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Introduction

Martingale approach to the study of finite dimensional diffusions was initiated
by Stroock - Varadhan, who coined the term martingale problem. Their suc-
cess led to a similar approach being used to study Markov processes occuring

in other areas such as infinite particle systems, branching processes, genetic

models, density dependent populati random evolutions ete.

Suppose X is a Markov process corresponding to a semigroup (T:)izo with
generator L. Then all the i ion about X is ined in L. We also have
‘that

MI@) = FX0) - [ EACXs))ds

is a martingale for every f € D(L). i.e. X is a solution to the martingale
problem for L. Now instead of the generator L, if we start with an operator 4,
such that there exists a unique solution to the martingale problem for A, then
under some further conditions the solution is a Markov process corresponding
to a semigroup which is given by a transition probability function. Hence the
operator A determines the semigroup (Ti)iz0. A is then a restriction of the
generator of (Ti)o to D(A). It is natural to expect that in this case the
operator A contains all the information about the Markov process X. For
example, it is well known that f Lfdyu = 0 for all f € D(L) implies that 4 is an
invariant measure for the Markov process and one may expect that f Afdu =0

for all f € D(A) would also imply that 4 is an invariant measure.
In this thesis, we address this question as well as prove uniqueness of a
valued luti corresponding to this Markov process when
the test functions are taken from D(A). Weak convergence of a sequence of
processcs when the limiting process arises as a unique solution to a martingale
problem is also studied. All the results arc for the case when the state space
of the underlying process is a complete separable metric space and thus the

results can also be applied to processes taking values in infinite dimensional
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spaces.
In the first two sections in chapter 1 preli (known) results on martin-
gale problems and their tions to Markov P are collected togeth

The first section starts with the definition of the martingale problem corre-

sponding to an operator A on Cy(E), where E is a complete separable metric

space. Since ly measurable sol play an important role in the

later chapters, a distinction is made between well posedness in the class of

progressively m ble solutions and well posedness in the class of solutions

which have right continuous paths with left limits, i.e. r.cll. solutions. The
foll separability condition is d throughout the thesis.

(I) There exists a countable subset {f.} C D(4) such that
bp — closure({(fa Afa) i mn 2 1) D {(f, Af) : f € D(A)}.

It is shown that this condition and well - posedness of the martingale problem
for degenerate initials implies that the solution is a Markov process admitting a
one parameter semigroup given by a transition probability function. Results are
proved which show that for the question of uniqueness it suffices to look at the
one dimensional distributions of the solutions. A result on r.c.ll. modification

of solutions when the state space E is compact is proved. It is shown that there
exists a solution to the martingale problem for a perturbation of the operator
A if the martingale problem for A itself admits a solution. In the end, the time
inhomogeneous martingale problem is defined. The presentation here follows
that in [7]. Some proofs are taken from [15].

In the second section, a weak convergence result from (7] is stated and a
consequence is obtained which is applicable in the martingale problem context.

The third section is on examples. Some results of Stroock - Varadhan on
finite dimensional diffusions ([15]) and those of Yor on Hilbert space valued
diffusions ([16]) are stated. In both the cases it is proved that the martingale
problem is well posed in the class of progressively measurable solutions.

The last section is on Hilbert space valued stochastic evolution cquation
and the corresponding martingale problem. The results are new (at least in the

generality considered in the thesis) and hence proofs of existence and uniquencss
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of solutions to the stochastic evolution equation and that of their equivalence

with soluti to the corresponding martingale blem are included. These
are taken from [1].

Chapter 2 deals with invariant measures for Markov Processes characterised
via martingale problems. The first section includes some auxillary results. A
generalisation of the Riesz representation theorem for the space £ x E when
each of the two marginals on E are countably additive is proved.

In section 2.2. the main result of this thesis, a criterion for invariant mea-

sures of a Markov process is proved. In [5], Echeverria proved that when E is a

compact metric space or a locally compact separable metric space and A is an
operator for which the martingale problem is well - posed in the class of r.c.L1.
solutions with domain being an algebra, then p is an invariant measure for A
if it satisfies
/I;Afd;; =0 VfeDA). (0.0.1)
Here we show that the same result holds when E is a complete, separable metric
space. The additional condition required is that the martingale problem for A
is well - posed in the class of pr ively bl luti It may be
noted that this dition is satisfied for the L of a Markov process.
In the course of the proof we imbed the martingale problem for A into a
compact sapce E. The imbedding is such that the two martingale problems,
on E and E, are equivalent in a certain sense, viz. there is a one to one
correspondence b lutions X and Z to the martingale problems on E
and E respectively. It is to be noted that even if Z is an r.c.l.l. process, X,
which is got from Z by a certain transformation need not be r.c.l.l. and hence
the condition about the well - posedness in the class of progressively measurable
solutions. This imbedding and the above mentioned generalisation of the Riesz
representation theorem are the key tools in the proof of the main theorem.

In chapter 3 the measure valued evolution equation

fogdn= [ fan= [{([(AF = XOfdu)ds 1 € D) (0.0.2)

is considered, where A is an operator on Cy(E) and A € Cy(E). It is shown
that when A satisfies the conditions of the main result in chapter 2 (Theorem
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2.2.3), there exists 2 unique solution to (0.0.2) in the class of positive measures.
The criterion for invariant measures is used crucially in proving this result.

In section 2, uniqueness of solutions to the evolution equation (time inho-
mogeneous case) is deduced using results in the previous section. Applications
to filtering theory are discussed in the last section. The results presented in
chapters 2 and 3 are from [2].

Chapter 4 includes results from [3] . The imbedding of the martingale prob-
lem for A into a compact space E is made use of to prove results on convergence
of a sequence of processes X,, to a given Markov process characterised via the
martingale problem for A. Two results on weak convergence of the sequence of
processes and two results on the convergence of finite dimensional distributions
are proved. We are able to get rid of the compact containment condition on
X,. This condition occurs in many results on convergence of processes. (See
e.g. [7) and [6]). But when the state space is infinite dimensional this is not an
easy condition to verify. Similar results using the martingale approach when
the state space is locally compact can also be found in [7).

In section 2, these are applied to yield convergence results for Hilbert space
valued processes. The first example is illustrative, and it shows the power of
the method by deducing Donsker's invariance principle for Hilbert space valued
random variables from the Central limit theorem via some simple computations.
The other two applications are about Hilbert space valued diffusions and we
show that these diffusions depend continuously on the coefficients.



Chapter 1
Preliminaries

1.1 The Martingale Problem

Let (E, d) be a complete separable metric space. £ will denote the Borel o- field
on E, B(E) will denote the space of bounded measurable real valued functions
on E, C(E) will denote the space of real valued continuous functions on E,
C,(E) will denote the space of bounded continuous real valued functions on
E, P(E) will denote the space of probability measures on (E,£). Note that
B(E) as well as Cy(E) are Banach spaces with the supremum norm Il =
supes £

We consider operators A on Cy(E) with domain denoted by D(A). Let
u € P(E).
Definition 1. A (E- valued) measurable process X defined on some probability
space ({2, F, P) is said to be a solution to the martingale problem for (A4, )
with respect to a filtration (Gi)eo if

(i) PoX(0)'=p.
(i) For all f € D(4), (X(1)) - ¢ Af(X(s))ds is a (Ge)ezo - martingale.

When G, = *F¥ := o{X(s), g M(X(u))du : s < t,h € Cy(E)}, the o-
fields are dropped from the statement. Note that when X is a process which
has paths which are right continuous and have left limits, *F¥ is same as
FX := o{X(s) : s < t}. It is clear that if X is a solution to the martingale
problem for (A, ) with respect to a filtration (G )0, then it is also a solution
with respect to the filtration (*F)izo-
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Lemma 1.1.1 A process X is a solution to the martingale problem for A if
and only if

Bl i) ~ K@) = [ AFCX(eDa) T (XD =0 (11)
- k=1

for all f € D(A),,0<t; <t3<...<tuyr,hi,he...,h, € B(E), andn2>1.

Proof. Clearly if X is a solution to the martingale problem for A, (1.1.1) bolds
since IT;_; he(X (t)) is "F measurable. Also,

MI(t) = SX@) - [ AFK())ds

is *FX measurable. Hence to prove the converse assertion it suffices to prove

that for t, < g1
E[(M/(tn1) — M/ (t.))Is] =0 VB e "FJ.

Consider the functions of the form [[Tr_, ke(X (te))][[T2, fo™ fi(X (s))ds],
where n,m > 1, 0 < t; < t; < ... < ta, 0 £ 381,8,...8m < tn, and
hay B2y .y Bny f1y fase o S € B(E). These functions generate (*FX). Hence
the result follows if we can show that

E((M (tas2) — M/ (tn))(inI hk(x(tk)))('l_’:[ [T sxepas =0 (112)
Using (1.1.1) , one has
E[(M!(ta41) ~ M’(t..))(fl h,,(x(t,,)))(f[ fX(s))ds)] = 0.
=1 =1

Now (1.1.2) follows from this by Fubini’s theorem. u

When the process X has paths which are right continuous and have left
limits it is useful to consider the law of the process X as the solution to the
martingale problem. Frequently we are interested in solutions which have such
paths. We will denote by D([0, o), E) the space of all E valued r.c.l.l. functions
on (0, 00) equipped with the Skorokhod topology, and by Sg, the Borel o-field
on D([0,00), E).
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Definition 2. A probability measure P € P(D([0,00), E)) is said to be a
solution to the martingale problem for (4,u) if there exists a D([0,0), E)-
valued process X (defined on some (T, G, Q)) with £(X) = P and such that X
is a solution to the martingale problem for (4, 4) in the sense of Definition 1.

Or, equivalently, P € P(D([0,0), E)) is a solution if the co-cordinate
process 8(t,w) := w(t) defined on (D([0,0), E), Sg, P) is a solution in the
sense of Definition 1.

Note that if X satisfies (1.1.1) and ¥ has the same finite dimensional
distributions as that of X then Y also satisfies (1.1.1) . Hence from Lemma
1.1.1 it follows that if X is a solution to the martingale problem for an operator
A and Y is a measurable modification of X then Y is also a solution. This
prompts the following definition. Let C be a class of processes.

Definition 3. The martingale problem for (4, u) is said to be well - posed in
the class C if there exists a solution X € C to the martingale problem for (4, ")
and if Y € C is also a solution to the martingale problem for (4, #), then X
and Y have the same finite dimensional distributions.

When C is the class of all measurable processes then we just say that the
martingale problem is well - posed.

Definition 4. The D([0,00), E) - martingale problem for (4, 4} is said to be
well - posed if there exists a solution P € P(D([0, 00), E)) to the D([0, 0), E)
- martingale problem for (4, 4) and if Q is any solution to the D([0,0), E) -
martingale problem for (4, #) then P = Q.

Since finite di ional distributi haracterise the probability mea-
sures on D([0, 00), E), well - posedness in the class of r.c.ll. solutions is same
as well - posedness of the D([0, ), E) - martingale problem.

Well - posedness requires uniqueness in the class of all measurable so-
lutions, whereas well - posedness of the D([0,00), E) - martingale problem
requires uniqueness only among r.c.ll. solutions. Of course, well - posedness
of the D([0,00), E) - martingale problem requires exi of r.c.Ll. sol
Also well - posed and exist of r.c.ll. sol together imply well -
posedness of the D([0,00), E) - martingale problem. However, there exist op-
erators A for which the D([0,00), E) - martingale problem is well - posed but
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the martingale problem for A is not well - posed. (See (7, p-265))-
Definition 5. The (D([0,00), E)-) martingale problem for A is well - posed
if the (D([0,00), F)-) martingale problem for (A4, ) is well - posed for every
u € P(E).
Definition 6. For fu,f € B(E), we say that fi - f (where bp stands for
bounded pointwise) if [[full < M and fu(z) — f(z) for all = € E. A class of
functions U C B(E) is said to be bp-closed if fi € U, fi Y, f implies f € U.
bp-closure(i) is defined to be the smallest class of functions in B(F) which
contains ¢ and is bp-closed.

It should be noted that bp-closure is not closure in a topological sense.
For example, if £ is a field that generates £ and H is the class of £ - sim-
ple functions, then bp-closure 7 is the class of all £ - measurable bounded
functions. '

The following separability condition on A which will be assumed through-
out this thesis plays a very important role in what follows.

(I) There exists a countable subset {f,} C D(4) such that
bp — closure({(fas Afa) 1 7 2 1) D {(f,Af) : f € D(A)}-

Supp A satisfi dition (I). From definiti 1 and 5 and a simple
application of the Dominated Convergence Theorem it follows easily that a
process X is a solution to the martingale problem for A if and only if it is &
solution to the martingale problem for the restriction of A to the countable

subset {f,}. Recall that 6(¢) denotes the co-ordinate process on D([0,0), E).

Theorem 1.1.2 Suppose the D([0,00), E) - martingale problem for (A,8.) is
well - posed for each = € E. Let P, denote the solution. Suppose further that
A satisfies the separability condition (I). Then

() = v Po(C) is measurable for all C € Sg.

(ii) For all g € P(E), the D([9,0), E) - martingale problem for (A, ) is well
- posed, with the solution P, given by

P(C) = [ PA(Cu(da). (1.13)
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(iii) Under P,, 6(t) is ¢ Markov process with transition function P given by

P(s,z,F) = P,(8(s) € F) (1.1.4)

Proof. We will first show that the set M := {P, : = € E} is a Borel set in
P(D([0, o), E)). To this end first choose a countable subset M C Cy(E) such
that B(E) C bp-closure(M). (That such a countable set exists can be seen, e.g.
from Proposition 4.2, Chapter I1I, [7]). Let H be the collection of functions of

the form
7(8) = [(fal(B(tms1)) — f(B(tm)) — [”“ A£,(0(s))ds) [T P& (11.5)
™ k=1

where Ay, b2, .. hm € M0 < t; <t2...<tmy CQ and {fu} CD(A)is asin
condition (I). Then H is countable. It follows from Lemma 1.1.1 that the set
My = Nyeu{P : [ndP = 0} is the set of solutions of the martingale problem
for A. M, is a Borel set since the map P +— [ ndP is a continuous map. Set
G : P(D([0,0), E)) — P(E) by G(P) = P o6(0)~". Then G is continuous
and note that M = M; N G~'({6, : = € E}). Hence M is a Borel set. Also,
the well - posedness hypothesis implies that G restricted to M is one-to-one
mapping onto {6, : = € E}. Thus the inverse map G~' from {§; : = € E} to
M is Borel measurable. (See e.g. [14, p.22]). Note that G(P.) = é. and hence
the map &, ++ P, is measurable which in turn implies (i).
Now let P, be defined as in (1.1.3) .Then for any set F € £

P o6(0)H(F) = [ P. o 00y (F)u(dz) = [ 6.(F)u(dz) = u(F).
And forn€ H,

dP, = dP,, =0.
/p([u,.»),s)" ol /;;/n((um),s)” #(dz) =0

Hence P, is a solution to the martingale problem for (4, y).
The rest of the proof is on the lines of the proof of Theorem 6.2.1 in [15).
Let Q be a solution to the D([0, o), E)- martingale problem for (4, 4) and
Q.. be the regular conditional probability of @ given 6(0). Let n be given by
(1.1.5) and h € Cy(E). Let n(6) = n(6)(6(0)). Then n’ € H and hence

E?[5(8)h(6(0))] = E°[y] = 0. (1.1.6)
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Since (1.1.6) holds for all h € Cy(E), it follows that
E%[) = E°[|6(0)] =0 as. - Q.
Since H is countable, we can get a Q-null set Ny such that for all w & No,
E%[g]=0 V neH.

This shows that for w & No, Q, is a solution to the martingale problem for 4
with initial distribution §(a(o,y- Now well - posedness implies that for w ¢ No,
Q. = Pyo.) which in turn implies that Q = P,. This proves (i).

Fix s and let 6/(£) = 8(t+s). Let @, be the regular conditional probability
distribution of ¢ (under P,) given F,. (See [4]). Then arguing as in part (ii) it
follows that @/, is a solution to the martingale problem for (4, p(s.1)- Hence
by well - posedness it follows that QL(8'(t) € F) = P(t,8(s,w), F) where
P(s,z,-) is defined by (1.1.4) . Hence for f € B(E),

BPf+ ) = BB+ )T
B F@)P(t,6(s,), )]
= [, L F@DPC v P(s, 2 dy).
In particular

P8t +s) € F) = /EP(t,y,F)P(s'z,dy) VFe€.

P(s +t,2,F) = /EP(z,y,F)P(s,z,dy) VFe&. 117
Hence the transition probability function P(-,-,-) satisfies the Kolmogorov
Chapman equation. (iii) now follows from the above discussion. .

According to Definition 3, well - posedness of the martingale problem
for A holds if any two solutions to the martingale problem have the same
finite dimensional distrtibutions. In fact, one needs to check only that the one

di ional ; of any two sol are the same, as is demonstrated

distr

in the next result.
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Theorem 1.1.3 Suppose that for each p € P(E), any two solutions X and Y
(defined respectively on (4, F1, Py) and (@, F2, P;)) of the martingale problem.
for (A, 1) have the same one-dimensional distributions, then X and ¥ have
the same finite dimensional disiributions, i.c. the martingale problem is well -

posed.
Proof. We want to show that

BT Ax e = BT A0reo @.18)
1 1

for all 0 < t) < t3 < ...tm, fisf2s-+-sfm € B(E) and m > 1. Note that
(1.1.8) holds for m = 1 by hypothesis of the theorem. We will prove (1.1.8) by
induction on m. Suppose that (1.1.8) is true for m = n. Fix 0 < ¢; < t; <
citns f1s f2,- - o5 fn € B(E), fi > 0. Define
ENIp iy (X ()]
F) = ——pr kel VR EFR
Q) = “Eam_ Ao €T
EP[Ip, i, fo(Y ()]
= Rl W) vReR

BRI, A(Y (@) e
Let X(t) = X(ta +¢), Y(t) = Y(ta +t). Let n(-) be defined by (1.1.5) for
0< 3 <8 <...,8mt1 =t h1,h2,... . hm € B(E) and f € D(A). Note that

Qa(F2)

ER[(X (ta+ 1) 1:[ FuX ()] = EP[(f(X(sma1 +1n)) = F(X(sm +ta))
k=1

ntam

= [ ar ) T O + T AKX =0.

Hence
s e EARX(te+ DI AKX ()]
B m) = BRI f(X @)
= 0.
Similarly

E%[n(¥)] = 0.
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Hence X defined on (2, %1, Q1) and ¥ defined on (92,2, Q2) are solu-
tions to the martingale problem for 4. Also by (1.1.8) for m =n,

EP[f(X(ta) Ty fe(X (2]
ERTRoy f(X(20)
ER[f(Y (o)) ey S(Y (00))]
ER(Tim A(Y(8))]

= E%[f(Y(0)] VfeB(E).

EX{f(X(0))]

Hence X and ¥ have the same initial distribution. The hypothesis of the

theorem implies

EX[f(X(®)] = E%[f(Y(t)] Vt2,f€B(E).

BEAf(X(tn + 1)) [T (X (@) = B F(X (tn + ) [T fulX @),
Pt =1
and we get (1.1.8) for m = n + 1 by setting ta41 =tn +t.
n
When A satisfies the conditions of Theorem 1.1.2, we associate the fol-
lowing Markov semigroup (T.)z0 to A.
Tf(@) = [ f)P(t = dv) (1.1.9)
for f € B(E), where P(-,-,-) is given by (1.1.4) .
Theorem 1.1.4 Suppose that the D([0,00), E)- martingale problem for A is
well - posed. Suppose further that the semigroup T, is associated to A ( by

(1.1.4) and (1.1.9) ).
Let X, defined on (Q, F, P), be & solution of the martingale problem for A
(with respect to (G)zo)- Let T be a finite stop time. Then for f € B(E),t 20,

E[f(X(r +1))|G.]) = Tef(X(7)). (1.1.10)

In particular

P(X(r+t)eD)|G,) = P(t,X(7),[) VI €& (1.1.11)
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Proof. Let P,, P, be defined on (2, F) by
E(Ir Px(r)(B)]

P(B) = PF)
Py(B) E[IrE| [IEIEE’;()T +)IG-]

where F € G, with P(F) > 0. Then Py, P; define solutions to the martingale
problem for A with the same initial distribution and proceeding as in the proof
of Theorem 1.1.3 we get (1.1.10) . [ ]

It can be shown that when L is the generator of a Markov process then
the martingale problem for L is well - posed. (See [7] , Theorem IV.4.1). The
semigroup (Ti)izo is then the semigroup generated by L. On the other hand,
if A satisfies the conditions of Theorem 1.1.2, the weak generator L of the
asociated semigroup is an extension of A.

At this point, we state a result which says that any solution to the mar-
tingale problem admits a r.c.Ll. modification when the state space is compact.

Theorem 1.1.5 Let E be a compact metric space. Let A be an operator on
C(E) such that D(A) is measure determining and contains a countable subset
that separates points in E. Let X, defined on (Q, F, P), be a solution to the
martingale problem for A. Then X has a modification with sample paths in
D([0,0), E).

Proof. Let {gi : k > 1} C D(A) separate points in E. Now
) t
Mi(t) = au(X(2) = [ Age(X())ds
is a martingale for all k. Then it is well known that
lim Mi(s) , lim Mi(s)
- €0
exist a.s. Here Q denotes the set of all rationals in R. 1t follows that

lim g X(5)) , lim e X(s)) (1.1.12)
2€Q 2€Q
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exist a.s.

Let € C © be such that P(') = 1 and (1.1.12) holds for all ¢t > 0,k > 1,
and w e Q.

Since E is compact, for each t > 0, and every sequence {s,} C @ with
3, > t,lim, o0 9, = ¢ and for w € §' there exists a subsequence {3n, } such that
limy—co X (8n;,w) exists. Clearly

ge(lim X (sn,,0)) = lim ga(X(5,)).
2€Q
Since {gi : k > 1} separate points in E, it follows that lim ... X(s,w) exists.
Similarly lim ,;. X(s,w) exists for all £ > 0 and all w € ©'. Define
2€Q

Y(t,w) = lim X (s,w)
<0

Then it follows that for w € &, Y(t,w) is r.c.1l. and
Y (tw)= ligxx(s,u).
+€Q
Defining ¥ suitably for w ¢ €' it follows that ¥ has sample paths in

D([0, 0), E).
Since X is a solution to the martingale problem for A, we get for f € D(4)

E[f(YW)IFF] = lmBf(X(NIF]
0

= FX(@)-

Since D(A) is measure determining the above result follows from the following

lemma.
Lemma 1.1.6 Suppose that XY, defined on (Q, F, P) satisfy
E[f(Y)IG] = f(X) (1.1.13)

for all f € M C Cy(E) where G is a sub o-algebra of F. with respect to which

X is measurable, and M is a measure determining set. Then X =Y a.s.
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Proof. We have for B € G and f € M,

/E f(Y)dP = /Bf(x)dp. (1.1.14)
Fix B € . Define P, and P, on (E,£) by

P(F) = P(BN{Y € F})
P(F) = P(BN{X€F))

for all F € £. Now (1.1.14) implies
/Efdp,=/EfdP, vfeM
which in turn implies P, = P,. i.e.
PBA{Y eF)=PBN{XcF}) YBEG FeE.
Substituting B = §2, we get
PU{YeF})=P({X€F}) VFeE. (1.1.15)
And for B = {X € F}, we get
P({Y e F}N{X € F}) = P({X € F}). (1.1.16)
Combiming (1.1.15) and (1.1.16) , we get
P{Y e F}n{X ¢ F})+ P{Y ¢ F}N{X € F})=0.
This holds for all F € £. Hence we get P(X =Y) =1. [

Lemma 1.1.7 Suppose that there ezists a solution X to the martingale prob-
lem for (A,8,) for each z € E. Then A is dissipative i.c., for every f € D(A)
and every A > 0, we have

lCy = A)f1l = AllfIl- (1.1.17)
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Proof. We know that

/(Xz(t))—/:Af(X,,(.s))ds (1.1.18)
is & martingale. An ‘i jon by parts’ ar (see [15, p.26], [7, p.65 and
.92]) implies that for everyA > 0,

MK + [ (O — AF (Koo (1.1.19)

is a martingale. Hence for every z € E,
F@) = B[ e - A (Xe(2))s).

Therefore

£ < [ eI = Dfllds < A — A
and

AN < A = AL

This proves the lemma. "
‘We now prove existence of solutions for perturbations of the operator A.

Theorem 1.1.8 Let A be an operator with D(A) C Cy(E). Let A € Co(E) be
non-negative and let 7(z,T) be a transition function on E x £. Let
Bf(z) = f\(z)/E(f(v) — f)n(=,dy) f € B(E).

Suppose that for every p € P(E), there ezists a solution to the D([0,00), E)
martingale problem for (A, ). Then for every u € P(E) there ezists a solution
to the martingale problem for (A + B, ).

Proof. To simplify matters let us assume that A > 0 is a constant. The general
case can be deduced from this by considering M = sup,¢g M) and

w0 = (1 - 25w + Ay ry
and noting that Bf(z) can also be represented as

Bf(=) =N [[U) =~ f@n(z.dy) V S € BE).



1.1 The Martingale Problem 17

Let 2 = [132,(D([0, ), E) x [0,00)). Denote by Q4 and 9 the k' copy
of D([0,00), E) and [0, 00) respectively. Let 6, and £, denote the co-ordinate
random variables and i, 5P be the Borel o-fields on i and € respectively.
Let F be the product o-field on €.

Intutively, a solution to the martingale problem for A + B, evolves in E
as a solution to the martingale problem for A till an exponentially distributed
time with parameter A and which is independent of the past. At this time if
the process is at z, it jumps to y with probability n(z,dy) and then continues
evolving as a solution to the martingale problem for (4,6,). To put this in a
mathematical framework, we consider that between the k* and the (k + 1)*
jump (dictated by B), the process lies in Q4. The k* copy of the exponential
time is a random variable in 220. Now to see that such a process does exist, we
proceed as follows.

Let Gx be a sub o-algebra of F that is generated by cylinder sets Cy x
T2k (% X 09), where €y € F; @ FP @ ... ® Fi @ FY. Similarly, let G* C F
be the o-algebra generated by sets of the form [15,(Q x Q9) x C,, where
CEFi®@FLR....

Let P,, P, denote solutions to the martingale problems for (4,4.) and
(A, u) respectively. Let v be the exponential distribution with parameter .
Fix u € P(E). Define, for I'y € F1,..., T« € Fe, FL € F},..., Fr € F,

B(Ty) = PJIy)
PO, Fr) = A(F)

PO, 6ne et et T = [ PAT(Bs (), )
P61y bmr, 06, Fr) = 7(Fi) (1.1.20)
and so on. Note that P, € P(©;) and PP, P, P, ... are transition probability
functions. Then Tulcea’s theorem applies and we get a probability P on (Q, F)
satisfying for C, € @ F? ® ... ® Fx @ FY,
P(Cy X Qeyy X 004y X Quya X Ny x..0)
= //. . ,/xc,(a,,c.“..ok,fk)p:(a.,.”ak,dzk)...p.“(o.,dmr’.(da.).
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ForC€g,and C’' € G
P(CNCY) = B{f P(C"1Buia(0) = )n(Bu(&), d)e]. (11.21)
To see that (1.1.21) holds, note that
P(CNC') = Ellclc) = ElIcE(I:|G.
When C’ is a cylinder set in G**!, using (1.1.20) , it is easy to see that
BllcrlGe] = [ P(C184:1(0) = )n(8e(Ex), d).

Now (1.1.21) follows from this and usual measure theoretic arguments.
Define 7 = 0,7 = 5, & , and N(¢) = k for 7, <t < 7441 Note that
N is a Poisson process with parameter A. Define
X(t) =t — ), ™ St < Tuga, (1.1.22)
and F; = FX V F. We claim that X is a solution of the martingale problem
for (A + B, ) with respect to (Fo)izo.
It is easy to see that for f € D(4)

(EVTR) ATy

JBera((EV 1) Aris = 70)) =SB (0) = [ AfBun(s — m))ds

is an (F¢)>o martingale. Summing over k we get
3 N
FX(#)) - F(X(0)) —/o Af(X(s))ds — kz:(f(ak-u(o)) = f(6u(64))) (1.1.23)
=1
is an (Fi)ipo martingale. Also note that

N(1)
L (0ea(®) = [ S uEe)s ) (1124)

and
[ L) = SX =)0l X (a=), dy)d(N(s) = 2s) (11.25)
are (Fi)ipo martingales. Adding (1.1.24) and (1.1.25) to (1.1.23) we get that

FX@) - f(X@) - /O‘(Af(X(S)) + Bf(X(s)))ds (1.1.26)
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is an (Fi)po martingale. x
Till now we have considered only the time homogencous martingale prob-
lem. We now define the time inhomogeneous martingale problem.
For t > 0, let (Ao be linear operators on Cy(E) with a common
domain D C Cy(E).
Definition 7. A measurable process X defined on some probability space
(€, 7, P) is said to be a solution to the martingale problem for (A¢)ezo with
respect to a filtration (Ge)io if for any f € D

SO = [ Af(X (s (.127)

is a (G:) - martingale.
Definition 8. Let u € P(E). The martingale problem for (4¢).zo is said to be
well - posed if there exists a solution to the martingale problem and if any two
solutions X and Y, defined respectively on ({2, #, P) and (I, G, Q) with respect
to some filtrations and satisfying P 0 X(0)~' = @ 0 ¥ (0)~! = u have the same
finite dimensional distributions.

We say that the martingale problem for (A;):o is well - posed if the
martingale problem for ((Ac)eso, #) is well - posed for every u € P(E). Well -
posedness of the D([0, 00), E) - martingale problem is defined similarly.

Let E°® = [0,00) x E. Most of the results on martingale problems can be

ded to the time dependent case by idering the space-time process

X°(t) = (t, X (1)) (1.1.28)

and the corresponding martingale operator A® with domain D' C Cy(E®). The
following theorem is the main tool in doing so.

Let C§([0, 00)) denote the space of
on [0, 00) with compact support.

Theorem 1.1.9 Let T’ C Cy(E®) consist of functions of the form

K
g(t,z) = 3 k() fi(x) hi € C5([0,00)),fi € D (1.1.29)
i=1
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Define an operator A® on Cy(E°) with domain D' by
L3 a
A%(t,z) = Z[f-'(Z)é;he(t) + () Acfi(2)] (1.1.30)
=
Then X is a solution to the martingale problem for (A:)izo if and only if X° i3
a solution to the martingale problem for A° .

Proof. Let X be a solution (with respect to a filtration (G)ezo) to the mar-
tingale problem for (A:)izo. Clearly it suffices to check that

FROXO()) — /.: A°FR(XO(s))ds (1.1.31)

is a (G)ezo-martingale for f € D,k € C§([0, 00))-
For 0 < s < ¢, let g(t) = E[f(X(£))|G,]. Then

90 = 9() = [ BlAFXw)IG.)du (.132)
Then
SO —9(IRG) = [ e lo(uh()ldu
[ ) BLAL S @DIG.] + o) b))
= [ Bl ldu,

The second equality above follows from (1.1.32) . Now, it follows that (1.1.31)
is a martingale and hence X° is a solution to the martingale problem for A°.
The converse follows by taking h = 1 on [0,T),T > 0. .
As before we impose the separability condition which is as follows. Here,
(f, Auf) stands for the function (t,z) — (f(), [A:f](z)), which is the graph of
(As).

(IY There exists a countable subset Dy of D such that {(f,4.f) : f € D} C
bp-closure — {(f, Aef) : f € Do}-

Note that if (Ao satisfy (I), then A°, defined by (1.1.30) satisfics
condition (I). This is so since C3([0,00)) is dense in Cy([0, 00)).
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1.2 Weak Convergence

We will now state a compactness criterion for D([0, 00), E) valued processes.
This is Theorem I11.8.6 in [7]. This criterion is particularly useful in the context
of martingale problems as is illustrated in Theorem 1.2.2 below.

Theorem 1.2.1 Let Y, be a sequence of D([0,00), R)-valued processes. Sup-
pose that for every e >0 andt > 0, there exists a compact set K. C E such
that
P{Y.t)€E K} 21—¢ Vn (1.2.1)
Suppose that for each T > 0, there ezists § > 0 and a family {7a(6): 0 <
§ < 1,n > 1} of nonnegative random variebles satisfying

limlim sup [Elya(6)] = 0

and

E{[Y,(t +u) - L(@)IPIF7] < Elra(8)IF7]
for0 <t < T,0 < u < 6 where Fp = Fi" Let Qu = Po¥['. Then
{Qn : 1 2 1} is @ tight family of measures on D([0,00), IR).
Define for p < o0, [|hllpr == U [h(2)Pdi]* and ||blee = esssupogecr A(2)].
Theorem 1.2.2 Suppose that D(A) C Cy(E) is an algebra. Let An be opera-
tors on B(E), n = 1,2,..., and X,, be solutions to the D([0,00), E)- martin-

gale problem for A, with respect to filtrations (GP)iz0. Suppose that for every
f € D(A), there ezists fn € D(An) satisfying

lim sup B[ sup |fa(Xa(t)) = f(Xa(t)l] =0 (122)
noo tep.1)
and
lim—supE["Anf,. 0 Xollpr < 00 for some p € (1,00 (1.2.3)

Then {f 0 Xa}ay1 is relatively compact for each f € D(A). More gener
ally, {(fisfar--+» f&) © Xa}az is relatively compact in D([0.00). IR¥) for all
fisfar-on fe € D(A) 1 <k < oo
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Proof. Note that for f € D(A), f2 also belongs to D(A). Choose f,’s and g,’s
satisfying (1.2.2) and (1.2.3) for f and f? respectively for some p and p'. Let ¢
and ¢’ satisfy 2+ 1 =1=,+5.

Writing (a — 5) = a? — b2 — 2b(a — b) and and using the fact that X,
is a solution to the martingale problem for A,, and with a view to applying
ditional modulus of ity. We get

Theorem 1.2.1 we get bounds on the
for0<u<é,

E[(f(Xa(t +u)) = F(Xa()))?|G7]
= E[f (Xa(t +u)) - FXa()IG7]
—2f(Xa(ENE[f(Xa(t + ) — f(Xa(t))IGF]
2E[ sup |f(Xn(s)) = 9(Xn(s))IG7]
sef0.T+1]
+4lfIIE[ sup [f(Xa(s)) — fa(Xa(s)IG]]
€[0,T+1]

IA

r+é
+Blsup [ g (Xn(s))IdsIG7]

21l sp [ 1A (Xl oDdslGr]
Ehu(5)|g:'] (1.2.4)

A

W(8) =2 sup 1FH(Xal8)) = 9uXa(5))
+ 4fll sup [F(Xa(s)) = fu(Xa(s))
2€{0,T+1]
+ 5 Angallyrr + 20716+ I A fullpiria- (1.2.5)

The last inequality in (1.2.4) follows from the observation that f** |h(s)|ds <
8% ||h|lp41 for 0 < r < T. Now using (1.2.2) and (1.2.3) we get

limlim sup Elva(8)} = 0 (1.2.6)

and relative compactness of the sequence f(X,) follows from Theorem 1.2.1.
To prove the result let fi. fa,. ..., fu € D(A), and define 77(8) by (1.2.5) for f;.
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Set yn(8) = T4, 7i(6). Then
x
E[_E_:‘(f,(xn(t +u)) — [(Xa()YIGY] < Elra(8)167]

for0 <t < Tand0 < u < &, and the 7i(6) can be so selected that (1.2.6) holds.
Finally relative compactness for k = oo follows from relative compactness for
2l k< oo ]

The following variation of the previous result is useful when the processes

X,, do not arise as solutions to martingale problems and can be proved similarly.

Theorem 1.2.3 Suppose that D C Cy(E) is an algebra and let X, be
D([0,00), B) - valued processes. Suppose that for every f € D, there eziat

progressively ble p £, and . such that
0~ [ éuo)d 127
&n(®) = [ $alo)ds (.27
is a martingale with respect to filtration (F¥")ezo,
limsup E[ sup [&(t) — f(Xa())} =0 (1.2.8)
n—co teQnioT)
and
lim sup Ef||$nllyr < 0o for some p € (1,00]. (1.2.9)
privhy

Then {f 0 Xn}as: is relatively compact for each f € D. More generally,
{(Far fareee» f£) © Xa}nza is relatively compact in D([0,00), R*) for all
fifare- s e €D 1< kS o0

1.3 Examples

1. Finite Dimensional Diffusion
Let E = IR™ and let S* denote the space of m x m positive definite

matrices. Let a : IR® — S} and b : JR™ — IR™ be bounded continuous

functions. Define an operator A on D(A) := C3(IR™) by

Af@) = 3 3 ay@) ful@) + A
ig=1 i=1
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4 = & f: and a() = ((a:;(2)))igisem and

b(z) = (ba(2), ba(x)s - - -, bm(2))-
It is clear that A satisfies the bilit dition (1). Stroock - Varad-

han ([15]) showed that the D([0,00), E) - martingale problem for A is well -
posed. The corresponding process is a diffusion on JR™ with a and b as the
diffusion and drift coefficients respectively. In fact the martingale problem for
A is well - posed in the class of progressively measurable processes. This fol-
lows if we show that every progressively measurable solution to the martingale
problem for A has a r.c.ll. modification. We will show that this is indeed true.

Denote by JR™ the one point compactification of JR™ and the point at
infinity by A. Define an operator A on C(JR™) with domain

D(A) = {f € C(F™) : flrm € D(4), f(A) =0}
and for f € D(A),
Af(a)=0, Af(z)=Af(z)for z € R™.

Let X be a progressively ble solution to the martingale problem
for (A,p). Considered as a process taking values in IR™, X is a solution to
the martingale problem for (A, i) where a(B) = u(B N IR™) for all Borel sets
B € R™. Note g(IR™) = 1. Since C3(JR™) is dense in C}(IR™), D(A) satisfies
the conditions of Theorem 1.1.5. It follows that X has a modification, Y, with
sample paths in D([0, 00), IR™).

Let B(0,n) denote the ball of radius n with centre 0. For n > 1, choose
f. € CI(JR™) such that fu(z) = 1 for all z € B(0,n) and fu(z) = 0 for
all z € B(0,n + 1)° and such that sup, ||Ifill < oo, where f denotes the
second derivative of f.. Note that Afa(z) =0 for all z & {n < |z| S n+1}.
Also (fa, Afa) 2 (1,0). Extend f, to C(J™) by defining fa(&) = 0. Then
(far Afa) 5 (Inm,0).

Let r denote the metric on ™. For m = 1,2,..., define the (F)wzo

stop time

T = inf{t (A, Y (1)) < %). (1.3.1)
Then 71 < 12 < ... and limu 0 Y (7m A t) = Z(2) exists. Note that Z(t) = & if
and only if lit, .co T = 7 < t. Now using the fact that ¥ is a solution to the
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martingale problem for A and the optional sampling theorcm we get for each

t>0,
B (Y (o A )] = BUur O]+ B[ Afu(¥ (s))de).
Letting m — oo, we have
EIf(20p] = Bl )] + B[ Af (¥ ()ds),
and now an application of the Dominated convergence theorem gives
P{r >t} =P{Y(t) € R"} = P{Y(0)e R"} =1.

Hence it follows that almost all sample paths of ¥ lie in D([0, 00), R™). Hence
as remarked at the beginning this shows that the martingale problem for 4 is
well - posed in the class of progressively measurable solutions.
2. Hilbert Space Valued Diffusion

Let E = H, a real, separable Hilbert space. The inner product on H will
be denoted by (-,-) and the norm by || - ||. £2(H,H) will denote the space of
Hilbert Schmidt operators on H and for & € £o(H, H), ||Z||ns will denote the
Hilber Schmidt norm of £.

Let o : H — £,(H,H) and b: H — H be measurable functions satisfying

llo(B)llus < K

lle(h)ll < K
llo(h) —o(ha)llus < Kby = hall
[I6(ha) = bRl < K|k — Rl

for all h,hy,hy € H. Fix a CONS {¢; : i > 1} in H and define P, : H —» R*
by
Py(h) = ((h, 1), .., (R, $n)).
Define an opcrator A with domain D(A) = {f o P, : f € C2(R"),n = 1} by
1

[A(Sf o PI(R) = 3 i (o (R)$:, 07 (h)¢;) fi5 © Palh) + Z":('J(h),a’.)/x o Po(h)
= b=
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where f; = 32 f and f;; = 52 fi-

Let D, = {f 0 P : f € C3(JR™)} and let A,. be the restriction of the
operator A to Dp. For every m, let {f™"}az1 C C3(IR™) be such that

bp-closure — {(f™" © P, Am(f™" 0 Pn)) i n 2 1} D {(g, Ang) : g € Dm}.
Let Do = U2, = {f™" o Py : n = 1}. Then it can be easily checked that
this countable subset of D(A) satisfies the condition in (I), i.e. A satisfies the
separabiltiy condition (). Yor ([16]) showed that the D([0,00), E) - martingale
problem for A is well - posed. In fact the solution belongs to C({0,00), E),
the space of continuous functions on E. The solution is a Hilbert space valued
diffusion.

If (X(£))z0 is & progressively measurable process that is a solution to
the martingale problem for (4, 1), then using arguments as in the finite dimen-
sional case it can be shown that (X*(¢))ez0 1= (X(£), $i)i>0 admits a continuous
modification, say (X*(f))iso. Let

. - = t
Mi(t) = X*(2) 'X'(O)*/D(b(x(s)), $i)ds
Then it follows that M’ is a continuous martingale and

(,30) = [[(o"(X (D, (X (2N )do

Esup(M®) < 1E(MY(T))

= 4E /:(ﬂ'(X(A))d’n0'(X(5))¢,)ds (13.2)
Since

el T
ES [ (X ()45, 0°(X(s)és)ds

.
B [ " (X(Nllhsds
< KT, (1.3.3)

it follows that IE 3032 sup,g(MJ(t))z < oo. Hence

S sup(M(t))? < oo as. (1.3.4)
o esT
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From this it follows that $7_, M3(#); converges uniformly in [0,T] a.s. to say
M(#), and hence (M(t))o is continuous. It is easy to sce that

M(t) = X(t) — X(0) — /o “b(X(s))ds as.

Hence defining X(t) := M(t) + X(0) + J{ 5(X(s))ds, one gets that X is a
continuous modification of X. Well - posedness of the martingale problem
for A in the class of progressively measurable solutions follows as in the last

example.

1.4 Stochastic Evolutions

In this section we consider Hilbert space valued solutions of stochastic evolution
equations and the corresponding martingale problem. Once again H will denote
& real, separable Hilbert space with inner product (-,-) and norm ||-||. £(H, H)
will denote the class of all continuous linear operators on H and L2(H, H) the
class of all Hilbert-Schmidt operators. For an operator F, the Hilbert-Schmidt
norm will be denoted by [|F||xs. Let (2,7, P) be a complete probability space
with filtration (F:)i>0 assumed to satisfy the usual conditions. Let (W(t)):z0 be
an (Fo)eo-cylindrical Brownian motion on H. Recall that for a progressively
measurable H-valued process f such that 3 [|f(s)|[?ds < oo a.s. for all ¢, the
stochastic integral [f(f(s),dW(s)) is defined as follows. Let {¢x : k > 1} be
a CONS in H. Let W(2) := W(t)(¢x). Then (W*(t))>0 is a sequence of
independent real valued Brownian motions and

[es@nawy = 3 [ 0wt

It can be proved that the series appearing above converges unifromly in ¢t €
[0, 00) for all w outside a null set.

The indefinite integral is a continuous local martingale with quadratic
variation process [g || f(s)||?ds. For a progressively mcasurable £o(H.H) val-
ued process F, with ff[|Fulllsds < oo as. for all ¢, the stochastic integral
J¢ F.dW (s) is defined and satisfies for ¢ € H,

(_[:F.dW(s),zﬁ) - -/:(F,"b,dW(s)). (1.4.1)
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Here F: denotes the adjoint of the operator F,. Indeed, (1.4.1) can be taken
as the definition of the stochastic integral
.
/u F,dW(s).

We need the following estimate, which is Burkholder’s inequality in this
context. It is stated in a weaker form (without sup over t), suitable for use

later.

Lemma 1.4.1 For 2 < p < 0o, there eist constants C, depending only on p
such that for a progressively measurable Lo(H, H) valued process F with

B 1Fsds)"") < o0

one has

Bl [ FaW ()P < GBI [ 1F.lrsds)"").

Outline of proof: Let {¢; : k > 1} be a CONS in H. Using Burkholder’s
inequality (see e.g. [15], p117), we get

d " 4 et
BUS S (Fr e dW NP < CBRY. [ I 4l ds)").
k=1 k=1

The required inequality follows from this, using Fatou's lemma. »
We are going to consider the following Stochastic evoluti i
dX(t) = —LX(t)dt + o(t, X (£))dW(¢) + b(t, X (2))dt (1.4.2)

where X(0) is independent of (W(t))izo. Here the operator L is assumed to
satisfy the following conditions.

T, := e is a contraction semigroup on H, (1.4.3)

L™ is a bounded self adjoint operator with discrete spectrum.  (1.4.4)

Let {¢y : k > 1} be the eigenfunctions of L=}, which constitutes a CONS in H
and let {A7! : k > 1} be the corresponding cigenvalues. We assume also that
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o:[0,T] x H — H and b: [0,T] x H — L(H,H) are continuous functions

satisfying
[t R), Bl < ex(1+ (1AM (1.4.5)
llom(t, B)gell < de(1+ IRID)} (1.4.6)
1((b(2, 1) — B(t, ha))s i) < exliba — hall 1.4.7)
[I(o™(t Br) — o™ (t, R ))ell < delly = hall (14.8)

for all k > 1,¢ € [0,T), h, k1, hy € H, where ¢* is the adjoint of the operator o
and {c¢}, {di} satisfy

St =Ca <o (1.4.9)
=
and
™
SN =Cra< o0 (1.4.10)
=t
for some 6, 0 < 6 < 1. Note that (1.4.10) also implies
o
&3 = Ca3 < o0. (1.4.11)
=

Under these conditions the stochastic integral f§ o(s, X(s))dW(s) may
not be defined. However, for any progressively measurable process (X (s)),

[ Moo, X@Dlsds < [ 3 e M0+ X ()Pds
k=1

L' St — )1+ XD (1412)

where

folu) = i Mgl (1.4.13)
k=1

Since f§ fo(u)du < T, dIA;' = Gy it follows that the stochastic integral
referred to above exists if

/BT X (s)]I?ds < oo a.s. (1.4.14)
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Similarly

[ NTeesbio, XDl < T [ 35 e+ IX s
° © k=1

/D' Filt — )1+ [ X(3)|P)ds (1.4.15)

where

fw)y="T i el (1.4.16)
=

and again we have that f¢ fy(u)du < TCy,. Thus, for every w such that (1.4.14)
holds, we also have that the integral

L' Ti_ub(s, X(5))ds

is well defined.
Definition: A progressively measurable process (X (¢))io is said to be a
solution to (1.4.2) if (1.4.14) holds and for every ¢, and

X(2) =T.X(O)+/:T,_,o-(.s,x(.s))dW(.s)+/;T,,,b(s,X(s))ds as. (14.17)

In the literature, this solution is also known as a mild solution or an evo-
lution solution. Note that progressive measurabilty of (X(t)) implies that
X(0) is independent of (W(t)). It is easy to see that if (X(£))eo is a solu-
tion and (X'(t))xo is a pr i bl ification of (X(t))io, i.e.
P(X(t) = X'(t)) = 1 for all ¢, then (x'(t)),>n is also a solution to (1.4.2) .
Remark 1.4.1 : Let us define a new probability measure P on F as follows.

B(C) = [ aexp{—IX(O)II}dP, (1.4.18)

where the constant a is chosen such that P(2) = 1. First note that P << P
and P << P, ie. P and P have same null sets. Here, %5 is Fo measurable
and hence (W(t))ezo, considered on the probability space (2, F, P), is again a

cylindrical Brownian motion. And for F such that

T N
/ |Elllsds < 0o as. (P or P),
b
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if M(2) = [ F,dW(s) on (@, F, P) and M(t) = f; F,dW(s) on (2, F, P), then
P(M(t) = M(t) for all t) = 1
P(M(t) = M(2) for all ¢) = 1.

Thus (X(t))eso is a solution to (1.4.2) on (€, F, P) if and only if (X'())ezo is
a solution to (1.4.2) on (?, F, P). And now we have for all p < co,

Es[| X (0)||F < oo

Here is a variant of Gronwall’s lemma which is crucially used in proving

existence and uniqueness results for the solution.

Lemma 1.4.2 Let f,g and § be positive integrable functions on [0,7]. Suppose
forallt T,
t
o) < c+/u F(s)g(t — 5) + 6(t — 5)}ds. (1.4.19)

Then there ezists a finite measure p on [0,T] depending only on f such that
.
ot) et [ le+ 60t = lu(ds)

Proof: Iterating the inequality (1.4.19) we get

A

o) < o [ flaolt o) + 8= o)}

< ot [ H)8(E = s)dn
[ ol [ Flano(t o = oa) +8(t = 1 — en)}dsalds.
kot
< et X [l st -l + [ att —wa)
=1

where

w0y = [ o [T A2 o N g
AREA L
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We will first prove that E‘A,([O T]) < oo. Choose a > 0 such that
ST e=*f(s)ds < L. This can a.lways be done as [ f(s)ds < oo.
w0 T) < &7 /., /o F(51)f(92) . fs5367 Frer vdsy .. ds;
ot lyi
T(3)-

Hence ¥°; 45([0,T]) < 00. As a consequence p(C) := L2, #;(C), for C Borel
in [0, 7], defines a finite measure. Since f3 g(t — s)u(ds) < oo, it follows that

f2 g(t — s)px(ds) goes to zero as k — oo and hence

IA

oty < et [le+6(t— )u(ds).

‘We will now obtain an estimate on the second moment of a solution.

Theorem 1.4.3 If (X(£))o is a solution to (1.4.2) satisfying E|X(0)|?
oo, then
sup EIXOIF < Coall + BIX O] (1.420)

where Cp4 is a constant depending only on the constants Cay - Cas.

Proof. Let (X(t))zo be a solution to (1.4.2) satisfying (1.4.14) . Then it
follows that

(X(2), $&) = e (X(0), 8) + /l;t(e_“("')d'(s,X(é))vﬁhdW(S))
+ /ﬂ‘e**"'-"(b(s,)((s)),Mds (1.4.21)
and hence that
d(Xe 8) = (0°(6, X(0)de. AW(D)) + (b(£, X (2) — A X(2), $)dt.  (1.4.22)
Fix n and define a stop time 7, by

.
Ty =inf{t > 0: / |1 X(s)||?ds = n) AT (1.4.23)
o
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and let
£5(t) 1= A (X (L A7), B1)-

Note that 7, — T since (X(t))so is assumed to satisfy (1.4.14) . It is easy to

see that

AEH(8) = Tcrn exp{M(E A Ta)Ho™ (8 X ()60, WV (D))
+L(ecra) exp{Ae(t A 7a)}(b(t, X (), ¢ )dt

or
e =@+ [ exp{AsHo (s, X(e)n, W ()
+ [ exp UM} (b(s, X (), d1)ds
and hence that
BIEOF < B[P+ [ llos, X(Naull'ds
+e [ (b, X (), p0)ds]
< SB[+ [ M@+ T+ X ecrds]
Using that E[[|X (t)[P1ecry] € Tie ™ E|E5(¢)]* we get
BIXOFleem] < S[BIXOIF + [ 3264 +Teh)
;
E[1+[1X(3)|PL<rmlds]
< S[BIXOIP + [ foft = BL + IX I Lcruilds]
where fo(t) = fo(u) + T fo(u) is an integrable function (see (1.4.13) ,(1.4.16) ).
Since -
[ BUX@IP1crmlds < 00
by choice of 7,, we can use Lemma 1.4.2 to conclude that

EX O ecrm] € €L+ EIX(0)|)

where the constant C does not depend on n. Now the result follows from

Fatou’s lemma by letting n — oo. "
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The next step is to prove the existence and uniqueness of solution to

(14.2) .

Theorem 1.4.4 Suppose L, A, B satisfy (1.4.8) - (1.4.10) . Let X(0) be an
Fo-measurable H- valued random variable and let (W(t))izo be an (F())ezo-
cylindrical Brownian motion. Then

(i) there ezists a solution (X ())izo of (1.4.2) satisfying (1.4.14) with X(0) =
X(0).

(i5) Let (X(£))ezo 5nd (U(£)epo be solutions to (1.4.8) satisfying (1.4.14) , such
that X(0) = U(0). Then

P(X(t)=U®) =1 for all . (1.4.24)

Proof: (i) Let P be defined by (1.4.18) . As noted in Remark 1.4.1, sufficies
to construct a solution on (£2,F,P). Forn > 1 and 0 < i < n, let ¢ = £T.
Define (X™(¢),tF < t < t},) i 2 0 inductively as follows. For ¢} < t < tf,,, let

.
Xn(t) = X+ TX(0) ~TqX(©) + [ Toouou, X"(2)dW ()
+ T, XD (14.25)
&
Let ¥"(t) = X3, for £ <t < tf,,. Then
. .
X"(¢) = TX(0) + /n T uo(u, Y™(w))dW () + fo Ty ob(u, Y™(u))du. (1.4.26)
Proceeding as in (1.4.12) and (1.4.15) , it follows that
_ _ .
E|X*®)) < 3(EIX(©))* +_/° fo(t — s)(1 + [[Y"(u)|*)du]
where fo = f, + Tfp. Using this, by induction on &, we can deduce that

sup [ X} < oo.
e,

Now writing gn(t) = supog,c B[ X"(t)||% it follows that g is an integrable
(indecd bounded) function and that

908 S S{BIXOIP + [ folt = 51+ guts))s]
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and hence Lemma 1.4.2 yields
sup sup EX"®)|* < C'[1 + E|XO)*) =C" (1.4.27)
n>10<t<T
Here, I denotes integral wr.t. P. Using (1.4.26) for n,m and using the

Lipschitz conditions on ¢ and b, we get (calculations are similar to those in
(1.4.12) (1.4.15) )
EIX~ - X0 S 2B ITiu(o(n,Y"(0) = o,V ()llhsdu
+ 7 [ ITima(B(w V() — bl Y ()}
< 2 [ folt — BV () = Y ()}

Let gum(® = EIX"() — X QI snd 8.0(t) = [BIX™©) - YOI
+ E|X™(#) — Y™(®)]?). Then gnm and nm are uniformly bounded (by
(1.4.27) ) and

nn(8) S 6 [ Jolt = )G (1) + Erm() et

Using Lemma 1.4.2, we get that for a finite measure u on [0,T], we bave
Sam(®) € /o  Snm(t — w)p(du). (1.4.28)

Now, for tf < s <y,
BIX~(s) — Y| = BIX"(s) - X'

< ABIT (T — DXOIF + [ BITum o, Y (u))yrsdu
B[ e B, Y )l
I[BN(To-ep — DX (O
+ [ fals = w)dult + BIX?)

A

< 3 sup (BT~ DXOP+ 1+ [ fals)ds.
wg[T/n] o
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Thus sup,<r B[|X"(s) = Y"(s)[|> = 0 as n — co. So supycr Snm(t) — 0 as
n,m — oo and hence

sup B[ X"(s) = X™()|? =0, supE[Y"™(s) =Y™()I* >0  (1.4.29)
»<T T

as n,m — oo. Note that since Y™ is a piecewise constant, adapted process it
is progressively measurable. In view of (1.4.29) we can choose a subsequence
{nx} such that Z*(s) := Y"*(s) satisfies

sup E||Z*(s) — Z**(s)|? < 27%.
P s
Then it follows that 5 [|2%(s) — Z**1(s)|l < oo as. for all s. Thus, Z*(s)
converges a.s. for each s. Define
X(s,w) = limZ¥s,w) ifitexistsin H
0 otherwise.
Then X(s) is a progressively measurable process. Further, it follows that
sup E(|[Y"(s) — X(s)|? = 0, sup E|X"(s) - X(s)||> = 0.
o<T 2<T
From this, it can be verified that X is a solution to (1.4.2) (on (€, F, P)) with
Xo = Xo and that (1.4.14) holds. This completes the proof of (i).
For (i), again, let P be given by (1.4.18) . Then (X(¢))iz0 and (U(#))tz0

are solutions to (1.4.2) on (2, F, P) and in view of Theorem 1.4.3, [T E|| X (¢)—
U(t)|I?dt < co. Using the Lipschitz conditions on o and b, we can deduce

= 't -
BIX@ - VI < 2( | folt = ) BIX(s) ~ Ula)|ds]-
An application of Lemma 1.4.2, with ¢ = 0, 8 =0, yields
EIX@) - U@l =0

for all t. Thus P(X () = U(t)) =1 and hence (1.4.24) follows. [
We are now in a position to obtain an cstimate on the growth of the p**

moment of the solution.
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Theorem 1.4.5 Let (X(t))z0 be a solution to (1.4.2) satisfying (1.4.14) .
Then for p 2 2, there ezists a constant C, depending only on the constant Cy
in Lemma 1.4.1 and on Ca,,Cha such that if E[|X(0)|P < oo, then

sup BIX(IP < G4 + EIXOIP) (1.4.30)
Proof. Let X"(t) be the approximation constructed in the proof of the previous
theorem. Using Lemma 1.4.1, it follows from (1.4.26) that
. .
BIX"OF < G[BIXOIF +CE([ fott =) + 1V ) ds)’
¢ ¥
+E([ At — )1+ [Y(o)[*)ds) ] (1.4.31)
Using Holder’s inequality for the ds integrals, we get
. —
BIX@IF < G[BIXOI + Gy f foit = o)ds)
.
E([ .6 - )+ WY ()l ds)
. e
+([ e = ) T B( [ e -1+ I @iyds)]
(1.4.32)

From (1.4.32) it follows by induction on k that supgcice,, EIX"(D)|IF < co.
i<,

Writing hn(s) = sup,<, E[IX*(u)|I, it follows that h, is an integrable function.
We can rewrite (1.4.32) as

ha(®) < CBIXOIF + [ folt = )1+ hala))ds]-
From Lemma 1.4.2 it now follows that
ha(t) < C"1 + EIX(O)).

The constants C’,C" depend only on p and on C21,C23. As noted in the

previous result, a subsequence of X™(s) converges to X (s), where X is a solution

to (1.4.2) . Hence using Fatou’s lemma, it follows that the required moment

estimate holds for X. The result follows from this as X, X have the same finite

dimensional distributions by the uniqueness part of the previous theorem.  ®
We now look at regularity of paths of the solution to (1.4.2) .
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Theorem 1.4.6 Let (X(2))ezo be a solution to (1.4.2) . Then (X(t))zo edmits
o continuous modification, which is of course a solution to (1.4.2) .

Proof: Let P be given by (1.4.18) . In view of Remark 1.4.1, it suffices to
prove that X has a continuous modification on (£, F, P). Let us write

X(8) = T.X(0) + Y (£) + Z(2)

where Y{(t) = JiTiuo(u, X(u))dW(u) and Z() = ff Teub(u, X(u))du.
Clearly, T,X(0,w) is continuous for all w. For 0< s <t < T,

128) = ZIE = 1 [ (Tw = oo, X + [ Ticublas X () el?
< 2[ T — Tt X ()]
w2 [ 1T b, X))
< 2 {30 - eemrda + X} fa]*
2 {5 e eIt + X )]
< (f @+ IXIPdulots. 1) (1.4.33)

where
a(s, = [ [zk:(c-*k(““) — e MlemyIeE] du 4 [ [Ekj ] ds.

The last step above follows from Holder’s inequality. Note a can be computed
and we can verify that a(s,t) < f(t — s) with

B(8) = 22 £ (1= et 4 (1 — 3], (1.4.34)
Clearly (1.4.9) implies 8(6) — 0 as § — 0. Using (1.4.14) , it follows that
lim sup [|Z(t) = Z()I* =0 as.
6—00<t—a<s

Thus (Z(¢))eso is continuous a.s.
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It remains to show that (Y (¢))o admits a continuous modification. We
shall achieve this via the Kolmogorov criterion. Choose p such that (1-6)p > 2,
where @ is as in (1.4.10) . Recall that by the choice of P, E[X(0)|| < oo and
hence by Lemma 1.4.5, sup,¢7 E[|X ()| < co. As before, E stands for integral
with respect to P. For s <t < T, writing

Y() = ¥(s) = [ (T = Tra)o (e, X DAW () + [ Trosrton, X)W ()
and using Lemma. 1.4.1, we get
BIY () - Y@ <27 Gl [{ [ I(Tiee = Tomua G, X)) s}
1 I o X0 te)”]
< PUGB[(f He T = PR+ X (D
+ / ' = MG 4 || X (w)]]) du}] (1.4.35)

Let us write (1) = Sy — e (~2)2d} and va(u) = T e-Al-w g2,

Now
B[ a3 + XD < ([ wiwa)
([ i+ 1X ) s
CB+ IXOIP(f $1(0)dw)

A

A

by Holder’s inequality and (1.4.30) . Similarly estimating the second term in

(1.4.35) , we get

BIY () - V()P < G+ IXODYPI [ $a(wdn? + ([ va(widw)f).
(1.4.36)

Evaluating the integrals, one obtains

E|ly@®) -yl < C'IE(1+|IX(0)II)”HZ "(1 ey

+(Z—(1 T
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Now using the obvious inequality 1 —e™* <z A1 < 2’ forz > 0,0 <$ < 1, for
& =152 and § = 1 — @ respectively, we get
E|y®) -Y()IF < C’[(Z -(/\k(t — N
+H 5 (zn(t -y
< C’(v + _)(Z ﬁ)vﬂ“ - s)(“ﬂ)xa/?
= TR T2 Na Al .

Recalling the assumption (1.4.10) and noting that by our choice, p satisfies
(1 — 6) > 1, we conclude that

E[Y(t) - Y(s)|IP < Caslt — 5" (1.4.37)

with 6 = £(1 — 8) — 1, where Cy5 depends only on p,C2. Thus (¥(t))o bas
& continuous modification.
Now the existence and uniqueness result, Theorem 1.4.4 can be recast as

follows.

Theorem 1.4.7 There ezists a conti Iution X to the Stochastic evo-
lution cquation (1.4.8) . Further if X' is any other solution to (1.4.2) with
continuous paths, then

P(X(#) = X'(t) forallt ,0<¢t <T)=
Our next step is to prove uniqueness in law of solutions to (1.4.2) .

Theorem 1.4.8 Let (X(t))xo be a solution o (1.4.2) [on (R, F, P)] and let
(X'()ezo be a solution to (1.4.2) on (X, F',P') w.r.t. some P’ - cylindrical
Brownian motion on H. Suppose that X, X' have continuous paths and suppose
P o(X(0)! = P'o(X'(0))"". Then

Po(X)'=Po(X)". (1.4.38)

Proof: Let (X™(1))io be the approximation constructed in the previous theo-
rem and let (V"(£))p0 be the approximation defined anal ly on (@, F', P')
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(with X"(0) and (W'(#))o in place of X(0) and (W(¥))eo in (1.4.25) ). It is
easy to see that the finite dimensional distributions of (X"(t))0 and (V™ (1))
are the same. Now E||X*(2) — X(£)|? — 0 implies that P(IX"(£) - X(1)ll >
6) — 0 for all § > 0. Similarly, PY([V"(t) — X'()]| > §) = 0. Thus the finite
dimensional distributions of (X (t))o and (X'(£))e0 are the same. Since X, X'
have continuous paths, this yields (1.4.38) . "

We will now consider the martingale problem corresponding to (1.4.2) .
We impose the condition that the coefficients o and b are bounded. i.c.

@ (1.4.39)
dy. (1.4.40)

1(b(¢, ), 62)1

<
llo*(t, Bl <

Condition (1.4.7) — (1.4.10) continue to hold.
For f € C3(IR"),n 21, let Unf : H — IR be defined by

Waf)R) = )y (b)) (1441)
For f € C(IR™), we will write f; = (8/0z:)f and fi; = (8/0z;)f:. Let

D= {Uaf: f€CHR),n 21} (1.4.42)
Define A; on D by

AWHB) = 3 30" 0" RN TSR
IS CODRPERSTCAID (14.43)

If (X(£))ez0 is & solution to (1.4.2) , then we have seen that (1.4.22) holds and
hence it follows that for all g € D,

9X(®) — o(XO) - [ *(A,g)(X (s))ds (1.4.44)

is also a martingale. In other words, if (X(t))o is a solution to (1.4.2) then
(X())izo is & solution to the martingale problem for (A/)cz0- That the converse

is also true is proved next.
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Theorem 1.4.9 Let (X(t))izo be a progressively measurable process satisfying
(1.4.14) such that (1.4.44) is a martingale for all g € D. Then on the prob-
ability space (¥, F,P') = (Q,F,P) ® ((0,1], B, v), there ezists a cylindrical
Brownian motion (W(t))ezo on H with respect to a family (Ge)izo such that
() (X(2))ezo i# (Ge)ezo-progressively measurable
and
(8) (X(£))ez0 s @ solution to (1.4.2) . (Here v is the Lebesgue measure
on [0,1] and B is the v-completion of the Borel o field ).

Proof: Using (1.4.44) for ¢ = Unf, f € CZ(IR), we can first conclude as in
example 1 of the previous section that ((X(t),$:),1 < i < n) has an r.cll
modification and then further that it has a continuous modification. Let us
denote the continuous version of (X(t), ¢:) by Y*. Then we also deduce that

My =Y - Y- [ * AYH(s)ds — JA (b(s, X(s)), é:)ds
is a continuous local martingale and that
W23 = [0, X ()6 07(, X (8))3)ds.
As a consequence, using (1.4.40) we have
Es..?: |M*5(s)? < 4E(M*, M*)(t) < djt. (1.4.45)
Let N*(t) := A;"/2M*(t) Then using (1.4.11) and (1.4.45) we get
Esup|| k‘Z N*()¢ll> — 0 as m,r — oo.
S k=m
Hence N(t) := 532, N*(t)¢x is an H-valued continuous local martingale. Here
(NN = [ AN (0" (5, X (D)o 0700, X(5))8)ds
= [(GibuGionds
where G,(w) = L™20(s, X(s,w)). Note that

.
[ NG (lsds < o0
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in view of the assumption (1.4.10) . Let {#(t),1 < j < oo} be a sequence of
independent (F}).z0 -Browni ions on ([0, 1], B, v), where (F})i»o satisfy
the usual conditions. Let G} = F® F1,t > 0. G} is a o-field on @ = 2 x [0,1].
Let (Ge)ezo be the smallest family of & fields on € satisfying the usual conditions
such that G} C G;. Using arguments as in the proof of Theorem IV 3.5. in (16],

one can show that there exists a cylindrical Brownian motion (W (¢))ezo0 on H
w.r.t (Ge)epo such that
¢
N(t) = /o G dW(s).

Then N*(8) = (N(2), é) = J(Ae/*0™(s, X (s))$x, dW(s)) and hence
M) = [07(5, X ()b AW (o))

From here, it follows that (X(t))so satisfies (1.4.22) and hence that (X(¢))ezo
is a solution to (1.4.2) . [

In the light of Theorem 1.4.7, some of the results concerning the equation
(1.4.2) proved earlier can be recast for the martingale problem for (A¢ezo as

follows.

Theorem 1.4.10 (a). Let (X())so be a progressively measurable process
satisfying (1.4.14) and suppose (X (t))z0 is a solution to the martingale
problem for (AdJzo- Then (X(£))ezo admits o continuous modification.

(b). For all 4 € P(H), there czists a continuous process (X(£))izo such that
(1.4.44) is & martingale for every g € D and such that the law of X(0) s
4. Further the law of the process X is uniquely determined.

(c). For0 < s <T,zcH, there is a unique measure P, on C([0, T}, H)
such that (writing the co-ordinate process on C([0,T), H) as n(t)),
(i) Poz(n(u) = 2,0 <u<s) =1
(i) g(n(t)) — [{(Aug)(n(w))du, t=s is a P, martingale.

(d) Further, (1(t))so is a time inhomogeneous Markov process on the probabil-
ity space (X, F, P,.,) (where ' is C((0, T}, H) and F' is the Borel o-field



Stochastic Evolutions 44

on ') for each (s,z) € [0,T) x H. The (common) transition probability
function P(r,y,t, B) is given by

P(r,y,t,B) = Pry(n(t) € B)
forr <t <T,y€ H,B Borel in H.

Proof: (a),(b) follow from Theorems 1.4.4, 1.4.6 and 1.4.7. (c) is the same as
(b) - with a change of origin from 0 to s in the time variable. For (d), let us
note that if for each n,C, is a countable dense subset of C3(JR") (in the norm,

ILflle = (£l + : Ifill + 5 £l |1 - I, being sup norm) then
Do={Unf: fEC,n21}

is a countable set and for every g = Uof € D we can get gx € Do such that
gx — g and Ay — Awg. Just take gp = U, fi where f; € C, approximate f
in ||.Jlo norm. Hence the Markov property of (1(t))e0 under {P,;} and the
expression for the transition function follow from well posedness. n

Remark 1.4.2 In the above setup if the condition (1.4.10) does not hold but
(1.4.11) holds, one can still deduce from Theorem 1.4.4 that the martingale
problem for (A¢)eso is well - posed in the class of progressively measurable

solutions.



Chapter 2
A Criterion For Invariant Measures

2.1 Introduction

Sup A isfies the conditi of Theorem 1.1.2. Then we have seen that
it determines a Markov process.

Definition 1. u € P(E) is a stationary distribution or an invariant measure
for the Markov process determined by A, if the solution X to the martingale
problem for (A, z) is a stationary process, i.e., if P{X(t+s)€T,....X(t+
s¢) € Ty} is independent of ¢ > O forall 0 < sy < s2 < ... < s, 1,2, Th €
£ and for all k > 1.

The transition probability P given by (1.1.4) then satisfies

,‘(r)=/EP(t,z,r)y(dz) Vt>0 (2.1.1)

andforallT € €.
For T; as in (1.1.9) , it is easy to deduce that (2.1.1) implies

/Efdu = /’;T,fdp ¥ f € B(E),t>0. (212)

Now suppose that L is the tor of a semigroup (T )ezo corresponding
to a Markov process X. Then one can show that (2.1.2) holds if and only if

/E(Lf)dy -0, YfeDI). (2.1.3)

i.e. pis an invariant measure if and only if (2.1.3) holds. This could be a useful
criterion to test for invariant measures if we can describe D(L) completely.
But in general D(L) can be very large and it may be difficult to describe it

letely. Here we ine conditions under which the generator L in (2.1.3)

can be replaced by an operator A for which the martingale problem is well -

45
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posed. The advantage is that in some cases the domain of the operator A can
be chosen to be much smaller than D(L).

Echeverria ([5]) showed that when the state space is a compact metric
space or a locally compact separable metric space, and when the martingale
problem for A is well - posed and D(A) is an algebra, then for 4 to be an
invariant measure it suffices to check [ Afdy = 0 for f € D(A).

Here we look at this question when A is an operator on Cy(E), where E
is a complete, separable metric space. We are able to prove that (2.1.3) implies
that g is an invariant measure under some further conditions on the operator
A.

We begin with the following result.

Lemma 2.1.1 Let {g} C Co(E) be a countable subset that separates points in
E and vanishes nowhere. Let U, U be E-valued random variables defined on
(Qos For Po) such that Py o Uz = Poo U™ for all n. Suppose gx(Un) = 9:(U)
in probability as n — oo, V k. Then Un — U in probability as n — co.

Proof. Note that g;(Us)gx(U) — g;(U)gi(U) in probability Vj, k. Let
Do = {h : E x E — R; h(z1,72) = 9;(21)g(z2)¥21, 73, for some 7 2 1, k>1}

and let I be the algebra generated by Do. Since {g;} separates points in E, U
separates points in E x E. Also for h € U

B(Un,U) = B{(U,U) in probability.

Also (U, U) is relatively by hypothesi Let ¢ > 0,8 > 0 be arbitrary

but fixed. Choose & compact subset Ks of E x E with

PA(UnU)EKs} 216 ¥n.

Now the metric d restricted to K, which we continue to denote by d, is contin-
wous and U’ = U|x, is an algebra that scparates points and vanishes nowhere.

Hence by the Stone-Weierstrass theorem U is dense in C(K) in the uniform
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topology. Choose hy € ¢’ such that ||hx —d|| — 0 as k — co . Then remem-
bering that d(U,U) = 0, we have

Po{d(Un,U) > €,(Un,U) € K5} + Po{(Ua,U) & K5}
Pol{|d(Un, U) — hu(Un, U)| > £/3,(Ua,U) € K5}
+Po{|ha(Un, U) — ba(U,U)| > €/3,(Un,U) € K5}
+P{|d(U,U) — hil(U, U)] > £/3,(Un, U) € Ks} + 6.

Po{d(Un,U) > €} <
<

Choosing k such that [k — d|| < €/3, we get
Pold(U,,U) > €} < Po{lhi(Ua,U) — bulU, U)| > £/3,(Un, U} € K5} + 6.
Taking limsup over n, we conclude lim sup Po(d(Un,U) > ¢) < 6. Hence Up —
U in probability as n — oo. .

The next result is a key step in the proof of our main result. This is a
generalisation of the Riesz representaion theorem.
Theorem 2.1.2 Let E be a complete separable metric space and let A be a
positive linear functional on Cy(E x E) with A1 = 1. Suppose that there ezist
( bly additive) probabili j1, gtz on E such that

AFD) = [ f)m(de)

AG,) = [ o(wmady)
for f,9 € Cy(E), where Fy(z,y) = f(2), Go(z:¥) = 9(v)-

bl
y

vonExE

Then there ezists a
such that for all F € Gy(E x E)

A(F) = /EXE Fv. (2.1.4)

Proof. First, note that there exists a unique finitely additive measure » on the
Borel field of E x E satisfying (2.1.4) . (See [14, Theorem IL5.7]). Fix ¢ > 0.
Since E is a complete separable metric space, we can choose K, a compact

subset of E with ui(K) > 1—¢, i =1,2. Then
V(K x KY) < u(K®x E)+v(E x K

= m(K®) + pa(K°) < 2.
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Let
K=KxKCEXxE.
and {Fin} C Cy(E x E) be decreasing to zero. Then ||Ful < ||F|l. For § >0,
let BS, be defined by Bf, = {Fy, > 6}. Then B, is a decreasing sequence of
closed sets and B, 1 K is compact it E x E. Since N, {B5NK} =0,3 mo
such that BS, N K = @ whenever m > mq. Hence for m = mo, we have
AF. = Fndv
ExE

< /E o Tty Py + /E o Lk Pty
< S5+ 2|Fille.
Since this holds for all § and &, we get,
AFm— 0 as m— co.
Hence by Daniell’s Theorem (See [13, Proposition IL7.1]) there exists a unique
dditive probability again denoted by v, defined on the Borel o-field
of E x E, satisfying (2.1.4) . N

2.2 The Main Result

We need the following lemma.
Lemma 2.2.1 Let A be an operator on Cy(E). Suppose that for cachz € E the
martingale problem for (A,8.) has a solution with sample paths in D([0, o), E).
Suppose that ¢ is i ly differentiable and convez on G C R™. Let
Furfir-nes fon € D(A) satisfy (fus fao-ooofm) i B = G and (fus frr- -2 fm) €
D(A). Then

AB(fis s er f) 2 V8 Fare oo ) (A1, Afir o L) (22.0)
Proof. Let z € E and X be a solution to the D([0, 00), E)-martingale problem
for (A,6.). We have

Bl AXE), XD, f( X O] = A, o). (@)
= B[ (A8 far- o fUX (o).
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Using convexity of ¢, we get
B[ (A, S (X ()]
2 VoA Sn@)  BUAKD) = filadr-o Sl X(O) = f(2)]
Vi), -+ » frl2)) - E[/; Afi(X(s))ds,. . /ﬂ Afm(X(s))ds).

This holds for all ¢ > 0. Dividing by ¢ and letting ¢ — 0 gives (2.2.1) . x

Theorem 2.2.2 Let D(A) be an algebra that separates points and vanishes
nowhere. Suppose A satisfies the separability condition (I} and that for all
v € P(E), there exists a solution to the D([0,00), E) -martingale problem for
(A,v). Suppose that u € P(E) satisfies

/E Afdu=0 VfeD(A). (2.2.2)

Then on some probability space, there ezists a filtration (G)ezo and a (Gizo-
progressively measurable process X such that X is a stationary process and that

X is a solution to the martingale problem for (A, p) w.r.t. (Gezo-
Proof. For n 2 1 define A, on R(I —n~4) by
Anf =0l —n7 ) - 1S

Note that since the martingale problem for (A4, 4.) admits a solution for all
2 € E, by Lemma 1.1.7 A is dissipative i.e. (1.1.17) holds. As a consequence,
(I —n—'A) is one to one and hence A, is well defined. Also for f € D(4),
fn i= (I = n1 A)f satisfy

Anfa=Af Vn; |fa—fll >0 as n— oo (2.2.3)
And for g = (I —n~'A)f , f € D(A), we have
/;A,.gd;t = /EAfdu =0 (2.2.4)

Note that A, satisfies all the conditions of the Theorem. We now proceed

as follows. We construct stationary solutions X, to the martingale problem for
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(An, 1) and then using (2.2.3) show that X,’s converge in a suitable sense to

get a stationary solution to the martingale problem for (4, 4).

Step 1: Construction of stationary solution to the martingale problem for An:
Fix n. Let M C Gy(E x E) be the linear space of functions of the form

F(z,y) = ifa(r)y.-(y) +9(¥) (2.2.5)
=1
Fiyers Fns g € C(E); g1, -9m € R(I — n~'A);m > 1. Define A on M by
AF= /E [if-‘(z)(f— n~1A) " gi(z) + ¢(2)] u(dz) (2.2.6)

for F asin (2:2.5) . Then Al=1.

Let hy, hay... hm € D(A), let o = [( — n7 ' A)hyll, and let ¢ be a
polynomial on R™ that is convex on [I[%;[—ai, a:). Since D(A) is an algebra,
$(ha, bz, ., hm) € D(A), and by Lemma 2.2.1,

Ad(hr ba, oo hm) 2 V(b1 by oo i) - (Aby, Aba, oy Abm).
Consequently,

=1 by (= 57 )
2 Gl hn) = SV, ) (A, Ab)

$(haye s ) = %Acﬁ(h.,... Jhm), (22.7)

v

and using (2.2.2)
[ RSl TN SV LR J R
or equivalently
o bonseesamdd > LA =n7 A oo =T A o) (228)

for gayg2,...9m € R(I—n~'A). Since all convex functions on JR™ can be
approximated uniformly on any compact set K C ™ by a polynomial that is
convex on K, (2.2.8) holds for all ¢ convex on R™.
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Let F be given by (2.2.5) , and define ¢ : IR™ — IR by

4 = sup 3 fi@hu. (2.2.9)

Note that ¢ is convex. Hence it follows from (2.2.8) that

AF = [ 3 f@0I - n7 A g()ude) + [ omIu(dz)
S oI -nT A g (= v ) )+ [ gdu
< /Eaﬁ(m,--- ym)du+j;,gdu

Losup [ A@)aw) + 9] (e
z =1

< |IF|. (2.2.10)
Similarly —AF = A(=F) < || — F|| = || F||. Together we get [AF| < [|F]||. This
holds for all F € M. Also note that if F > 0, then || ||F|| — F|| < ||F|| and from
(2.2.10) , we get ||F|| — AF = A(|F|| — F) < ||F||. i.e. AF > 0. Using Hahn-
Banach theorem we now extend A to a bounded, positive linear functional on
Cy(E x E). From the construction it is clear that for f,¢ € Ci(E), Fy(z,y) =
f(2),Gy(=,y) = g(y), we have

AF; = [ f@m(ds) a1
AG, = [ g(wudy) (2212)

Then by Theorem 2.1.2, we get a probability measure v on E x E satis-

fying
AF = /E Fdv, VFeM. (2.2.13)
x

Since E is a complete separable metric space, there exists a transition proba-
bility function (see e.g. [7, appendix]) 5 : E x B(E) — [0,1] satisfying

W(By % By) = [ n(z, Bru(dz) VB, B; € £.
\
It follows from (2.2.12) that
/En(z,E);‘(dz) =y(Ex B)=p(B) VBEE. (2.2.14)
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Now, (2.2.6) and (2.2.13) imply that for all f € Cy(E), g € R(I — n"'A)

[ F@evldz,dy) = [ FE)I = n"4) g(=)n(dz).
Hence we have
[sn(dy) = I —nTA)"g(z) u— as. (2.215)

for all g € R(I — n~'A).
Let Y(0), Y(1),...,Y(k),... be an E-valued Markov chain with initial dis-

tribution y and transition function 7. Define
k=1
M) = g(Y (k) — 3 n~ Ang(V(3)) (2.216)
=0
Then M(k)— M(k—1) = g(Y (k)) — (I —n~24)"2g(Y (k— 1)) and (2.2.15) gives
E[M(k)— M(k—1)|Y(0),...,Y(k—1)]
= Blg(Y(k)Y(0),...,Y(k—1)] = (I—n'4)'g(Y(k - 1))
Elg(Y(R)Y(k—1)] = (I —n"'4)g(Y (k- 1))
= /E!l(:t)rl(y(’C —1),dz) — (I —n7'4)g(Y(k - 1))
I -n"A) (Y (k= 1) —(I—n7'4)g(Y(k - 1))
o.

Hence {M(k) : k > 0} is aa(¥Y(0), ..., Y(k)) - martingale. Also (2.2.14) implies
that {¥'(k) : k = 0} is stationary.
Let V be a Poisson process with parameter n, which is independent of Y.
Define
Xa(t) := Y (V(t).
Then X, is a stationary Markov Process with initial distribution p. The fact
that (2.2.16) is & martingale implies that

X)) — [ Ang(Xo())ds

is a martingale for all g € D(A,). Thus X, is a stationary solution to the

martingale problem for A4,. This completes step 1.
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Step 2: Convergence of finite di ional distributions of (a su of)
Xo:

For f € D(A), let f. be as in (2.2.3) . Then conditions of Theorem 1.2.2
are satisfied and we get relative compactness of (f © Xn, f20 Xn,..., fi 0 Xa)
in D([0, 00), ), for fi, fa2,.... f; € D(A),i 2 1.

Let Do = {gx}2, be the countable subset of hypothesis (I). Let llgxll = ax
and E = [12,[—ax, ai]. Since D(A) separates points and vanishes nowhere, so
does Do. It now follows that (g1(Xa(-)); 92(Xn(.))s -rr ge(Xn(.), --...) is relatively
compact in D([0,00), E) . Thus we get a subsequence, which we relabel as
X, such that (g1(Xa(-))s92(Xn(-)); ) ge(Xn(-)), ...) converges weakly to a
D([0, 00), E) valued random variable, say, Z(.) = (Z1(.), - Zk(.); ov-), Bee:

(91(Xal D)y 98 X)) 5 Z() 25 1 — oo, (2.217)

Define g : E — E by

9(z) = (91(2), -1 96(2); ) (2.2.18)
Then g is a one to one, continuous function. This implies that g(F) is a Borel
subset of E. Also g* defined on g(E) is measurable. (See [14, Corollary 1.3.3.]).
We extend the definition of g* to all of E by setting g~'(z) = e for z # g(E),
where e is a fixed point in E. We now use Skorokhod representation to get a
probability space (&2, F, P) and D([0, 00), E) valued random variables £, and
Z defined on it satisfying

L(éa) = £(g(Xa)) Vn (2.2.19)
L(2) = L(Z) (2.2.20)
£ —Z as.asn— oo (2.2.21)
Now,
L(g(Xa(t))) =pog™t:=a Vnt
Hence

LE() =i VYn,t (2.2.22)
which implies é.(t) € g(E) a.s. Then defining
Xa(®) = g7 (1), (2.2.23)
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it follows that X, is a measurable process. Since (Xn(t))ezo is a stationary
process, it follows that (£,(¢))ezo is a stationary process and hence (Z(t))iz0 is
a E valued r.c.ll. stationary process. Hence (Z(t))i»0 does not have any fixed
points of discontinuity, i.e. P(Z(t) = Z(t=)) =1 V t. Thus &.(t) — 2(t) as.
for all t. Since £(£a(t)) = ji for all n, it follows that L(Z(t)) = fi. Hence
P(Z(t)e g(E))=1 V ¢t
and defining
X(t) = g7 (2(1) (22.24)

we get a stationary (G:).zo-progressively measurable process X, where G, = FE.
Further

9(Xa(t)) = ¢(X()) as. V t (2.2.25)
This and Lemma 2.1.1 imply that X,(f) converges to X(t) as n — oo in E in
P probability for each t. This completes step 2.

To complete the proof, we will show that X is a solution to the mar-
tingale problem for (A, ) w.r.t. (Ge)ezo. Recall that we have already proved
that X is a stationary process and is (Gi)epo- progressively measurable. Note
that (Za(t))izo has the same finite dimensional distributions as (Xn(t))iz0, and
hence by Lemma 1.1.1 X, is a solution to the martingale problem for A, i.c.
for all f € D(An)

i ¢ -
FEa() = [ Anf(Xa(s)ds (2.2.26)
is a P martingale. Now for g € C3(E)
g(Xa(®)) = 9(X(#)) as n — oo (2.2.27)
in P probability. This holds for all t. An application of DCT gives for g € Cy(E)
Elg(Xa(s)) — 9(X(s))| = 0 as n — o

and hence using Fubini's theorem we get

E/o' [0(Xu(5)) = 9(X(s))lds — 0 as 7 — co.
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As a consequence, we have
. .
/ 9(Ka(s))ds — / (X (s))ds (2.2.28)
o o
in P probability for all ¢.

From (2.2.26) it follows that for 0 < t; <2 < ... < tm41, hyy- .- hm € Co(E)
and f, as in (2.2.3)

Bl Rnltma)) ~ o))~ [ AFE(e)9) T ) = 0
and since for f € Do, [|fa — fll — 0 as n — oo we get,

B Rnltmas)) — Falta)) = [ A7) T mFatt) = 0
8s n — oo. Now (2.2.27) , (2.2.28) and an application of DCT gives

BIAR i) — SR @) = [ AFE ) [T maEep) =0

1

Applying Lemma 1.1.1 once again, we get that (X (t))e20 is a solution to
the martingale problem for (A, #) with respect to (F¥)eo. Since X(t) = 2(t)
a.s. for all ¢, it follows that X is a solution to the martingale problem for (A, 1)
with respect to (Ge)izo- u

It should be noted that the i y soluti d above may not
have r.c.Ll paths. Thus even when the D([0,00), E) - martingale problem for
(A4,v) is well posed for all ¥ € P(E) in addition to the conditions in Theorem
2.2.2 above, it does not follow that 4 is an invariant measure for the Markov
process associated with A. This can be deduced if we assume that every solution
to the martingale problem for (A, x) admits an r.c.Ll modification. This is

our next result.
Theorem 2.2.3 Let D(A) be an algebra that separates points and vanishes
nowhere. Suppose A satisfies the separability condition (I). Suppose that the
D([0,00), E)- martingale problem for (A,8;) is well posed for all € E. Let
(T)eo be the semigroup associated with the martingale problem for A in The-
orem 1.1.2.

Further suppose that
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(II) Bvery progressively measurable solution to the martingale problem for
(A, ) admits an r.c.LL modification.
If u € P(E) satisfies
/EAfdu=0 v f € D(A)
then i is an invariant measure for the semigroup (Ti)so-

Proof. Let X be the stationary solution constructed in Theorem 2.2.2. In
view of hypothesis (II), we can assume that X is r.c.Ll. If Q is the law of X,
then it follows that Q is a solution to the D([0, 00), E) martingale problem for
(A, ) and that Qo(8(¢))~1=p for all ¢. Using (1.1.4) and (1.1.9) it now follows
that

[T = [ fdu.

for all ¢ and hence that g is an invariant measure for (T¢)ezo. ]

Remark 2.2.1 : It follows from Theorem 1.1.5 that when E is a com-
pact metric space, (II) always holds. If A is a diffusion operator on R™ with

bounded coefficients, (I1) is satisfied. (See Example 1 of section 1.3). In fact
the same proof as in that case shows that when E js alocally compact separable
metric space and A is an operator on C(E) (conti fi ishing at

infinity), then also (II) holds if A is conservative, i.e. (1,0) is in the bp-closure
of {(f,Af) : f € D(A)}. It may be noted that in [5] Echeverria proved this
result without assuming that A is conservative in the locally compact case.

When E = H, a real separable Hilbert space and A is the operator cor-
responding to a diffusion on H, then also we have seen in Example 2 of section
1.1 that (II) holds.



Chapter 3
Evolution equations: uniqueness

3.1 The Evolution Equation

In this chapter we consider operators A on Cy(E). We continue to assume
condition (I).

As in the last chapter we imbed the martingale problem into a compact
set, as follows.

Let {gx} be as in condition (I), i.e. {gx: % =1} C D(4) and {(fLAf):
f € D(A)} C bp-closure {(gx,Ags) : k = 1}. Let llgkll = @x and define
E=TI2,[~aka) and g: E — E by

9(2) = (91(@)y -oer g2, -2 (3.1.1)
Let U be the algebra generated by
{ur € C(E) : ug((21,001 2ky -or)) = 2}

Define A with domain U as follows.

Adous, iy )(2) = {CA!J-’xgiz--~g-'.($) if z = g(z) (312)
ne 0 otherwise. ’
Again note that

uk(g(z)) = gi(z) and  Aui(g(2)) = Agi(z).

The next lemma shows that the martingale problems for A and A are equivalent
in a certain sense.
Lemma 3.1.1 Let X be a solution to the martingale problem for A and let

Z(t) = g(X(1)) V t20. (3.1.3)
57
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Then Z is a solution to the martingale problem for A. Conversely, if Z is a

solution to the martingale problem for A with
P(Z(t)eg(E) =1 V t20 (3.14)

then
X(t) =g7"(Z(t)

defines a solution to the martingale problem for A. Thus if the martingale

problem for A is well - posed, then there ewists a unique solution Z to the

martingale problem for A satisfying (3.1.4) .

Proof: Let X be a solution to the martingale problem for A and let Z be
defined by (3.1.3) . Then Z is a g(E) valued process. Also for u € U with
u(g(z)) = g(x), we have that for 0 S ¢) <t < --- <tm <t <, hy, ok, €
B(B),

BI(Z()) - w(2) — [ AuZ(s))ds) [T (2]

[l

Bllo(X(r)) - 9X(t) — [ Agx(e)d) [T m(x(eo)
=0 - (3.1.5)

where h; = h; 0 g. It follows from Lemma 1.1.1 that Z is a solution to the
martingale problem for A. The second assertion in the lemma can be proved
similarly. The last part follows from the earlier statements. .
Remark 3.1.1 : One can deduce from this lemma that if D(A) is an algebra
that separates points and if condition (I) holds, then well - posedness in the
class of progressively ble pr implies well - posedness in the class

of all measurable processes.

For, if X is a measurable solution to the martingale problem for A, then
Z given by (3.1.3) is a solution to the martingale problem for A. Since E
is compact, Z has a r.c.ll. modification Z, (sce Theorem 1.1.5). Clearly Z
continues to satisfy (3.1.4) . It follows that ¥ (¢) = g~'(Z(#)) is a progressively
measurable solution to the martingale problem for A and has the same finite

dimensional distributions as those of X.
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We are i d in the following perturbation of the operator A. Let
\ € Gy(E). Consider the operator 4 — A(-).

We will henceforth denote by M(E) the set of all positive finite measures
on (E,£). We want to look at the measure valued evolution equation

/Efdu( = /Efduo+/o'(/E(A/ — M) f)dv.)ds, f € D(A) (3.1.6)
where A and ) are as above and {v}iv0 C M(E) satisfy
t > 1(B) is measurable V B € £. (3.1.7)

Note that if (X(£))s0 is a solution to the D([0,00), E) - martingale problem
for (A, vo) then

S @) expi= [ AN X (oo} — [ [epi= ["MX(w))au}
(AFCX () = MX(DF(X(s)) ] ds

is a martingale. Define v; by v,(B) := E(Ia(X(£)) exp{— f& M(X(s))ds}). Then

it can be easily seen that (v)xo satisfies (3.1.7) and is a solution to (3.1.6) .
We are i d in the jon of uni of ( valued) so-

lutions to (3.1.6) . Note that when L is the generator of a Markov process

uniqueness in the class of measures satisfying (3.1.7) is proved in [11] . We
have already seen that if A satisfies the conditions of Theorem 1.1.2, then it
determines a Markov process given by transition probability P(-,-,-) and cor-
responding to a one parameter semigroup (T )i»o on B(E). Further if L is the
generator of the semigroup, then A is the restriction of L to D(A). Our aim is
to prove uniqueness of solutions to (3.1.6) in such a case.

Also note that if {u:}ezo satisfy (3.1.6) then u} = p.e® satisfy

[rau= [ fau+ [[(fAF=AOF +afdi)ds  feD(A). (318

7ot

Conversely if {11}}iz0 C M(E) satisfy (3.1.8) then p, = ple™> satisfy (3.1.6) .
So without loss of generality we consider A > 0 throughout this section.

We will assume that A satisfies the conditions of Theorem 2.2.3. In par-
ticular, the martingale problem for 4 is well posed. Without loss of generality
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we will assume that 1 € D(A) with Al = 0. Choose a point A, A ¢ E. Let

E® = EUu{A}. (3.1.9)

Define a metric d’ on E® by d(A,A) = 0, d(A,z) = d(z,A) = 1 and
d'(z,y) = d(z,y) Al for z,y € E.. We consider the martingale problem on EA.
Extend A to E® by defining
Ma)y=o0. (3.1.10)
Define operators A% and C on Cy(E®) by
D(A%) = {f € Cy(E?) : fle € D(A)} (3.1.11)
and for f € D(4%)

ASf(z) = Af(z) Vz€E
ASf(A) = 0. (3.1.12)

For f € Cy(E®),z € E*
Cf(z) = M=)(f(B) - f(=)). (3.1.13)

‘We will now show that the martingale problem for A%+ C is well posed. It
is easy to see that the martingale problem for A2 is well - posed. Also existence
of a solution to the D([0, o), E) - martingale problem for (4% + C, §,) follows
from theorem 1.1.8. Heuristically, this solution can be described as follows. If
X(0) = z € E, then it evolves as the Markov process corresponding to A until
it is killed at which time it jumps to A and stays there. Further, if X(¢) =y,
the process is killed at time ¢ with intensity A(y). The next result shows that
this is the only solution.

Theorem 3.1.2 Let A, A%, )\, X and C be defined by (3.1.10) - (8.1.18) . Sup-
pose that A satisfies the conditions of Theorem 2.2.9. Then so does A% + C.

Proof. Clearly D(A% + C) is an algebra that separates points in E4 and
vanishes nowhere. Also A% + C isfi dition (I). Exi of r.cll

soltuion to the martingale problem has been noted above.
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We have seen that the martingale problem for A is well - posed. Exis-
tence of D([0, 00), E3) solution for the martingale problem for (A%, 7) for any
x € P(E®) follows easily. Hence A2 satisfies the conditions of Theorem 1.1.2.
Let (T2).0 be the associated semigroup.

Let X be a measurable solution to the martingale problem for A2 +C. We
will show that the one di ional distributions of X are uniquely determined
In view of Theorem 1.1.3 this will show well - posedness of the martingale

problem for A% + C completing the proof.
Since Iy € D(A® + C) and (A2 + C)Ig = —AIg = —J, we get

t
M(1) = Is(X(0) + /; (X (s))ds (3.1.14)
is a martingale. Non-negativity of X implies that Ig(X (t)) is a supermartingale.
The filtration may not be right continuous. Hence to get an r.c.Ll. modification

of Ig(X(t)) we proceed as follows.
Using (Ze(X(¢)))? = Iz(X(t)), a simple calculation gives that

(@) - [ A(X(s))as
is a martingale. (See [9, pg. 446] . Also [7, Problem 11.29] ). Similarly
(M) = M) = [ KX @)du, t2s

is a martingale. This implies that the map ¢ — M(t) is continuous in prob-
ability. Hence ¢ — Ig(X(t)) is continuous in probability and since it is a
supermartingale it has an r.c.ll. modification, say (N(t))>0. N can be taken
to be {0,1} valued. Let

7 =inf{t > 0: N(t) = 0}. (3.1.15)

Then N(u) = 0 for u > T a.s. since N is a positive supermartingale. Thus
N(t) = Is>g and
Is(X(2)) = Ipey a:s. (3.1.16)

Hence using (3.1.14) and integration by parts we get

Iy EXP{/; MX(s))ds} (3.1.17)
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is a martingale. Let {g:}§2, be the countable set satisfying the separability
condition (I) with [|gi|| = ax. Without loss of generality assume that g, = g2 =
1. We will continue to denote by the same symbol gy, the extension of gi with
gx(8) = 0 for k > 2 and ¢,(A) = 1. Then {g¢}E, separates points in 2. Let

E=T]l-axadl

=1
andg: E® — E be defined by
9(z) = (@1(2),- - 9x(2), - ) (3.1.18)

Define for z ¢ g(E®), g7'(2) = e for some fixed point ¢ in EA. Let
% € B(E) be defined by X = Ao g~'. Then

Mg(z)) = Mz) VzeE- (3.1.19)

Define operator A as in (3.1.2) with A replaced by A® in the definition. Now,
on D(A) define operator C by

Cu(z) = Au(z) + AMz)(u(g(A)) — u(2)). (3.1.20)

Then Z(t) = g(X(t)) is a solution to the martingale problem for C. Theorem
1.1.5 implies that Z has a r.cll. modification, say Z. Arguing as in (3.1.5)
and using (3.1.17) , we get that

g exp( [ 3(2(s))ds) @121)

is a non-negative mean one martingale.
Fix T > 0. Define Q on D([0,0), E) by

Q(6(t)) €Ty, ..., 0(tn) €Tm) =
B[] Ir, 2 >t b f " AE(G)ds)]  (31.22)

forall 0 < t; < ... < tm < T and all choices of Borel sets I'y, ..., Ty, Here §is
the co-ordinate process on D([0, 00), E). (3.1.22) defines a probability measure
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on D([0,00), E) since Z is an r.cll. process. Since X is a solution to the
martingale problem for A% + C, we get for f € D(A% + C) with f(A) =0

FE@®) = [[AFOE) = ME)HX())ds
is a martingale and hence using integration by parts, we get
Fx@) el [ 5 @)ds} — [ ARX (@) expl [ MX(w)du}ds
is a martingale. Since f(A) = 0, using (3.1.16) , we get
FXE ey xpl [ MX())ds}
— [ AFX D expt [ MX ())du}as
is a martingale. Or, arguing as in (3.1.5) , for u € D(C)
w(EE (> exed | AZ())ds}
-/ * Au(Z(3))I(r5ny expi [ Azeydrias G129

is a martingale. Hence, using Lemma 1.1.1, we get for 0 < ¢; < ... < tmy1 <
T, hy, -y hn € C(E),

B[ (u@(tman)) — u(tm) — [ Aui(e))ds) 1j M0t
= B[(u(Ztme i oo [ A2}
—u(Z () ey 0] | ™ A(2(r))dr}
_ /:“ Au(Z( ir>ay expl [ M2(r))ar}ds) ,,12[, hk(Z(tk))]
= o0 (3.1.24)

It follows that under @, 8 is a solution to the martingale problem for A satis-

fying
Qb(t) e g(B*) =1 Vit (3.1.25)
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Hence, X'(t) := g~'(§(2)) is a solution to the martingale problem for 4%. Re-
calling that the A* detemines a Markov process corresponding to a semigroup
(T2)i30, we get for u € B(E)

E°Wu(b(t))] = E%uog(X'(t)
BT (u 0 9)(X'(0))]
= E"([TP(u o g)(X(0)]

This can be rephrased as

EF[u(Z(t)) exp{ /0' MZ(r)dr} >yl = EFT (w0 g)(X(0))]  (3.1:26)

for all 0 < ¢ < T. Similarly, if for s > 0, fixed, we define § on D([0.c0), £) by
Q(6(t:)) € T, .., 0(tm) € Tn)

_ B2, Ie 20 + M im0 U= MDA o
P({r>s}nF) o

for all 0 < #; < ... < tm < T for all choices of Borel sets Ty, .., T\, and F € FZ

with P(F) > 0, then, @ is a solution to the martingale problem for .A and we
get

EP(Iru(Z(t)) exp{ f MZ(r))dr > = EF[IF[TL (v 0 9)(X ()]
forall s <t <s+7T. Since F € f? was arbitrary, we get
Bz () e | M} ool F2) = T2, (w0 (X () 3. (31.28)

for all s < t < 5+ T. Further since T > 0 was arbitrary (3.1.26) and (3.1.28)
hold for all ¢ > 0 and ¢t > s respectively. Let f € B(E®) with f(A) =0 and
u:= fog™l. Then note that u(g(z)) = f(z) for all z € E*. Using u(2(1)) =0
if ¥ <, we get
E"lu(Z())) - EF [T f(X(0)))
N t L
= B2 — exp{ | M2(r)dr} o)
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B 21 - exp{ | M2 rsa]
~BP [ W ZONE(N expd [ M) osnds]
-B[ [ Bu(Z0) expl [ M ool FANE )]

= —BF[[ T2 A(X ()M Z()ds] (3.1.29)

Or
EPAX(®)) - BATA (X O)]
= —EP[[ TES(X(@)XNX(s))ds)
= [ Breni. s (3.1.30)
Hence iterating, we get
BPfX@®)] = EFITAFXO)]
+ [ BPITACTE SX(O)s
+ ' [ BTIeT2, 0T ) (X (r)))drds
and so on. Thus the distribution of X (f) is d ined by C,(T:),50 and X(0).

Hence the distribution of X (¢) is d ined for every t > 0. As noted earlier
B

this completes the proof.
We first prove that when the operator A satisfies the conditons of Theo-
rem 2.2.3 then there exists a unique solution to the measure valued evolution

equation (3.1.6) for A = 0.

Theorem 3.1.3 Let D(A) be an algebra that separates points in E and van-
ishes nowhere. Suppose that A satisfies the separability condition (I) and that
for all z € P(E), there ezists a solution to the D([0,00), E)-martingale problem
for (A,8,). Further suppose that (II) is satisfied. ’

If {n} € P(E) and {u} C P(E) satisfy for every Bovel set U in E

t = p(U) is measurable. (3.1.31)
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and the equation
.
/;fdp, = /Efdpo + /0 (/E Afdp,)ds f € D(A) (3.1.32)
with vy = pro, then v, = p, for all t 2 0.
Proof. Let Eo = E x {—1,1}, 8 > 0,140 € P(E) and B be the operator on
Cy(Ey) with domain D(B) which is the linear span of
{Aifa: fL € D(A), fr € C({-1,1})}
and
Bfifa(z,v) = falv)Afi(z) + B(fz(—v)/Ef:qu = f@)f2(v))- (3.1.33)
By definition of B, it is clear that D(B) is an algebra that scparates points in
E, and that B satisfies the separability condition (I).
Existence of D([0, 00), E;) valued solutions to the martingale problem for
(B, §(a)), for every (z,v) € Eq follows from Theorem 1.1.8. We will prove that
the martingale problem for (B, u) is well - posed for every u € P(E°). Clearly
it suffices to consider p of the form py x §,, u1 € P(E), v € {-1,1}.
Step I Let (¥,V) be a progressively measurable solution to the martingale
problem for B with V{(0) = v. Let

Z(t)=g(Y(¥)) Vt20
and B be an operator defined on
D(B) = {ufr:uel, fr € C{-1,1} (3.1.34)
by
Bufa(z,v) = fo(v)Au(z) + B(fa(—v) /E udiip — fi{v)u(z)) (3.1.35)

where

7 = vo(g (T N g(E))). (3.1.36)
Then arguing as in (3.1.5) (Z,V) is a solution to the martingale problem for
B. Since D(B) is an algebra that separates points in g(E) x {—1,1}, it is a
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measure determining set. Further, since, g(E) x {—1,1} is compact, it follows
from Theorem 1.1.5 that (Z, V) has a r.c.Ll. modification, say (Z, V'), in g(E) x
{-1,1}.

We now consider an operator C on Cy([0, 1] x Z*) defined by

DC) = {uh:u e U h € C(Z*)} (3.1.37)
and
Cuh(z,n) = h(n)Au(z) + B(h(n + 1)/‘;“;1,7o — h(n)u(z)) (3.1.38)
Define
T =0
7 = inf{t>ma:VE)=(-1)fv} ; k=1
and

N@t)=k ifr<t<rip.
Then (Z,N) is a r.c.Ll. solution to the martingale problem for C. This can be
seen as follows. Fix u € . It suffices to show
N t N
WZO) v — [, (Au(Z D ever=ny

+ B[, wdme anmn — U2 N ver—nl)ds  (3.1.39)

is a martingale. Now for all f € C({-1,1})
N . T ~ N

wWZEF V)~ [ Buf(2(s), V(s))ds

is a martingale, and hence

w(Z(t A ) F(V (A T1)) — w(Z(E AT )V F(V(E A Tho1))
i S
— [T Buf(Z(s), V(s))ds (3.1.40)
A
is 2 martingale. Now (3.1.39) is just (3.1.40) for f(V(s)) = Ly (s)=(-1yse}-
Now proceeding exactly as in the proof of Theorem 3.1.2, we get that
the one dimensional distributions of (Z(£), N(t))izo are uniquely determined
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by ¥(0),(T.)sz0, B and o where (T,),30 is the semigroup corresponding to
the martingale problem for A. Note that N is a Poisson process with jump
polnts same as that of V. In fact V() = (—=1)¥®V(0). It follows that the

one 1 distributi of V are i ly d ined by ¥(0),(T.).z0
8 and Po. Also, since Y (t) = g“(Z(i)), and since Z is a modifcation of Z,
it follows that the one di 1 distributions of ¥ are uniquely d ined

by Y(0),(T,)s30, A and . Now Theorem 1.1.3 implies that the martingale
problem for B is well - posed.
Step II. Let (v )iz satisfy (3.1.31) - (3.1.32) . Define

v=(8 _[,m e udt) x (%61 + %6_.). (3.1.41)
Then for f(z,v) = fi(z)f2(v) € D(B), using that e~ = B [5° e~#*ds, we have
/s., Bfdv=cB _/; /0 ® Afi(z)e P tdvdt
+¢ﬂ/;;f1d”n - cﬂ’/‘;[" fre~Pidv,dt
o8 [T [ (Afidurds
+/Ef,duo - /Ef‘dv,]dt

where ¢ = 1(f2(—1) + f2(1)). The last equality follows from (3.1.32) . Clearly
this holds for all f € D(B). Now B satisfies conditions of Theorem 2.2.3 .
Hence v is an invariant measure for the Markov process characterised by B.
We now claim that there exists only one statlona.ry distribution for B.

Let {7} be the one di 1 di jons for the solution of the
D([0, 00), Eo)-martingale problem for (B,vo x 6). Let (Y,V) be any other
solution to the D([0, 00), Eo)-martingale problem for B. Define oo = inf{t >
0:V(t) = —1} and o, = inf{t > 0: V(t) = 1}. Note that L((Y(01),V(e1))) =
vo x 6;. Hence using strong Markov property ( Theorem 1.1.4) we get

P{(Y(£), V(1)) € T} = P{(Y (1), V(¥)) € T\t < o1} + Elve—o, (D) io120)-

Hence
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)

tim e [PV, V) €Ts <}
+1E[7.-,.(r)1(,,,5,);] ds
firg ™ [: Ea-0r (D) (o1 <) )ds

. -1 t
= Jim¢ [’ 7,(T)ds.

Jm g /o' P(Y(s),V(s) € [)ds

Thus if (Y, V) is a stationary solution we get
.
P(Y(s),V(s) €T) = ‘lixgt_l/o ~u(T)du V .

Hence uniqueness of stationary distribution follows.

Thus if (o C P(E) satisfy (3.1.31) - (3.1.32) and p is defined by
(3.1.41) with v, replaced by p, it is a stationary distribution and uniqueness
implies R .

/ e Pty dt = / e Ptudt.
o o
Since B > 0 was arbitrary, we get v = s V ¢ > 0.
n

Theorem 3.1.4 Suppose A is an operator on Cy(E) such that D(A) is an.
algebra that separates points in E and vanishes nowhere. Suppose conditions
(1) and (II) are satisfied. Suppose that the D([0,o0), E)-martingale problem for
(A,8) is well - posed for cvery = € E.

Let A € C(E). If {ii}izo © M(E) and {}ez0 C M(E) satisfy (8.1.6)
and (9.1.7) with po = vo, then pe = v for all t 2 0.

Proof. As remarked earlier we will assume that A > 0. Define E4, A%,
C as before. Clearly D(A® + C) is an algebra that separates points in E*
and vanishes nowhere. It is easy to see that A% + C satisfies (I). Existence
of solution to the D([0, c0), E)-martingale problem for (4% + C,8,) for every
€ EA, follows from Theorem 1.1.8. And Theorem 3.2.2 implies that A% + C
satisfies condition (II). Hence 4% + C satisfies the condition of Theorem 2.2.3.
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Hence, applying Theorem 3.1.3 for the operator A% + C, we get uniqueness of

solution to the measure valued equation

.
= o A
/EA fdye = /EA Fdio +/o (/EA(A + C)fdv.)ds. (3.1.42)
Let {v:}0 be a solution to (3.1.6) (satisfying (3.1.31) ). Since 1 € D(A)
with A1 = 0, we get
.
w(E) = w(E) - /0 /E Adv,ds
and hence v (E) < 1. Set #(U) = v(U N E) + (1 = v(E))Iy(A) for U Borel in
E®. Then it is easy to see from (3.1.6) that for f € D(4% +C),
.
_ _ N _
L. fdm— [ fdso— [ 4% + Oyranyas
.
= fA)(-w(E)) - /ﬂ /E Adv,ds] = 0.

Hence i is a solution to (3.1.42) . Thus, uniqueness of solution to (3.1.42)

implies the required uniqueness of solution to (3.1.6) . [ ]

3.2 The Time Dependent Case

We have the following version of Theorem 3.1.4 in the time inhomogeneous case.
See section 1.3 for the relavent definitions and terminology. Let A € Cs(E°).
Theorem 3.2.1 Suppose that the operator A defined by (1.1.30) satisfies the

conditions of Theorem 9.1.4.
If {n} C M(E) and {u} C M(E) satisfy (3.1.7) and

[ #@eddn) = [ F@ootde) + [[([(AF(@) = M@ pldz))ds Je?

with vo = po, then vy = p, for all t 2 0.

Proof. We will use Theorem 3.1.4. Let ()50 be a solution to (3.2.1) and
define (#)ezo0 by 1P = 6 x 1. Note that, for f € D, h € CJ([0,00)),

/b‘ Fhdu? = h(t)/gfdub
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Hence
o - o, [ 9
/En fha? = /m FRdv + /o Sl /E fdv,lds
/
0 .. 0
/p fhdu.,+/ﬂ(/Eo(A Fh— A, )fR)dO)ds.  (3.2.2)

It is clear from the linearity of A° that (3.2.1) holds for all g € 7. Now
applying Theorem 3.1.4 we get that »{ is uniquely determined by v§ = 6o X vo.

It follows that v; is uniquely determined by ve. ]

3.3 Application to filtering theory

In this section, we will give an application of the results in the previous section
to filtering theory. We recall here briefly, the white noise model of filtering.
Suppose that the signal process (i.e. the process of interest) (X (t))iz0 is a
Markov process and that (X (2))epo is not directly observable. Instead, one can
observe a function k(X (t)) of the signal corrupted by additive noise (e(t))o0 -
assumed to be white noise . In other words the observation process (¥(2))izo is

y(t) = h(X (1)) + e(t) (3.3.1)

where H is a separable Hilbert space, h : [0,T] x E — 7 is a measurable
function such that JT [[E.(X(s))|’ds < oo and (e(t))zo is H valued white
noise. The norm in H is denoted by || - || and the innerproduct by (-,-). In the
framework of countably additive probability theory, white noise (e(t))ixo does
not exist as a process and to formalise this model one has to proceed differently.
(See [11, appendix and references ]).

However on a finitely additive probability space, one can construct white
noise (e(t))ezo and then the model (3.3.1) can be given a formal meaning.
The sample space for (e(t))ezo and (y())eso is L%([0,T],H). The quantity of
interest in the filtering theory is the conditional distribution Fi(y) of (X(2))
given (y,: 0 < s < ¢t), de.

Fy(y)(B) = E[Is(X(t)) |y,: 0 < 1]
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for B € £. We now state a result from [11, p. 363-366] . For the meaning of
conditional expectation in this setup and related matters, we refer the reader
to chapter 6 in the reference cited above. This result is also given in [10] .

Let c¥(x) := (h,(z),¥.) — 311h(2)l|. Then

F(y)(B) = T{v)(B).[T(u)( BN~

where "
T(u)(B) = EUs(X () exp( [ (X(s))ds)- (3.32)
F'(y) is called the unnormalised conditional distribution of (X(t)) given
(v, : 0 < s <t). We can now deduce the following result from Theorem 3.2.1.

Theorem 3.3.1 Suppose that the signal process (X())izo is the unique solu-
tion to the martingale problem for ((A:)izo,v) where (Acizo i as in section
3.2. Suppose that the operator A° defined by (1.1.80) with domain D' satisfies
the conditions of Theorem $.1.4.

Also suppose that h is a bounded continuous function. Then for all
y € C(10,T],H) the unnormalised conditional distribution Ty(y) is the unique

solution to the equation
T
(@D = (g, + [ (Ag+ e Tu)ds g€D. (333)

We can equivalently state the above conclusion as I'(y) is the unique

solution to the equation
(f(5,), D)) = (£(0,),v) +/°T((A°f)(3,~)+ () f(s,. ) Talyhds  (3.3.4)

feD.

It may be noted that in [11], T«(y) has been characterised as the unique
solution to (3.3.4) , with A° replaced by the generator L of the Markov process
(¢, X (t)) and D’ replaced by the domain Dy, of L. In that case, ks not required
to be bounded.

Though Theorem 3.3.1 requires h to be bounded, for y € C([0,T],), it
yields T(y) as the unique solution to (3.3.3) or cquivalently (3.3.4) . This is
a significant improvement since D, can be very large and we have no control
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over it whereas we can choose ' and in most cases we can choose it to be
much smller. When the sigoal proces is an ininte dimensional ifusion (as
in example 2 of secton 13), D can be taken to consisi of cylinder functions,
i¢, functions depending upon fnitely many coordinates, but D will contain
functions which are not cylinder functions.

Even though Theorem 331 gives & charachtersaton of I (y) for y €
O(,T),K), it is enough because it is known that y — I\(y) is Lipschitz
continuous (e [1,p 419) and C(0, T}, H) is dese i Y07 H).



Chapter 4
Some Results On Weak Convergence

4.1 The Results

1t is known that if X (X") is an E-valued process which is a solution to a well
posed martingale problem for A ( respectively A,) and if A, converges to A in
the following sense: for all f in domain of A, there exists f, in domain of 4,
such that f, — f and A, f, — Af uniformly; then the following conditions are
sufficient to give us weak convergence of X, to X (see [7, p.236]).

(i) Domain A is an algebra that separates points in E.
(ii) For every e >0 and T < 00, 3 compact set K in E such that

inf P(Xa(t) € K, forall ,0<t < T) 21 e
n2

The latter condition is known as the Compact containment condition. When
the underlying space E is not locally compact, e.g. an infinite dimensional
linear space, this may be difficult to verify. This condition also appears in a
recent article ([6]) by X. Fernique where he studies the weak convergence of
processes taking values in infinite dimensional spaces.

Using the imbedding used in Chapter 3 we are able to replace the compact
containment conditon by the tightness of one dimensional marginals and the
condition that the martingale problem for A is well - posed in the class of
progressively measurable solutions.

Recall that U is said to strongly separate points if for z,,z € E f(z,) —
f(z) for all f € U implies z, — .

We will ider the time inh case. The corresponding mar-
tingale problem has been defined in section 1.3 and the related terminology

4
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developed there. In this context the separability condition reads as follows.
Here, (f,A.f) stands for the function (t,z) — (f(2),[A.f](z)), which is the
graph of (As).
(IY There exists {gi : k > 1} C D such that {(f,4.f) : f € D} is contained

in the bp-closure of {(gs, Augx) : k > 1}.

We imbed the martingale problem into a compact space as before.

Let {gs} be as in (I) above and let ||ge|l = ax. Let E = 12 [—ax ai]
and g : E — E be defined by

g(x) = (g1(2); - g6(T), o) (4.1.1)

Since D separates points, it follows from (I)’ that {g¢} also separates points
and hence g is a one to one mapping. Thus g~! is well-defined on g(E). We
define g~' on all of E by defining g7'(2) = e for z ¢ g(E) where e is a fixed
point in E. Note that g(E) is a Borel subset of £ (sce [14, Corollary L3.3] ).
Hence ¢! is a measurable mapping.

Define operators A;, ¢ > 0 with common domain U as follows. Let I be

the algebra generated by

{us € C(E) : r((21, rs 21y ) = 22} (412)
and 3
Adewiywiyii 2) = {""”"'9"’"""(") itz = glz) @19
0 otherwise.
Note that

un(g(2)) = gu(x) and  Awi(g(z)) = Awgr(2)-
We state the analogue of Lemma 3.1.1.
Lemma 4.1.1 Let (X(t)) be a progressively measurable solution to the mar-
tingale problem for (A/) and let
2(t) = g(X(t) ¥ t20. (4.1.4)
Then (Z(2)) is @ solution to the (A;) martingale problem. Conversely, if Z is

a progressively measurable solution to the martingale problem for A, with

P(Zt)eg(E)=1 V t20 (4.1.5)
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then

X(®) =g7(2®)
defines a progressively measurable solution to the martingale problem for A..
Thus if the martingale problem for (Ac) is well - posed, then there ezists a
unique solution Z to the martingale problem for (As) satisfying (4.1.5) .

The proof is similar to that of Lemma 3.1.1.

Theorem 4.1.2 Suppose that A satisfies the separability condition (IY. Sup-
pose that D is an algebra that separates points in E and vanishes nowhere, that
there ezists a countable subset of D which strongly separates points and that the
martingale problem for ((Ac)vo, ) admits an r.c.LL solution, X. Also suppose
that the martingale problem for (Ao is well posed in the class of progressively
measurable solutions.

Let X, € D([0,0), E) be a seg of p Suppose that

(I V FED0Lt < ... <tmstshi,... hm € Cy(E),m 2 1, we have

i B(FX(r)) — FXal) — [ Af(Xols))ds) f{ B Xn(t:))) = 0.

Suppose {Xn(t) :n 2 1} is tight for allt > 0 and X,(0) 5 p. If for every

f € D there ezist progressively measurable p £u, bn satisfying, for every
T < co .
Ealt) — / $.(s)ds is & martingale (4.1.6)
o
lim E{ sup_[|&(t) — F(X(t)] =0 (4.1.7)
e teQnfo,T]
m;pE“Wn"r,T] < 0o for some p € (1,00) (4.1.8)
w21
then X, A X.

Proof. Let {gx}x»1 be as in (I). Without loss of generality assume that
{gk}xs:1 strongly separates points. Let E and g be as in Lemma 4.1.1 above.
Since {gs} strongly separates points, g is a homeomorphism onto g(E), i.e. g

is & one to one continuous function and g~} : g(E) — E is also continuous.
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Let Z, and Z be defined by Z, = g(X,), Z = g(X). Then by Lemma
4.1.1 we get that Z is a solution to the martingale problem for (Ao
The fact that D is an algebra along with (4.1.6) - (4.1.8) and Theorem
1.2.3 implies that Z, — g(X.) is tight in D([0,00), E). Let Z,, % Z. Then
arguing as in (3.1.5) , for f € U, k; € C(E), defining f =uog, h; = hjog, and
using condition (III), we get
E[(w(Z(r)) - u(Z(t) ~l Au(Z(s))ds) [T ki Z(8:))]
= kli,n;E[(u(Z_n.(r))—"(Zn,(t))—/: At Zn (5))d5) TT bl Zni (2))]
=1

= Jim B Kn) = FOm () = [ At (1)) T b Xy (8]
= o (4.1.9)

Hence Z is a solution to the martingale problem for (A)eso-
For u € U since u? € U, it can be shown that for the martingale

MH(8) = u(Z(2)) — /D' Au(Z(s))ds
the predictable quadratic variation process is given by
(M, MU)E) = A (A — 2ud,u)(Z(s))ds.

(See [9]). The latter is a continuous process implying that (M“(t))ixo and
hence (u(Z(t)))cz0 is continuous in probability. In particular (u(Z(t)))io has
no fixed points of discontinuity for all u € &. Thus (Z(t))ez0 cannot have any
fixed points of discontinuity and hence for every ¢

Za(8) 5 Z(t). (4.1.10)
Since {Xn(t) : n > 1} is tight, for every € > 0, there exists a compact set
K, C E such that forall n > 1,
P{X () e Ki} 2 1—e.
Recalling that Za(t) = g(Xa(t)), we get
P{Z.(t)e g(K)} =21—¢, Vn21 (4.1.11)
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Since g(K,) is compact in g(E), (4.1.10) and (4.1.11) imply
P{Z#) e g(E)} =1 Vt=0. (4.1.12)

Thus Z as well Z are solutions to the martingale problem for ((Ac)ezo, 40 9™")
satisfying (4.1.5) and hence have the same law by Lemma 4.1.1. So we have

9(Xa) 5 g(X). (4.1.13)
Since g is an homeomorphism onto g(E), this implies X, £ X. n
Remark 4.1.1 : In many cases, a choice of £, ¢. to try is

&) = e,,-ljo‘"E[f(x,.(:“))w(x,,(u);ugt)}ds (4.1.14)
ba(t) = e "E[f(Xalt + ) — f(Xa(®)lo(Xa(n) : u £ 2)] (41.15)

for & sequence ¢, — 0. It can be verified that here
.
a(f) — n
&alt) = [ #als)ds

is a martingale. See [7, p.227] .
Remark 4.1.2 : If £, ¢, in Theorem 4.1.2 can be chosen to satisfy

lim, B|AS(Xa(2)) — #a(8) = 0 (4.1.16)

then it can be easily seen that the sequence {X,} satisfies (IT1). And if it is
given that the finite dimensional distributions of the process Xn(t) converge to
those of X(2), then again it can be shown that (II1) holds. See (7, p.235] .

In Theorem 4.1.2 above, if {gx} does not strongly separate points, then
gis no longer & homeomorphism onto its range and we cannot conclude that
X, % X in D([0, 00), E). However we still get convergence of finite dimensional

distributions of X, to those of X. This is our next result.

Theorem 4.1.3 Suppose A satisfies condition (IY. Suppose that D is an al-
gebra that separates points in E and vanishes nowherc. Also suppose that the
martingale problem for (A )iso is well - posed in the class of progressively mea-
surable solutions. Let X,, X be E - valued progressively measurable proceases
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such that X,(0) 5 X(0). Assume {X,(t) : n > 1} is tight for all t > 0 and that
X, satisfy condition (IIT). If for every f € D, there exist progressively mea-
surable real valued processes £a, b, satisfying (4.1.6) - (4.1.8) then the finite
dimenaional distributions of X,, converge to those of X.

Proof. Proceeding exactly as in the proof of Theorem 4.1.2 we get g(X.) £
g(X). Now (4.1.10) implies that

(@ Xn(t))s -+ 2(Xn(t;))) 5 (X (12)),-

for all ty,...,t;, for all j. Since {X,(t) : n > 1} is tight and D is a measure
determining class, (4.1.17) implies

2(X(2))) (41.17)

(Xa(t1), > Xalt5)) S (X (t2),- ., X(55)-

[ ]

The following th gives conditions when the processes X, are solu-
tions to a martingale problem for (A7)c>0-

Theorem 4.1.4 Suppose that A satisfies the dition (IY, that

D is an algebra that separates points in E and uanuhcs nowhere and that there
exists a countable subset of D which sirongly separates points. Also suppose
that the martingale problem for (A) is well posed in the class of progressively
measurable solutions.

Forn > 1 let (A})io be operators on Cy(E) with domain Da. Let Xo, X €
D([0, 00), E) be solutions to the martingale problem for (AF), (Ay) respectively
with Xa(0) 5 X(0). Further suppose that {Xo(t) : n = 1} is tight for allt > 0.

If for every f € D there exists f, € Dn such that for every compact subset
K and T > 0, we have for a constant Cr,

Ifa—fll 2 0asn—oo (4.1.18)
sup |[AZfull <Cr Vn21 (4.1.19)
telo.7]
sup |47 fa(z) — Af(2)] = 0 as n — oo. (4.1.20)
TeR

Then X, 5 X in D([0,00), E).
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Proof. Set

&) = fo(Xa(2)

$at) = AVf2(Xa(2))
Then clearly £,, $, satisfy conditions (4.1.6) - (4.1.8) with say p = 2. It remains
to show that X, satisfy the asymptotic solution condition (III). Then we can
invoke Theorem 4.1.2 to complete the proof.

Since X, is a solution to the martingale problem for (A7):>0, we have for
gED,0<tH <...<tm=t<1hy <...hy, €C(E),m21,
E((g(X(r)) — g(Xa(t)) = [ ATg(Xa(s))ds) T AKXt = 0-
i=1

And hence for f € D, fn € D, as in the statement of the theorem, we have

BI )~ £t [ ASCEe) [ hiKate)]
= B~ f)EL) = = f)(Ka @
— [ s — AN [ )

A

2 = ALl + B8 [ At — Al I EXO)
(4.1.21)

By (4.1.18) the first term tends to zero as n — oo. Now,

E|(A.f — A f)(Xao))]
< sup 14,4 (z) = AL fal@) + (I + | AT falDP(Xa(s) € K°)

Using (4.1.19) , (4.1.20) and the fact that {X(s) : n > 1} is tight, the ex-
pression on the right above can be made arbitrarily small for large enough n.
Hence
E|(A.f ~ AT fa)(Xa(s)| = 0 asn — oo
Now an application of DCT implies that the R.H.S. in (4.1.21) goes to zcro as
n — oco. This completes the proof as remarked earlier. L]
Here is a version of the precceding result, when D may not strongly

separate points. It can be deduced from Theorem 4.1.3.
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Theorem 4.1.5 Suppose A satisfies condition (IY. Suppose that D is an alge-
bra that separates points in E and vanishes nowhere. Also suppose that the mar-
tingale problem for (A¢)ipo is well - posed in the class of progressively measurable
solutions. Let (A7)0 be operators with domain D,,. Let X,, X be progressively
measurable solutions to the martingale problems for (A7)izo, (Ai)izo respec-
tively. Suppose that X.(0) 5 X(0). Purther, suppose that {X.(t) :n > 1} is
tight for allt > 0.

If for all f € D there exzist f, € D, such that for every compact subset K
and T > 0, (4.1.18) - (4.1.20) hold, then the finite dimensional distributions
of the proceess X, converge to those of X.

Remark 4.1.3 : The time independent version of this result was implicit
in the proof of Theorem 2.2.2. There, for every f € D, f,’s were so chosen that
A"f, = Af for all n > 1. Further ||f, — f|| = 0 as n — oo.

4.2 Examples

In this section we will consider processes taking values in a real, separable
Hilbert space H. The inner product on H will be denoted by (-,-) and the
norm by || - ||l. £(H, H) (respectively £,(H, H)) will denote the space of linear
(respectively trace-class) operators on H and for & € Li(H, H), ||IZ]lx) will
denote the trace norm of £. £ (H, H) is the set of positive trace-class operators
on H.

1. Donsker’s invariance principle: the oo - dimen-
sional case
The first example is illustrative, and it shows the power of Theorem 4.1.2 by de-
ducing Donsker’s invariance principle for Hilbert space valued random variables
(See [12]) from the Central limit theorem via some simple computations.

Let ¥3,Y;,... be a sequence of ii.d. H -valued random variables with
EY; = 0 and E||Y;||* < co. Then it can be shown that

E(Y), 1Y, 62) = (E¢1, ¢2)
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for a trace class operator Z. Let
k k+1
—l—(Y.+Y,+...+Yk) for—51<%.
n

v

Let (W(t))z0 be an H -valued Wiener process with covariance operator X .

Xa(t) =

Then we have,
Theorem 4.2.1 X, 5 W in D([0,00), H).

Proof. Fix a CONS {¢; : k£ > 1} in H and let P, : H — IR™ be defined by

Pu(h) = (B, 1), - - (By ¥m))-
Let D be the algebra generated by

{90 P : g € CHR™)im 2 1} U {uy : ug(h) = f([RI7), f € CO(R)}.

Let A be an operator on H with domain D defined by

Algo Pa)() = 5 35 (S s)ais(Palh) (4:2.0)
Aug)(R) = AURIDIZN: + 2fu(IBIP)NEh, k) (4.2.2)

and for functions of the form F(k) = uy(h)g 0 Pn(h) where f € C}(JR) and
g € C3(E™),

AF(h) = ug(h)[A(g o Pu)l(h) + g 0 Pu(h)[Auy](h)
+2fi(IRI1*) (Sk, ¢5)(g; © Pr)(h) (4.2.3)
i=1

where g; = g gi; = ax 2 g;. It is easy to prove that W is a solution to the
martingale problem for (A,6) and that the martingale problem for A is well
posed in the class of all prog ively measurable p It is clear that D
is an algebra, that D strongly separates points and that A and D satisfy the
separability condition (I). By the central limit theorem for H - valued random
variables, finite dimensional distributions of X, converge to those of W. Sec
([14]). Thus Xa(t) is tight for each ¢ fixed and as noted in Remark 4.1.2, the
condition (Z7I) also holds. We will now prove that for f € D. ({a. ¢x) defined
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by (4.1.14) , (4.1.15) for e, = n~" satisfy (4.1.7) and (4.1.8) for p = 2. Once this
is proved, we could deduce from Theorem 4.1.2 that X, 5 W in D([0,c0), H).
An easy computation shows that here

nt — [nt) Yen

&) F(Xa()) + (——)en(Xa(t))

Ba(t) = ea(Xa(t)

where

1
enlk) = nELf(h+ Z21) = S(R)):
Since || Xa(t)[|? is a submartingale,
E sup | X.(OI < 4BIXT) < ATE|Yi | (42.49)
0<tLT

We will verify that Je.(k)) € C,(1 + )}3))?) for a constant depending on f which
along with (4.2.4) will imply that (4.1.7) , (4.1.8) are satisfied for p = co.
First let f(k) = g((h,%1),...,(h,¥n)) for ¢ € C3(IR™). Using Taylor’s

expansion, we get

en(h) = ngg;a’m(h»%mm,w;)

v

where 0 < 7, < 1. Using IE(Y},¥;) = 0, we get

1030 LEg(Palh + ma S V)i (T by)
ig=1

fealW < (sup sl 35 I, wIIYi, %)

(sup gl 3 N, )P
(sup gl Zlh-

IA

On the other hand, if f = g(||k||?), using Taylor’s expansion again, we get for
some ¢,, ¢, € R,
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Yy - (A}

(%) + SR - (1A +

ealh) = nE{g(lh+

2

ﬁ<h,n>>}

= nB{gIhl + 7

+nB{g(IM? + (b ) — oI}

[

nE{gi(e) - LGP} + nB{an(IA17) - (b Y0

. +g,.(c;)(%(h,y.))’}
CUEIVIP + E(h YY)
Co1+ IRl

IAIA

for suitable constants Cy,C;. We have again used the fact that IE(h,Y;)=0.
The case F(k) = u7(h)g o Pn(h) can be deduced from the above analysis
by noting that

en(h) = nE[f(Ih+ %Y-II’)y o Pn(h+ %Y.) — F(IBI)g 0 Pu(h)]

< (Il o Pulh+ 721 =9 0 Palh)
IR+ I = FARD)
< Cr(1+ AP
As noted earlier, this completes the proof. 1 §

2. Hilbert space valued diffusions
We will now show that an Hilbert space valued diffusion depends
on its drift and diffusion coefficients.

Let a : [0,00) x H — LH(H,H) and b : [0,00) x H — H be bounded

ble fi i in the second variable.

Fix a CONS {¢ : k£ > 1} in H and let P, : H — R™ be defined by
Po(k) = ((Rs#1)s - - - +(Bym)). Let D be the algebra generated by

(g0 Pa i g € CHIR™),m 2 1} U {uy s us(h) = f(IRIP), f € CR)}-
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For every ¢ > 0, define an operator A, on D by

[Adg o Pa)l(h) = 32(b(2, 1), $9:( P (B)) + 3 3 (alts i, 9055 Pl )
=1 ig=1
i (4.2.5)
and
(A IR = AUAIDale, Al +2(5(8, 5, 1] + 2Fua (1B alt, Bk 2
(4.2.6)
and for functions of the form F(k) = us(h)g o Pn(h) where f € C2(IR) and
o € CYE™,
AF(R) = wy(W)Ag 0 Pol(R) +9 © Pu(WlAs1(R)
F2AAID 3t W9 es 0 EuB)  (427)

where f; = 52 f ; fi = 35fi- Then the martingale problem for (Agio is
well - posed in the class of progressively bl (This can be
seen as in example 2 of section 1.3, where the time homogeneous case was
considered. Here the domain, D, is so chosen that it strongly separates points).
Further every solution has a conti dification. The solution is a Hilbert
space valued diffusion as defined in [16] . Also it is easy to see that D satisfies
the separability condition and that D has a countable subset that strongly
separates points. And of course D is an algebra. Thus (A.)iso, D satisfy the
conditions of Theorem 4.1.4. As an application of Theorem 4.1.4, we will show
that the diffusion process depend ly on a,b. Results of this type
are well-known in the finite dimensional case even when the coefficients are not
assumed to be bounded. (See [15]). Now, for every n, let a,, b, be bounded
measurable functions as above and define operators (AP )zo by (4.2.5) and

1

(4.2.6) by replacing a, b by a,, b, resp y.

Theorem 4.2.2 Assume that a,, b, satisfy

sup sup sup [lan(s, B)lx + lIbn(s, M)l < oo (4.2.8)
2V ozakTn

/ S sup a(s, W)]ds < oo (4.2.9)
Smisr
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where a¥i(s, h) = (a(s, k)&, &) and
T

Li sup (llan(s,h) — a(s, R)[lx + [|ba(s, k) — b(s, h)l)ds =0 (4.2.10)

neeJo o iIgR
for all T,R > 0. Let Xa, X be solutions to (A7)0, (Aidizo martingale prob-
lems respectively such that Xa(0) 5 X(0). Then X, 5 X as processes in
C([0,00), H).
Proof: For every f € D taking f, = f, it can be seen that (4.1.19) , (4.1.20) are
satisfied. Thus if we show that X,(t) is tight for evary ¢, we can invoke Theorem
4.1.4, since as mentioned earlier, all the other conditions of the theorem are
satisfied. We then conclude that X, % X in D([0,00), H). Since Xa, X €
C([0,00), H), we get the desired convergence in C([0,00), H).

Using that X, is a solution to the (A}).»o martingale problem, it can be
proved that
.
(Xa(t) = Xa(0), 93) = [ Vi, Xa(o))ds
and
e i 2 ¢ it
[(Xn(t) = Xa(0),8) = [ Vil Xn())dsl? = [ ai(s, Xals))ds

are martingales, where il = (ayt, %:) and b, = (ba, ). Thus,

B (X0~ X080 S 3 2B [ ai(s, Xa(e))de
=N =N
2y E [ (6 (s, Xa(a)))ds. (4.2.11)
=N 0
Now,

B [ ai(s, Xals))ds

JA ‘52 cup aii(s, h)ds

i=~IWISR
.
h | X,
+sup sup llan(s, Wl [ PO > R)ds
t 90 o
[13 sup a(s, h) + sup flau(s,h) — als, Mllads]
© =N IIklI<R lIkli<R

+sup sup flan(s, W)l [ PUXa(s)] > R)ds. 212)
hEH 0<s<t lo
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For0<s<t

i‘;?P(”Xn(s)” > R) < sup P([|Xa(s) — Xa(0)]| 2 g) +sup Pl X0 2 g)

4 R
< 7 sup ElXa(s) = XaO)I + PUXA(Ol 2 3)
n21
[
< = h m?
< m i‘;‘.’(osg‘f‘g’gi'é};"""(” M +0a2:g”s_\:5llbn(s, '}

+sup PO 2 5)

— 0 as R — oo,
where C; is a constant depending only on ¢. Now (4.2.8) - (4.2.10) imply
. L
lim limsup }_ [E / afi(s, Xa(s))ds = 0. (4.213)
N—oo n—oo =N 0
Doing a similar analysis for the second term in (4.2.11) , we get
Aim, lim s;pwg(xn(t) — Xa(0), %) =0 (4.2.14)
Also (4.2.8) implies
sup E|| X,(t) — Xa(0)||* < co. (4.2.15)

By slightly modifying the proof of Lemma 2.2 in [14, p 157], one can show that
(4.2.14) and (4.2.15) together imply that {X.(t) — Xa(0)}az1 is tight. Since
Xa(0) 5 X(0), X(0) is tight and hence we get tightness of {Xa(t) : n > 1}
for each t. This completes the proof. [ ]

3. Continuous dependence of solution to SEE on its

coefficients
The last application is about Hilbert space valued processes arising as solu-

tions to a Stochasti luti ation which have been discussed in section
1.4. Here again, we will show i depend of finite dimensional
distributions of the solution on the coeffici

Let L be a self-adjoint (unbounded) operator on H with dense domain.
Suppose that L~! is a bounded, compact operator. Let {A;': k > 1} be the
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eigenvalues of L~' and let {¢x : k > 1} be the corresponding eigen vectors.

Note that {4 : k > 1} is a CONS in H. We will assume that Ay > 0 for all k.
Let T > 0, and

o:[0,T] x H — L(H, H) (4.2.16)

b:[(0,TIxH — H (4.2.17)

be continuous functions satisfying

llo*(s,B)ell < pe (4.2.18)

(b(s,B), %) < (4.2.19)

(o™ (sy k1) — o™ (s, ha ) )ull < ellor — hall (4.2.20)
(s, 1) — b(s, h2),¥x) < BillBa — hall (4.2.21)

¥ h, ks € H,s € [0,T),V k where pi, i satisfy

N < & (Pe)?
kz—:._h 'C"kg, SR (4.2.22)

Let (W(#))iz0 be a Cylindrical Brownian Motion on H defined on a complete
probability space (€, F, P). Consider the evolution equation

dX(8) = —LX()dt + a(t, X(1))dW (2) + b(t, X (2))dt (4.2.23)

We have seen in section 1.4 that (4.2.23) admits a unique solution for
every initial X(0) which is independent of W. Further, the law of X is uniquely
determined.

Let

D= {g: g(B) = F((rth)s- - (hrpm))i f € CHIR™),m 21} (4.224)
and define operators (A¢)iz0 on D by
(A0)(R) = S2(=Nih+ Bt ), ) (B a)s o (B )
i=1

3 S0 W ot W () ()

Q=1

(4.2.25)



4.2 Examples 89

We have seen in Theorem 1.4.10 and Remark 1.4.2 that the martingale problem

for (A¢)izo is well - posed in the class of p ivel ble p
Note that under the above conditions thelr may not exist a continuous modifi-

cation of the solution.

Let for n > 1, o, and b, be continuous functions as in (4.2.16) and
(4.2.17) respectively satisfying (4.2.18) - (4.2.21) with ps, fs replaced by o[ 3}
respectively where pf, 57 satisfy

) (’i\*)z <a Z ("*)z (4.2.26)
k=1 "k k=
and .
Jim [sup Z (’”‘) =0 (4.2.27)
=

Assume further that for every compact subset K C H,

sup /a T [on(s, ) — o, WEal?ds — O (4.2.28)
T

sup/ ([ba(5, B) — b(s, b)), ¥x)?ds — O (4.2.29)

hek Jo

Define operators (A7)izo on domain D as in (4.2.25) with b, and o, in place of
b and o respectively. Let X, be the unique solution to the martingale problem
for ((A7)ez0 pin) Whete p, converge weakly, say, to u. Let X be the unique
solution to the martingale problem for ((Ae)ezo, #). We then have

Theorem 4.2.3 Finite dimensional distributions of the process X, converge

to the corresponding distributions of X.

Proof: We will show that for every fixed ¢, {Xa(t) : n 2 1} is tight. As noted
earlier, a set of sufficient conditions for a sequence {Ya : n > 1} of H valued

random variables to be tight is

lim sup B S (Yar ) =0 (4.2.30)
K S Gy

sup [E||Y.|[? < oo. (4.2.31)
e
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Here, it is easy to see that
(a0 ) = K08 + [ (T35, Xa(9) i, AW ()
+ /:e"\'("')(b(s,X,_(s)),w.-)ds (4.2.32)

Since X,,(0) 5 X(0) the first term in (4.2.32) is tight. We will verify (4.2.30)
for the last two terms in (4.2.32) . Using (4.2.18) and (4.2.19) , we get
B[ (e (5, X (o), dW ()]
o
.
= B [ e oi(s, Xa())i ox(s, Xuls))p)ds
.
s [emeainyias
@:)
< on (4.2.33)
and
. .
B e 02 0s, Xu(s)) )5l < 2TIE [ e (b(s, Xo(s)), 9:)ds
0 0
(€295
27T .2.34
o (4.2.34)
From (4.2.27) and (4.2.33) - (4.2.34) it is clear that (4.2.30) is satisfied for each
of the last two terms in (4.2.32) .Similarly we can verify that (4.2.31) holds.
Hence we get tightness of {X,(t): n > 1}.

In order to apply Theorem 4.1.5, remains to show that for every f € D,
we can get f* € D, such that (4.1.18) — (4.1.20) is satisfied. It is easy to see
that the rest of the diti of that th are isfied
Let f~ = f. This takes care of (4.1.18) . Also using bounds on a, and b, and
the asumption (4.2.26) one has

HAEI S S5O+ DI+ 5 35 NSl
=1 =1

IA

< S+ VEMIAN+ 5 3 Conlfsl

and clearly (4.1.19) is satisfied, while (4.1.20) follows immediately from (4.2.28)
and (4.2.29) .
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