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INTRODUOT{ON

‘The general theory of linear combinations of observations ax estimates of paraetrio
functions has been treated by the author (Rao: 1943, 1943a, 1945b) under very general
conditions. A unified method of approach to the problem of testing of linear hypotheses,
involved in & variety of cases, hns also been put forward and the necessary distributions
worked out in the case when the variances and covariances are known and observations,
whose expectations are linear functions of certain parameters, form a multivariate normal
systom. This problem which admits a simple solution leading to the use of published
tables of x? alone brings in fresh complications when the varinnces and covariances ure
not known. But by suitable ‘Studentisation’ it bas been possible to show (Rao: 1945¢)
that many problems in testing of linear hypotheses, for some of which solutions were uot
available, can be solved with the help of two distributions viz Fisher's t and z alene.

The main aim of the present paper is to bring out the generality of the method of lenst
squares of which all tests of linear hypotheses come out as special cases, Various aspeots of
thix problem have been considered by Markoff (1912), Stuclent (1908), Fisher (1922, 1925)
Neyman and Pearson (1930, 1931) and David and Neyman (1938). A recent paper which
gives a useful application of the general ideas is due to Kolodziejezyk (1935) who following
the theoriex of Neyman and Pearson (1930,1931,1933) gave a general treatment of the
probiem but the conclusions arrived at are same as those of the above authors.
The important restrictions in the problem treated above are cerlain inequality relations connecting
the number of paramelers, the number of observations and the rank of the matrix of the compound.
ing coefficients of parameters. These resirictions have now been withdrawn and it has been
possible to show that by a certain rule of procedure the necessary lalistics can be oblained
from minimised sum of squares. This problem for some partionlar cases of linear hypothesis
has been treated by Boso (1044) from a different point of view.

The problem treated here is the theory of estimation and testing of hypothesis concerned
with the linear functions of certain parameters and regressien coefficients the compounding
coefficients in'the latter case being functions of concomitant variates. The theory of least
squares may now be msde secure on solid foundations and a unique principle, ‘without
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which the eolution of new problems has. as it were. to be picked out, afresh, by intution’
leading to & ‘generality in the v methoda’ is made available,

As an application of this method the appropriate linear hypothesis and the sualysis of
varianoe and covariance in biological experiments have been considered and a general
theory of statiatical regression is given. Some examples are worked out to illostrate the
theory.

In the genoral treatment of the problem some results are stated without proof as
they can br easily constructed from the methods given by Rao (1945a, 1845h)

2. THE GENEBAL PROBLEM WITH CONCOMITANT VARIATES.

let Y = (y, ¥,--¥a) be the vector of # stochastic variates y,, p,.. ¥, and X be
the matrix, with » rows and k columns, of k¥ concomitant variates, the k observations
(¥=1,2,.. k) in the j-th row correxponding to the j-th stochastic variate y;. Lot @=(9,,6,..6,)
be the vector of expectation of Y for the given set of observations on the concomitant
variates. Thin is expressed us E[Y : X]=@ or simply E(Y)= when therc i» no Ambiguity.
It is given that
a=FG'=TA'+RX’ o2
where F and G arc partitional matrices defined by F=(T|R) and G=(A|X), T=(r, ry..7)
and R = {p, p,..p) are the row matrices of m unknown parameters ='s and £ unknewn
parameters p's and A is a known matrix with » rows and m columns.

The assumption made above is one of linear regression on the coneomitant variates
and this can be done, without loss of generality, for if the regression is a general polynomial
or any other linear combination of functions of directly observable concomitant variates
(suoch as aquares, oubes ete. in the case of polynominl regression or logorithms, exponential
eto.) each of these functions may bo regarded as a separate concomitant vurinte. The general
problem treated here ix the case where, for a given set of observations on concomitrnt variates
the expectution of stochastic variates are linear functions of m unknown jarameters 7's
and k unknown parameters p’s, the compounding coefficients for the p parameters being single
valued functions of concomitant variates.

If y,, ys, - ., yudo not bave any functional relationship we can getsn positive definite
matrix A of rank n as E[Y —@)(Y—@) : X] where E stands for the mathematical expecta-
tion, in which case .\ is reforred to as the dispersion matrix of the stochastic veotor Y for
the observed concomitant matrix X, It is assumed that the vlements of A are finite and are
known apart from a constant multiplier. We are not assuming any equality on inequality
relations among n, k., m and the ranks of A and X. Tho eet of equations E(Y) = FG’
are known as observational equations.

There are two types of problems to be answered in the theary of linear estimation

d with itant variates.

(i) Given a linear parametric fonction such as L1T* where L=(f, l..1,,) is & row matrix,
the problem is to find a vector B such that
(a) E(BY') = LT’ independently of T and R .22
(b) V(BY’) is minimom. L2y
(ii) Given a linear parametric function such as MR’ where M=(m,m .. m} is & row matrix
the problem is to find a vector C such that
(8) E{(CY’) = MR' independently of T and R L4
(b) V{CY) i8 minimum. ..o29)
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Int the case {a) is satisfed tho ponding parametric functions are seid to be estimablo
and if (b) is also satisfied the parametric functions are said to have the best unbiassed
estimates given by the corresponding linear functions of the variates.

The problems mentioned above are only particular cnses of the general problem
considered by Rao {1845a) but requires a special discussion in view of the importance of the
role of concomitant variates which will be dealt with in u later xection,

The definition of unbinssedness involved in (2-2) gives that if

LT = F (BY’) = BAT: + BXR’ .. (2.8)
then BA = Land BX =0 .27
Algo if B exists such that BA=1,'snd BX =0 then LI"=E{BY") which gives the following
theorem.
Theorem 2u. The necessnry and sufficient condition that LT’ ix estimable is that there ecints
a veclor B such that BA=L and BX =0).

From the set of B’ satisfying the condition {2.7) we huve to chuose B such that V(BY')
= BAB is the least. Introducing the vectors 2D = (4, d, . .4f,) and 2R=(f, f; .. f) of
Lagrangian multipliors and minimising the expression.

BAB —2D(A'R ~L') - 2FX'B’ Lo (28)
We get BA-DA'—FX'=0 Lo (24
BA=L, BX =i o (2-10y

Muttiplying both sides of (2.8) by A !, the inverse of A, we get the veetor B leading to
the best estimate as

B=DA'Y FFX\T R A Y]
which with the help of {2.10) shows that the vectors 1) and F satisfy

DA'ATA+FX' A tA=L L2412

DA AINAHFX A X =0 o2

the best estimate and the minimuin varianee being

BY'=DA'A 'Y '+ FX'A 'Y’ FE e A L]

DA’ATAD WX A A = LD’ o (215)
Theorem 2b.  The necessary and sufficient condition that the purametric function L1" is extimable
in that there exist veciors £ and F sntisfying ihe equations

(DIF)(A' XA ' A=L

(D|F)A’'| XA ' X=0
and the best unbiassed extimale of LT, if estimable, and itx cariance are given by (D[ F)(4'|X")
AY and LD’ respectively.

‘The necessary and sufficient condition given in theorem 2b is only another form of
that given in thoorem 2a and is more useful as it is direatly connected with the best estimate.
Similarly we have the following thearems regarding the estimability and the best estimate
of the parametric functions.

Theorem 28, The necessary and wufficient condition thul the purametric function MR’ is estim-
able iy that there exists a veclor C such that CA=0 and CX=M,
Theorem 2d.  The necessary and suffici dition that MR’ ia estimable is that there erist
vectora ( «und H salisfying the equations

(G|H) (A’]| X")A 'A=0

(G|H) (A’ X")A1X=M
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and the best estimate of MR’ if eatimable and itx variance are given by (G H)YA'| XY A"V ang
MH’ respectively.

The following theorem on uniqueness of the rosulta can be proved ay in (Rao : 10458,
Theoreu: 2e. The beal unbiassed estimates are unique independenlly of whatever nay bde thy
vectors F and D of theorem 2b and G and H of theorem 24 salisfying the correrponding
equations and the variances of the extimales thus arrived al are the lenat.

3. EXTENSION OF MARKONE'S RESULTS
In this section a simplo and a practical procedure for the problem of estimation of
linear parametrio funotions, without laying much emphasis on the algebra given in the previous
section has been developed. From the variates of the stochastic vector Y we construet the

variates Y A-' (A|X) by & linear tranaformation so that

E[YAMAIX)=(T|R) (A|X)'AA|X) RNER T

leading to the equations i
E(U)=(T{R)H",, E(W)=(T[R)H", )
where U=YA"A, W=YA'X )
and (Al XY AMAX)=(H,|H,Y S 34)

From theorem 2b we get that if there exist veetors. F and D such that
LT'=(F|D) (H,|H,) (T|R) - (35)
then the hest cstimate of LT is given by (F|D) (U'|W'). If(T[R) =, 1. .au)r 1 ony)
he n solution of the equations (U|W)=(T| R) (H,{H,)’ then hecause of (3 -3) we have
LT'=(F|D) (H,|H,) (T|Ry'=(F[D) (U|W") L3
which shows that the best ostimate of LT’ if estimable, can be obtained from LT where
T=(tyt,...tw) us dofined nbove. This is unique independently of whatever may bo the
solution (T|R) satisfying the above equations. Following the proof given in (1945n) we can
show that the result of substituting (TR} in LT* leads to the best estimate if and only if
(i) LT’ is homogeneous in.y’s
iy BLTH=LT"
are satisfied. ‘Thig shows that the parametric function LT’ newd not be tested for estimability
before applying Markoff's principle of substitution. If it iy not estimable cither one or both
of the conditions are violated in which case its estimats ceases to exist ; similar results can
ba derived in the cass of the parametric function MR’. Hence we get the followiug theorem.
Theorem 3a. The best estimale of the parametric function LT (or M R’) exists and i given by
LT (or MR')where T (or R) is the vector givinga set of solulions of the equatiuns defined in (3'1)
YAUA| X)=(P|RUA' A A+ X AX)if () LT (or MR') is homogeneous in the stochastic
variates and (35) E(ET)=LT" (or BIMR")=MR").

Sinee (T]R) is any solution of the equations given above we got the following resnlt.
Theorem 3b. The vector (T|R) mentioned in theorem 3a can be obtained after adding any con-
sistent and convinient set of equations in v's and p's lo the equations given in theorem (3a) viz.
YAHA| X)=(T|R) (A'A™ A+x’A'X) and solving them.

The equations (U | W)=(T|R) (H,|H,)’ are called normal equations and are readily obtained
by equating to zeroes the partial derivatives of
2| z] A {yi—8,) (y;—8)) Lo (3D

when A" are the clements of A-!, with reapect to tha paramsters v's an’l p's respeatively.
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LINEAR COMBINATIONS AND LEAST SQUARES
‘The analysis is complete with tho help of the following theorom which has been
proved in Rao (1946a; 1945b) .

Theorem 30. The set of equations YA™MA| X)=(T|R) (A'A1d +X'A"1X) are aluays solvable
Jor v's and p's.

4. REGRESSION PARAMETERS AND THE STRUCTURE OF CONCOMITANT VARIATES.

The parameters p,, py, ..., fx, Whose compounding coefficients are functions of
conoomitant variates, are known as regression parameters. In this Section some properties
of regression parameters, simpler methods of estimation and the of i
voriates are disoussed.

¥rom the normal equations (U] V)=(T{R) (H|H,)’ we can, by the method of aweop

out, elimi the set of | ters Ty, T,..7y OF py, po,. . in which case the resulting
juations may be rep ted as

P=T$' or Z=RN’ R

Tt has been shown (Rao : 1945a) that the dispersion matrix of {U'| V) is (H, |H,) which

ix the matrix of the normal equations and this intrinsic property of the normal equations is

preserved even when some of the parameters are eliminated by the method of sweep out.
Henee we get the following theorem.

Theorem 4a. The dispersion matrices of P and 7, of the equations P=TS8 and Z=RN' oblained

Jrom the normal equations (U | V)= (T | R)H,| H.)' by the method of sweep out, are the matrices of
resulting equations & and N respectively.

The theorem 4a gives us that if the best estimate of LT’ (or MR') is BP' (or CZ’) then

V (BP’) =BSB' == LB’ .42
V (CZ) =CNC’' = M(’ LH3)

and if L,’T" and L,T’ are estimated by B,P’ and B,P’ then
Cov (B,P'. B, P)=L,B’,=L.R’, .49

with similar results for the'covariance of the best estimates of M, R’ and M_R’.

We could by any other device eliminate the »'s and get the equations in p’s but the above
intrinsic properties are not usually preserved. Bnt in this case we can construot another
system of parameters which are linear functions of p’s nnd‘ud]\lst such that the matrix of the
cquations in the new variables is the dispersion matrix of the corresponding quantities which
occur on one side of the equations. By certain devices we can preserve these intrinsic pro-
perties and these are particularily important as the further caleulation of standard errors
ave simplified.

The vormal eqaations from which the best estimates are 1o be obtained are

YATA =TA’ ANAHRX 434 .. (4.8)
YAX = TA’ AX4HRXAIX o (1.68)
1f the regression parameters are zero vnei. the normal equations for vhe 7 p

corresponding to the observational equations E(Y)=TA' are

YArA=TAAA . W

Since the p jo functions TA’ are all estimable there exists & matrix F with n rows

and m coluns such that
TA'=TA'ATAF’ .. (48)
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in which case the best estimates of the parametric functions TA” are given by YA-'AN,
Sinve (4.8) holds identically

A’=A’ATAF AR 0]
Premultiplicz tion € bouh sitles of (4.0) by F and taking the transpose we get
FA' = FA’AAF L@l
AF' = FA'A1AF A
which shows AF'=FA’ oo (412)
Post multiplication of bo. h sides of (4.5) by F' we get
Y ATAF = TA A AP+ RX AAF S (BB
YN’ = TA'N' +-RX'N’ L (41e)
where N/ = ATAF

Post multiplying buth sides of (4.14) wich A ' X andsubtra.viog from (4.0) we pet the equn.
tiorx giving the regression parameters as

Y(I-N)A'X = RX{I-N) A" X (415
which iy the same as
Y (I-N") A7 ([—-N) X=RX’ (I-N)AH{I-N)X . (416)
since
(I-N) A'N=AN—A"" AFATIFA’A™
=ATN—AT FA’A1=A"'N—-AIN=0 N b
by the use of (£.10) and (4.12).  Also the dispersion matrix of Y ([—N’) A-'X i3
XA (I-Nja{l-N)A ' X=X ([-N)A"'X .. (4I8)
for X/ANA(T=N)AIX =N AT FA([ =N X
=X'AHFA—AF)=0 o 4.19)
which shows that by the method adopted above the variance-cevariance property is preserved
in the equations (4.15) for the estimation of regression paramet The set of equations in

the form expressed in (4.18) shows that these are normal equations derivable from the sel of
observational cquations E{y)=R¢" with the dispersion matrix of y ax A where

7 =Y (I-N)and ¢ = (I-N)X . .. (420}
which may be called the residual stochastic vector and the concomitant matrix respectively.
Let X,. X,, .., X, represent the vectors of the 1st, 2nd, ... and k-th eoncomitant

variates, the i-th element of each corresponding to y, the i-th stochastic variate. e can
construet the observational equations

E(Y)=T*A’ and E(X))=T"A’ Lo

=12 ..48
where T= (7, 1,"". . 7,,'") aro the purameters corresponding to the i-th concomitant vee-
tor and and T*'=(7,* 7.%", .7, for the stochastic vector and obtain the best unbinsked
estimates of the parametric functions T*’A’ and T*"A’. There are » variables in cach ense
and » best estimates of their corresponding expectations. If we donote the hest estimates by
placing a bar over the vector of the parameters we get the residual veetors
n=Y—T=A’ and ¢=X,~TwA’ L2

mentioned in (4-18). Hence we get the theorem.
Theorem 4b. Tke normal equations leading lo the best estimates of the regression p I
are derivable from the observational equations E(9)=R¢’ construsted with the help of residual vec-
tors 7 and &, derived in (4 -22) and assuming the dispersion malrix of v lo be A. The equations
thus obtained for the estimation of regression parameters possess the rariance-covariance properties.
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With the belp of theee equaﬁonu 7 ATE=RE AE we ean solve for the p pura-
meters and use it for the purpose of esti g linear functions of reg; and
finding their variances and covariances, Huvmg obtained the vector R of solunonu we ean
substitute it in (4 -5) to obtain the equations in the r parameters.

Y AT A-RX? AVA=TA’ A9A Lo (423)
Jf LT iz an eatimabl tric function then there exint« a vector C such thatCA’A AT’ =LT*
in which case the bosz estimate iz
C A’'ATY' —CA’ X R/= LT —gr LTov .42

where T and T% are au defined above and r, iv solution for p, the ith regression parameter.
Henee we get the theorem.

Theorem de. The beat unbiassed estimate of an estimabie i¢ function LT iy given by
LT —Sry, LT twhere LT and LT are the beat talnnnlea of LT and LT from the
observational equations E(Y) = T4’ and E(X,) = T"A'and r, are the solutions of the
equations qA~'§=RE A where n and ¢ are the residual vectors defined in (4-22).

It appears as if the parametrio functi d with the stochastic varintes and
the concomitant variates are related with the parametric function LT’ in the manner
LT'=LT<” —gp, LT** .. (425)

which may admit a physical interpretation with referefice to particular problems, We can
find the variances and covariances of the estimates given in {4.24) with the help of the following

theorem. The expressions LT“” are constants being only functions of the con
variates.

Theorem 4d. The function LT the estimate of LT when lhe regression paramelers are zero
is uncorrelated with the estimates of linear funclions of rey p 1

The proof follows from the fact that LT is a linear combination of YA-'A ar YA A
=YN’ defined above, and the estimate of a linear function of the regression paranieters is s
linear combination of YA-'(1 —N') in which case the relation {I—N")A"*N =0, proved in (4.17)
showing that the elements of YN” and YA-Y(I—N’} are uncarrelated, establishes the theoreus,
Hence we have

vlLi‘""'—izn LT =V[LT" )+ V[gr LT ..o (4-28)
for cach of which the variances are known.
Similarly _ _ _
Cov[LTw’ —Zr LTw’) (M — £r, MT*]
=Cov[LT"* . MT«"]4-Cov(Zr; LT . gr, M1T’] N 1]
The expressions (4.25) for the esti ofap ic function LT’ and the expressions (4.26)

and (4.27) for the variances and covariances consist of two portions (i) the corresponding

pressions when the reg ); are absent and (ii) a correction due to the conco.
comitant variates. The caloulations are so arranged that the expressions obtained by assum-
ing the regression parameters to be zero are made use of in deriving the correction factors
themselves.

1t is interesting to note that the above analysis is not limited to concomitant variates
alone but applicable whenever we want to distinguish two sets of p in the theory
of linear estimation. Thus we could, in the above casp, reverse the roles of t's and s
and congider the elements of A as observations on certain concomitant variates.
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5. THE CASE OF INDE’ENDENT VARIATEN

A general problem that occurs in the ion of regression and other ia
when the stochestic variates are independent and have the same common variance. If this
common variance is o* then on replacing .\ by o° I, in the estimating equations we find “that
o* cancellsout in the normal equations giving the result that the best estimates are
independent of the value of o whether known or unkonwn. In this section the practical
procedure for estimation is dealt with at length and certain short cuts are suggested,

Let the observational equations be

E(p)=ant +...+anrm+ ot +. . bpa, R
=1,2...,n

with certain restrictions on parametery
gi=rm it T, (302
i=12,...,8
Tn the general treatment given above we have not considered linear restrictions on

the parameters but as shown in (Reo : 1945b) this does not introduce any frewh difficulty but
in deriving the normal equations the quadratic form :

My —6) (v —0)) .. (53)

bas o be minimised subject to the linear restrictions. The expressions for the estimates,
variances and covariances all follow from the general treatment given in (IRzo : [D4ab),

Assuming the regression parameters to be zero we obtain the best estimates of para-
metric functions. Let ci,+cy; i+ . F-cip o= be tho best estimate of a,, 7, +. . +tyy, 7ma
when p's are zero but r's subject to (5.2). Then the i-th residual is (y,- 7). Similarly

the i-th residual for the j-th concomitant variate is &j=x;—¢;,—¢, ), —.. ~¢;x;, where
¢'s are the same as those used in the case of y's. The residual abservational equations are then
E (m)=p;¢0+... +rdn o 5
i=1,2..,n
from which we get the normal equations giving p’s as
Sodn=pZeodn+. .. +eZbadi .. {(3-5)
§=1,2, ..., k

Certain short cuts are available if solutions of the normal equations corresponding to each
of the variates are available. Starting from the observational equations (5.1) with the res-
trictions (5.2) and aseuming that the regression parameters are absent we get the normal
equations whose solution we represont by ¢, 4, 4. By replocing the n observations
on the stochastic variate by those of the j-th concomitant variate we can get corresponding
solutions which we represent by {7, ¢,

Emép=Z(y—anh'—. ) @@ —anhT—. ()

=Ty, %—4, P28y, — P Sapyi—. ... . (36)

Similai =Ty zp —u" ey z) — Sary—. ... i 377
imilarily

D e T .58

=Z%m 2w —h ¥ T tim—. ...
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‘With the help of (5.6) to (5.9) we c&n set down the quations (5.5) from which the ro-
gression parameters are solved for. If ry,ry,.., r, are the solutions thus obtained then the
best estimate of I,r,+.. +laTy, if estimable, is given by

CEL = g — L ) .. (5-10)

The estimates Tl,4,*" and Ll ri*) are uncorrelated as shown in theorem 4d, so that
the variance of (5.10) is the sum of the variances of its two uncorrelated parts. The variance
of each part is easily derivable from the normal equations from which the ¢, and 7| are
obtained. Thus if 4,** are obtained from the equations.

Q=bt, " +. .. +Bitn T
e=1,2,...,m
and (5.2) and if T4 =>b,+IbQ, then V(X £;)=2I, b,0* and if the oquations giving
the regression parameters are

Pi=ho+hyr+. .. +hun o (6112)

=12, ..k
and if Emr,=n,+ZnP; then V(Em,r))=Xm,n, 02 and #o on for the covariances ulso . It is
10 be observed here that the solutions ¢'s and r’s rep the best eati of the parameters

=’s and p’s only when they are estimable individually but they are helpful otherwise in
giving the best estimates of the estimable parametric functions. Estimability can also be
tested with the help of these solutions as indicated before. All the equations used above are
always solvable (Rao : 1945a) and it is enough for our purpose to get any single solutior,

6. THE GENERAL THEORY OF LEAST SQUARES
The hypothesis involved in the theory of linear estimation is the assignment of the
value of a single parametric function or the values of a number of parametric functions. The
method of construction of suitable statistics and their distributions when the stochastio
variates form a multivariate normal system and the variances and covariances are known
have been discussed fully in Rao (1948a, 1945b). If LT’ is a parametric function whose
assigned value is ¢ then denoting the estimate of LT’ by LT’ wo construct the statistic

v=(LT'~¢)/y V(LT Lo {Be)
and use it as a normal variate. To test the hypothesis L,T'=¢,,..., L,T°=¢, concerning
r independ parametric fi i we find the vector of best estimates P=(P, P,...P,)

where Py=LT"—¢, of L,T'—¢,,. ., L, T'~ ¢, with their dispersion matrix D and construct
the generalised variance statistic V defined by the root of the determinental equation
|P’P—VD|=0 . (82)
The method of deriving the generalised variance statistic is to take a linear compound
MPi+ .. +A,P.of P, P,,..P, and maximise the statistic EA;Py/y V(EX, P,). The
statistic V is distributed 88 x* with 7 degrees of freedom as shown in Rao (19458, 1945b)

Lemma 1. The generalised variance statistic V designed lo test the hypothesisL, T'=4¢,,. ., L, T'=¢,
concerning r independent pa ic functions and derived as a root of the delerminental equation
obtained by the principle of mazimisation is invariant under linear transformalions of (he
hypothesis or the variates and ia distributed as x* with r degrees of freedom when the variances
and covariances are known.

When the varisnces and covariances are not known the tests can be performed only
after studentising the above statistics. The general method of studentisation and the deriva-
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tion of statistics in the case the stochastic variates are uncorrelated and have the same
variance have been discussed here and the other cases are reserved for a subsequent commn-
pication. We may now etate the problem as follows.
Given Y={4, ¥a- -¥a) the vector of n slochastic variables, suck that E(Y)=TA’, where A
18 @ known matrix with n rows and m columns and T=(r, 7,...v,) i8 the veclor of m unknown
parameters subject to the resirictions G=TR' where G is a row vector and R is a malriz with q
yows and m columns, and further that A the dispersion matriz of Y is of the form o1, where o2 ia
unknown, the problem is lo test the hypolhesis whether the r independent p tric funchi
L\T,.... LT have the assigned values §,,..., §,. Some of the purameters 1’5 wmay be regres.
sion parameters in which case their coefficients are functions of concomitant variatex.
Following the procedure given above let P=(P,..P,) be the vector of best estimates
of LT'—¢, .., L,T'—¢,. Since the atochastic variates are all uncorrelated the estimating
vector P is independent of the unknown p ter 0. The dispersion matrix of P can in
this case be written as o2 where the matrix D is completoly known. The genoralised variance
statistic then comes out as

|P’P—VoiD| =0 . (83)
V=PD"P' .. (8-4)
g

where D-! is the inverse of D and the unknown prameter o appears only in the denominator.

If the y’s form a normal system then V is distributed as x* with r degrees of freedom
when the null-hypothesis is correct. On the other hand if we can get the totality of lincar
functions of y's whose expeoctations are known independently of the null hypothesis then
the generalised variance statistic assooiated with them is distributed as x? with certain number
of degrees of freedom. If Q=(Q, ... Q,) are s independent functions of y's whose expecta-
tions ars known to be ¢, ,.., {, and if the dispersion matrix of Q's is F then the
generalised variance statistic

V.- Q=0 F1Q—y B
7

is distributed as x* with s degrees of freedom. If V, is distributsd independently of V which
is distributed as x? with r degrees of freedom on the null hypothesis then a studentised
statistic can be constructed by forming a funetion of ¥V, and V which will be independent
of o* the simplest of which is the ratio V/V,. “The statistic sVirV, is distributed as the
variance ratio’ with r and s degrees of freedom respectively. The tests of significance can in
this case be carried out with exactitude. We will now show that such an exact test is available
on the maximum possible degrees of freedom for V, and the exact expressions for V and V.,
can be obtained by the simple device of least squares.

Theorem 6a. Iftheranksof A, R and (4'|R’') are s, k and p respeciively then there ure
n+k—p independent functions of the form c,-CY’ whose expecialions are identically zeroes.
Evidently (s4+4)>p and d=(s-+k—p) gives the number of independent rows of R which

can be derived as linear combinations of the rows in A. If E(c,+-CY’)=0 then ¢, +CAT'=0
subject to the condition G=TR’ which shows that there exists a vector D such that
CA+DR=0 and ¢,=DG' .. (8-8)
Since the rank of A is s, there are n—s independent vestors C which satisfy (6.6) when D=0.
When D is non-null there are 4 vectors satisfying (6.6). This followa from the definition of
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d given above. The value of ¢, for each of the C’s is given by DG’ Hence the number of

dependent fi whose exp are zeres s

n—s+d=ntk—p . (87
Theorem 8b.  [f c,~C'Y" is any funclion whoee ezpectation is zero und b,+ BY' is the function
giving the best bic d estimate of a p ic function LT then BC' =0 or the two functions

are uncorvelaled.

It has been shown elsewhere (Rao : 1945b) that the best estimates of parametric
functions are obtained from the normal equations

YA=TA’A+SR and G=TR’ .. (8-8)
where 8=(c, 0,...0,) is & vector of ¢ pseudo-p If LT iv estimable then there exist
two vectors X, and X, such athat

XA’A+X,R=L - (849)
X, R’ =0, ,=x,G’ .. (6410)

in which case the best estimate of LT’ is given by b,+BY’ where B=x, A’. If E(c,+CY")=0
then from (8.6) we get CA-+DR=0. Premultiplying by X, we get
X:A'C'+X,RD'=0=x,A'C’=BC" <. (81D
Hence the theorem 6b follows.
Theorem 6¢. If the best eslimnles of n paramelric funciions TA’ are represented by T4’ then
the expeciation veclor of the residual vector Y ~T A" is null and the totality of the linear functions
of y's (rot ily homog ) whose expectations are zeroes are derivable by linear com-
binations of the el {2 of the residual veclor alone.

Let YT’'4-A (where I' is a matrix with # rowa and m columns and A is a vector with n
elements) give the best estimates of TA’, Since E(Y—-Yr'—a)=TA'—TA'=0, we get
that the expectation of the residual vector Y(I—I')—A is null. By theorem 8b we also get
that I(I—1’)=0. It ean be easily shown that the number of estimable functions for which
the estimates are not pure constants is s—d where s and d are as defined in theorem 8a,
in which case it follows that the rank of I is (s—d) and because of the relation r{l—r1")==0
it follows that the rank of (I —r’) is (#—s+d). Further any vector D such that D(1—TI*)=0
makes DA’=0 for otherwise the expectation of the residual vector is not zero. Thus the

residual yector Y(I—T1”)—A constitutes (n—as+d) independent functi whose exp
are zeroes and by theorem 6a this gives the totality of such functions.
Theorem 6d. The g lized veriance istic V,, derived from these (n—s+-d) independent

Junctions whose expectalions are zeroes is given by [Y(I—0')—A)(/—T)Y"~-4’)/0® and is dis-
tributed as x* with (n—s-+-d) degrees of freedom independently of the functions giving the bes
estimales of parametric functions.

Instead of teking the number of independent functions we can take a linear function
B[(1-r)¥'—A")] of the m functions in Y(I--I")—A with ity variance B(I—T)(1 —T')B’0*
and maximise the statistic V, given by

Bl(1—T)Y’—a"] [Y(1—I")—a)=V. B(1—T)B'o¥ - (8112)
Diffm’eminting with B we get
B[(I-1)¥’'—4] [Y(1-I)—a]=V, B(1—T)e? -o (6113)
Multiplying the above expressions by themsolves we get
V,or=[Y(1—-1")—a] (1 —T)Y'—A"] .. (6:14)
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This is evidently distributed as X! with (n—s--d) degrees of freedom as it & the g lised
variance statistic constructed out of (n—as+d) independent functions. This is distributed
independently of the best estimates by theorem 8b.

Theorem Be. The expression V0t (which is independent of a*) is the same as the minimum value
of (Y—=TA') AT —Y') when minimised with respect to the v's subject lo the condition G=TR’.

The oxpression V,0? in (6.14) is the sum of kquares of the residualy (Y-TA" (A’I"—Y')
where T is a any solution of the normal equations which are obtained by equating the partial
derivatives of (Y —TA')(AT'—Y’) with respect to v's subject to the condition G=TR' to
zeroes. Hence the theorem.

The above theorem gives an eaxy method of ovaluating V.02, Now to test the
hypothesis L,T'=¢,, L,T'=¢,.... L,T'=§, we have to caleulnte the statistic Va*=PD-1P’
given in (6.4) and use the statistic Vo¥(n—g+d)/V,o?r as the variance ratio with r and
(n—a+d) degrees of freedom. We may now observe that if L,T'=¢,...L,T'=¢,, then
r more linear functions of y's have zero expectations so that the genernlised variance appro-
priate to totality of independent functions, {(n—3+d-+r),in number, can br obtained with the
help of theorem Ge by finding the minimum value of (¥ —TA')(AT'—Y") subject to the condi.
tions G=TR’ and the given relations L,T"=£,...., L,T'=£. Let ¥, he its value. This
generalised variance -can also be obtsined starting from the best extimates Py, P,.... P, of
L,T'=¢,,..., L,T'—§, and the residual vectors Y(I—1")—A which are all uncorrelated
with P’s due to theorem 6b.  The generalised variance of the lutter alone i Vo, Ifthe penera-
lised veriance due to two unecorrelated sets of functions are additive then we infer that the
generalised variance due to P’s alone is V) —V.. We now prove the following theorema.

Theorem 6f. If Q, =(q\ quz+ - Gue) Ond Qu=(qus Qoo+ - Tan) Ghre lirs xels of functions xuch that
no funclion of the first sel is correlated with those of the other and have dixpersion malrices 02\, and
oA, then V, the generalised variance of (Q,]Q,) ix equal to the sum of V', the generalised variunce
of Q, and V., the generalised variance of Q,.

If L, and L, are the vectors of compounding co-efficients we get V' as the ~olution of

LQ Qi +L.Q%Qi=VL, &, .. {8-15)
LiQQ:+L:Q":Q.=V Lsa; .. (6-18)
from which by proper multiplications and addition we get
(V,+Vy) (LQL+L.Q%) =V (L,Q} +1.Q") .. (617)
or V,+V. =V .. (618)

Theorem 8g. The generalised variance V appropriate lo the best estimates of L\T'—,,-.,
L.T"—£, is obtained as the difference between the minimum values of (Y —TA') (AT'— 1Y) when
minimised with respect (o the parameters of the vector T subject to the restriction G=TR' und
when minimised with the further restrictions L,T'—£;=0,.. . L T'—§,=0.

The proof of this theorem follows from the results of theorem 6f and the cliscussion above.

This leads us to the following procedure in the theory of least squares. The observa-
tional equations are E(Y)=TA" with the restrictions G=TR’. The hypothesis to be tested
may be put as H=TF’. The hypothesis can be teated when and only when the system of
equations H=TF' are not inconsistent with G=TR' and the matrix F* can be obtained
from (A’|R) by linesr combination of its row or columns. If the minimum valuea of
(¥--TA’) (AT'—Y’) subject to G=TR’ ahd G=TR’, H=TF" are denoted by V,o? and V,o?
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then V, aund V, ure distributed as X? with (n—a+d,) and (n—s+d,+d;) degrees of freedom

respastively where d, is the numbor of independent vectora in R derivable from A and 4, ia the

fitional number independent vectors in F derivable from A and # is the rank A, If the ranks

of AR, (A'|R); (R'|F) and (A'|R’|F’) ars ok, p,r ond ¢ then d,=s+k—p and

dy +dy=8-+7r—1. In any particular problem these degrees of freedom ean be obtained from other
V,—V, n—s+d,

simpler coneidurations, To teat the hypothesis H=TF’ the statisti —. is used
d v,
as the variance ratin with d, and (n—s+d,). degrees of frecdom. ' o
The minimum values can be uniqualy obtained from
(Y-T&) (AT'-Y") .. (618
where T is any solution from the equati btained by equating the partial derivatives of

(Y_TA')(AT’—Y’) subject to the restraining conditions to zero. We thus acrrive at the
general theory of least squares without making any restrictions on the number of variables
or the parameters or the rank of the matrix of observational equations. This covers the case
of independent stochastic variates whose exp i ure linear fi i of regression and
certain other parametors, the coefficients of regression p ters being functi of con-
comitant variates.

Sinde the generalised variance statistic V, appropriate to s independont linear functions
whose expectations are known independently of the hypothesis is distributed as x* with &
degrees of freedom it follows that E(V,)=s. This gives us another method of calculating the
number of such independent linear functions or the degrees of freedom associated with V..
We need caleulate only the expectation value of the minimised sum of squares o*V,=
(Y—TA")(Y'—AT’) where T is the vector of solutions from normal equations. If the parametire
functions TA’ are estimated by QF’+A where Q=YA, F is a matrix with n rows and m
columns and A is n row matrix with » elements then

o'V, =(Y-QF' —3) (Y—FQ —a)
E(o*V,)=E(Y ~6) (Y'—0") —E[QF' —E(QF")] [FQ'—E(FQ")}
=0%n—trace of AF') .. (6-19)
where the trace of AF” is the sum of the diagonal elements of the matrix AF’. This follows
from the fact that the variance of CQ’+-D the estimate of LT, a single parametric function is
given by LC'e2. Hence we get the following theorem.

Theorem 8h. If the parametric functions TA’ are estimated by QF'+A then the degrees
of [reedom of V, the minimised sum of squares (Y —TA’)(Y'—AT’) subject to assigned restrictions
is given by (n—trace of AF’)

7. GCOVARIANOE TECHNIQUE IN FIELD AND BIOLOGICAL EXPERIMENTS

As an application of the previous analysis we may consider the analysis of data from
biological and field experiments. Certain functions of observations from these experiments
havp their exp ions as linear functions of unknown parameters. The nature of the linear
hypiothesis involved in such problems and the construction of suitable functions as observa.
tional equations smenable to reduction by the method of lesst squares have been disoussed-
elsewhere (Rao : 1944). The mathematical of the question is oarried out after a
translation of the particular problem into mathematical language with special reference to
field experiments.
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The problom ix to test whether one variety is superior to another in a certain specified
region. Wo cannot utilise the whole of tho spooified region nor is it desirable to choose certain
number of plots at random for onc variety and a certain number for the other. Evidently
two varieties cannot be tried one after the other on identical plots without vitiating tho com-
parizons. 8o we choose sets of plots adjacent to one another which are called blocks. Let
us consider a block of £ plots and imagine that the yickds on these k plots with reapect to a
hypothetical variety are aj, ay, ..., a,. We define tho quantities

B=la,+at. ..tk p=a—B, E9,=0 .1

If any given variety is tried on the i-th plot then the observed yield y may be supposed to have
the composition

y=ai+7te=B+r4m+s - 0.2)

where ¢ is a technical error due to experimentation and is vuch that its average over repeated

experimentation under similar conditivns is zero. The parameter r may be enlled the effect

of the variety. Ifx,, ry, ..., 7, arc # concomitant observations besides the yvield y then the

composition of y may be written, assuming linear regression on the concomitant variates as

y=B+r+ntpxt. .. 4pa e B )]

The paramwter 7 in (7.3) may be called the effect of the variety corrected for concomi-

tant variation. Tt is clear from these definitions of effects that these are deviations from
hypothetical standard so that the superiority of one treatmient (or variety) over the other can
be gauspd by n comparison of the effects alone.  IF, for any treatment of a given set of treat-
ments, varintions in the comcomitant variates alone produce significant varintions in the yiekl
then the comparison of the treatments must involve the elimination of varintions of yield
due to differences in the values of concomitant variates alone.

1f the povition of the plot for which the given variety ix to be tried is determined at

random from the plots of u block then the observed yiekl y Lecones a stochustiv varfate in
which case for the observed sct of concomitant varistes £,.8,,. ...x,
E@)=f+7+Em)+rin+...+prAEfe)
Btripr ..o, L7
for E(n)=(Tq)/k=0and E(e')=0
1f 4,94 - .9, are observations on £ varietics tricd on & plots with random defermina-
tion of position for the varicties and ,,,ay),. .., %y, are the values of the & concomitant variates
corresponding to the i-th variate then
Ry =8+r4+p 211 .. +PZu . (15)
i=1,2 ..,k
constitute the observational equations corresponding to the & observed yields. The varinbles
# are evidently correlnted with equal correlation for any two and have equal varinnce. From
the set of equations (7.6) we can construot k other equations.

B=(Zy)/V k. Ri=Zhyy) S
i=1,2, ...(k=1)
such that ?z,,=o and iyl =0, ¥p”=1 PO )]
]
with the.consequent relations
E(B)=(Er)/v k+8Y ko, (Eta)/V k... R G
ER)=X2 Iy rj+p: 2l +. .. O

i=1,2, ...,(k—1)
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In this scherne all the variables are uncorrelated but B and R, are subject to different:
variances. The variance to which R, is subjeot may be called the intra block error denoted

by o' For all p arrang the variation in B is caused by ¢, the technical
error, slone: which may be represented by v:.

A design may be defined as an arrangement of v kinda of eloments, in b sets of
kyy .o 1o Ko elements such that i-th kind of clement is used 7, times and the i-th and j-th kind
of elements oceur together in Ay sets. Such urrangements when available can be used in actual
experimentation which involves the testing of v varieties, or more generally treatments in the
case of factorinl experiments, by choosing the sets us blocks. If we assume that the intrablock
error is of the same magnitude irrespective of the fertility of the block (in which case it ia intrin-
sically connected with sizeand number of plots in a block) then it is theoretically advantageous
to choose blocks of equal size so that all comparisons from the experiment may be of equal
weight. Tho clementa nre identified with v treatments and the treatments {clements) belong-
ing to o set are sssigned at random with in a block. We diacuss below only as an illustration
the partioular case when there are b blocks with & plots and each of the v treatmonts is used
r times. We may set down the observational equations as.

B(B)=8/\ k+(En)/¥ k+... . (110)
i=1,2,....b

corresponding to the observed block totals, 8 being the value of 8 for the i-th block and
Fr is the sum of treatment effects from the i-th block and b seta of (k—1) equutions of the
type {7.0) from each block giving ultogether bk equutions.  Estimation and testing of hypo-
thesis is concerned only with parametrie functions of 7'a so that all lincar combinations of
observations involving the block totals are not permissable. Hence we may take the b(k—1)
equations of the type (7.9) nlone as observational equations. This can alko be observed
after forming the normal equations. We thus arrive at the problem of estimation and testing
of hypothesis involving b(k —1) independent stochastic variutes with equal variance and
o8 lincar functions of p s.

having their exp

Denoting tho cffect of the i-th varioty by 7, and the regression parameters by p,, py,
..y P, the normal cquations leading to the best estimates sro (observing that under

conditions (17) Tly=(k—Djk 8ad 3l he=—1/k)
1}

Q) =D -z h 4 3000 R
and S(yz)— S[.'Ilbnz (b))
=ZHQu(u+E 1y (Slaye) - TR0} . 19

i=1,2,...,8
where Q(z)= sum of the observationa on the z variate for the i-th treatment minus the means
of the z varistes for blocka in which the i-th treatment occurs, S{u v)=sum of products of
the variables % and v, w{b,)=total of the w variates from the s-th block. Observing that,
as di d earlier, the solutions ¢, are given by
fh = 4O —Zrgh® . (113),
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where ¢, are the solutions of
E-1, .,
Qly) = ™~ ' — ):, Al:-," e

. (119
i=1,2 ..,0
and ¢,'™" are tho solutions of :
Qi) = "‘—k— [ —L ‘l"" o (715)
and substituting for t, its expreasion t,''—Srpt™ in (7 112) we get
Tor=Va = Zr Ty — Vy)) . {718
i=1,2,...,8
where
Vi = 24" Qpla)=Z8° Qlz) I (RY))
Slytby)aitby)]
T, =8 w1105}
=Ben)== e .18)
Tyy= S(zya)) — St 2.”’(’ v_))

Defining E,,=To —Vau, Ej=T;;—V,; which may be called the crror sum of squares
and produets, we get the equations giving the regression parsmetors as
Ey=3rEy (i=1,2, ...4) .. (719)

To get the estimates of ¢ we use the formula (7 -13) with the values of regression
paramoters as obtained from (7 -19),  As shown earlicr

Vit = Vi) +V(Sr4) (7-20)
Cov (1) =Cov (14} +Cov (Srl,") (Srfy™) IR

for ench of which the expressions can be easily deduced following the discussion in the provious

Sections.

To obtain the generalised variance due to error we take the minimised sum of squares
SSUy)—SU—p,SUx)—. .. J (122

which on reduction comes out ay

sty =" 540 Q)

= Ery{ St~ LUy g, )}

=Ey—2rE. .o{T23)

Let the degrees of freeom associated with this be d equal to b (k—1) minus the number

of estimable independent parametric: functions in r's and p's. Tho generalised variance appro-

priate to test the hypothesis whethor certain parametric functions bave assigned values we

mininise (7 -22) subject to the restrictions imposed by ‘the hypothesis and subtract the genera-

lised vannnce duew error, the dogrees of frecdom associated with it being equal to the
of ind. ; tric functions whose values are assigned.

Thus, lf the hypothesis to bs tested is H=TF" where the rank of F is r we have to

winimise (7-22) subject to H=TF’ and construct the g lised variance statistic by
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subtracting (7 -23) from it. The formula (7 -23) and the previous nnalysis suggest that this
minimum can be caloulated with the help of the residual vectors. In this case wo find the
Jeast square solutions of

Z{8Uy) ST o (1-24)
and B8 -S(n)p,  i=L2....8 (7 25)
subject to H=TF’ and caloulato the residuals by substitating the sol t's for 7'a.

Denoting the residuals by [8(ly)—S(k)] and {S(kr))—S(lt)] where t stinds for

corresponding solutions we can construct the following sum of aquares and products. e
Eo0=Z(SUy) —S(1)1*=LS(ly) [Sy) —S(@#) .. (71:26)
B0 =E[S(ty)—S ()] [Sbz,) —S(i))
=58(ly) [Sllz,) —S(l)] .oaem
E'pi=E8(ly) [S(lz,) —S) .. (228)
The minimum valus is given by E’,,,—ir‘,E’,,, where r’,. are solutions of

E',, —S¢', BY,, =", In tho easo of general observational equations E(Y)=TA’+RX’, of which
the above example is a complicated case, we may stato the rule as follows,

Lemma 7a, The minimum value of (Y —TA'—RX')(Y'—AT'—XR') subject to H=TF’ is
given by ny’—3ré .y’ where r's are any solutions of £ =Sr fi(i=12,.. 4} and 7 and ¢,

are residual vectors obtained from the observutional equations E(Y)=Td’ and E(X)=TA’
subject lo the restristions H=TF".

As s particular case we may consider the testing of the hypothesis 7 == ...

7,. In this
case the normal equations becorae independent of 7's.

The minimised sum of squares is
£ SUn—pSilz)—. . ,
=T 53T .. (729)
where rp’ are solutions of
To=%r, Tp - (T:30)
where T);'s are as definod in (7 '18). The generalised variance due to {v—1) independent para-
metric functions whose values are assigned is given by (7 -29)—(7 -23). The test is supplied
by the statistic d[(7 -20) —(7 -23)}/(v—1)(7 -23) which is distributed as the variance ratio
with (v—1) and d degrees of freedom. The application to special cases is reserved for a
subsequent communication.

We thus arrive at a scheme of computation for the covariance technique. The ex.
pressions that are to be evaluated require a logical subdivision of the arithmetical discussion
into two sections, the analysis of variance which alone is sufficient for tests of significance of
vatietal effccts when the regression parameters are not of importance and the analysis of covars-
ance which supplies the necessary correction terms leading to precise tests of significance
when the regression parameters are significant. An additiona] advantage to be gained in
this is that they give uein & simple manner not only the sy tic scheme of computati
which can be carried out merely a8 a routine but.also the structure of the experiment itself.

8. COMBINATION OF WEIGHTED OBSERVATIONS

The general theory of least squares as discuased in Section 8 can be extended to the
goueral case. of observations having unequal variances but known proportions. In this casp
the variances o2,,...,0,? of the observations Yis-+ Yo canbe expressed as o0, 00
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where @,,...,@, are known quantitics and ¢ is an unknown parametor. Let W denote
& Kronecker matrix with Lje,,..., l/o, as diagonal elements. If from Y we construct
the vector Z by the transformation Z=YW then the observational equations E(Y)=T4
transform to E(Z)=E(YW)=TA'W and the dispersion matrix of Z becomes 0?1 where
a is the unknown parameter dofined above.

This problem can thus be reduced to.tho case already discussed. Instesd of the
variate y, we consider the variato z;=y o, anl in its expectation we divide the corres.
pon ling coefficients of the 7 parametors by @, and proceed to the problem of estimation and
testing of hypothesis with new variates und now matrix for the observational cyustions,
tho rank of which remuins the samo.  The theory of weighted least squares ean thus be reduced
to tho simple theory of least squares.

As an example, we may consider tho following problem which ooours in the theory
of regression, For a given value x of thu concomitant variate x the stochastic variate y
has the mean value Sz, and vatiance o%z, so that the coefficient of variation of y is constant
for all x arrays. For estimatiod and testing ¢f hypothesis concerning the parameter g
from pairs of observations (z,, 1), (%2 ¥:),. - (X,y), we procced as follows. If E(y,)=gz,
are observational equations then they transform to E(z) = 8 (1= 12,...,n} whero
z,=y,/x. The normal equation leading to the best cstimate of 8 is Xz,=npB, s0 thut the
estimato of 8 and its variance are b=3z,/n and o*n respectively where o is estimated
from the least squares %(zy —b)* with (n—1) degrces of frecdom. To test the  hypothesis
that the valuo of §==8,. we use tho statistio

t=(b—B n [ ¥ Zlz,—2) [ (n=1) R
and refor it to the t distribution with (n—1) degrees of freedom.

This treat of linear regression may find an applivation in some biological and
other problems where the mean value increases in a linear relation with the itant
variate and the variance increasos in such a manner that the coefficient of variation remains
steady. As for instance the weight of dry paddy is lincarly rolated to the weight of green
paddy and the variance increases with increase jn the green weight. The constancy of coef-
ficient of variation is a plausible hypothesis in which case the above estimate of the regression
coefficient is the most efficient and any hypothesis concerning the conversion factor may
be tested as above.

9. THE THEORY OF STATISTICAL REGKESN!ON,

In this section some tests of significance connected with the regression couflicients
are derived with the help of the results derived in Sections 4,5 and 6. The observations on
the stochastic vector Y=(y, ...y,) are taken to be distributed normelly and independently
about their expectations with & common variance 0®>. The expectation veetor is E(Yj=
TA’+RX’ where A, R and X are as defined before, with some restrictions on the = parameters.
Following the method of analysis outlined in Section 5 we can write down the equations (5 -5)
giving the regression parameters as

E"Ilen=l’xz€1lﬁl+ et T buén (1)
=12, ..,k

where the residugl vectors £, 7 and the methods of caloulation are given in (5 -6) to (5 -9).
Due to lemma 7a we get the residual sum of squares when minimised with the wholo set of
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paramotors 1’8 and p’s as given by 77’ —Xrif 9’ where r,'s are the solutions of (9 °1). Tho
degrees of freadom associated with this can be obtained with the help of theorem 6n or
theorem 8h, Let this be f.

The hypothescs to be tested in the theory of regression nre certain linear hypothescs
concerning the p parameters. If in particular the hypothesis is p,=0, then it will be testing
tho significance of the partial rogression coefficient of the atochastio variate on the i-th con-
comitant variate. If the hypothesis to be testsd is py=p,=......=p,=0 (i.e. all p
parameters are zoroes) it will be testing the significanco of the multiple correlation cocfficient.

Two mothods aro open to us. If the lincar funotions of the p parametors nre extimable
from the set of equationa (9 '1) then from their best estimates and variances and covariances,
we can build up the appropriate generalised variance. If P;, P, ....P, ars the catimates
of 5 independent linear functions with assigned values p,, p,...p, and ¢°d; is the covariance
bot\ween P, and Pj then the generalised variance with s degrees of freedom npproprinte to
Psis

V=X d (Py~p)) (P;—p)) . (92)

where ' are the elements of the matrix reciprocal to ((dy))). If we denote the residual
sum of squares by @*V, then to test the prosent hypothesis we uso the statistic f V/sV, as
the Fstatistio with s and f degress of freedom.

The altornative method is to find the residual sum of squares subject to the additional
restrictions imposed by the hypothesis and get V by subtracting V, from the above residual
sum of squarcs. In the particular- case when the hypothesis is pi=py=...=p=0 we
immediately observe that 7’ is the residual sum of squares under this hypothesis. Sub-
tracting the orror residual sum of squares from thiz wo get Trif1n’ as the appropriate
gonoralisad variance with s degrees of freedom. Hence to test tho significance of the multiple
correlation between the stochastic variate and the totality of the concomitant variates
w3 uy tho atatistic £3ré,n'/k{yn'—Zné7’] as the F statistic with & and f degrees of
fraodom.

If 5 linsar functions of the rogression parameters have somo assigned values, then

to find tho residual wo have tb minimise with these extra restrictions. If these restrictions
are

cubit. ., Foum=d,

. L(0.3)
Cabrt -y TowP=dx

then introducing Lagrangian multiplica A,,...,A, we get the notmal equations leading to

tha ostimates of -p's s
I mép=e, B dnbut - FAaZEabitAent o A .o (9,4)

=12, ...k
and di = cppyt ... FCupx . (9.6)
Ifr).,..,n’ is & solution to tho above equations then the residual sum of squares is given by
z (m—f'lé..—-r’zén— )t

=Zm2—=Zr"s (226 —Zr' Zhud ) - (9.8)

The generalised variance appropriate to these s funotions is obtained by subtracting the error
residual sum of nquares from this. If this quantity be doenoted by o’V then the statistio
£V/sV, which s distributed as the F statistio with s and f degrees of freedom can be used
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to test the above hypothesis. If the hypothesis is p;=0 then in the equatjons (9 -4) all A%y
and p, bacome zeroes. If ry’,. .7’ brothe solutions thon the sum of squares appropriate
to this is given by Xry'én'—Zrém’ with 1 degroes of freedom.

The distribution of the statistics usod above on the null-hypothesis involve only
the degrees of frecdom and no other nuisance parameters 50 that tests of significance can be
carried with exactitude. Because of this fact tho distribution of these statistics is independont
of tho distribution of the concomitant variates so that the same tests of significance hold
good indepondently of the distribution of the concomitant varintea provided tho relative
distribution of the stochastic variates for given sete of concomitant variates arc normal.
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