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SUMMARY. Let {Za)a31 Vo a scquonce of random vectors. Undor certain conditions,

distributions of statistics which aro emooth functions of the nican vector i. and whose asympto-
tio distributions aro contral Chi-squaro are shown to poasoss asymptotic oxpansions in powers of
n~1,  As opplicati ymptotio i of tho null distributions of tho likelihood ratio
statistic, Wald's and Rno's statistics aro ohtained. The rcsults proved hero supplemont the
recont work of Bhattacharya and Ghosh (1978) and also fustify the validity of the formal

expansions obtainod by Box (1949) and Hayokawa (1077).

1. INTRODUCTION

Following Bhattacharya and Ghosh (1978)—hcreafter abbroviated as BG—

wo consider a random variablo (r.v.) IN(Z,) whero Z, = n-1 $ Zy Z st
1

is & soquence of independent and identically distributed (i.i.d.) k-dimensional
random vectors with mean vector . = E(Z,) and nonsingular dispersion matriz
V = E(Z,—p)(Z,— )T and 1] is o rcal-valued measurablo function on R¥. If
H is continuously diffcrentiablo at . and tho vector I of tho first-order partial
derivatives of /7 at y is non-null, then it is well-known that \/A(I(Z,)—I(p))
is asymptotically normal with mean zero and variance I7 V1. Under much
stronger conditions on I and Z,, BG improved this result considerably by
obtaining an asymptotic expansion for the distribution function of
VA(IIZ,)—H()); sco in this connection their Theorem 2 and Remark 1.1.
We shall partially supplement this result by considering the caso whero 1 is
the null vector and

W, = en(I(Z,)—H(p)) e (L)

is asymptotically distributed as a (contral) x%. A4 statistic of this sort will be
called a perturbed x2.
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Let L bo the matrix of sccond-order partial derivatives of I at p. If the
second-order partinl derivatives of If aro continuous in a neighbourhood of
u, then o necessary and suflicient condition for W, to bo asymptotically x?
is that I is tho null voctor and LT V L = L (sco Rao, 1965, pago 152).
Asswme then that II is sufficiently smooth (i.e. that /I has enough continuous
derivatives in a ncighbourhood of z#) and that tho above neccessary and
sufficient condition holds. Under an additional tochnieal condition wo show tho
distribution function of I, can bo expanded asymptotically in o scrics of
x*integrals. TFor a precise statement sco Theorom 1. Noto that if Lis
non-singular the technical condition holds but Lxamplo 2.1 shows in
general this condition cannot be relaxed. In this connection, sco also
Remark 2.8.

As an application of our main result, wo consider the likelihood ratio
(LR) statistic A, and tho transformed LR statistic —2log A, = A, say.
It is well-known that under certain conditions the statistic A, is asymptotically
distributed as a x® variablo. Various pcop—lo havo sought to improve this
approximation by formally expanding tho distribution function of A,
One of the carlicst references is Box (1949) and a recent ono is
Hayakawa (1977) where furthor references can be found. Most of
theso expansions aro obtained formally either by inverting an
approximato characteristic function (cf.) or by  equating the
first few moments of the cxact and approximating distribution
functions. In general, formal oxpansions obtained this way are not
valid as asymptotic expansions in the scnso of Bickel (1974). Conscquently
the validity of tho formal cexpansions in tho literaturo has remained an
interesting open problem. Using our Theorems tho formal expansions are
justified in Sections 3 and 4. In Section 3 wo provo that if we have an
absolutely continuous (with respect to Lebesgue measure on Rpt9)
oxponential density with natural parametors 0,, ..., Op,q and we aro testing
110, = ... = 0p = 0), then the formal expansion of P (A.eB) (B is a Borel
sct) is valid uniformly ovor all Borel seta. It is noted that this justifies
the expansion of Box (1949). In Section 4 we establish tho validity of the
expansion for I (A, < %) under very gencral conditions; tho dotails of the
proof are omitted sinco they aro tircsomo and routine. Under the conditions
of this scction Hayakawa's expansion can be justified. Somo other
applications are considered in Soction 6.

Results concerning tho oxpansions of perturbed x* undor contiguous
altornatives have boon obtained and will bo published elsowhere.
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2, MAIN THEOREM AND RELATED RESULTS

Wo continuo with the notations of Scction 1. Denoto the partial deri-
vatives of I/ at s by

1 =(D"D" .. DP IYp) 1 iy enyip < K,

Iig-eebp
whero D! stands for differontiation with respect to tho i-th coordinato. Thus
1 is the vector (I}, ..., Ig) ond L is tho kX k matrix ((Iiy)). In this seclion, &
always stands for some inleger > 4; & will stand for the set of all Borel
subsets of RY; the symbols || and <, > will denoto Euclidean norm and
inner product respeetively. Let p bo tho rank of L (0 € p < k). Without
loss of gonorality assumo that g = 0.

IWe now state an assumption needed for our main theorem.

Assumption A,: (i) all tho dorivatives of /I of order s and less aro
continuous in o neighbourhood of u;

(ii) tho vector [ is null;

(iti) tho matrix L is non-null and satisfics the equation LVL = L;

(iv) if under somo nonsingular linear transformation * = A=,

zT = (z'V, ..., 2'¥), =zTLz becomes a positive-dofinite Guadratio form in
(z,..., zP)), then,

»
,_((A-1x) = ,}:1 20z Pyy(x) e (20)

for some polynomials Pyy where //,_y(z) is the Taylor expansion around u = 0
of H(z) up to and including the (s—1)-th order derivatives of I7;

(v) if undor some non-singular linoar transformation z = Az, =TLz
becomes a positive definito quadratio form in (20, ..., 2(®), then in a bounded
neighbourhood of Ap =0,

() (A7) =1l (A72)| < Kyll=t|Bl)e-?
we (2.2)
() | D'H(A )= DU, (A )| K K e l=** 1< isl

where K, and K are constants.

Tho condition (iv) is a technical ono and ensures that the Tnylor oxpansion
of W,, when expressed in torms of (z—Ag), is at least of degreo two in tho first
p compononts. Similar intorpretation can Lo given to tho condition AJAv).
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Noto that A(iv) and (v) aro true if A(i) and (ii) hold and L is positive-
definito,

Remark 2.1: To check A,iv)-(A(v)), it is enough to check (2.1) for
one non-singular matrix A which has tho property that #TLz is a positive
definite quadratic form in (z'?, ..., z'P).

The following lerama provides a sufficient condilion for Afiv) and (v) for
all s (with .4 = I for notational convenicnce).

Lomma 2.1: If Ai) holds and if

H(z) =0, Dillz)=0 1<i<p . (23)
Jor all z = (0, 23T the firsl p components being zero and the remaining ones lying
in a (k—p)-dimensional neighbourhood of 0, then

»
U, y(z) = L zWzHPy(z)
13=1

Jor suitable polynomials {p;5} ;

If, moreover, II is (real) analytic in a neighbourkocd of 0, then there exists
a neighbourhood of 0, tn which the following two tnequalities hold :

|H(z)—Homy(x)) < kyllz|2zie—?
| DH(z)}—DU (2} < Kalle'lllizit-? 1 <igp

where [, and %, constants,

ard

The proof of tho lomma is omitted.

A sufficient condilion for A,(v) which does not involve analyticity of I can
bo obtained from tho following result : if A(i) holds and if thoro oxists a
neighbourhood of 0 in which

| D"H(z)| < kyllz*1%llz]?
whonover |v| =2 and [¥!| = 0 whilo
| DY H(=) | < k=112

whenovor |v] =g and |4} =1, thon tho conclusion of part (b) of the above
lomma holds. Iforo K3 and K are suitablo constants and if v = (v, ..., ytk1)
is o multi-index of nonnegative integers, thon

DY = (DY), Dk
|v] = v W4 it

] = v atp?
Al124
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To sco this, ono oxpressvs tho remainder for J—I1,_, and Dy (U—U,.,) in
the form givon in Corollary 8.3, pago 85 of Bhattacharys and Rao (1976).

We shall say that Z, satisfies condition D if thoro exist an m dimensional
vector ¥, ond real-valued Borel measurable functions f), ..., fy such that

i) 2P =fi(Y,), 1 i< kand

(ii) the distribution of ¥, has a nonzero absolutely continuous component
(with respect to Lobesgue measure on B™) whose density is positive on some
open sot U, the functions f), ..., fy aro continuously differentisble in U and
1, fu «.ofr are linearly independent as elomonts of tho voctor spaco of
continuous functions on U. e (2.4)

The significance of condition D is ¢lear from Lormma 2.2 of BG.

Theorem 1: Suppose that for some inleger 8 2 4, Il and Z, salisfy the
assumplions A, (i)—(iv) and that E)\Z,[|*-} is finite.

(a) If in addition the assumption A, (v) holds and Z, salisfies condition D,
then there exist polynomials Y, (in one variable) whose coefficients do not depend
on n, such that

sup {P|(W,,eB)—é[v,//,,,,,,|:Bc-6}=E,, . (25

where
€, =on ™) if 8 =2m43;

=o(n~m-1) if s =2m+4,
Vmal)) =14 ) £ worile) (=) . (20)

m i3 the grealest integer less than or equal to (8—3)/2. and fx,‘, ia the densily of
a (central) xt-variable with p degrees of freedom {p = rank of L).
(b) If Z, satisfies Cramer’s condition
lim sup |E(expi <t, Z;>})| <1, . (27)
[

then the conclusion of (a) holds if the left hand side of (2.5) is replaced by

sup (JP (W, € = [ Yonl}
ueRY -



EXPANSIONS FOR THF. LIRELINOOD RATIO STATISTIO 27

Remark 2.2: It will follow from the proof of Theorem 1 that one does
not need the full forco of tho i.i.d. structuro of {Z,}a»1. Thusin the definition
of 1, = 2n[II(Z,)— ()], the normalised doviation n¥(Z,— i) bascd on some
soquonce of i.i.d. random vectors can Lo roplaced by an arbitrary sequence
{2,,),.,l which has a similar multivariate Edgoworth expansion (sco the
paragraph preceding tho proof of Theorem 1(a)) and which satisfies the equation
(2.30) (or the cquation: (2.20)) of BG.

Remark 2.3 : In most applications, we shall use the extended version
of Theorem 1 asindicated in the previous remark. e shall usually be supplied
with the statistic IV, rather than the function J{ and the sequence of r.v.s.
(2,). 1. Ono has to choose judiciously IT and (Z—,,},. »1 such that the condi-
tion A (iv) (or A, (v)) is satisfied. This problom of choico arises typically
in most statistical applications including those considered in Sections 3, 4 and 5.
See in this connection Example 2.2 and Romark 3.1.

Proof of Theorem 1: Before proving Theorem 1 we make two remarks
and fix some notations.

Remark 2.4 : Supposo that the assumption A, holds. We may (and do)
assume that V = I (the identity matrix), L is a dingonal matrix whoso first
diagonal elemonts are one and the rest are zoro and rolations (2.1) and (2.2)
hold with 4 = I. For a proof, note that we can get hold of a nonsingular
matrix It such that RTV-1R = I and RTLR = S where S is o diagonal
matrix (see Rao, 1965, page 37). In view of A,(iii), S is also idempotent.
Consequently we may assume without loss of gencrality that the first p
diagonal elements of S are one and the rest are zoro. Then 2TLz under the

transformation & — R-1z bocomos % (z'")? and so (2.1) and (2.2) hold with
i=1

A = R-!(sce Remark 2.1). Now instead of the vector Z consider the vector
R-'X and redefine H accordingly.

Remark 2.6: Consider the transformation 7 which sends 2!'=
(2, ..., 29} to (r, 0W, ..., 0'"~V) by means of a polar transformation and
keep 2% = (2'p*1, .., 2'¥)) unaltered

-1
2M =y I cos 6"
=1

»-1
29 = rein Op-HNTT 00800  2&Kj<Kp
=1
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where

0<r<eo, —n2<ON< 2 1=12,..,p—-2
and

0. 0PY & 2m,

2
An expression of the form I1 (2t)" where a; are nonnegative integers
f=

can bo written as
3
‘o ﬁ ()7 (st
o (I o) (I e
= R{a,r,0,:%) = Rla).
where @ = (ay, ..., a3), a5 = }E ai. Tho notation R(a) will bo used even if
=1
ag # f a,; we shall bo concetned with thoso R(a)'a for which ¢, will
1
differ from i‘. a; by an evon number.
=1
Say that R{a) is odd if at least ono of a,, ..., @y is odd. Then the integral

of exp {—}l1Z%?} R(ax) with respect to (0, 2?) is zero if R(a) is odd. Dlore
generelly we say that tho expression

rio lﬂﬁl(cos 0t9)*!(sin 0”’)0‘ ] [ ﬁ ("!“’)e‘ ]
=1 tep+1

is odd if at least ono of by, ..., bp_y, Gp_y, Cpyys +.oy € i8 0dd. Noto that the
Jacobian of the transformation T is

-1 1" (cos OW)p=-1 = r2-1J(0) (say)
(=1

and that if R(a) is odd, thon R(a)J(0), is also odd.

Finally by Ry(r, 0, 2%) we shall denoto a finito sum of constant multiples
of terms of tho form R(a) and say that Ry(r, 0 2?) is odd if overy such R (a)is
odd. One verifics that tho various Ry(r, 0, 22) oceuring in tho proof of
Theorem 1 havo tho property thet Ry(r, 0, 2?) is edd if § is odd end that if j
is even and Ry (r, 0, 2?) includos somo R(a) (or constant multiple ¢f R(a))
which fails to bo odd, then tho power a, of 7 in that R(a) will bo ovon,
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A fow notations will now be introduced. In view of Remark 2.4 we shall

assume ® = I, 2TLz = £ (2)2and (2.1) and (2.2) holds with 4 = I. Let
{=1

bronol®) = 1+ 2 noP— D))

be tho mullivariale Edgeworth expansion of n’(i,—p.) whero ¢ is the
normal donsity on [R* with mean zero and dispersion matrix I,
(1-",(5 })} aro tho Cramer-Edgoworth polynomials (for a definition, soe
(2.1) of BG) and finally, P,(—Dy s the opcrator obtained by formally substi-
tuting —D = (=D", ..., —D*) for it in P,(i1). Wo noto that the coefficient of
=13 4n £,_y,(2) i3 $(2)Py(z) where Pyz) is a polynomial in z wilh the property
tha! the degree of each term of Pyz) fs even or odd according as j is even
or odd.

Let g,(2) = 2n[l{p+n—t2)—H(p)} and k,_y(*) be o Taylor expansion of
g.(%) ie.,
-1 plf-2y2 o i

hey(2) =2 ’5'; 71 z l‘l."'-'l

with z = (29, ..., z2b).
Put
U, = {z:]zI* < (s—1) log n}.

For B(C R, put B, =g;(B) (C R*.

We shall first prove Theorem 1(a). By Lemma 2.2 of BG and in view of
the fact that for all integers ¢ > 0, the integral of |2)¢ exp{—|l2|[%/2} over the
complement of A, is o(n-t-2/3), it j3s enough to oxhibit yn, of the
form (2.6) such that

:Be.e} =, e (28)

sup{| [ frram [ Vma

Ba n Al

Below wo assumo p > 1; tho spocial caso p =1 needs only a slight
modification of tho following argument and is omitted.
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Using the transformation 7', of Remark 2.5 we get

[ fa= ] 00 [14 S w Ry, 0,59
Bapia Ty(Ba 1) Ma) -

xexp {—(r'+[121*)/2}. e (29)
Apply next the transformation

Tyr, 0, 2*) = (', 0, 2%) with " = (g(T7(r, 0, 2%)))"
Noto that 7, is a diffeo-morphism on Ty(3{,). Sinco by part (a) of A,(v)
9a(%) = has(2)HURME . ofn=s—E,
uniformly on M, and under T,
-3
hu®) = (14 T 098 Ryylr, 0, 21)
J=1
(usa A,(iv)), it can be shown that
=3
r=y (1+ E n-#Ryy(r', 0, 2%)+o(n10-9 | e (2.10)
J=1

uniformly on Ty T, (M,).
By part (b) of A, (v) Dig(2) = Dihs_y(2)+llzXlo{n=4-97) uniformly on M,
and so

o 9T, 0,8) = 2 by (T, 0, 20) o=

=2 (1+ 'S n=R, fr, 0, z'))+o(n“""”) e (201)
-1
uniformly on Ty(M,). Finally the Jacobian of T is

-gr’—, = 2709 (TTX(r, 6, 2))jar)-1. . (212)

From (2.9), (2.10), (2.11) and (2.12), one gets

B.In " £y, o = J (r)P1J(0) [1+ '};s a-IPRy(r', 6, z')]

{(r, 6, 2% : (reB} N T Ty(M )
oxp {—{(r')*+ Iz¥1)/2} + ofn—te-2¥8), . (213)
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uniformly over all Borel subsels B of R'. Since
TyTL) D', 0, #%): (7Y +|j2)* < (a—3/2) log n}

for all sufticiently large 2, ono can replaco (2.13) by

f fwn= [ (0 [14 E ainRy(r, 6,29)]
Ban Ma (", 0. 2%) : (r')%B) ja1

oxp(—{(r )+ 1% 2} ofu-u->1)
uniformly over all Borel subsets B of R'. From this and using Romark 2.8, it is
easy to get (2.8). This completes the proof of Theorem 1(a).

We now como to the proof of Theorem 1(b). First note, bocauso of tho
estimate
8Up |g,(2)—he_y(2)| = O(n-t¢-2/%(log n)*!?)

My

uniformly on 3!/, that

8up
ueltt

£oiin £opin| = O(n-11-23(log nypr2,

f 2 - I
Me:yals) S ) n Ma {z:hey(e)SulnMe

Thus it is enough to exihibit y¥m,, (using the equation 2.20, of BG) of the
form (2.6) such that

=€,

brn— | Vmon

sup )
ueR | (22 hins(2) Q u)n M

One now applies the transformation 7,7, except that hero one defines

' = (ke (T7(r, 0, 2P
and arrives at the equation (2.10). The rest of tho proof is similar to that
of part (a).

This completes the proof of Theorem 1.

Remark 2.8: An explicit method of dotermining the polynomials ¥,
is described bolow. Suppose that tho assumptions of Theorem 1(b) hold. Lot
r be the highest dogree of tho polynomial ey, ,(v) = ;.’r,,._,‘(v)/jxg"(u) (sco (2.6)).
Assume that tho moments of Z, of order (s—1)r aro finite. Compute the first

r momeonts of 17, = h,_,(nl(zl—p.)) up to o(n=1*-%) and uso Laguorre poly-
nomials to find a polynomial (of degree r) &m,s such that

[0 5 (0) B n(0) do = EQW;{)+o(n--901)
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fors =0,1,..,r. Thon &,,.,.. = am,n. This is so because

E(W) = [ hi_y(2) §4_y, n(2)dz+0(n~10-317)
RE
= { oW, alo)dv-toln=t1-91), (224
n

(Tho first equality follows from Theorem 20.1 of Bhattacharya and Rao, 1976,
whilo tho sccond can bo proved by a slight refinement of Theorem 1(b)).
Consequently,

§ 0 0 (903, o) = ] 01, (2) cm, a0)de, 0 <5 < 7.
Both of &n,y and am,, being polynomials of degreo r, must bo therefore
indentical.

Remark 2.7: Under certain conditions, the inversion of a formal ex-
pansion for the characteristio function can bo justificd as follows : Suppose
that the assumptions of Theorcm 1(b) hold. Then

E(exp (itW,)) = Efexp (it1V,))+o(n-=2)2)

= [ exp(ithy_y(2)){s1,n(z)dz-o0(n=-211)
RE

= [ exp(ilt)ym,n(v)dv+t-o(n-te-3112), e (2.15)

(The first equality follows from von Bahr's result (vido 2.31, pago 447 of BG);
tho sccond ono follows from Theorem 20.1 of Bhattacharya and Rao, 1976,
and finally tho third equality can be obtained by following tho proof of Theorem
1))

Lot

Ima® =L, £ 2 i)

($y's are polynomials in v) bo an ‘asymptotic expansion’ for tho d.f. of W,
such that

[ exp (itv) 1,5,,., ov)dy = F (exp (it 17 )+ o(n—ts-3)/2),

Then the definition of 1;’},,., » 20d (2.15) imply that tho Fouricr-Stientjes Trans-
forms of l,;;m' » 20d ¥, aro identical and so 1,’;,,.,,, =Ym,u
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Thus tho expansions obtained formally by inverting asymptotic oxpansions

of tho exact characteristic functions E(e!tWa) or of the approximato charac-
ﬂll'

teristio functions namely E(e  *) and fexp (ith,_,) £s,a_y of IV, are valid.
Wo concludo this scction with the following counter oxamples.

Ezample 2.1: Supposo that {Z )}, 5, are iid. two-dimensional vectors
and that Z{", Z{? aro independent N(0, 1). Let H(z) = (V)24 §(2®)%. Then
all tho assumptions of Theorem 1{a) hold oxcept A,(iv). We whall show that
tho conclusion of Theorem 1(b) does not hold (and henco that of Theorem 1(a)
also does not hold).

Clearly W, has tho samo distribution as X24»-#Y? whero X, Y are i.i.d.
N(0,1). Fix a,b such that 0 <a <b <o ond let e<z b Put

A, ={wy):a < wz|y| <(3logn)}
and

B, =4, {(w,y) : w—n"ty* > 0},
Then one has, uniformly in z,
P W, < 2)
=Pa< W, <z|Y| < (3logn))+o(nt)
= const. [ (w—ny*)} oxp (~Hw—ny)—§ydudy-+o(n~)

= const | wdexp (—(w+9/2) (1448

- 3ny
(147281 3 ey ot
= cons - _ L
= const. ‘i“ w™i exp {—(w+y?)/2) (l+ 5 )
—ecy<e
—~ 3
(l+" ys+ ;w,’ )dwdy+0(n“)

= const. j’ w" exp (—w(2) (l+n-’a,+" a,+n a,) dudy+o(n-1)

where a, a,, a, are non-zero constants. Clearly the conclusion of Theorom
1(b) is incompatible with the last equality.
Al12-5
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Ezample 2.2: Toko Zs s in Examplo 2.1 and let Ji(z) = a4 (20
go that ¥, = (X+n-1Y%)? whero X, Y aro as in Examplo 2.1. Then, it can
bo shown using remark 2.3 that 1V, has an expansion of tho typo asscrted in
Theorem 1. But cvidently I docs not satisfy Afiv).

Remark 2.8: Examplo 2.1 suggests that cven when tho condition Aiv)
does not hold, alternative expansions in powers of #=1 aro available. It is not,
however, clear whether expansions of this sort may bo casily obtained by some
formal techniquo. Wo shall not explore this question any further here.

3. LIKELIDOOD RATIO STATISTIO FOR TILE CASE OF EXPONENTIAL DENSITIES
Let (Y, )a 54 bo iid. m-dimensional random vectors with common expo-
13
nential density, fy(y) = oxp {t(0)+ z 0”’];(3/)} with respect to some o-finite
=1

measuro s whero f), ..., fi are continuously differentiablo real-valued functions.
Let O bo tho natural parameter space (vide Lehmann, 1959, pago 51).  Assume
that p has an absolutely continouous component in an open st U (Z R™ and
1, fi .o fr 0ro lincarly indcpendent as elements of tho vector spaco of conti-
nuous functions on U. Then Z, = (f(Y,), f,)Y}, ..., fu( Y,)) satisfies condition
D (see (2.4)) under cach 0:0.

We assumo that O has a nonempty interior and without loss of generality
that tho origin is an interior point of @. Consider the testing problem

H0W = ... = 09 = 0) va. Hy(0 50, or 0'P £0, ... or 0P 5% 0)

(1€ p < k). Tho transformed LR statistic is A, = 2[ sup L, (0)— sup L.(0))
0€0,

0€® o

where L, (0)= 4§:1 log foYe) is tho log-likclihood function and

Oy ={0:0M = .. =0 =0}. Let0,bclong to tho interior of @;. Wo want
toestablish tho existenes of an asymptotic cxpansion for the distribution of
A, under 0,.

Theorem 2:  For all infegers 8 > 4, there exists Vrq,, of the form (2.6)
such that

aup (| Py, (AneB)— | Vo, n|} = oln=t=37)
D ]

where the supremum s over all Borel subscis B of It
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Proof : Without loss of generality wo may tako 0, to bo tho origin., The

likelihood equations for tho unrestricted m.lo. J are

8

507 ()+ZD =0, 1Kji<k e (30)

and tho corresponding equations for the m.le. 82( = 02) under @, are
[ - .
o <00, F)+29 =0, p+1<Kji<k - (3.2)

whero for 0 = (0", ..., 0%)), wo let 02 = (0'2+D), ..., O'F)).  Let p'9 = By (ZY)
and @ = (u, ..., #®). If in (3.1) and (3.2) wo replaco ZD by g'#, then they
havo a solution § =0, 0= 0 respectively.  Since the kXX matrix whoso
(i, §)-th clement is 9%(0)/00000:N = E(02L;(0)/00'Da0')) is negativo definite,
it follows by tho Implicit Function Theorem (sco pago 272 of Dicudonno, 1969)
that thero is a bounded neighbourhood N of g whero both of (3.1) and (3.2)

have uniquo solutions § and #2 respectively and

sup L.(0) =.L (0,07, sup L0)= L0).
Oco, Oce

Sinco 0, is an interior point of @y, by Chernoff’s theorem we may assume
Py (Z.¢N) = o(n*-DP2), s > 4.

In a suitablo neighbourhood (CCN) of g, Z,, and 82 can bo written as functions

of 0, tho functions thomsclves being free from n and henco wo may write,
using tho oquation (3.1),

- . _ L3 =
A,=2n {c(0)+ % GwZn—g0, 85— T awzm}
t=t J=p*1

= ZnH(ﬁ), say.

Differontiating tho likelihood equations (3.1) for 0 with rospoct to ZY
(1 € j < k), ono pots

L x (0030010 309 )y ((OFPIOZPN ke x = O,

ond conssquontly, tho matrix ((004/[Z)) when evaluated at o = Ey(Zy)
(which implios that 0 = 0) is nonsingular. Sinco 0 is an analytic function of
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Zyond 2, satisfies oondition D, it thorefore follows from Theorom 2(a) and
Romark 1.1 of BG that /n(@—0,) has a multivariato Edgoworth expansion
which holds nniformly over ©ll Borel subsets of R¥; in particular the
analoguo of oquation (2.30) of BG holds, Thus in view of Theoroem I(u) and
Remark 2.2, Theorom 2 will follow if we can chock the assumptions A, ((i)—(v))
for tho function I7 dofined abovo. Since ¢ is analytio, by o vorsion of the
Implicit Function Thoorom, I7 is also analytic. It is well-known and in fact
not difficult to check that

oH . .
‘W,%:O' t=1, ..,k

ar P .
WL,,=O' ifsorj>p

and

(k) )

L1 wip

0% -
= ((00+5700)(I)— leo ))‘,‘;-1,‘.,»

Thus A,(i)-(ii) hold. For A,(iv) and (v), it is sufficient to check that (sce
Lemma 2.1)

oH .

W=0' for ¢=1,2,..p
for all § = (0, 62) where 03 lies in some neihbourhood of 03. For this one writes,
using the likelihood equations for &,
6c(§)

- - L ] x
HE) = c(f)— = 002 _y0,m— - o0
=1 ghw J=p+1 agw

and verifies that dH(6)/30'" = 0 for all § = (0, 0%. Noto that whon 5, =0,
=0,
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Remark 3.1: e havo verified the assumptions A(iv) and (v) by writing
A, 88 & function of the unrestricted m.lo. 0. Clearly A, can as well bo oxpressed
as a function of Z,. Iowever, considering tha probl~m of testing tho hypo-
thosia that tho population varianco is 1 rgainst that it is not 1, tho population
moan boing unknown and tho obsorvations coming from a normal population,
one can onsily verify that tho nssumption A,(iv) need not hold if A, is regarded
a8 o function of Z,. In cnse of & simple null hypothesis, these two assump-
tions will always hold and confrequontly Theorem 2 can bo proved without

uging the multivarinte Edgeworth oxpansion of 0.

Box (1949) considered the test of constancy of variances and covariances
of k-scts of p-variate normal populations and derived an ‘asymptotio y3-scrics
solution’ of tho null distribution of the test statistio 3/ which is a genoralised
form of Bartlett's statistic. Ve uso our resulta of Scetion 2 to show that Box’s
asymptotio series is, in fact, a valid one.

In the rost of this section, we shall follow the notations of Boz's paper.
Wo describo briefly the approach of Box; for details, sco Section 2.1, pages
320-323 of his paper. Box first derives an asymptotic expansion of the logari-
thm of the exact c.f. ¢(¢) of Jf and uses it to deduce that ¢(t) = @,(¢)+-o(z—")
where

$o(l) = K(1—2il)-71 5 pvay{1—2ity~s,
v=0

K being a constant dopending on x and f = (k—1)p(p+1)/2 tho degrees of
freedom of tho limiting x®-distribution of Af. (This part of Box’s argumont
can be mado rigorous, without any difficulty). A formal inversion now gives
an asymptotio expansion of tho density p(z) of A :

() = pf)+o(r="),

where p,(z) = K é p-vay (donsity of a x2-variablo with (f4-2v) degrees of
=0

froedom). This step is in general unjustifiable. Box gets tho final form of his
series golution by writing K asymptotically in a scrics of 2 and rearranging the
product of tho two sories (sco equation (30), pago 323 of Box’s paper); obviously
this Yast part of Box’s argumont can bo justified oasily.
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For justification, take Af to bo W,. Put §, = K(Z,) and let £,y » and
£.-1,» bo Tespectively tho Edgeworth expansions of n‘(0.,,—00) and 2{(Z,—v)
where » = E; (Z)). In view of Remark 2.7, it is enough to show that

E(exp(itl7.)) =IJ| explity)m, n(v)dv+o(n—t-212),
LHS. = t{* oxp(itgy (¥ Zy—v)}Eim1, ao(n=U-972)
= R;kexp(irg.(ni(&,_oo)))g,_h [

= § s (), ol0)-olate=2.

Hero g, is defined by tho equation IV, = g,(n{(Z,—v)). The first equality
follows from von Bahr’s result and Theorem 20.1 of (Bhattacharya and Ranga
Rao, 1976); the proof of the second one is a multivariato extension of that of
Lemma 2.1 of BG, while that of the third ono is similar to tho proof of Theorem
1(b).

It is interesting to noto that Box in tho last paragraph of Section 2.1
remarked, “we sco in effect wo aro finding a y2-scrics to tho statistic Af by
arranging that to the order of accuracy chosen in the asymptolic series,tho scries
will have all its cumulants identical with thoso of A1”. Hoe, however, didnct
supply a proof of his remark, for this ono would need to show that tho formal
differentiation of tho identity (18), pago 322 of Box's paper is permissible.
Sinco all tho moments of J(= IV,) aro finito and sinco tho r-th cumulant is a
polynomial function of tho first » moments (r > 1), to establish Box's remark
it is enough to show that

E(177) = [o"m,na(v)dv4-o(n=te=32), £ > 1. . (3.3)

Sinco ¥, can bo bounded in absolute value by a polynomial in Si;'s. Theorem
20.1 of (Bhattacharya and Ranga Rao, 1976) implics that

E(IV:1,,.) = o(n~ts-3112), e (34)

Put 1V, = hy_y(ks_y(n}(Z,—v))), K,y being tho Taylor cxpansion of g,
(up to (s—1)-th order derivatives).
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Then
E(Wilp,) = A{ [ras(Roms(2)T Eooy, nl2) +0(nmt4=392)

=NI [BeesD)) £u-y, n(60)d04-0(n=1e=001)

= [ V', a(v)dvto(n—ts-312) v (3.5)

hero N, = (IIn'((;,,—a,,)u < ((k—1)logn)}). Together (3.4) and (3.5) imply
(3.3).

4. LIKELINOOD RATIO STATISTIO IN THE OENERAL CASE

A veolid asymptotic expansion for tho distribution function of tho likeli-
hood ratio statistic in the general caso can bo obtained up to any order of accu-
racy provided suitable regularity conditicns hold. We shall howover outline
only a sketch of the argument.

Consider tho samo testing problem as in Scction 3 (but wo do not assume
that the obscrvations {'()i,, are coming from an exponential family of dis-
tributions). Let 0%(= 02) denote as before the m.le. when I, is sssumed

and O(= 0,) tho unrestricted mlo. Put §1 = O for the explanation of
pX1
other notations, Scction 3 should be consulted.

For convenicnco in notations, we shall discuss first the case p =1, k=2
and obtain our expansion up to o(n-!). Chooso and fix ¢, whose first com-
ponent is zero. All probability statements mado in this section refer to Py,

the product probability under 0, on the set of all infinito scquence of obsor-
vations. We shall assumo without loss of gencrality that 0, = 0.

An expansion of the likelihood oquation for 8% around & shows that
nV2 (f13— Gizn)

=_nm(6(ll—0-‘”)lzx”ﬂ

12— gy {‘/E;:‘__l_ 13:1 } e (41)

PR 1L )N {\_]/?:T‘ +% }

+o{n-).
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onasct 4,. Hero R's aro polynomials in n!/2 (9—0-) and

toeed, o

Un =L 01, .., 00)15=2, 3, 4, iy iy =1 or 3
1
whose coefficients do not depend on n ; for any 5> land i, ..., 5y =1o0r2,
et ¢ 1
LY 1(0)=n""(D"'... D! L,)(0).
[RER
111..4! 0= Eg (L, (o))n

I =1 0,
oty 41...,1( o)

L:‘l“." _ L:‘..At (0“)‘

and finally A, is the sct where § and § satisfy thoir respective likelihood equa-
tions and moreover the following inequalitios are true :

a8 (UR—E, (UDN? < 3 log 2,

It (§—0)[* < 3log =,

It/ (Vo —E, (VI < 3 log 2,
Uy, boing the vector whose components are

s gl s iyiglyig
0, Ly Ly, Ly,

(8, £z, §y, 5, = 1 or 2) and V, the vector whose components are
n .t
z { sup L' &(8; Y.')}:
v=t \jo-g,f <«

(8 --nig=1 or 2). Undor tho rogularity assumptions stated below, it
can be shown that

Py, (4,) = 1—o(n™.

One can verify that on the sct A, tho following is true: for any ssquonce {¢n}
such that 0 ¢ < 1ond forany iy=1or 2,1 j< 5,

i1dpixtyls

L, ¢ (05+1a(0—0,)) is bounded.

This fact will be repeatedly used without any oxplicit montion.
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Below all subsequent expansions are performed on the sct Ay. Also we shall
assume that the matriz (1)) is negative-definite and that the veclor (Iy) is null.

eoel, -
We shall say that I, s 18 the asymplotic mean of L:‘ 1.(0).
1

An usun] iterative approximation of n"’(B"’—é""), starting with
—nu’(a‘“—ﬁ“’)lu/.ln ag tho initial approximation, gives

nl/:(am_ﬁm)

= ,,m(am_am){ _.;&. + 7'}; I—;!}+o(n—n)
23 n

where P, and P, are polynomials in nt/2 (8v—§w) and U, whoso coolicients
do not depend on #n. Here we have used tho fact that on the sot A,
IU.lI* = o(log n).

Expanding now all tho partial derivatives at Gof Ly appearing in P, and P,
around @, it can bo verified that

”m(gu)_g'u))
= a0 — GO Ry (U)+o(n~t) e (42)

where R is a polynomial in n‘/'(U:—E',O(U:)) whose coofficionts depond
on .
Expanding A, around 0 and thon oxpanding the partial derivatives at &
of Ly around 0, and finally using (4.2), one gets
A0 = 2(La(6)—L (0}

= (8 —gvy P2 (Usto(nt) e (43)
where P;, is a polynomial in n!/? (U,‘,—E‘,o (U3)) whose coefficients depend
on n. Let

A, = a(fm—guyr p2 (03,
Then on the set A, the condition A, (iv) kolds for A, and A, can be approzimated

by A, up lo terms of order o(n—).
Al 2-8
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It may be noted that in tho caso of an exponontial family of distributions,
all tho derivativos of L, of ordor two or moro are constants (i.e., non-random)
and hence (4.3) can bo used as an alternative way of checking tho condition
Aiv).

Coming to tho gonecral (i.c., non-oxponential) caso, suppose that the
assumplions (Ay) to (A,)) and (Ag) of Theorem 3of BG with s = 4 hold where
1 (A,;) we do not impose the conditions ensuring uniformity in 0y € K and that
the random variables

{LE =Ty iy = 1 or 2,1 <5 < 4)

are linearly independent (i.e., have nonsingular dispersion matriz). Then the
fact that P”o(A") = 1—o(n™?) follows from relations (1.28), (1.29) and (2.32)
of BG and the analoguus relations for tho restricted m.Lo. 8. Also following
the proof of Theorem 3 of BG we can show that the vector U, have a multi-
variate Edgoworth expansion i.., Theorem 3 of BG holds if tho vector
%8 —0,) of this theorem is replaced by the vector Us. By our Theorom
1(b) (applied to A,), Remark 2.2 and tho cquation (4.3), the expansion up
to o(n1) of the typo stated in Theorem 1(b) is valid for the transformed likeli-
hood ratio statistic.

Suppose now that the assumptions (4,) to (4,) and (A,) of BG hold with
& = 4 bul tha! the random veclors

and Ty =L—1I,, Ty = Li—1,

T= (L;l'“‘l—I,l,,_,l tipeat=1o0r22<j< 4}
are not linearly independent. Lot
yo=nYYLY —I), $=1,2
and let zy, ..., 2, stond for the set
(,,m(z,;r--‘l_z,,,,.,!) t, . dg=1or2 2<j<4)

(Wo shall uso theso notations for this and tho noxt parographs only). Then
wo claim (a) that it is possible to choose 7T, ..., I', o subsct of T', such that
Ty, Ty Ty, ..., Ty aro linearly independent ; and (b) that on the sct -,
cach of zryy, ..., ¥m can be oxpressed up to o(n~'/2) as a polynomial (in fact
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a linear combination) involving z,, ..., z, (and the constant function 1) with
cooflicient polynomials /2 (0—0,). Conscquently in the equation (4.3)
the polynominl P, can bo replaced Dby another polynomial in
{n'3(0—0,), z,, ..., 2} and the nrgumont of the provious paragraph goes
through.

To justify the abovoe claims, we begin by writing all the linoor restrictions
among Ty, T; and T,,..., Ty in tho following form :

et T+ cimTm+doTi+dTy = 0 e (4.4)

for ¢ = 1, ..., r where r is tho rank of (C| D), C = ((ci)), D,= ((dig)). Obsorve
rIXm rx
that r i3 also the rank of € sinco T;, T, are lincarly independent (ie.,
Ty and, T, havo positive-dofinite dispersion matrix). Without loss of gone-
rality, let the first r columns of € be lincarly independent. Then clearly T,
T3 and Tpyy, ..., Tm are linearly independent. Also from (4.4) we got
Tyt FCirze

= —ClirenZrar— oo —CmIm—C0y1—d1 Yo o (45)

On the set 4, we now oxpand (up to o(n~'2)) y; around 6 and thon the
partial derivatives at 0 of L, around 0,, i = 1, 2; (4.5) then implies that

(€14 Puy(8) 21+ o AH(cor+ Pl 6) )z,
= -—(Cl(r+1|+Puun(0-) ) ""H+“-+(C(m+P¢m(15) Vem
—d4, Pi{0)—di,Py(B) +o(n172),

whore for each i, j, P‘,(ﬁ) is either (0} n_ gt 1) or (0}.”—5")) and
- L] -
Py (0) = Z aV0P—09) 1y
=1

L ﬁ V3O — PO — ﬁu')) Iy,

+\/1T g4t

¥ =1or2 Henco for all sufficiently largo #, the rxr matrix ((c,,+P”(5)))
is nongingular and so we can write (up lo o(n=)%) xz,,..., z, as linear
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combinations of zg,y, ..., Tm and the constant funclion 1 with coefficient poly-
nomials in n"*(a—%).

This completes the discussion of the spocial case p =1 and k=2,

Now wo shall consider briefly the general case, As before assumo that
0,=0 and that tho Xk matrix ((Ii)) is negative-dofinito. Apply first
a nonsingular lincar transformation on the parameter spaco which leaves the
first p components of @ unchanged and which reduces

(Tt g = pryeeork
to the identity matrix of order (k—p).

Expanding (D!'L,) (0) around & for § = p+1, ..., k and replacing all tho
partial derivatives at 0 of Ly, by the doviations from their respoective asymp-
totio moans, one can express the likolihood functions for 82 as follows :

aad"_5%)

k .
= I magt_ 0"2’) {:gl ”_'.“R‘I‘E'S } +o(n-m)
-

tgm1

(p+1 €5, €% m > 1) where (R

normalised partial derivatives at d of Ly, (of order (2m+-2) or less) whoso coo-
{ficients do not depend on n. Tho above and all subsoquent approximations
aro performed on a sot with Py -probability 1—o(n=m).

f1tsty) 070 Polynomials in nV2(0—06) and the

An iterative approximation of

w5 pr1 iy <k

whero at cach stage wo uso the approximation of n‘/’(ﬂz—(}’) obtained at
previous stage and keop terms of appropriato orders of approximations, gives

a0 )

=% wafiz gty { B amhl P;,:,l,}+0("'"‘)
tg=1 5=1



EXPANSIONS FOR THE LIKELTHOOD RATIO STATISTIC 45
(p+1 < 3, € k) where (P'x'z's} havo the same properties ns those of (R'Hz':)
except that {Ph"-'a) do not dopend on n'*(8°—f2), Tho rest of the computa-

tions is similar to that of tho caso p = 1, & = 2 and m = 1 and roquires similar
assumptiona,

Remark 4.1 1 Supposo that the assumptions (A,) to (A,) of BG with
8 = 2m+2 hold. Then it can bo shown that the above asymptotic oxpansion
of tho distribution function of tho transformed likelihood ratio statistic up
to o(n~™) holds uniformly in 0, ¢ K for any compact K.

In the rest of this section we consider the related work of Hayakawa
(1977). Ho has obtained an asymptotic expansion up to o{n1) of the distri-
bution function of A, by first approximating A, by IV, upto oy(n-1), and
finally inverting formally the resulting approximate characteristic function
or I¥.. Sinco

[ oxp {$the_y(ke_y(2))} €,y n(2)dz

RE
= {, oxp {i the_y(ks—y(2))} £1-y,n(2)dz+o(n=10-212)
= {’ oxp (ith,_y(0)} £s_y,n{0)d0+0(n=(0-0 1)
= j'l oxp {itv} Vm,n(v)dv+o(n-te-313)

R

(we are using tho notations of tho last part of Scction 3 except that
hero wo toke 17, to bo Ay and Z, = (LiY: iy, > 1, 1 <G <A
it follows arguing as in Romark 2.7 that the asymptotic expansion given in
Theorom 1 of Hayakawa is a valid one.

Wo finally remark that Hayakaywa gets his expansion by expressing A, a8

functions of (L:l, L:lii' L:l"‘l’ L:l'i‘a‘t) (instead of {0" L‘,"’, L:‘“*l’, L‘x‘z‘a‘a))'

But as observed carlier (sco Romark 3.1) the assumption A(iv) then need
not hold in general oven on a sot of Py, -probability 1—o(n™).

5. OTHER ATPLICATIONS

Consider the samo testing problem as in Section 4. Horo wo discuss
bricfly how the asymptotic cxpansions for the statistica proposed by 1WVald
'1945) and Rao (1948) (vide Rao 1965, pages 347-352) as alternatives to-the
likelihood ratio statistic can bo obtained up to any order of approximation
undor tho regularity conditions stated in Scetion 4, Below we uso tho nota-
lions of Section 4.
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\Wald's statistic is

W, = —n(0'— 047 1,,.,(6) (0'—0})
whero
Iyi(0) = IO = 13,0) (13:(0) )= I3(0)

(1;\(0) 1;,(0))

10) =

IOy L0

1(0) = (11O, fmys - sk T51(0) = (Tes(ON)s, 4=1,-+» -

I+ evident from the expansions of 17, (0) around 0, that the condition A, (iv)

is satisfied if we regard IV as a function of J and the appropriate partial
derivatives of L, at 8,. So by Theorem 1(b) and Remark 2.2 one gets an
asymptotic expansion of Pg,(IVa < u).

Rao’s statistio is

So=— E ¢ O 10)

whero () is the i-th efficient score of 0, i.e.,

$(0) = n112 3 L (0)[30
and
((TONexr = (Tes(ON)ixx 5

recall that 82 =0}, For convenienco, assume that p =1 and k=2.
PX1

Expanding ¢,(8) as well as I'(9) around 6 and then expanding the partial
derivatives at § of L, around 0, ond finally using the equation (4.2), one
gets an asymptotic expansion of Py (S, < u) up to o(n~); of course one
can get an asymptotic expansion for S, which is valid up to any degree of
aceuracy.

The caso of testing tho more general composite hypothesis considered in
Section 60.3 of Rao (1865) can bo reduced, under appropriato assumptions
which guerantee reparametrization in o suitable neighbourhood of 4,, to tho
case discussed here,
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