)Lcoom)(Xan)- -

—Bhi(h > M”)xl,w,x](.\,,,

X0)|
Do(My) + (7 S h(Yoy, - Vo)1 (h > M) + ERL(R > M. 3
B(n.k)

In

Now,

U S h(Yaqpee s Vo) 1(h > Ma) + ERL(h > Ma))
Blnk)

= (logn/[n/k])'* [(n);‘ ST hMa1(h > M) + BRM 1k > M,,)]
Blnk)

< (lognf[n/k])* [(n);‘ ST ORA(A > M)+ ER?1(h > M,.)jk . (2.3.2)
Blnk)
Then, obviously,
ER*1(h > M,) = o(1) as n — co,
since M, — 00 and £2h? < oo. Further, for fixed M > 0 and n large enough, ~
0 < ()F" S K2R > Ma) £ (107" Spgay R21(R > M)

= 0 < limsup,(n)7! S k7100 > ) < limsup, ()7 Spgapy h21(h > M).(2.3.3)

Since EA? < 00, we have by the SLLN for {*-statistics (see, e.g., Serfling, 1980, p. 180)

()5 3 ALk > A S ER?L(A > M) as n = o0 (2.3.4)
Blnk)
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Thus from (2.3.3) and (2.3.4),
limsup (n);7' 35 A21(k > M) < ER?L(Ah > M) as.
" Blmk)

Letting A1 — oo, we have

Jim, (F" 3 (Vs -o s Yaw)1(k > M) °
= Blak)
Thus from (2.3.1), (2.3.2) and (2.3.5),
Do < Da(M,) + O(In k)" (log n) /) as. (2.3.6)

Since 0 < #-1(h < M,) < 1, we apply Lemma 2.3.1(ii) and Lemma 2.3.2(ii) again, to get
(Vo<s <2,

Eexp((2 = $)n/KMIID2(M)) < Ko, n 2 k,

where Ko depends only on s and k.

Fix 0 < s < 2. For B> 0,

Pe{Da(M,) > BAITY)

1A

Koexp(—B2(2 — s)[n/k]AL71) by Markov’s inequality

—B?(2-5)

A

Kon
But 3,5, Kon™ P~ < oo, provided B > (2 — s)~1/2. Thus,
Da(Mn) = O([n/k]7*(log n)/1) as.,n — co.
Ience from (2.3.6), Da = O([n/k]/(log n)"/*) as. , n — oo, and from (2.2.4),
. (Unlhy£) = EUL(R,8)] = Olaz*[n/k] 74 (log n)'/*) as.
te

asn — co.O

Combining the above results, we finaliy have



ssume Al to A3, Define

Theorem 2.3.1.
«
K ={Cc IR*:C compact, and inf I fi(t) > 0}
=i
Further, let by(p) := az*[n/k)"\P(logn)!/?,p = 2,4. Then
(i) if the conditions of Lemma 2.3.3(i) hold,

sup [UA(t) — m(t)] = O(max{ba(2), an}) a.s. ;7 — 003
tec

(ii) if the conditions of Lemma 2.3.3(ii) hold,
sup [UA(E) — m(t)] = O(max{ba(4),a,}) a.s. ,n — 0,
el

for each C' € K.

Proof:

(i) By Lemma 2.2.1,

.
sup |EUn(h,t) — m(t) [T £i(t)] = Olan).
teli* =i

By Lemma 2.3.3(i).
sup |Un(h,t) = BUa(h,t)] = O(b:(2)) as.
el

Hence,

sup [Un(h,t) = m(t) f[ Ault)] = O(max{ba(2), 4n}) a5
el =

In particular,
sup 10a(1,8) = TT /1t = Ofmax {bn(2)an}) a5
et s=t
This implies that, a.s. for large n, and Vt € ¥,
Ua(1,6) 2 [ [i2)) = 0(1)
(2.3.7)

= infiee Un(l.t) > 0 as. fov large n,

»



for each C € K, by our hypothesis.
Consider Ri4(t) and Ry, (t) of decomposition (2
Al, for each C € K,

). By the above observations and

sup |Ria(t)] = O(max{b:(2),a.}) as. i =1,2,n = oo.
teC

Hence the result.

(ii) By Lemma 2.3.3(ii),
sup [Un(h,t) — EU,(h,t)} = O(b,(4)) as. ,n — co.
el

The result, now follows exactly as in (i) above, using (2.3.7) in particular.0

2.4 Supplementary remarks

Remark 2.4.1. Note that, in 'Theorem 2.3.1, we have considered a.s. uniform convergence
over a class of compact sets. Also, by A2, the functions m(-) and fi(-) are contimious. In
view of these facts, the assumption A1 is actually redundant, once we replace ‘suptellzx’ by
‘supgee” in Lemma 2.2.1. Here of course, C' € K as in Theorem 2.3.1.

Remark 2.4.2. For the case & = 1, Hardle et al. (1988) obtained uniform convergence rates
which are stronger than ours, viz. O((ra,)"*(logn)'/?). But they had to make certain
stronger assumptions, e.g. E|R[P < oo, for some p > 2, and sup, iz |E(R* (V1) | Xi = t)| <
o0, besides using a special, ‘discrete’, sequence of kernel functions. They, however, dealt
with certain other types of conditional functionals as well. Recently, we came to know that
Liero (1991) had obtained opéimal rates {or conditional U-statistics, whercas our rates are
not optimal even in the case when % is bounded. (Our modest aim was a simple proof
of uniform strong cansistency through the use of empirical processes, rather than optimal

rates.) Liero’s conditions on A appear to be similar to those of Hardle et al.(1988).
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2.5 Appendix : rudiments of empirical processes

Let (X,8) be any measurable space. A class C € § is called a Vapnik-Chervonenkis

class (a V-C class) if there exists n > 1 such that me(n) < 2% where

me(n) = sup{ card(FNC:C € C) | F € ¥, card(F) = n},

i.e., me(n) is the maximum number of subsets that can he cut out by € from a fini

cardinality n. Clearly, mc(n) < 2"Vn 2 L. Further,
w(C) = inf{n > 1:me(n) < 2*} < o0

is called the V-C number of the class C.
Example 2-A.1. Let ¥ = RS I C = {(~oc0,x] : x € IR*), then v(C) = k + L If
¢ ={(a,b):a,be R, a<b), then v(C) =2k + 1. Note that a < b iff a; < by, 1 <7 < k.
Example 2-A.2. Let X = R*. If C = { all closed balls in R}, then o(C) = & +2. (See
D2dilex(1979).)

Given a Xy, Xz, .., of independent X-valued random variables with Py the

law of .X;, and a class F of real-valued functions on ¥, we define
valf) =m0 = BA(X)), [ F,
=1

which can be looked upon as an empirical process indexed by f € F. Then the usual empir-

me class (typically, a

ical process v (C) = n=' S8, [16(X:) = Py(C)), € € C, where C i
\"-C class) of subsets of X, becomes a special case with F = {1¢ : C € C}.

For a class of functions F and a probability law P on X, define

Np(e, F,P) = inf{r21:3f1,f2,.... L €F
such that Vf € F, inf |If = fill» < €}

1558

for e > 0, p > 0, and || - [l, being the Ly-norm with respect to P. Then Hy(e, F, P) :=
In N, (e, F, P) is called the metric entropy of F in L,(P).
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Now if F = {1c : C € €}, where € is a \-C class, then one can obtain good bounds

for N, (£, F, ), which are uniforni in . the class of all probability laws on A'. (See Lemma

2.7, Alexander(1984).) Such a control of entropy. Alexander demoustrates, is very useful in
obtaining sharp exponential bounds for the tail probability for supser |va(f)I-
Tn view of this fact, Alexander proves his results for a class F which satisfies 0 < f < 1

for all f € F and C(F) := {Cy: [ € F} is a V-C class, where
Cpi={(x.0): 0 S (< [(2)}

is the region under the graph of f. Note that C; € A’ x [0,1] Y/ € F. In case C(F) is a
V-C class, ¥ is called 2 V-C graph class and C(F) its graph region class. It is easy to
see that {1c : C' € C} is a V-C graph class if C is a V-C class.

Now,for a V-C graph class F,
Ni(e, F,P) = Ni(e,C(F), P x A),0 < e < I,

where A is the Lebesgue measure on [0,1]. Thus one can bound the finction on the left. ax
shown in Lemma 2.7 of Alexander(1984), by using the bound for the right hand side which

involves indicator functions of sets from a V-C cla

Further, since supycr|va(f)] need not always be measurable, Alexander im-
poses a measurability restriction.  Let {Xi}i»1 be an independent and identically
distributed sequence. A class F of functions is n-supremum measurable if
supger (i Ty e (X /(X)) + 0
n. A class F is n-deviation measurable if both F and {(f—g) : f, g € F,var(va(f—g)) <

L 6 f(X1)) is measutable for all real e, ¢, 1 < 4,5 <

9}, where ‘var’ denotes variance, are a-supremum measurable for all @ > 0. These two con-
ditions ensure the measurability of supy [v2(f)] and certain ‘sample variances’ which figure
in Alexander’s proofs. The ‘a’- is dropped from the definition if the conditions hold for all
n>1.

Now consider the space X x [0,1]. Let 4 € S be a V-C class on X' with V-C number

—(zu),c€X,0<Su<]

9. Denote by z a typical element of .V x [0. 1. i.e..




Lemma 2-A. The class of functions F(A) = {fa: A € A}, where
Jalz) = faz,u) = ula(a),

is @ V-C graph class. If [{A) denoles ils graph region class, then v(I'(A4)) = vo.
Proof: Note that T(A) = {Ca : A € A}, where Cy = {(z,u,8) : 0 < ¢ < ula(2)} ©
X % [0,1] x [0,1). That is,

Ca=(Ax{(1,8):0 <1 <u <1} U(A x [0, 1] x {0}).

Ve have Lo show that (recall the definition of a V-C number)

sup{n 2 1:3z1,...,5, € X' x [0,1] x [0, 1] such that

card(Ca 1 {z1, - B} 1 A€ A)

2"} = v — 1 < o0,
Now let {Z,...,2.} be a set of any n points on X' x [0,1] X [0, 1], Z = (w5 14,8:),1 £ ¢ < n.
henote
ma(z:1<i<n)
= card(Can{z,..., 5%} : A€ A)
= card({(zi,ui, ;) 12 € A0S 4 Swp < 1)
U {(zi, i, ) 1z € A5t =0} : A€ A).
Suppose first that {i : & > u;} # 0. Then BA € A for which Can{Z,..., %} = {&: i >
1;}. So, obviously, ma(5 : 1 € < n) < 2" Hence, assume ¢; < w;, 1 i <n.
If now {¢:t; =0} = {1,2,...,n}, then
Can{z:1<i<n)={5:1<i<n}VAE A,
soma(fi:l<isn)=1<2%

£ {1,2, ..,n} # {i: & =0} # 8, then {i: & > 0} # 0. Now, if 34 € A for which
Can{z:1<i<n}s= 1 ;> 0}, Le.,

{(miyun ts) t 2 € AU {(2i, 1, 8) 1 20 € A8 = 0} = {(zi, win ti) s & > 0},
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then we must have

{zi:2; € A} = (& : 4; > 0}, and hence {% : 2; € A°} = (& : t; = 0}.

This means that
{#:L>0}=Can{s:1<i<n}={x:1<i<n},
which is impossible since {i : ; = 0} # #. Thus the set {z : & > 0} cannot be cut out by
any A € A. Hence again, ma(: 1 <i<n) <2
If {i: t; = 0} = 0, then

Can{z:1<i<n

= {(zi,ui, ti) : 1 € A}, VAE A,

Hence only in this case, and for 1 = 1,2,...,v0 — 1,3{Z,..., Z} s.b. ma(Z: 1 <i<n) =

2%, since v(A) = vp. Thus v(L(A)) = v6.0



Chapter 3

Limit Distributions of Conditional

U-statistics

3.1

Introduction

In this chapter, we study the limit distributions of U/%(t) for a fixed t € 5. Stute (190

has obtained, among other things, conditions for asymptotic normality of {7 (t), suitaliy

normalised and centered. We make the following observations:

L.

Stute has remarked that though % is 1 to be symmetric in the theory of

ssun;

classical U-statistics, such an assumption here would involve both A and [T K (

az* e, K((t; — )/a)). Since the roles of k and 1K, are diflerent, little, e

will be gained from a symmetrisation. We point out that k can, in most examples, be
taken to be symmetrics further, in case f; = £y = -+ = & in & (the ‘diagonal® case),
[T K is also symmetric. In any case, it follows from (1.0.7) that m is symmetric in its

arguments provided & is. These facts. as we shall see later on, will lead to a converiient

description of the possible limit distributions of U/ (t).



I

Consider Example 4.1 in Stute (1991). llere & = 2, h(1,42) = y1yz. Hence

EMY|X,

m(ty, s, t, Xy = £5) = m(t)m(ta),
where m(t) = E(Y]X = t). By Theorem 1 of the above paper,

RGAHUR() = EU(R, )/ EUL(1,£))5N(0,0°) as n — oo,

where

Dm0/ filth), L=t
Duw?(t2)/ fu(1a) + Do (L)) [i{t), AL # L

and

D

var(Y[X = l.)/;” K2 (), i = 1,2.

Now if, for example, m(ty) = 0 when £, = &y, or il m(t)) = m(tz) = 0 when &y # fa

then obviously what we have is an example of so-called “degencracy”.

Observation 2 led us to consider higher-order limiting distributions. Following Dyakin

and Mandelbaum (1983), we describe the limit distributions in terms of multiple Wiezor

'

integrals. We use the classical multiple Wicner integral in case 1y = & =t (say

and a modified version thereof in case £, 1 < i < k, are not necessarily equal. The requisite

ection

definitions and facts are given in ¢
In Section 3.3, we present the limit distributions of Ua(k,t). As a tool in our proofs of

weak convergence, we use the combinatorial lemma and the main theorem of Rubin and

ble

Vitale (1980), as well as the techniques of Schuster (1972). We then discuss:the pos:
limit distributions of [74(t) in Section 3.1, Ileve, unlike in the classical U-statistic set-np,
the *degenerate’ case (of which the example in Observation 2 is a special case) is a bit messy
to deal with. However, we have succeedvd in simplifying the things somewhat when & has

a product structure. Finally, in Section 3.3. an example and a couple of remarks are given.



3.2 Symmetric tensor products and multiple Wiener
integrals

Let P be a probability measure on (M2, B(IR)). Then there exists a probability space which

supports the Gaussian process {11(9) | @ € La(IR, BUR), )}, given by

Eoli(2) = 0,

s ot € La(JR, BUIR), P), (3.2.1)
Eol () () = Ep(v),
where Eo denotes expectation in the latter probability space. Note that ¢ — L(p) is a
linear map, by (3.2.1). It is thus a lincar isometry between Lp(f2, B(R), P) and the Hilbert
space

H {Ii(e) | ¢ € L2(I12, B(R), P)}.

Call I() the Wicner infegral of . It follows that there exists a lincar isometry between

A Ly (17, BUIR), P)) and o(@*H), k > 1, where
(@ La(R, B(IR), P)) := k-fold symmetric tensor product of Ly(It, BUR). 17}

and o(®"H) is defined similarly. For a definition and discussion of symmictric tensor prod-
ucts of Hilbert spaces, see, e.g., Kallianpur (1950), pp.139-155, or Parthasarathy (1992).
Section 17, pp.105 - L11. The following facts are well-known (sce, for example, Kallianpur
(1980), Equation (6.6.31), pp.153, in the proof of Theorem 6.6.4 and Lemma 6.4.1, pp.

139). Here we denote an isomorphism between vector spaces by ‘2



Lemma 3.2.1.

)

(@ Ly(IR, BUR), P)) = LY ™ (R, B(RY), P x --- x P),
«-fold

where

{f: R* — IR | f symmetric, Epf* < o0}.

(ii) Punctions of the form
20). () = 0B, o € La(IR, BUR), P),
w-fold

and vectors of the form
L)@ ©L(Y), ¥ € LUR, BUR). P).
LB - Oh¥),

«-fold
are total in o(@%La(IR, B(IR), P)) and o(@"H), respectively.

In view of Lemma 3.2.1(i), we shall identify the two Hilbert spaces there. from now v,

Note that, for @,y € L,(IR, B(IR), P),

< h(@)@ - @hL(p) h(#)® - DN (#) >, 00
oD > )

= (Eppy}*

= {Eohi(2) ()"

Fn{HS’W(H)"“”A-(’l(%’/H‘r"”))‘ll'/J”k(k!)"’“IIA(h('/’/”'ﬁ”))}, (3:2.2)

where < -+ s denotes the inner-product in a Hilbert space S, ||-|| denotes the Ly-norm
in Lo(MR, B(IR), P) and Hi(-) is the k-th Hermite polynomial. Define
Wy i= closed lincac span of {|l¢li* (42 Hu(hiw/llel)) | @ € La(IR, BUR), P)}.
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It follows from (3.22) and Lemma 3.2.1 that there exists a linear isometry I
LIYWRE BURY), P*) = Wi, 9®F o [l (k)" Hi( L/ llgll)), where P* denotes the
f-fold product of P. Call Ii(f) the k-th order multiple Wiener integral of f, f € L§Y™.
It has the following orthogonality property:

Lemma 3.2.2. Let f € LEY™(R™, B(R™), P™), g € L;Y"(IR*, B(IR®), P¥). Then

Eoln(f)-Ie(g) = miEp(fg), mk > 1.

Proof: Follows casily from the fact that, for ¢, € Ly(R, B(IR), P),
Ealae®" 19 ®)
= Eo{llel™on) ™ i/ DI () BB o/ 1910)}

= Sl Erop}s,

the functions ¢®* are total in LY (1%, BUR*), P¥) and Iy is an isometry.0
We now proceed to define a modified, ‘non-homogeneous version of the multiple Wiener
integral. Let B,..., P, m 2 1, be distinct probability measures on (2, B(IR)). Then, on

some probability space, the following independent Gaussian processes exist:
(1P(¢) | p € La(IR, BOR), P)}, 1 S i Sy
such that
Eol{() =0
Eolfo) 1) = 8B (o¥)
and @ € Ly(IR, BUR), P),b € Ly(IR, B(IR), P}). Define, as before,
H = {(I0) | ¢ € L(RBUR),P)}
W, = closed linear span of {Jleli"(ri)" 2 He (1i(p/ lell)) | € Lo(IR, B(IR), P},

where ry > 1 is an integer and || - |l is the norm in Ly(I%, B(IR), ), 1 < i < m. It is

}wsi,JSm

easy to sce that the following chain of linear isometries can be etablished as before:
®n,(o(@" La( I, B(R), F)))
Iryrm Irppem
L QR (0@ M) THET @ W (3:23)
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Now take, any two of the W, ’s, say W,, and W,,. Denote, for the sake of simplicity,

Wl . (19 (o el = Hrlo). i = 1,2

Then, for ¢, € Ly(P1) and , 9" € La(P2),
< Hy (9)@An(¥), I, ()OI, (%) >w, @w.,
= < Hy(9), (@) >, - < Ho(@), iy (8) >w,
= Bl (9).010(9").Eollr, ()., ()
= Eo{H, (#)-H (). Ho ()11, ()},
os {IMN@) 1o € Ly(P)}hi= 1,20 (3.2.4)

by independence of the proces:
It is clear from (3.2.4) that one can identily (in the sense of linear isometry) the Hilbert
space W, @W,, with
closed lineat span of { (). Hr, () :
€ Lo(iR, BUR), P1)p € La(IBUR), P)}.

Wi

Thus. by (3.2.3) and (3.2.4), there exists the following isometry:
Tz O (@7 La(IBUR), PN = Wry rs.m
such that
Ly rnrerm (9P @07 - @R w2 [y (21) iy (22) - i (Pm)
for ; € Lo(MR,B(R),P),1 < i < m. Here W, , s is defined in an obvious way as

Wi, g and
P 2eP@ - @@ = i) @i () pa() a () () ()
n-fold ra-fold rm-fold
Further, with = vy 4 72+~ + 7,
@ (@™ LR, BUIR), )
~ {f: R =R Eppyrnl? < o0, [(ir,t2,-- ., 1) is invariant under

the permutation of 1st ry, 2nd 72 , ..., last v, co-ordinates }




We note the following approximation result for later use:

Lemma 3.2.3. Let S; = {u : « a measurable, simple function on (R, B(R),P)},1 < i <

m, m 2 1. Then the product functions of the form
wWPreuPe.. ou®r, wesS,1<i<m
and random variables of the form
Hey () ey () - AL (t0m)

are total in @7, (a(&7 La(IR, BUR), %)) and W, ra...r,, Tespectively, where i1 < ¢ < m,

and I,,(-) are as before.

Proof: Denote

G(r1, 722 Tm)

- @@ and fy, (@) Frgl@2) - Hew(om)roi € LU BUR). P). 1 <

o(r1yr2re o Tm) and Wy, ., tespectively (in fact. we used this

QL (a(®™ Lo(R, B(IR), 7))

Then 7 @

< m, are total i

snplicitly while defining fr, ry....m ). Further,

1= cofe. ee®m - Sha e oull

i
= T S ac I < guw; >™ =201 < gasusy >7 + 1T < wnwg >7)

The result now follows from the fact that & is dense in Ly(fR, B(R), P),1 < i < m and

that Iy, v,y 35 an isomotry.r)

3.3 Limit distributions of U,(A,t)

ke of convenience, we shall discuss the cases

This section contains our main result. For the

“y=...=tx =’ (say) and “4’s are not all equal, 1 <7 < &, in two separate subsections.




3.3.1 The diagonal case: t, =t,=...=t;, =1
In this case we have the following triangular atray of U-statistics, with the ‘U-kernel’

symmetric and depending on n:

Un(h,t.2) = (Z) - > (B JTKD)(Zagys - - Zapa)sm Z &

ISe()< <a(k)gn
where

1= (L1, s

N
RTIKa) (210 22) = h(yi,uz, - wdes® TT K (8= =5)/an)s
=i

Zi = (X, V), 20 = (2,9, 1 S i < me (3.3.1)

Following the notation of Dynkin and Mandelt (1983), we d; (h.T1 K.,) into
canonical’ parts as follows:

G IIE) = (7= Q)+ Q- (7 - Q) + Qul(h. TT K.) (3.3.2)

shere [ denote the identity operator and € denotes the following conditional expectation

‘perator:

Qi= E(|Z1,. ., Zic, Zigr, - Ze) LSS k

{with the obvious modification when i = &). In other words, Q: means integrating out Z;,
holding Z;,j # i, fixed.
Expanding (3.3.2), we have

b TI K)o m) = EII,H/\'"+£:/LL'J(Z;)+ S P, 7)

i <izgh

+o > RO (2,20, %i)
1€ iz < <in SK

o BNz ), (3.3.3)

where
A2 02) = (T = QT = Q) (= Q)Quegr - Q1)
(R Az oz 1 Sr <k
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Hence,
Un(h,t.1) = ER.J] K + (t)(/,,(h;”) +.o+ (k)u,.(hs,’)) oA Ua(h9).
-

For example, for & = 2 we have

B (2) = a7 Kalt ) Eh(, Y)as  Ka(t, X2) — B T] Kx
2
WP(z1,72) = hlyoy)er? [] Kaltin)

— T KL 2).Eh(n, Ya)ag  Ka(t, X2)
i Kl 22) ER (Y1, y2)as Ku(t, X1} + ER ] Kn,

i

where Kn(t,x) = K((E—)/an). The 2{), 1 < r < &, have the property (termed “canonical’

by Dyukin and Mandelbaum) that

) € AP0, (3.3.4)

BN 20,22, .« 1Zr-1,Z,) = 0 for all (7,

T'hough the decomposition (3.3.2) (or, equivalently, (3.3.3)) was introduced by Hoeffding

(1961), we shall henceforth call it the Dynkin - Mandclbaum (D-A) d . since

‘Hocffding decomposition’ means something elsc in the theory of U-statistics.
Further, consider the probability measure P on (J, B(IR)) given by the following con

ditional density:
fy)
o)

Denote by B, the expectation with tespect to £ We shall express the limiting random

fylt)y = Ly EM

variables as multiple Wiener integrals with respect to I (refer to Section 3.2). Let us

s now. Other assumptions will be stated as and when they are

state our main assumpti

required.
Al. f(yl") is continuous at ¢ for all y € /R.
A2. fi(-) is continuous at ¢ and fi(t) >0
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A3. Either, E|2|**® < oo for some § > 0, A is continuous and

E{lh(yr, -,y P X0

is bounded in a neighbourhood of #.1,

or, A(-) is bounded.
Ad. K(-) is a density on /R such that limp—co [uh (v)] = 0 and sup, .z K (u) < oo

A5. a,—0,na}—00 as n—oo.
Lemma 3.3.1 Under Al - A5, we have
13 i3 2 & i3 2
(i) var (Ua(h, t17)) = 3 ( ) var (Un(RE)) =3 ( ) rIE(RD)2.0(1 /)
=1 AT r=1 A

1ii) al, B(R) = E(m, (Y. Y,))?(_/,(z)/][i K2(wdu) ({0 0<r <k,

< im0, where A® = Eh.TT K,

Syt s¥e) = Fh(g1, s gos Yorrs. -, Vi) mo = mit).
Proof: (i) By the canonicity property (3.3.4), we have

BRI ifr=land

ERO iy, Zi) W2 By) = {iryeeoni

={j,- i}

o otherwise.

Further, (1) = O(1/a7),1 < 7 < k. The result follows. .
(i) Note that
BNz, 2e)
== QU —@2) o (T = Q@i+ Al - y)ar* [Ty Kt )
ey Kn(6%5) ER (1 -y e Vi Yidag &) T,y K8, X

+(remaining terms),




where the remaining terms are of the form

¢ k
0! [L Kaltas) Bh(3ns 30 Vi er0 I Ralti X9,
b= =

with 0 <! < r— 1. Denote

b s 5 35) = Bh(gr, 35 Yigny -, Yidag &) H Ka(t, Xi),
i

0 < j < r, where hyo = EAJ] K,
Hence,
@ E(W (2, Z))

=a"E H K21, X;)R2 (Y}, - .., Y,) + (remaining terms)
where, in this case, the remaining terms look like either
!
aa? B ] K26, X)h2 (Y, Y),0 < <7 =1

i=t

or

ata;la;?E {H Kalt, Xogyhat(Yaqy, -~ .,Ya(,))ﬁl(,.(l,)(g(‘))
i=1

bV Yo}, 0 SUST—LISp<r

1<o(l)<...<a()<r1<Bl)<...<Bp)<r

{a(1),-., (D)} # {BQ), . Blp}}-

[t is easy to see that the first term on the right of (3.3.5) can be written as

Jir Jeen Jgeon (el = nz
= anl, .t aavh)

1'[ 2(z;) At — anzy) H K(v) fi(t — anvi) K (v)) f,(t—unvf)}dxdwlv'

b= ple,t = A1y ey b — QpUker,

where

, .
Mo(T1,0 3 Tpa 01,y Uk U V)
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= BV, Yo Us o Ui (Y Yo Uy UL I

V= l<j<nl<i<k-r}, (3.3.9)
and (X;,Y;)7o, (Ui, Vi) VAT, (U, VYS! are iiid. Now, we can apply Bochner’s Theorem (cf

Prakasa Rao (1983), Ch.2, pp.35) and conclude that the integral in (3.3.8) converges to
the limiting expression given in (ii) of Lemma 3.3.1 provided we establish that M,(-) is
continuous at £.1. Note that fi(-) is already assumed to be continuous at ¢, by A2. Now,
if h(-) is bounded, then by Al we immediately get the continuity of AM,(-) at 2.1, applying
Scheffe’s Lemma to the family of density functions f(:|¢ + §),6 | 0. Also, by the same

Lemma, the family of product-measures given by

- er

TL£Cle) TLACload fCl)

=1 =1
on M x B*T x R converge weakly to the iid product measure []f(-}¢) as
201, v, v!—t. By (3.3.9), continuity of M,(-) is equivalent to the convergence of the ex-
pectation in (3.3.9) with respect to these product measures. Therefore if A(-) is continuous
(but not necessarily bounded), it suffices to show that, for some & > 0,

EQW(Hy s Yo U U Va0 Yoy Ul UL | X = 2, Vi
V= 1<j<nl<i<h-r}<oo

uniformly for all z;,v;, v} near t. But for € = /2,6 as in A3,

E{JA(Y, U)R(Y, U)X = x,V =v,V' = v'} .
< (B{R(Y, U)X = x,V = vV E{R(Y, U)X = x, V' = v'})!/2,

using the Cauchy - Schwartz i lity and the independence of the ditional expec-

tations involved. But this final product is bounded for (x,v,v’) in a neighbourhood of
(-1t 8L kmr)xts £-T(koryx1)s by A3. Thus (3.3.8) indeed converges to the limiting quantity

in (i) of this lemma.



By a similar argument, it can be shown that the terms of the form (3.3.6) are of the
order ".0(1),1 < r — 1, and those of the form (3.3.7) are of the order «;7™.0(1),0 <

m < min{l, p}, where
m = card ({a(1),..., (D} N{B(1),..., B(P)})
Hence the terms of both type go to zero as n—oo, and our proof is complete.0

Corollary 3.3.1
Let b,k o IR*— IR satisfy A3, h,} being symmetric. Then under AL - A5,

() var{Un (A — Un(RE)
= E((nan) " {Un(AD) — Un(RE)))?
S By (¥, V) = (i YIFOA) [, K2y
(AP <r <k,
as nrco.
Proof: Note, simply, that
B R = (- QU ~ Q2) - (T = Q)Qeirs- -, Q4
«
Aty -- ) — Ryrse o w)az® [T Kalts2;)
BE]

The result now follows immediately [rom Lemma 3.3.1. O .

Let ¢;,1 < i < 1, be simple functions on (R, B(IR)). Denote

o .

Un(e,0) = (1 > TlledYew)ar Kalt Xa)

r 1<a(1)<o<alrign 7=1
—Eo(Y)a ' Ka(t, X)), r 21, LSi <l

Then we have the following result:

10



Lemma 3.3.2
Let the assumptions Al - A5 hold. Then, for any ¢; € R,1 <i <1,

.
5= cnan UL, 2 el G
i©) [y Ko da”

4 .
as n—sco, where () denotes convergence in distribution,

lloille = (i} (Y2)) /2, I () is the r-th Hermile polynomial as in Scction 3.2 and

o 21 -
5 ("le‘)v" i (H? T )) ~ N0, ((@63))ext)s

where

o1y = (Beoi(V)e, (i) lwll sl 1 S 6 < L
Proof: First, denote

@l(2) = oyy)ey Kaltyz)

Eo(Y)a Kalt, X1), 1 S i < U

where z = (2, 7).

Then,

(nan) 72U (2!, 1)
(n = r)inr/? N
! > Vanpi(Zoy) - - - V@i (Zary)

T
e 1€a(1)<<alr)<n

= b = VaZ N Zaqy - SO Za(ry) . (33.10)

150()AFalrn
where b,—1 as n—co.
Further,

S aln T el (Za))

:
(A [ Kt 2 T el Ol el (3311




as n—co. This follows by applying the Berry-Esseen Theorem (cf. Chung (1974),
Theorem 7.4.1, p.225) to
- :
nTV2 3 (Vw3 ol (%))
&=
as in Lemma 1 of Schuster (1972). Note that the ¢;’s are bounded (hence has a finite third

moment each) 1 < i < {, and the continuity of the functions

Bl ()X =) } T
Bl (V)w,(01X0 = 2)
at X = ¢ follows by Scheffe’s Lemma, as shown in the proof of Lenmma 3.3.1. Hence the
proof of Lemma 1 of Schuster (1972) can be easily adapted and (3.3.11) holds. In particular,
we have

4 2 .
MVarse V) S (10 (Hv T Yoo £ (“‘P” N

as n—c0, where

Vi

= (D) flp K¥)dn) ™ lill7n ™ S amigh (Za)
r =
It follows that
S alli (Vi) 5 Zu 1O E,
as n—oo. Note that each V,..,l <i< has mL following structure:

Vi = Zu‘"" (3.3.12)

wherc ,,((,"'1,1 < a < n, has an obvious definition. Further
(et 2Un (217, 1)

= ba(fi() [ K2 (u)de) e W00,
! /R 1<_ﬂ1|’¢'z#o(r)<n w o



by (3.3.10). Hence, to prove the lemma, it suffices Lo show that

WD e B3 o)
1<a(1)£. £alr)<n a=t

2. probability as n—oco, for each 1 < i < L Fix i = L. Now, we have
o~ (n) 4, > {1l .
o N0, 1), max P{Ii] > e}--0,

every & > 0, as n—o0. These two facts imply that (sce, for example, Laha and Rohatgi

1979), Proposition 5.3.2, p.312)
ll%l“asxn|L'£"')|HD.§(US‘”)2~1 (3.3.13)

in probability, as n—cc. Now, by the identity in the Appendix of Rubin and Vitale (1950)

(n1) (n1)
o))
1€a(1)#.Folrisn
=3 TLA=DM710a] = DE ). 33140
A

where A runs over the class of all parttitions of {1,2,...,r} into non-empty disjoint ers.
and | A| denotes cardinality of A € {1,2,...,r}. Hence, combining (3.3.13) and (3.3.14 .. az
in the proof of the Theorem in Rubin and Vitale (1980), we get the required convergence
in probability.0

Thus, we have shown that
(nan) UL (A1) ([‘(t)/ln K?(u)du)y /IO (o7)

where [ denotes the r-th order muftiple Wiencr integral with respect to £ (vefer to
Section 3.2). In the next lenina, we establish the result for Up(5§)),0 < r < k, where the

).

KL0 < ¢ < K, are as in (2

Lemma 3.3.3 Let Al - A5 hold. Then

i)(vlan)'/‘l/n(/zt.") 4 imw [ 520000 AT VRIO (m),
= =




as n—oo where m,,0 < r < k, are as defined in Lemma 3.8.1 (ii}
Proof: First, note that it is enough to consider Z,‘,‘:,(na,,)'/?L"n(hf"’). because Uy (h?) =
Eh.TI K,, a constant ¥n > k, and
EhTT Knmom(®) (1)
as n—oo, by Bochner’s Theorem. Here t denotes ¢.1. Next, denote
A [ K = G, fi(0) = g

for the rest of the proof. Now fix an arbitrary € > 0, and choose ¢, € IR, ¢, simple
functions on (IR, B(R)),1 < p < ,1 < r <k, such that

& u
G P E (m, (Vi -, Ve) = 3 eoppr (V1) -0, (V) )P < & (3.3.15)
i

Such a choice is possible, by Lemma 3.2.3. Note that

m, € LIYMRT, BUR), Pox - X P),r 2 1
c-fold

As before, let us denote by o the expectation on the probability space that suppor

Gaussian process

(1(e) : ¢ € La(I, BUR), P)).-
We shall show that

Eexp(i0 S5, (nan )2 U (RS))
= Egexp(i0 $E_, Gritgt=n /al[0(m,)), Y0 € R (3.3.16)

as n—s0o. Fix 6 € I2. We shall use the fact that, for any two square-integrable random

variables S, T on some probability space.
|E exp(i0S) — £ expiioT)] < [08(E(S —T)?)V/2.

Now, it follows from Lemma 3.3.2 that



k

13
33 enplnan) U4 1)

r=1p=1

k
= Z (nan)2Ua Zc,,npfp),t

k Ir
LS W yrmval it o) (3.3.17)
r=1 =1

as n—oo. After a little modification of Corollary 3.3.1, it follows that

k
B3 (ran) 2(Un( b)) ~ zc,,, (5,06}

(nan) E{UA () — Ecr, (e, 0.6 )

[NgEs

1
—vZG’ 2D B, — Zc,pcp g% (3.3.18)
as n—oo. Also,

.
Bo(3 G g% {19 (m,) 2 (e

=1
& 8
=S G E m, — Y e Y (3.3.19)
=1 =1
by the isometry in the definition of J{)(-) and Lemma 3.2.2. Put

&
Sn 1= Y (nan)2UL (D)

r=1

k
=3 (ra, )yt ’me (.0
=1

&
§= Z G’/lyk"'\/ﬁl,“)(m,)
=1

k I
3GV enl08)



Then
|E exp(i05,) — Eoexp(i08)]
<O E(Sn = Ta)2}Y? + | Eexp(i0Ty) — Eoexp(0T)] + |01{Eo(T — S)*}/?
Hence
Ty oo | £ exp(i05,) —~ Enexp(i05)] < [01VE + 0 + [0].v/E = 2001V,

combining, (3.3.15), (3.3.17), (3.3.13) and (3.3.19). Since € > 0 is arbitrary, (3.3.16)
follows.D
The lemmas proved above give the following theorem which is the main result of this

subsection:
Theorem 3.3.1 Let the assumptions Al - A5 hold. Define

ro =inf{r 2 1:m.(y1,...,9-) # 0}

o no el U (1) — o~ (* h0)
ey e = 5 (§)encrion
4BV 00 fp Kb ) 2Gm)
05 s,

Proof: Note that
)

na, o2 h 7'0 K L(])
(naa) o2 {Un(h,1.1) ;(]_)Uﬂ(/n)}

- (")(na,,yc/iz/'"(hgm)+(m.,.)m/’( 3 (‘f)u,.(hi{')] (3.3.20)
"o v \J

Now, by Lemma 3.3.3,

(4 ) manyrrmonie 4 ()00 f K2t A0l
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Further,
L k

E((na)™*[ 32 (.)U"(/.!;’)])’
jmrot1 N

AN
= (na,)" k J10 e 292, by Lemma 3.3.1 (i),
J nd

FETRS

= 3 B0 )

PRt
L] .
= 3 O((ra,)"¥"), by Lemma 3.3.1 (ii),
e
—0
as n—oo, by A5. This completes the proof.0
This brings us to the end of Subsection 3.3.1. In the next subsection we deal with the

non-diagonal case.

3.3.2 The non-diagonal case: t;,1 < i < k, are not necessarily

equal

Let a point t° € #* be given. Then the co-ordinates of t% can be partitioned into
cquivalence classes, 1 < m < k, such that k; of them are equal to ¢y, k2 of them are equal
(0 2,1y # ty, and so on. Here, k; > 1,1 € i < m, T, k = k. Further, since h(") is

symmetric, m(t°) is also symmetric, and we may write, WOLG

(919, ) = (t, sl tay ey bay e

k-times  k;-times

imes

Now, in this case

(AL Kz,

Kk
Ay w)ar™ T Kl ) -
i

.
agkn II Kot 5)-
FET e S
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Also,

«
alee kit 3 (Y- Yo)an* TT K85, Xaei),
Skl =

where

B(n, k)
= (B BR) 1S ALY <o < Bk} # Bl +1) <o < Blha + ko) #
Bk + ks +1) <... < Bk) S n}

Now, we shall apply the D-M decomposition” to (h. [ K») as in (3.3.2). Tn order Lo keep
track of the (@s, we shall denote @; = Q;(), bi+. . +kica+1 < j < kybo. +h1 S i< m,
with k= 0. Thus
(h.n Kn)z1,es 2)
L ki tka
= Il - Qi) + Qie)) IT (U = Q) + Qs8]
=1 J=kitl

[(7 = Qi(tm)) + Q;(tm))(h- TL Ka)(21, - 24)

Gkt ko1

-3 { STREET iy, s Zitea) - Bk 40 -2 Zie) )] (33210
=0 r(k,m}i(rkm)
where
vk, m) = {(r1se s Tm) 0 S S ki1 Sm,i =7},
=
i(r, &,m)
= {G(),. .., i()
1<i(1) <...<i(m) Shh+1Si(r+1) <. <i(ri+72)
< ky + ko Gt b LS+ A+ 1) <
e<i(r) £
and

BT (2, Ty B s o Bl o3 Bk btk b - PRk b )

18



Kat otk

hi) n Kyt Ktk
IU - @) I @) IT U-@st)) I Qi(ta)--
=1 =r+1 =kl J=kitradl

«
I = Qs(tm)) II
okt 41 FR—.

ot Tm ]

Qi1 )Nk T Ku)zs- - 7).

Note that, by the symmetry of A(-), the function Ay =) : IR — IR is the same as the

function

L T T RTI SYTH IR T ST

- ritea Tk =r1)
= [’HU— Qi(t) T (I-Qs(ta))--- (T =Qi(ta)) TI @stn)
=1 J=ritl JEr bt rmo L J=rl
ik =ra )+ (k2 —r2)
Qj(ta) .-+

G=rmA(E—km) 41

)

Qi(tm)| (b T] Kn)(z, -1 20), (3.3.22)
F=r(ki—ri) 42

where K, is the corresponding permutation in [15_; Ka(tJ,7;). The advantage is that, in

hirierm) the subscripts of the zfs are in a consecutive scquence 1 to r, which was not

cae with A=), Note that, the argument scquence in A=) actually begins with
2:.....2,,) rather than (zu,...,z, ), where

ig=inf{l Si<m:m >0}
For example, let & = 4,m =2 and = = 2. Then we have, for 11 = 0,75 = 2,

RO (25,2.)

Qut)Q:(8)( = Qa(t)) ~ Qu(t2))hly1, 42,3, ¥4)
2
a7? [T Knlti,z)as? f[ Kaltz, 25),
= joa

whereas

FOD (2, 22)

(I = Qu(z2))( — Q2(12))Q3(12)Qu(t1) k(w1 U2, 3, 1a)
s .
a7 I] Knlte, 75)a? [T Kaltrs25),
=t iz
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and it is clear that the two functions are the same. Hence. in the sequel, by AfH-") we

) (Bpea] o

Note that, when m = 1 and k; = k, all the expressions above reduce to those in the previous

shall mean AG1+-"=). Finally, we have

Un(h,t%) = ERT] Ko+ zkj [ )
=4 e

subsection. Now, let A1/, A2 and A3' be the assumptions A1.A2 and A3 respectively,
modified by substituting t° for .1, c.g.,
AY. f(y]) is continuous at 12 for all y € R,1 <4 < k.

Then we have the following analogue of Lemma 3.3.1:

Lemma 3.3.4. Let Al - AF, Af and A3 hold. Then

(%)
var(Un(h, t%))
= ("‘) ("’")Un(hs(h m), £0))2
. 1 Tm
E (n—r)! o (k) (k,,.) vl !
rL [erm)r(%?n; LAVACAVARRY
{3 3 B Zouy, -, Zoe)- RS (Zocs - Borte) s
i) 8)
where

(km) -0 (L) o :,13 T S ppya—y

Tm oie
and B(r,r) = {(B()y-. o, B 1S ALY, Bn) £ By +1) <o < Blritra) # ... #
HriH et 1) <. < B() <), and ({fg:) cte. are defined analogously. (Notc thal
card (B(r,7)) =

(i) Let

Sn(msTn)

=3 3 BRI (Zy, - o)) Zas - Te)
B ey
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Then liMn—s oo @4 Sa(Fm, ) = 0 if (rye....oo = 71, 1h), and

i anSu(vmra
Jim GG EBT(Z L 2))

T L) [ K2y H(f.(t e

=1

Ey,..tm(m,

PG S A)ER (3.3.24)

where Euptm (Mrgrm(Yis oo ¥0))?
S AN RIAIL) ) (TN S | G T
I |

and

i (Y10 -1 Y

= E{h(y1,-- ¥ Yoty Vi) Xy = 4,1 S G Sk — 7505

k= (kn—rm)+1<j <k}
Proof: (i) The first equality follows from the fact that the functions

(A1 < v <)

“canonical’ (¢f. (3.3.4)). For the sccond equality, notc that

BUL(RE™, t2) U, (L), £°)
n =)ty

T e LE( A{FR))( RURY) (3.3
n!

Bln,r) ﬂtmv'l

5)
Now. terms in both Tgs RE™) and Ty k) are based on (7) choices of r random
<ariables out of (Z1,.-.,Zy). But in the former, each choice is permuted card (B(r,r))

+imes, whereas in the latter, it is permuted card (8(r",+)) times. Since, by the canonicity
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spouding to distinct choices has zero expectation, the

property, a product of terms cor
right-hand side of (3.3.25) boils down to the following

— .
{M)ﬁrmer;ﬂy(”) S BRI
T T/ B (e

Hence the proof.

(ii) By (3.3.22),

B (2, 3e)

= ;7 T] Kalt, ;). az™ Kaltm, %)
=1 ik e rma 41
r(ha-r)
Eh(yis- Yo Yerrs oo Yidag®mmd T Kt X5)
J=rt1

ag®m=rm) [T Kn(tm, X;) + (remaining terms),
3

T

=re the ‘remaining terms’ are analogous to those in the proof of Lemma 3.3.1 fii1

a BT Zgqy, -5 Zan)) B € B(ryT)
= B2y, 2.))?
Bl T K30, X)o7
=

12(Yi,...,Y;)} + (remaining terms).

K2 (tm, X5)
P

where
Bar(ynse s 3) = Bh{yn, oo ye Yorr, oo, Ya)a™ = I Kuta, X5)

ag®m=rm [ Koaltm, X5)-

Now, in the same way as in the proof of Lemma 3.3.1 (ii), the ‘leading term’ above can

be shown to converge, as n—o00, (o the expression in (3.3.24) (without the factor ;

The remaining terms are of the order a%,1 < p < r, hence they all converge to zero as

r—+oo. Further, since

card(B(r,r)) = ;
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the total contribution from the square terms of the above kind will be exactly (3.3.24).

Hence, our proof will be complete , if we show that
i @ BRI Z gy, -, Zoe)hE (Zay, -2 Zpn) = 0
where
either : (A) (r1,--.,7m) = (r},...,75) but B # ', 8,8 € B(r,7),
or : (B) (r,..oyTm) # (Thy s )

In either case (i.e., (A) or (B)), there exists 1 := {i1,...,ip}, J = {j1,-..

{1,...,7}, 1 < p < r, such that
a ERE™ Zgqy- - Z,;(,)).ILL""J(Z,,V(,,, o Zp)
»
= E[[{e" Kaltf) Kalt }H (a7 K315, X))
1=1
be(Viy ooy YR (Vi y,)] + (remaining terms),

and (i) = BGi) but &8 £ 12,1 < 1 < p, while for i ¢ 1, j & J, both A(5) =

b I J €

(3.3.26)

B(j) and

= t;. Here h!,.(-) denotes the function k. (-) corresponding to (r{, ..., 7%,). Now as n—co,

the ‘remaining terms’ go to zero, as before. Consider the ‘leading term’ in (3.3.26). Assume,

for the sake of simplicity, p = 2. Let us denote max{13, 3} by 3. Put & = @ —1,0=12

Denote
Mo (zrs- .y 20)
= E{ e (Yir e YR (Vs YO Xy = 2y, X = 2 )

Then the ‘leading term’ in (3.3.26) is bounded by

/IR,{MM(L',7 — Gty oy 82 = atty) [T A — @ty IC ()

kN
2
TT A — anwi) K (i) K (a5 6t + i) Yua . d,
1=1

)

ey :
/(1'4-,KSﬂ;'fhln.zlsa;'ﬁz)( ) (lﬂu‘|>n;’§1.\u.zlsn;‘§z](
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(

+ ERES
/u.,.,\ga;'.s,,;...,pa;‘i,)( ) /u,..,\>n;‘5,.|u.7\>,:‘s,)
= T4+ T + T + T, say.

Now,

M <

K(a7 8y 4w, ) K (a7' 8 + wiy).

op sup
iy 1€an" 61 Juiy[<an 6z
:
S 000 T B 30) TT A = ) K ()}
kL3 i=1
duy ... du,

< sup oswp K(w)K(u)-0(1)

lugy [>a7 81 iy > 0352

by the arguments in the proof of Lemma 3.3.1 (ii) and Bochner’s Theorem;

7 < sup sup K (i MK (@' 8; + ).

luiy 1>a7" 61 Juig <0362
;
S 00 TLRH D TTACE = 0w
¢ el et

K (a7"6) + w ) K (ui)}du - . du,

1A

sup sup K (i )R (us)-
fuiy 1> 0781 luig|>an' 82

/m,{Mm(:‘,’ — ity = gty 8 — antr) TR ()
JES
S8, = iy (£, — i) I Qs K (1) Yo -y

= sup sup K () K (). O(1);

lue > az 61 fuiy>an's2
similarly,

T and T < sup sup K (g ) (uip)-O(1).

luiy 1207761 Juiy {07 62
(Note that the above is similar to the proof of (4), Lemma 1, in Schuster (1972).)

Thus, we have



the ‘leading tern’ in (3.3.26)

< o

< 4H sup K (u;,).0(1)

I=1 fuiy >
2 \u,,

< a]] swp alBK@)00) = 0.
1=1 iy >a7' 8 d

This completes the proof.00

Combining Lemma 3.3.4 (i) and (i), we get

lun (na.)E[ Y < ) <km)Un<h£‘n,...r,;,),tﬂ)]?

r(km) Tm

By, ,zm(m,,, ...,n.(Yl, N K))’} (3.3.27)

Let P, be the probability measure on on (IR, B(IR)), given by f(-[t:),1 < ¢ < m. Note
that Ey,,.., is the expectation with respect to Py X +++ X Py, We shall make use of the

modified multiple Wiener integral

QL (0(8" La(17, B(IR), Pu))) = Waim

1t

as defined in (3.2.3) (the superscript (t1,...,tm) merely shows the dependence on ¢;,1 <
1< m).

Let ;,1 < i < m, be simple functions on (IR, B(IR)). Define
@z, t) = pi(y)ar Kalti, @) — Epi(Y1)ar Kalti, X2),
1<i<m. Let Un(ol™,...,0lm), t0) be the U-statistic based on the function

@)®1®... 88,20l <i<m
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Lemma 3.3.5
Let b s RE— IR satisfy AS. Let also Al'y A2, Af and A5 hold. Then for everyl <rv <k

and (ry,...,rm) such that Y0 i = 7,0 < vy < ki1 <& < m, we have
lign (nan)" E(Un (A7, ) = G, em)Un(i, 00, )7

m!’" Lt K2 () ) (fr(1)) 2
TIUAD) f W ()
Eoa ey e (Fore o V) = 087000V, YOV

where G0, 1) = TI, (Fu(E))" and AErorm) s as defined in (3.9.22).
Proof: Note that (¢1)®"®...@(pp) @™ satisfies the ‘canonicily’ property (3.3.4) and
D6 . @ satisfies the assumption A%. Based on thesc observations, the result is
just a corallary to Lemma 3.3.4. Put
R(fu, K, 10) = Hr;!(j,(t,)/ K2(u)du)™
L '

Then we have Lo show that

(a)
Tt o0 () E(Un (AL ), 89))2 = R(f1, K, t9)G (£ 1)
2RO N ¢ (TEPRIS )N

@i, 1))

)
B0 (2 ) G, 1) (U (R, €2 Uo7,
= R(fi, K, 2)GHE, 0n) Byt (70D @ @0 F™),

lima oo (76 ) G2 (80, £ ) E(Un (i), 0, £9))

(c)
= R(f1, K, )G, ) Byt (#2720 @7 )2

Now, (a) follows from (3.3.27) directly. The proofs of (b) and (c) are similar to that of

13.3.24). O
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Lemma 3.3.6
Let @;,1 < i < m, be simple functions as before. Then, as n—co,
(e Vsl ™, 5, )

. r‘-! (4 2, d rif2
ITVrAE) [ 1)

(0o @pE™)

Proof: Note that

It

1y e

(o819 0p®m) = AW (g,) .. A (o),

where

A () = llgll; 1{,,(1"’( Mi<i<m,

i Il:

and
{11¢) : p € Lo(IR, B(R), P,)}, 1 Si S m,
are independent Gaussian processes on some probability space (with expectation Ep) such
that
BN (9) = 8 Bulp), V1 S iyj S m
Denote, as before,
off = (i) fp Ky gl " ared (Ze ), 1 S o S,
for 1 <i < m. Then, as in (3.3.10),

() UL, ), 1)

= TT0A0) i K@)l

S e e ()
IR S i SRR i 8 (3:328)

1<a(1)#falr)<n
where b,—1 as n—oo. Further, as in the proof of Lemma 3.3.2, we adapt the method of
Schuster (1972) (Lemma 1), and obtain that
Zv("“ . Zv“""

a=1
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ENT ) )Py
O B o)

as n—co, since @;(+),1 < i < m, are bounded and, for any scalars c;, 1 < i < m, we have

B 52w = S RECE v + B S ),

and
B o = (6 fip KA |7 Banlon(¥iJes Kot X2)
=
—BeVaz Kt X00T,

whereas

I:‘(i

= constt. E{a, [0 Y1)a

J"')(i o), i
=
SRl Xa) — Be(Yar Ka(ti, X1)]
les(Yi)ag Ky, Xa) = Boj(Yi)ag Kalty, X))}
Thus, by the methods of proofs of Lemma 3.3.1 (i) and 3.3.4 (ii).

ime BOC o0 =1, Jim E(Z v‘"“) v"” =0.

for all 4,j,...,i # j. This establishcs the asymptotic normality claimed above. Cousi-
quently, as n—oo,
HHy.<Z o) & Hn,,(z‘ )
Hv Ie:
L) et (B0 . 20 @T). ,

Hence, in view of (3.3.23), i

(1) ey (mm) (am)

Vo(1) ** Vatry) + Vol buckrmos+1) - Volr)

1<a(1)#.Falr)<n
- I,,(Z vL"")...H,,,,(Z ui'""’) (3.3.29)
=1 et



in probability. Now, as in Lemma 3.3.2, we get
limg—eo 0oy (0019)? = 1
limp—soo 302, 000 = 0 in probability,1 <i#j < m.
limp—yo0 Max; cagn 0§ = 0
Hence, as shown in the proof of the Theorem of Rubin and Vitale (1980), using the identity
in the Appendix of the same paper, (3.3.20) follows.C)
Now we come to the end of Subsection 3.3.2 with the following theorem which is the
counterpart of Theorem 3.3.1.

Theorem 3.3.2
Let h: R*~ IR be symmetric and the assumptions A1 - A5 hold. Let

roi=inf{l 1 < k:3(ry,...,r) € r(k,m) such that

My (Y100 9r) 7 0}

and
Ro(k,m) := {(r1,...,Tm) € ro(k,m) : My, s, () # 0}.
Then
RACATRE b Kon Gorim) 40
(nan)*{Un(h, t°) ,X:;:j(kz,,:..) (]l) (j,,.)y"(h" )}
< b En (77 ! . () du) 2 f kieri
s (7.‘)---(,_m)(’l:[‘\/_:-(fn(t,)/ﬂl\ ()2 ()5
Iietm (g, a(5), (3.3.30)
as n—00.

Proof: Denote

T = (T s )

CUR o 1) 5= TT VR [y K A0
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Now as in the proof of Lemma 3.3.3, we can get, for given € > 0, simple functions @; ... (-),

and apr,, € B, 1 i < my1 < p<U(rn),rn € Ro(k,m), such that

s
11 () 0806001 o OO 10 =
rm€RG (k) i=1 T

i(rm)

P SPN WP ) L PR CEER)

Further, define Un({ e, .- @5mkn, t0) as in Lemma 3.3.5.  Denote G(t°,rn) =

T2, (fi(#:)) =™, Then, as in the proof of Lemma 3.3.5, onc can show that

tip a2 S () g
e raeltgliem) i=1 A

G0 D i U@ s -5 @m0 1)

31)

B
= left-hand side of (

Now, by Lemma 3.3.6,

Hrm)
S G ) 3 e (200)Un( e
ReEm)

260 B

o
LY e OO fi )8
Ro(k,m)

as n—oo. Herc (3.3.30) follows from the two limit results above, along the lines of Lemma

3.3.3, since
o S g k.) (km.(r)oz
)" E i) D Un(hlF), ¢
oo 3 0 (1) (7)o
= 3 O(nan) ) (by (3327))

J=ro+l

—0

as n—co, exactly as in Theorem 3.3.1.0



3.4 Limit laws of Ul(t)

In this section we discuss the limit distributions of UA(t) = Un(h,)/Un(1,t). This section

is faitly technical in nature, in that some more analytical assumptions will be imposed on

m(-) and K(-), in addition to those in Al - A5 (or Al - A¥, Ad, A5). Further, we shall

retain the results and notation of Subscction 3.3.2 only, because this subsection contains

the results of Subsection 3.3.1.

Let us consider the case of asymptotic normality first. This is equivalent, in the notation

of Theorem 3.3.2, to ro = 1. Hence r; = 0 or 1,1 < ¢ < m. Denote

T o(mo..0() = I (mi()), L S i< m,

1.

where, on the left hand side, the ‘17 in the subscript occurs at the i-th place. Then

Ro(k,m) = {1 <i<m:myy) #0),
and we have
(nap )2 (Un(hyt0) — EUn(R, )
ENS> L-,(f,(t.)//[zf\'“(u)du)‘“(f,(h))""'(l‘[(f;(t,))“")lf‘(““(""
JE

mi ()0
Further, consider Un(1,t°). Here & = 1 and

EUn(1,t%) = fIEI(((l?—X:)/a,,)
=1

{BR((t: — X1)]aa) Y.

Hence,

(nan)/*(Un(a,t%) —

TI (£ — X1)/an))
i

£ 3T LUE) [ KA TIAEI) ),
J#i

=

(3.41

(3.4.2)

as n—oo. Note that {I{(m;(-)), I{*(1)},1 < i < m, are m independent random vectors, by

their definitions.

Now we modify the previous assumptions as follows:
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B

=

B3.

B4. K

Bs5.

Bé.

. Same as Al".

. fi(-) is continuous at ¢ and fy(&) > 0,1 < i < m; further fi(z) is twice continuously

differentiable at each t;,1 <i<m.

Same as A3,

() 2 0, S K(u)du = 1,limpymseo [ ()] = 0 and sup e K(u) < co; further
K(-) is symmetric and fjp u? K (u)du < co.

a,~0,na’—00, but nal—0 as n—oo.

Moreover, we impose the new assumption:

m(x) = E{h(Ys,..., Yi)l Xy = 21,. .., Xi = 22} is twvice continuously differentiable in

a neighbourhood of t°.

Then we have the following result:

Theorem 3.4.1 (i) Under Al - AS, Af and A5,

(nay) H(UR(E®) — EUL(h,t°)/ EU(L,°))

4 S KU K ) I ) = m (8,

i=1

as n—00.

(i) Under BI - B6

(nan)2(UF(E?) = m(t%)) S Z(h,t°) asn—oo,

where Z(h,t°) is the limiting random variable given in (i) above.

Proof: (i) This follows from (3.4.1) and (3.4.2), by considering the function (x,v) =

uv™!, as shown in the praof of Theorem 1 of Stute (1991), and the fact that

EU,(h, t°)—m(t°) [Thay /1(t2) and EUL(1,£°)— [Tiy f2(29), as AL’ - A3, Ad and A5.
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(ii) Note that

(nan)'*(EUa(h, t°) EUA(1,1°) — m(t"))

= {EU1,8))""

—m(t0)(nan) " (BUA(1,t°) —

= o(1) +o(1),

as n—oo, as in Corollary 2.4 of Stute (1991),

{(na")‘/’(EU,,(h, t%) ~ m(t°) f[ AE)

o)

using B2,B6, Taylor’s expansion for

m(x) 15, fi(e;) and Hf 1 fi(z;) upto order 2, B4 and B5. The result now follows from (i)

above.O

Theorem 3.4.2

Let A" - A%, A4 and A5 hold. If

®
S < o0,

then

{Ua(1, £} (nan) ™ {Un(h, %)

as n—o0.

59> ( ) -.(fm)vn(lz‘f*"-dm%t")}

3=0 j(kim)

im%( e () B VR it ey

]

(Meyrm(*))

Proof: The result is immediate from Theorem 3.3.2, provided we can show that

as n—oo, since [1; fi(t9) = [T, (/i(t:))

Un(1,8°%) — Hf,z°

5. Now we have

— EUL(1,t°) + EU(1,t°) — f[fl(t?)-

63

In case ro > 2, (i.e., the so-called ‘degenerate’ case), we get the following result directly

(3.4.3)

(3.4.4)

(3.4.5)



By A2, A4, A5,
¥
Jim EUL(1,%) = [T A(e0)-
=
By the ‘D-M decomposition” (cf. (3.3.23)),

Un(1,%) = EUL(1,t%)

- i ki LB K (b XY T g {EK(ty, X}

= P
¢ -1 3 .
=3zt Kalti, X0)] | + (remainder)
n i=1

where E(remainder)? is O((rna,)™2), by (3.3.27), and ¥1 < i < m,

n 3
£ |l Sl Kaltis Xi) = a5 ERa(t, X0)]| = O(na7)
L=

by the Marcinkiewicz Zygmund inequality, as in the proof of Theorem 3 in Stute (1991).
Thus by Borel-Cantelli Lemma, and (3.4.3),
Un(1,£°) ~ EU,(1,£°)-0 as.,

as n—00, and (3.4.5) follows.0

Note that the sequence of weakly convergent random variables in (3.4.4) involve the
U-statistics Un(AGt-9m) £9) which depend on the unknown distribution of (Xy, Y1), hence
cannot be calculated from the data (X;,Y:),1 < i < n. Ideally, one could hope either to
estimate then from data, or to show that

(na) UL (R 57, £) = 0,(1), 0 < § S 70— L, (3.4.6)

as n—00.

We shall now show that (3.4.6) holds when A(-) has a product structure, under the
assumptions B1 - B6. The general case remains as yet unsettled.

Let ho(y1,---59x) = @(y1) .- p(ys), where o(-) is such that h(+) satisfies B3. Denote
me(x) = E{p(Y1)| X1 = 2}, and assume my(-) satisfies B6. Now, suppose that

mp(t) =0 for 1 Si <, (3.4.7)
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for some 1,1 < [ < m. This implies that, V0 < r < !_ ki — 1,

My (Y1105 Ur)
= Efho(y, s yn Yosts- o Vi)l Xy =, 1 S S k=g,

Xopj =tm k= (ki =) +1 <j <k}
!

= lm)e i) Tmplt)} f{(mw;)}‘*-"
0,

since k; —r; > 0 for at least one 1 < ¢ <[ (Otherwise, k; =y,

I1<i<landr=Y%,r>
T = Sho ki > T4, ki — 1), Hence, in this case, ro = iy ki We are now ready to
establish (3.4.6)

Theorem 3.4.3
(i) Let o(-) be such that (3.4.7) holds. Then, under B1 - B6,

as n—oo, where r =71+ -+ rm.

(ii) Under the conditions of (i), and if Tz n~?a7? < o0,

(nan) P UR? (£9)
K u 2,
R(z]() (5 ) T R o 1, )
1""[1(77@(:;))*-

as n—oo, () as in Lemma 3.3.6.

Proof:

(i) Consider the case r = 0 first. Then
(n@a)™"? EUL(hep, t°)
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' ™
= (nan)'“”ljllﬂ:"(ﬁv(yn)l\'n(iu)(ul)"' JT[ at (B K (1)}

(3.4.8)

]

. m
TI{e: (ran) 2 E(¥1) Ka(ti, X0} T {an Bea(¥i) Kalts, X0}
= “in

The second product is convergent, hence bounded, in n by our assumptions. The fiest

product in (3.4.8) equals
1) — () Fi(t) K (= )d2 }M

;
T (65" (e fplmo(ts = anmad it =

= o(1),asn—0c0 (3.4.9)
by Taylor’s expansion and our assumptions.
For 1 <r <rg—1=3!_, 4 —1, we have, with z; = (zq,3:),1 < i <7,y
22)
=TT T otwa)ant Kn(tis20) — a5 Eep(¥) Kalts, X2)]
iaci
T1la; ' Eo(Yi) Kulte, Xo)J7 [ERSTN
i
B{(nan) UL (WG, %))
= E{(nan)Un{(na) o2 0G0, £0))2 (3.4.11)

r;, hence we can get 0 < & < ki —ri, 1 <
.10),

ki — 3

o — 7. Thus, from (3.

Now, ro —r = Thy b= Ty mi < T

i <1, such that T, &

(ran)o Gy, 2

H [[ [(va)arn Kalts, 2a) — Ep(Yi)ag  Ka(ti, X1))-

TT((raa) 265" B(¥i) Kalts, XOIF( . Jo5 f{ Lo

= (fI ﬁ[w(w)a;‘h(u,n) — Eo(Yi)az K a(ti, X))-o(1) (3.4.12)

istaZ1
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in the same way as in (3.4.9). Thus, by (3.4.11), (3.4.12) and (3.3.27),
E{(na ) U (b5 191 = 0(1)-0(1) = o(1),

for Vry+...47m =7,1<7 <rg— L This completes the proof.
(ii) This follows immediately from Theorem 3.4.2 and (i) above.0
We close Section 3.4 here. In the next, concluding, section, we give an example to

illustrate the ‘degenerate’ case and a few explanatory remarks.

3.5 An example and some remarks

We continue with Example 4.1 of Stute (1991), which was mentioned first in the Intro-
duction. See the above paper for other examples of the non-degenerate case , i.e., where

asymptotic normality holds.

Example 3.5.1

Let k = 2 and A(y1,¥2) = y1y2. Then m(13,83) = m(t9)m(13), where m(z) = E{Vi[X, =
z}. Suppose our conditions B1 - B6 are satisfied.

Consider, first, the case {0 = {J = ¢, say, and (t) = 0. Here, m =1, by =k=2,1=1

(in the notation of Theorem 3.4.3). Further ro = 2. Thus we have, by Theorem 3.4.3.
(ra)UR(E1) S ([ K3/ AV EL1X = (27 - 1),

as n—oo, where Z is a standard normal random variable. Next, consider the case {0 # 3,
but (&) = m(13) = 0. Here, m = 2,k = k» = 1,1 = 2 and ro = 2. Again, by Theorem

3.4.3, as n—o0.
(ranUA(E%) 5 ([, KA '“H(F (ViX, = )4,

where Z; ~ N(0,1) are independent, i = 1,2.
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If however, m(t9) = 0, but M ((3) # 0. then

= gl 0
ma(y) iy # o (0, 8)
miy) = pm) = 0

in the notation of Theorem 3.4.1. Hence by the same theorem, as n—oo,
! ;
(ran) PULE) 2 ([ K2/ AN E (),

wher of course, I8 (m()) ~ N(0, E{¥2|X, = t9}(m(12))*).

Remark 3.5.1

Note that the assumptions A1’ and A3’ together imply that m(x) is continuous at x =

This fact has been used implicitly throughout the paper, while proving
X
i EUL(h, 1) = m(e°) [T £u(),
=
via Bochner’s Theorem. Here, (£3,..., ) = t°.

Remark 3.5.2
In retrospect, it may be worthwhile to compare our conditions with those of Stute (1951

For example, our Al and A3 imply Stute’s Conditions (iii), (v) and (vii). as is clear from

the proof of Lemma 3.3.1 (ii). Further, we do not need the functions myga(-: ) in Stute’s

Condition (vi), because our method js different.

Remark 3.5.3
In treating the ‘degencrate’ case in Theorem 3.4.3, we should have considered product

functions of the form

» .
Mew)--- I e Xp=kr2z1,
1=1 i=p i=t

Hekpeorl

for a greater generality. But then we would have to deal with the r X m quantities
E{eV)IX, =1;),1<i<n1<j<m.
This would mean more complicated expressions, while the result would essentially be

the same as in Theorem 3.4.3.
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Chapter 4

Censored Data and the ‘Martingale
Methods’

4.1 Introduction

Let, as before, {(Xi,¥:)}iz1 be a bi-variate i.i.d scquence. Further, suppose N, and 1] &
both non-negative (i.c., they represent life-time or survival data), i > 1. and subject to right
random censoring. That means there exist two other i.i.d., non-negative, sequences {X{},»:

and {¥/}is1, independent of each other and of {(X:, ¥:)}iz1, such that we can only obscrve

,\ min{X;, X1}, &= 1(X: < X7) } Ly
Yi=min{Y;, ¥/}, m=1¥<Y)

Let X;,¥; have joint density f(z,y), marginal densitics fi(z) and fa(y) and marginal
sistribution functions Fi(x) and Fy(y) respectively, i 2 1. Let X! and ¥/ have distribution
Zunctions G(x) and Ga(y) respectively, i > 1.

Assume that E|Y;| < co. The problem of estimating the regression function

m(t) = E(Y | X1 =1), t 20, (4.1.2)
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was studied by Mielniczuk (1991) under the censoring scheme described above. He intro-
duced a dlass of kernel and nearest-neighbour type estimators and established their pointwise
consistency and asymptotic normality.

Under the same set-up, we propose a new class of estimators for (4.1.2), following a
different approach. The idea is borrowed from Ramlau-Hansen (1983). It is well known
(see Gill (1980), Theorem 3.1.1 and Corollary 3.1.1)that the counting process

No(t) =3 1K < 4,6 =1),6 20, (4.1.3)
=
has the compensator
Ault) = / /() () du,
fe, In(t) = Na(t) = An(t) is a martingale, where an(-) = fi(-)/[1 = Fi(")] and
Vi) Z 11X 2 1).
In other words, Ny () comes under the multiplicative intensity model introduced by Aalen
(1978). Ramlau-Hansen (1983) (to be called R-H hereafter) proposed the following kernel
estimator for a(-):
a,.(:)=a;‘/ K((t — 1) an)Tn(u)(Va(w)) " dNo(w), (4.1.4)
o
where 0 < ¢ < T, Ja(u) = 1(Va(u) > 0), and it is assumed that Fi(T) < 1, Gy(T) < 1
and Gi() is continuous. We have observed that the following increasing process, with
Gyi=1-Gy,
Pu(t) Zn. (GoF)) " UK S 8,6 =1), £ 20, (4.1.5)
has the compensator
:
Aa(t) :=/ Va(w)m() f ()1 — F(w) e, t20. - (4.1.6)
o
This fact is established in Section 4.2. In other words, Aa(t), too, has some sort of a ‘mul-
tiplicative intensity’ structure, where the ‘intensity’ is given by Va()ym(-)an (). Motivated
by this fact, we propose the following estimator for m(-) :
ml(t) 1= & (tIm)/én(t), 0t < T, (4.1.7)
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where d(t) is given by (4.1.4),

r
&0t a;‘[) Rt = 1)/ an)Ta(u)(Valw)) 1P (w),

and finally PO(2) is obtained from Pa(¢) by veplacing G2(¥:) by Gzn(¥:), the well-known

Kaplan-Meier (K-M) product-limit estimator for Ga(-). Both in (4.1.4) and (4.1.7) T is
chosen large enough, but it is assumed that 7' < min{7g,, Tk }, where, for any distribution
function H,

Ty :=sup{t : H(t) < 1}.

However, to facilitate the use of ‘martingale methods’, we shall work with

Z‘/;r R((t = w)/an)Jn(w)(Va(1)) " dPa(u), (4.1.8)

b (tlm) -

and show in our proofs that the differance |é,%(¢]m) — &n(tlm)| is negligible.

Exploiting the martingale structure, we establish weak uniform consisteney (i.e..

sup [md(t) = m(t)|—0
tec

. orobability, as n—o0, where C is & compact subsct of [0,7]) and asymptor

diti ling asymptotic normality. we chiain

r, under suitable

of our

<ame expression for the limiting variance as in the case of Mielniczuk’s (1991) estimator.

although our method is different. The results are given in Section 4.3. We have mostly

adapted the techniques of R-H and Michiczuk.
In Section 4.4, we consider the morc general estimation problem (1.0.5). Our goal was

1o construct an analogue of Un(h,t) via the theory of two-parameter martihgales. But,
snfortunately, this approach does not seem to work here. Restricting our attention to the
case k = 2 and functions h(-,-) with a product structure, we show, in some detail, how far

the said theory explains the structure of the analogues of P,(-) and Aa(-) - and where it

“ails.



4.2 The compensator of P,(t) and related predictable
variation processes

In this section, we show that La(t) i= Pa(t) — Ax(f) is a martingale with respect to a
suitable filtration. We also compute the predictable variation process < Loy Ly > (1) and
the process < Lu,ln > (t). See any standard text (e.g., Metivier (1982)) for the definition
of such processes and the elementary results on martingales used in this article.

We shall deal with P,(t) first. Consider the following filtrations:

G(t) = (il =LYie BIK <s6=1),1X<s):
0<s<t,BEB(UR)}, 1<i<n,0<t<T, (4.2.1)

where B(IR;) denotes the Borel o-field on IR, Further, let
Falt) s \/ Gi(t), 0<t<T.
i=1
We also make the assumption:
AL Tipy < T, Yo 2 0, where F(-|z) denotes the conditional distribution function of ¥,
given X; = z.

Then we have the following result:

Lemma 4.2.1. P,(t) is a sub-martingale with vespect to Fa(t). It has compensator Aq(t),

i.e., Ay(t) is the unique, increasing, predictable process such that
La(t) = Pa(t) — Aa() . (4.2.2)

is an Fy(t)-martingale, 0 S t < T.
Proof: It is clear from (4.1.5) that P,(t) is adapted to Fu(t), EP(t) S nfYy <00, 0

t < T, and it has increasing paths. Hence obviously, Px(t) is a sub-martingale. Note that
Anlt) = Z/ () (u)du, 0 <t < T. (4.23)
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It is clear from (4.2.3) that A,(t) is increasing in ¢ (since m(-) is non-negative), it is Fn(t)-

measurable,
EAA(t) € EA(T) € nEYi(1 — F(T))™" < oo,

and the continuity of the maps
(4.2.4)

tr ARG e /ﬂ' (e (u)du

implics that A, () has continuous paths, hence it is predictable. Thus it remains to show

that
E(Pat + 5) = Pat) | Fa(1)) = E(Aa(t +5) = An(8) | Fa(D)) (4.2.5)
forall 0 <t < T and s 2 0. Fix 1 <¢ <n. Put
Q) = nFGEN K< 6 =) } 520
Bi(t) = [s 1(Xi 2 wym(w)ay (u)du.
It suffices to show that
E(Qi(t+5) — Q1) | Gi(1) = E(Bi(t +5) — Bi(t) 1 G:(¥), (4.2.7)
since Pa(t) = Aa(t) = T(Qi(t) — Bi(t)) and Fu(t) = Vi, Gilt)-
Fix 0 < ¢ < T and s > 0. Denote
105 =1, Y € B)1(X; € 5,8 = 1) := Zi( B, s)
and 1(X; < s) 1= Wi(s). Then Gi(1) is gencrated by functions of the form
), : (4.2.8)

il

(Zi(Br,s5) = €3)- f[ 1(Wi(s;
S1is1 i=t

where p2 1, m 21, 0< s, < - < 5, <, By € B(I2,) and e51,¢; take values 0 or 1,

1<j<p, 1 <I<m. Now

E(Qt + ) = Qi) AZi By o) = i Wil

E [n:¥i(Ga(F) 7110 < X < 5,8 = 1)x
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UZ(Br,s5) = e, Wils;) = ¢;,1 < j <p, 1 1< m)]

[ oifG=lforsome1<;i<p
(Ga(¥)711(t < X; < t+3,6 = 1)1(Wi(s,) = 0) otherwise

0ife forsome | <j <
- { En,}{(Gz()Z))"l(t <}(‘j§_tp+s,6x = 1) otherwise, @29
since 1(Wi(s,) = 0) = 1{X; > s,) and s, < t. Similarly,
B(Bi(t+s) = Bi(t)1(Zi(Br,s;) = i, Wils;) = ¢;,1 < j < p, 1 1< m)
(4.2.10)

_ Oife;=1forsomel <j<p
ENX; > 5,) [ 1(Xi > wym(u)a, (u)du otherwise.

By comparing (4.2.9) and (4.2.10), it can be scen that they are equal,since, by Al,
Em¥Ai(Ga(P1)™ | Xy = u) = m(u).

Hence (4.2.7) follows.O
We now compute the predictable variation process of the martingale Ln(t). But in order

to ensure square-integrability of Ln(£), 0 < ¢ < T, we impose the following, somewhat

restrictive, assumption:

A2.0<Tr, < Ta, < co.

A2 makes Y; essentially bounded. We then have the following result:

Lemma 4.2.2. Under Al and A2, La({), 0 < t < T, is a square-integrable {Fu(t) :0 <
¢ < T) martingale. The predictable variation process of La(t) is given by

< Lo dn > () = [ Va(w)ma(u)en (u)du, (4.2.11)
o

where ma(u) = B(Y2(G2(Y1))™" | X1 = u).
Proof:Note that

Li() < 2APH0) + A4(2)),



EPXt) < nE[nHi(Ga(f) 1% < 1,6=1)

REYHGHY) (X £ t,6=1)

n [ G at)dy

n(Gs(Tr)) ' EYY < oo,

eaw < B ([ Vawmad) ([ et

by Cauchy-Schwartz inequality and the fact that (m(w))? < ma(u).
n? (/Olmz(u)a,(u)du) (—log(1 — Fy(T))), since Va(u) < n,

< ¥l = R(T)"H(CalTr)) " BY(~ log(l — Fy(T))) < oo,

Inl

IA

IA

for 0 < t < T. Thus Ly(t) is square-integrable. Put #,(1) = Qu(1) — B(1),0 <t < T,1 <

i < n, where Qi(-) and B3;(-) are as in the proof of Lemma 4.2.1. Then we have

< Lony b > (1)

> < My, M; > (1) (4.2.12)

1<iFin

Fix 1 €4, < n,i # j. Then, for s > 0,

E(XL(t + s)M;(t + 5) | Fau(t))
E(M(t+ )Mt 4 5) | Gi(1), G5(8)),

by the independence of Gi(t),1 <i < n,

]

= E(M(t+s) | GUNEA(t+s) 1 G5(t)
M(t)AT,(2)

il

It is clear from above that < A%;, #7; >= 0 for all i # j. Now note that, for cach i, Mi(-)

is & function of bounded variation, since both Qi(-) and B;(-) are increasing, and is right-
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continuons. Thus we can write

M2 :z/ Ti(s=)dili(s) + 3 (AM(s))2, (4.2.13)
o5k

where AMi(s) = Mi(s)—Mi(s=). (Sce, for example, Liptser and Shiryayev (1978), Equation
(18.72), Lemma 18.12, p.269.) Now ANTi(s) = AQi(s) — ABi(s) = DQi(s), since Bi(-) is
continuous. Thus
S° (DM(s)Y
oSk
= R GENI L= 1)
= W) + Built), (4.2.14)
where
olt) = pV(CaT))1(K, < 1,6 = 1)7/’1(/\", > wyma () (w)du
o
Bu(t) = L‘u,\’, > wyma(u)an (u)du

Using the arguments of Lemma 4.2.1, it is clear that My(-) is a martingale and Bzi(-)

is a predictable, increasing process. We also use the fact that
B (Ga(V)) 72 | Xy = ) = ma(u),
by Al. Combining (4.2.13) and (4.2.14),
M) = 2[‘1 M(s—)dAT(s) + Mauilt) + Ba(t).

Note that the first two terms above are martingales. Ience, by the uniquencss of the

Doob-Meyer decomposition, we have
< M, M; >= Bai.

The result now follows from (4.2.12).0



By virtue of Lemma 4.2.2 and Doob’s Maximal Inequality (see Metivier (1982), Theo-
rems 10.12 and 19.1), we have, for any 7(t)-predictable process Z(f),

2} < 48 (/: z(-s)dnn(s))z

Y /HT Z3(s)Va(s)ma(s)an(s)ds.

[ 2()iLa(s)

{

ogIsT

We shall make use of this fact in Theorems 4.3.1 and 4.3.2 of Section 4.3.
Consider also the simpler counting process martingale 1,(£) = Na(t) — Aq(t). Let us
modify the fiitrations Gi(t), 1 <4 < n, as follows:
Git) = o{lin=aYie B(K < 5,6 =1),1(Xi < 5):
0<s<tBEB(Ry)a=00r1},0<t<T,

and also

Then it is casy to sce that [,(t) and L,(t) are both F,(t)-martingales. Write l(t) =

T, fl(2), where

At = alt) - b(1),
at) = UL SLE=1), (4:215)
(1) = LUK wen (w)du,

1 <€ i < n. Then the following lemma shows that < Ly, /. >= A.. We shall usc this in
Theorem 4.3.2.
Lemma 4.2.3. Under Al and A2, we have

< Lnyln > (1) = Aa(D), 0SS T,

e, Ly(8),(8) — An(t) is an Fo(t)-martingale
Proof: Note that

< Lny b > (1)
S < M > ()Y < Mamy > (). (4.2.16)
i=t i#5

77



Now by the same arguments as the ones used to show that < #7;, M; >= 0,i # j (in the

proof of Lemma 4.2.2), we get that < Af;,7; >= 0 for i # j. Next, observe that we can

write
M)t = /ollfl.(s—)dﬁ.‘(s)+Llﬁ;(s—)d[l;l,(s)
+ 3 [M(s) = Mi(s=)][Rils) — Ails )],

as in Liptser and Shiryayev (1978), Lemma 18.7, Equation (18.40). Further,
3 [01i(s) = Mi(s=))[Rs) — (s =)
o5ege

= wW(GT)) UK < 1,6)
= Q)

(4.217)

(4.2.18)

The result now follows from (4.2.18), Lemimna 4.2.1 (Equation (4.2.7)) and the fact that the

first two terms on the right-hand side of (1.2.17) are martingales.0

We close Scction 4.2 here.

4.3 Weak uniform consistency and asymptotic nor-

mality of md(¢)

Recall, from (4.1.7), that
mO() = &,0(t1m)/dn(t), 0 L < T,
where &(£) is given by (4.1.4) and
T
atebm) = az? [T R ) ) V) P2
= TN K - X a5 Ve X),
stimator for Ga(-):

where (zn(-) is the well-known Kaplan-Meie

Ganlw) = { [T (1 = (VaFig) ™) 01Ty S why i < Fooy,

0 otherwise,

=
E3



¥y, 1 < 7 < n, being the ordered ¥j’s and 5(;)’s the corresponding censoring indicators.

For our proofs, however, we shall make use of
-
dn(tlm) = a7t [ (¢ = w)/an) o () (Va(u) " dPo ()

in view of the martingale results obtained in Section 4.2. Definc

Gn™(tm) = a5 /0 T Rt = ) an)Ju(u)m(w)en (). (4.3.1)
Note that, by Lemma 4.2.1, Z,(s) — Za(s), 0 < s < T, is an Fn(s)-martingale where
Z(s) = J3 Tn(w) (Va()) ™ dPa(w) 432)
Zs) = f3 Ja(@)(Va(w)) " d A () = J§ Ja(uym()on (u)du o
Further,
G (tlm) — &n*(tm) = a7t /: K({t — @)/ an)d(Za(1e) — Z3(10)),
and

< T = 2512
= < [ IVal) (), [ I (V) L) > (2)
= [ A ) Vauima(wen ()de
= [ @) tma(wartwd,

Z5 > (s)

by Lemma 4.2.2.

We ace now ready to give our main results. We make the following assumption on the
kernel K(-):
A3. K(-) is a bounded, continuous and symmetric density function on [—1, 1]. Further, it

is of bounded variation with total variation ¢(K') < oc.
Theorem 4.3.1. Let Al - A3 hold and na?[logn—oco as n—oo. Suppose m(-) and an(-)
are continuous on [0, 7], and [to, t,] € [0,T] is such that

inf [(1)(1—Gi{1)) = ¢ > 0. (4.3.4)

3

79



Further, suppose there ezists € > 0 such that
Pr{Y, <Tp —¢lto—r<Xi<ty+r}=1 (4.3.5)
for v > 0 small enough. Then
sup |ml(t) = m(8)] =0, as n—oco,
to<tsh
in probability.

Proof: First, consider the following decomposition:

(m2(8) — m(2))
= (&) (@ (tm) — &a(tlm) + (G (8)) T (Gnltlm) — m(H)en (t))

() (En( ) (En(8) — e (0)- (4356)
Now,
(@n0))82(2m) — (2]
< émﬁl(@umr‘ - (Gz(f';))"lsn.u)/(éen,u)» FERS
where ) )

enilt) 1= @ K((t = X)) fan)8i( V(X))

Hence, by A2, the right-hand side of (4.3.7) is bounded above by

Tr, sup Du(YL(IX: — | < an),
1gign

with Do(¥3) 1= |Gan(¥:) — Co(Yi)(Gan(Y)Ga(¥2)) Y, because K () is suppone}l on [—1,1).

Hence,

sup |(&n(8))7 (@ (tlm) — altm))]
to<t<l

T, sup Dn(Yi)1(lo — an < Xi <1y +an)
1<itn

IA

< O(n~Y*(loglog n)'/?), a.s., for n large enough, (4.3.8)
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using (4.3.5) and Corollary 1 of Féldes and Rejté (1981). Next, we have

aat) = (= X an)8i(Va(XD)) (K S T)

zu

v

g K (8 - X0)/an)8i1(Xi S T) as.,

since Vu(s) < n, 0 < s < T, a.s. Now, since (4.3.4) holds and a2/ logn—0o as n—0o, it

follows by (2.3.7) in the proof of Theorem 2.3.1 of Chapter 2 that

iuf @n(t) 2 ¢ — o(1) as. as n—sco. (4.3.9)

fostgh

Further,

sup [ (thn) = m(en (0)]

2
sup [dn(tlm) — do (L)l + sup ld&a(thm) — m(Da (8)] (4.3.10)
toSi<h to<t<,
Now it is easy to see that
Supogagr Wals) = 1150 as n—oo, a1
SUP,s1 SUPogecr £{nn{sHVals)) ™} < oo.

(See R-H, Example 3.2.3). It follows that

(4.3.12)

E {5“%5‘5“ Jén(tlm) — aﬂ'(umn*} -0
SUPeicn 18a"(tm) — m(an ()] 50

as n—co, since by (4.3.11)
sup |&n"(tm) — m(Den (D]
to<e<ty
.
sup / K(w)lm{t — apu)en (t — ant) — m(t)o (€)ldu
ek J1
.
+ sup m(t)a.(t)/ K(@)(1 = Ja(t — ant))du
weeln o

— 0, in probability as n—oo,

81



5 { sup, tont) - acem)

- p{ s
o<ty
< et { gup 1700 - z0r)
o2
< aTHO(K)UE < Zn— 23,20 — Z5 > (T)
- 4(na:)"LTnE(J,.(s)(V,.(s))"}mn(s)al(s)d"

— 0 asn—oo

ozt [((Za) - ZauNaK (@ — /o)

)

by A3, integration by parts and Doob’s Inequality.
Thus from (4.3.12) and (4.3.10),

sup [Ga(thm) = m(O)en (£)]50 as n—soo. (4.3.13)
Leig
By similar arguments,
sup [@&n(t) — (8150 as n—rco. (1.3.14)
P

The result now follows from (4

6), (4.3.8), (4.3.9), (4.3.13) and (4.3.14).0
Now we consider asymptotic normality of m§(t) at a fixed {,0 < ¢ < T Note that, since
K() is conti (hence Fo(t)-predictable), for any two real numbers ey, ez,
Un(slt, e1, c2) :=/u AT K((t = w)/an) @) (Va(u)) " (erdLn(w) + erdla(u))

is an Fy(s)-martingale. Of course, as is clear from (4.3.2),

Un(Tlte1,02)

= & (@n(tlm) — &a"(Lim)) + ca&a(t) — &a"(D)), ’ (4.3.15)

where

)

[ K~ e I Vel )
- /DT A K((t = )/ an)Jn(uw)or (u)du.
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In order to establish asymptotic normality, we need the following lemma.

Lemma 4.3.1. Suppose naS—0 as n—00, and () and m(-) are twice continuously dif-

ferentiable in a neighbourhood of t. Then, under A3,

(nan) 2 (a"(tlm) — m(t)ea(t)) 0, } (4316)
(nan) /(G (H) — ) B 0,

as n—co.

Proof: We show only the first of the two statements in (4.3.16). The proof for the second

one is similar.

We have, for 0 < t < T;
(nan)'?|én"(¢m) — m(t)en(2)]
L K () {m(t — ap)on (t — apu)dalt = ante) — m(tan(8)} du|

172

|

= (na,)

A

[ K)an) 7 m(e = anulen (¢ = aie) = miz)en ()] du

+m(¢)a.(:)[l K (@)(nan)2(1 = Jn(t — anu))du (4.3.17)
Thus, from (4.3.17) and our assumptions, we get

(262)!72 Bl (tlm) = m(B)n(8)]

o)+ m(Dan(®) [ K(uwlnan) /2 (B = Jo(t = ax))} du

o(1) + (m(l)a.(t)/: K(w)du)(nan)*E(1 — Ju(T))

= o(1) +o(1), as n—oco,

IA

A

since E(1 = Jo(T)) = (1= p(T)", where p(T') = (1 — Fi(T))(1 = G1(T)), and 0 < p(T) < 1.
Hence the result.0

Theorem 4.3.2. Let Al - A8 hold, my(u) = E(YX(((¥})™" | X = u) be continuous at

t and m(-) and ay(-) be twice {ferentiable in a neighbourhood of L. Suppose
there ezists co > 0 such that
Pr{Yy < T, — o | [X; —t] <o} =1 (4.3.18)
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for some rq > 0 small enough. Then, if na3—0 and na,—oco as n—co, we have
12,0 (1) 4 Da(t) T
(a2 (m0(2) — m(t)) SN (0, Ot [_lK (u)du

as n—roo, where Dy(u) = ma(w) — (m(u))?.
Proof: Consider the decomposition in (4.3.6) again. Using (4.3.18) (which is the same
as A tion (4) of Mielniczuk (1991)), the right-hand side of (4.3.7) and Corollary 1 of

Foldes and Rejtd (1981), we get, as in the proof of Theorem 3.1(i) of Mielniczuk (1991),
(1) (& (£))" (&:2(E]m) = &a(t]m)) = O((an loglogn)'/?) as. (4.3.19)

Since nas—0 as n—oo, and in view of (4.3.19), (4.3.6), Lemma 4.3.1 and (4.3.15), it is

enough to show that, for every pair of real numbers (c1,¢2)
(na2)PULTIE, 1,2) S N(0, Q(¢, 1, 02)), as n—co, (4.3.20)
where

Q(t,ers02)
= [eIma(t) + 2cicam(t) + Slea ()1 = Fi(1)) (1 = Ga(e))™ [. K2 (u)du,

because we already have, by Theorem 4.3.1,
an()Den(t) = A(/(1— R (1)
as n—oco. Fix (ci,¢;) € 2. Put

He(s) = (naa)2a; K((t — 5)/an)dn{s)/ Va(s)-

Then, as noted in Proposition 4.2.1 of R-H, it is enough to show that, as n—co,

(i) Ve >0, [T M2 Ha(5)] > Y erdAn(s) + codhn(s)) 530,

(1) ST H5)d < crhn + S3lnycrLon + k> (5)5Q(L 1, 02).
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(Cf. Liptser and Shiryayev (1980), Corollary 2 and Remark 1.) We shall show (ii) first. By
Lemma. 4.2.2 and 4.2.3,
r
/c H2(s)d < &1L + Ciluy ey La + cala > ()
'
- c%/l K2 ($)na(t = ans)(Valt = ans)) I malt — aps)on (¢ — ans)ds
)
+2c,c,/ KA(s)ndult — ans)(Va(t = ans)) ™' m{t — ans)or(t — ans)ds
B
)
+c§/ K(5)ndn(t = ans)(Valt — @ns))~ (£ = ans)ds (4.321)
.
Thus (i) will follow from (4.3.21), by the continuity of the functions my(-),m(-) and (-},
if we can show that
sup  (ndu(s)(Vals))™t ~ (p(s)) 1150, (1.3.22)
t-h<s<tan
as n—oo, for some k > 0 such that 0 < t—h < 4k < T, where p(s) = (1= F1())(1—G1(s)).
_ Since 0 < p(T) < 1, it is clear that there exist & > 0 and @ > 0 such that [t—h, t+2] C [0,1]

and infy-ngsgeen (s} = a > 0. Now for this b > 0,

sup  [rJals) (Vo)™ = ()7

t-hgsStt

< sup nJ,.(.s)(V,.(.9))-1(})(5])"ln’”ﬂ.(s)—p(.&')l%- sup  (p(s) 71 = Julsdi
t=h<s<t4+A t—h<sSt+h

< a'| sup Ilfn(s)(]",.(.s))“'in"V,.(s)fp(s)l#P sup |1—J"(.s)\J. (4.3.23)
t=h<s<trh t-h<sSt+h

Further, for any § > 0,

1"\'{ sup | nda(s)(Vals) ™ [n1Vals) — (s)| > 5}

(- hgsgt
< Pr{ sup  nJa(s)(Va(s) ™ [n ™ Wals) = p(s)l > 60T Vot +h) 2 p(t+ k) — .s.,}
i hZsSith )
nTWL(t + k) < p(t+ k) - &)
> bip(t+ ) — 50)"}

< Pr{ sup  [nTTV(s) — pls)
t-h<sSt+h

+ Pr{|n" 'V, (t + h) — p(t + 1)| > &}, (1.3.24)
where & > 0 is such that p(t + &) — & > 0. But by the Glivenko-Cantelli Theorem,

sup_|n='Va(s) — p(s)|—C almost surely (4.3.25)
ogebt
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as n—oo. Thus (4.3.22) follows from (4.3.23) and (4.3.24), using (4.3.11) and (4.3.25).
For (i), note that
(| Ha(s)| > €)
= LE((t = 5)/@)ndn(s)/ Va(s) > e(nan)'/?).
Since na,—oo and K(-) is bounded, we get by (4.3.22) that

sup  1(|Ha(s)| > )50 as n—co. (4.3.26)
(—hgagorh

[ HHOUHA > Y adAn(s) + cadholo)
- L KXyt = ans)(Valt — ans) L Halt — ans)| > €)
[erm(t — ans)an(l — ans) + rar(t — ans)]ds,

and (i) follows from (4.3.26) and (4.3.22).0

4.4 Some remarks on the extension of the ‘martin-
gale methods’ to conditional U-statistics

In this section, we make a few observations which led us to believe that the martingale
methods are probably not extendable to the more general problem in (1.0.5). For the sake
of convenience, we focus on conditional U-statistics of degree two (i.e., k = 2) and their
weak uniform consistency alone. The difliculty stems from the fact that, in this case, we
have to deal with two-parameter processes and filtrations. Though we can obtain a version
of Doob’s Maximal Incquality for the two-parameter analogue of Mi(+) (cf. 2.12), we are
unable to do so for the analogue of Lu() (cf. Lemma 4.2.1). In other words, while the
result is available for cach of the summand processes, it is not available for the sum. In
fact, we cannot establish even the weakest form of (two-parameter) martingale property for

the said analogue of Lu(-).
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To keep our calculations at a simple level, we take A(-,-) to be a product function, i.e.,
h(yi,v2) = w(m)e(va)s

where @(-) is such that E|(¥;)| < co. Further, assume that ¢(*) is non-negative. Let the

set-up be as described in the Introduction. Define, in analogy with (4.2.6),

Qi) = wp(TCI) & S 66 = 1), } (han
Bi(llp) = JE1X: 2 wym(ulp)en (v)du,

0<t< T, 1<i<n, where m(ulp) == E(p(¥1) | X3 = u). Put

Lij(-rle) = Qi 2)@;(1¢) = Bi12) Bi(l).-

Note that Lij(-,-|¢) is the two-parameter analogue of () defined in Lemma 4.2.2.

Now, with Mi(-|¢) 5= Qi(l¢) — Bi(-|¢), we have the following decomposition:

Qilhil@)Q;(t2lp) — Biltul) Bi(take)
= Miule)Biltale) + Biltilo)Mj(talo) + M (1o} (tzle). (44.2)

By arguments similar to the proof of Equation (4.2.7), we can sec that Mi(|p), 0t <
isa {Gi(t) : 0 < ¢ < T}-martingale, } < i < n. Further, note that Bi(:[¢),1 < i < n, has
sample paths of bounded variation (increasing, in fact). Thus Mi(-|)B;(l¢) is a proper
I-martingale, i.c., a martingale in the Ist co-ordinate and a process of bounded variation
in the 2nd. Similatly, Bi(-lp)¥;(-|¢) is a proper 2-martingale. We make these concepts
precise in the following.

Let Gi(t) be as defined in (1.2.1) and consider the two-parameter filtration, with 1 <
i£i<n,

Gij(t,ts) = Gi(t) @ Gi(12), 0 < &, < Tyr = 1,2. (1.4.3)

We give below the definitions of three types of two-parameter martingales. For more details
on these and related concepts, see Cairoli and Walsh (1975), Wong and Zakai (1976) and
Merzbach and Zakai (1980).
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In the following, it is assumed that E|X(ti,6)| < co and X(t,t) is F(t,ts)-
measurable, where {F(t1,tz) : (t1,£2) € [0,7]?} is a filtration on some probability space,
and [0, 772 := [0, ) x [0, 7).

Definition 4.4.1. A process X(-,-) is said to be a ‘martingale’ if
E{X(ti + 51,82+ 52) — X (1, 82) | F(tr,82)} = 0
Vt1,t2) € [0,T)% 0 > 0,7 = 1,2.
Definition 4.4.2. A process X(-,-) is said to be a weak martingale it
E{A(s1,52) X (b1, 12) | F(ta, t2)} = 0,
where
Als1,9:)X (81, 82) 1= X(tr + 51,2 + $2) = X (b, o + 82) — Xty + 51,82) + X (1, 25),
Y(t1,t2) € [0, T)%, s, 2 0,7 = 1,2.
Definition 4.4.3.

(a) A process X(-,-) is said to be a I-martingale if, for each fixed 0 < tp < T, X (- 12) is

a martingale with respect to {F(4,2,): 0 < ¢ < T}.

(b) A L-mactingale X(-,-) is said to be proper if, for cach fixed 0 < ¢ < 7', the function
X(t:,-) is of bounded variation on [0,7) and Ev(X(t,")) < oo, where L(x(e.‘ »

denotes the total variation of X(f,,-) on {0,7).

A proper 2-martingale is defined similarly.
Remark 4.4.1. The definition of a 1-martingale here is taken from Wong and Zakai (1976).
It is slightly different from that of Cairoli and Walsh (1975) and other authors. Note that a
‘martingale’ is necessarily an i-martingale, i = 1,2, which is nccessarily a weak martingale.

We then have the following result:
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Proposition 4.4.1. Let the assumption Al hold. Then, with respect to {G;(t,t5) :
(t1,t2) € [0, T},
() M(lo) H5(-1p) 3 a ‘martingale’,
(ii) Lij(-,-lg) is a weak martingale.
(i) If, in addition, A2 holds and Eg? < 0o, then
MECI@)MF(lp) — Bail-lw) Bai(-l)
is a weak martingale, where
Baltlp) = < Mi(le), Mi(-l@) > (2)
= 10k 2 wmdea(udu,
0<t< T, and my(ulp) := E{p*(Y)(Ga(V1))™ | X1 = u} (sec (4.2.14)).
Proof: First, note that the adaptedness and the integrability requirements arc satisfied in

(i), (i) and (iii). Next,
() for0<t, <T, s, >0,r=1,2,
E{M:(t: + s1[0) M5 (L2 + s2l0) — Mi(t)@) M (£210) 1Gis (1, L)}
= B{M(ty + 51|} Mi(ta + 5al0) = Mltal)M5(ta + sal0) [Gi(t1) ® Gi(t2)}
FB{M (1[0} M5{ta + s2lip) — M) M;(ale0) (G:(11) @ Gy (t2))
E{M(t + s1kp) = Mil6a1) |Gt E{ (2 + s2l0)| Gs(2a)}
FE{I(019) [Gi ()Y (T (b + sal) — M (tale)| G5(42))

I

=0,
by the martingale property of #7i(-l>) and the independence of Gi(t1) and G;(ta).

(ii) Recall
Lij(-rl9) 1= Qi) Q;(Iv) — Bil-1@) Bi(-1w)-
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Then

A(s1,82) Lij(t, 82)
= Qi+ 51le) — Qi) (Q;(t + 5200) = Qs(talw)
—(Bilty + s1l0) = Bilti|@))(Bj(tz + sale) — Bj(tale))- (44.4)

Now by the fact that Q:(-|¢) — Bi(-|¢) is a martingale, and using the independence of Gi(t)
and G;(#2), as in (i) above, we get the result.
(i) Note that A2 and Ep*(¥;) < oo together imply that M;(-l) is a square-integrable
martingale and that
< Mi(Clo), Mi(-lo) >= Bulle),
in the same way as in the proof of Lemma 4.2.2 (sce the arguments following Equation

(4.2.14)). In other words, M?(-|¢) — Ba(:|9) is a {Gi(t) : 0 < ¢ < T}-martingale. Putting

I

550 ol9) = MECIR)NE (L) = Bail-l0) Baj (he),

and comparing Ly(-, ) with Lij(,-lp) in (ii) above, it is clear that the result follows
exactly as in (ii).0

Remark 4.4.2. By the discussion following Equation (4.4.2), it is alteady seen that
F1,(10) (1) and B(-|p);(-l) are a proper I-martingale and a proper 2-martingale
respectively. Combining Equation (4.4.2) and Proposition 4.4.1, it is thus seen that Equa-
tion (1.4.2) serves as an example for the general decomposition result (Theorem 2.4) of
Wong and Zakai (1976). Further, Proposition 4.4.1(iii) above is an example of a two-

" Doob-Meyer di ition (see Cairoli and Walsh

parameter I of the
(1975), Theorem 1.5, for a general result).

Now, we can obtain a version Doob’s Inequality for Ly;(-,|#) (cf. Proposition 4.4.1(ii)
above) using (4.4.2). First, since Mi(-|) is a martingale and Bi(-|y) is non-negative and
increasing in ¢, we get

f s s wer)
(h.a)ebaT?
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< &{ swp 10"} EBH T,
osugT
by the independence of Mi(-|) and B;(-|¢),
< 4EBy(Te)Baj(Tlp)-{—log(1 = Fi(T)}, (4.4.5)

since, by Cauchy-Schwartz Inequality and the fact that {m(u|p)}? < ma(ule),
" T ) T
Bi(Tlp) < /D UX; 2 w){m(ulp)} o (u)du /a 1(X; 2 w)en(u)du

{[ 1% 2 u)mz(ulw)al(u)du} {[ a,(u)du}
= By(Tlp)-{~log(1 ~ ;(T))}-

IA

Next, by similar arguments,

B{ s )
(t1.t2)€l0.TT?

< 16EBu(TIv) Bus(Tlp). (44.6)

Combining (4.4.2), (4.4.5) and (4.4.6), we have

B{ s intnior)
(t.12)€[0, TP

< 3{4EB:(Tle) Bai(Tlp) [ log(l — Fi(T))] + 4 EBwi(Tlp) Bas(Tep) [ log(1 — £1(T))]
+16EB2:(Tlp) Bai(Tle)}
< 48EBu(Tp) By (T10){1 - log(1 — F(T))]. (44.7)

Now, some version of Doob’s Inequality is useful in proving weak uniform, consistency,
as is ovident from the proof of Theorem 4.3.1. But, unfortunately, our method of analysis

fails beyond this point. To see this, note that the natural analogue of L.(t) is
Lu(tutale) == 35 Lij(h, tale),
1<ifign

but we cannot even establish that La(+-|) is a weak martingale, following our method.

The problem is that of choosing a suitable analogue of the filtration {Fn(t): 0 <t < T}.
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By direct analogy, we can define
Faltta) =V Gyl ta), (h,12) € 0,707
1gi#ign

Using the notation of (4.2.8), we can write

Gilt) @ G;(tn) =o{ Z{BY, D), Wils?), Z;(BY), ), Wy(s)) :

0<s <1,,0 <0 <85, BO, 589 € B(R,)}).  (4.4.8)
It is clear from (4.4.8) that

Faltutz) =V Gilt) ®G;(k)

1Sikign

= V GluVe)@Gi(thVi)

1<i#i<n
= Fulti Vit Vi) (4.4.9)
We get ‘4, V t;’ in (4.4.9) because, for cach pair (7, ), both the o-fields Gi(t1) ® G;(t2) and
G;(t) @ Gi(tz) are pooled into Fy(ty,1p). It is because of (4.4.9) that our method breaks
down. Suppose, for example, we claim that
> M) ML)
1i#iEn
is an {Fa(tr,12) : (t1,6) € [0, T]?}-‘martingale’. Then we must show that, for all (t1,1;) €
[0,7)%5. 2 0,r = 1,2,
B{ Y [Mit + silo)ii(ta + solo) = M) M5(talo)] | Falt, 12)} = 0. (44.10)
1€i#j<n
But, assuming WOLG ¢; > ¢, we have by (4.4.9) and the independence of M) M; (L)
and Gun(y, ;) whenever {i,7} N {l,m} =0,
the left-hand side of (4.4.10)
= Y B{[fu + sile) (e + sale) - Biltile) My(eale)] [G:(t2) ® Gs(ta)}

15i#iEn
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= Y [BUL + sile) - ML) |G} ELI(t + 210)| Ga(t)}
1<i#ign
FE{NM(t110) |Gi(t2)} B{N; (&2 + s2lp) — M, (take)| G5(t))]
as in the proof of Proposition 4.4.1(i),
Sigigicn[Milty + s1lo) — Mi(tilo)]Mi(ale), it 451 <t (@a11)
CigizsenMiltalo) — Mi(tilo)) M(t2le), it +s1 2t
It is clear from (4.4.11) that for c; Mi(-[2)M;(-) to be a ‘martingale’ for n > 2, we
must have
3 [Wittal) — Wri(tale)] B(tali) =OVT 2t 21 20, n 2 2. (1:4.12)
i#5
Specialize n to n = 2, i.e., suppose that there are just two data-points with indices i and j,

say. Then (4.4.12) gives
[Mtalo) = Mt ko)) A3 (talp) = = [WT(8ali0) — 33(1a10)] ALi(tale). (4.4.13)

Since we have Doob’s incquality in mind, we may further assume that #(-|e) is square-

integrable. Then by (4.4.13) and using the martingale property we have
B [8i(tolp) — Mt lo)]” M} (t2ler)
= —E [Mi(tale) = Mi(talo)] Ml alo) B [M(6ale) = N8 10)] M (talip)
= —E[Miltle) - M) E [M(tle) - Minle)]

which can hold if and only if
E [Mi(talp) - St =0,

i.c., if and only if either fz = #; or Af(-|) has a constant path almost surely. Similarly one

runs into trouble trying to show that 3, Li;(-, @) is a weak martingale.



Note further that using the term-wise bounds in (4.4.7), we end up with too large a

.
E{  sup
(tnt2)€l0.T)?

< (Q)ZF{ sup L.’,(t,,tz!w)}.
7 lbmeop

These observations demonstrate that the martingale methods are probably non-

bound, viz.,

5 Lis(t, k)

#i

licable to the study of conditional U-statisti
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Chapter 5

Problems for Further Research

5.1 A law of the iterated logarithm for U}(t)

In this scction, we outline a possible approach towards proving a law of the iterated logarithm
(LIL) for Uk(t) for a fixed t € M*. We try to adapt the technique of an almost-sure
representation of classical U-statistics as a mean of iid random variables, as given in
Serfling (1980) (Section 5.3.3, p.189). Let, as before, h : IR*— IR be a symmetric function
and let U, (k) be the U-statistic based on A() and an iid. sample Xy,...,Xn, 7 > k.

Further, assume £h? < oo. Let
BO() == Eh(-, Xa, ..., Xa) = Bh (5.1.1)
and Un(h{D) be the U-statistic based on 1("), i.e.,
U (kM) = 0t fj RO, (5.1.2)
b=t

Thus U, (A") has the structure of a mean of i.i.d’s. It is the Ist-order term in the Dynkin-
Mandelbaum decomposition (cf. Section 3.3 of this thesis) of Usn(h). Now the following

almost-sure representation is a special case of Theorem 5.3.3 of Serfling (1980):



Theorem 5.1.1. Put
Ro(h) = Un(h) = Eh — kU,(hW).
Then, for any & > 1/2, with probability 1,

R.(k) = o(n"'(logn)’), asn—co.

Now, an LIL holds for U,(h(")) by virtue of its i.i.d. mean structurc and the square-
integrability of A(-). It follows from Theotem 5.1.1 that the LIL holds also for Un(k), since
the remainder Ra(h) is sufficiently small almost surely (Problem 5.P.15, p.208, Serfling
(1980)).

Now consider U,(h,t). Here the 1st-order term in the D-M decomposition is based on

AJ() = Rt O(), L <G < m, (5.1.3)

-9)(.) is as defined in (3.3.22) of Section 3.3, and the vector (0,..., 1,...,0) has

m co-ordinates with ‘17 in the j-th co-ordinate (cf. Subsection 3.3.2). Since Un(h},t), 1 <

where A"

7 < m, has the structure of a triangular array of i.i.d. means, one may attempt to obtain
an LIL for Ua(k, t) via the approach suggested by Theorem 5.1.1: (1) obtain an LIL for
UL (b8

), 4); (2) obtain a suitable almost-sure order bound for

Ra(h,t) = Upn(h,t) — ER.J] Kn — 3 k;Un(BS), ). (5.1.4)
=
An LIL for UA(t) will then follow from the decomposition (2.2.2).

As for the method of proof, note that two facts are made use of in the proof of Theorem

5.1.1: first, E(Ba(h))? = O(n~?) (Theorem 5.3.2, p.188, of Serfling (1950)), and sccond,
Pr{supuf,(h)\ > c} < C2E(Ra(W))?, € > 0, (5.1.5)
izn

by Doob’s maximal inequality, since { Ra(h),n = k} is a reverse martingale with respect to
the ‘symmetric’ filtration. Now by the assumptions of Scction 3.3 (cf. Equation (3.3.27)),
we have

E(Ra(h,1))* = O((nas)™?). (5.1.6)
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By the Borel-Cantelli Lemma, (5.1.6) implies Ry (h, t)—0 almost surely as n—co, provided
Sup1(naa)? < co. However, the sequence {Ra(h,t)}asx does not have any martingale
property. Instead, one could think of using a result of Burkholder (1964) who obtains con-
ditions under which almost sure convergence implies a maximal inequality. Unfortunately,
our attempt to use Theorem 2 of Burkholder (1964) did not succeed. We are not able to
verify his Condition C,, for our problem. Probably some other technique would be effective

here.

5.2 Limit distribution of the uniform absolute devi-
ation

Another possible line of investigation could be a study of the limiting behaviour of the

(normalized) uniform absolute deviation criterion for UJ(t):
sup (Un(1, )72 |UR(E) — m(t)], (52.1)
tec

where C is a suitable compact set. One may try to extend the vesults of Csdrgd and Révész
(1981) (Section 6.3, p.237, in particular Theorem 6.3.3) where a strong approzimation of
partial-sum processes by Wicner processes is made use of. Recall that, in the notation of

Section 2.2 (of the present work),
UR(t) — m(t) = Ryalt) + Raa(t), say, (5.2.2)
where

(Un{1, 1)) Rinlt) = U,.(h,t)—EU,L(/z,t)+EU,.(Iz,c)—m(t)f[[‘(t,) (5.2.3)

(Un(L8))Ran(t) = (—m(t)) (Un(lx") = BUL(1,t) + EU(L,t) — ﬁf.(fj)) (5:2.4)
=



Further, the stochastic part in (5.2.3) can be written as

Un(h,t) — EUn(h,t) = (—1)*a;* /Rk lun((—00,x]|R) = p((—c0,x]|2)] lf[““(((t; —z;)/an).
(5.2.5)

In Chapter 2, we obtained exponential tail-probability bounds for the integrand in (5.2.5):
En(xIh) 1= (pa((—c0, x][R) = (=00, x][R)), x € R*.

Regarding the problem mentioncd above, one may instead look for a strong approximation
of the centered empirical process £n(-|4) by a suitable Gaussian random field. Then the
limiting behaviour of (5.2.1) will be related to the distribution of the supremum of that
random field. By looking at the structure of ua((—o0,X]|k), it scems that the appropriate

candidate would be the mean-zeto Gaussian random field with covariance
BAx,y) = BRAY, - V) lcoomant (X0, Xi) = (=00, X]18) (=00, ¥1IA),

for x,y € R*, where X Ay = (2, Ay, ...,z6 Ayp)-
Further, as is clear from (5.2.4), we shall have to consider a strong approximation of the
process En(-|1) (obtained by putting k = 1 in Ea(-|k)) as well, in order to handle R (t).
The approach, however, appears to be quite difficult, given the complicated expression

for B (x,y) above.
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