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Abstract

In this note we investigate the extent to which some of the fundamental properties of univariate median are retained
by different multivariate versions of median with special emphasis on robustness and breakdown properties. We show
that transformation retransformation medians, which are affine equivariant, n'*-consistent and asymptotically normally
distributed under standard regularity conditions, can also be very robust with high breakdown points. We prove that with
some appropriate adaptive choice of the transformation matrix based on a high breakdown estimate of the multivariate
scatter matrix {(e.g. S-estimate or minimum covariance determinant estimate), the finite sample breakdown point of a
transformation retransformation median will be as high as n~'[(n—d + 1)/2], where n= the sample size, 4= the dimension
of the data, and [x] denotes the largest integer smaller than or equal to x. This implies that as g — 2o, the asvmptotic
breakdown point of a transformation retransformation median can be made equal to 508 in any dimension just like
the univariate median, We present a brief comparative study of the robustness properties of different affine equivariant
multivariate medians using an illustrative example,

Kepwords: Affine equivariance: Asymptotic efficiency; Breakdown point; Multivariate location: Transformation retransfor-
mation estimate

1. Introduction: multivariate medians

Three fundamental propertics of univanate median that have greatly conributed towards s widespread
popularity as a measure of univariate location are:

(1) Its high (50%) breakdown,

(2) Its n"*-consistency and asymptotic nomality under suitable regularity conditions and high asympiotic
efficiency under distributions with heavy tails when compared with the usual mean.

{3) Is affine equivariance, which is an important geometne property of a location estimate.
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There are many proposals in the literature for generalising median in multidimension (see Small, 1990;
Chaudhun, 1992 for some detailed review), and we will now give a brief review of them with special
emphasis on the extent to which the above mentoned three properties of unmivariate median are preserved
by different versions of multivariate median. Bickel (1964) studied the vector of coordinatewise medians,
which is n'/*-consistent, asymptotically nommally distributed and has breakdown point 50%. However, it is not
equivariant under general affine transformations of the data. As a matter of fact, it is not even equivariant under
orthogonal transformations (e.g. rotatons) of the data, and Bickel (1964) observed that this lack of affine
equivariance has some serious negative impact on the asymptotic efficiency of co-ordinatewise median when
there are high corrclations among different variables in a multivariate data. Another multivariate extension
of median, which s defined as a vector @, that minimizes the sum > | |X; — @], where the X;'s are
multivariate data points (for x = (x50, ||x] r{.tf + - - +.r:.}' ), is popularly known as spatial median
due to Brown (1983 ). It is still not equivariant under general affine transformations of the data though it is
equivariant under orthogonal transformations, Spatial median too is n'? consistent and asymptotically normally
distributed (see eg. Chandhuri, 1992), and it too has 50% breakdown point (sce c.g. Kemperman, 1987).
Mevertheless, 1ts lack of general affine equivanance makes spatial median an unreasonable estmate when the
scales of different coordinates of the data vector are widely different. The simplicial volume based median
proposed by Oja (1983) is affine equivariant, n'*-consistent and asymptotically nomal (see ¢.g. Arcones
et al., 1994). However, Opa et al. (1990) proved that this version of multivanate median has very poor
robusmess property. Liu {1990} defined another version of muluvariate median based on her idea of simplicial
depth in a data cloud. This estimate too is affine equivariant, n'? <onsistent and asymptotically normal (see
Arcones et al, 1994). Recently, Chen (1995) has shown that it has asymptotic breakdown point less than
50% for multivariate data, and it can be quite low when the dimension of the data is large. Tukey’s (1973)
half-space median, which 1 based on the notion of half-space depth, 1s also an affine equivanant version of
multivariate median that has asymptotic breakdown point less than 30% (see Donoho and Gasko, 1992; Chen,
1996). The asymptotic distribution and the n'? rate of convergence of Tukey's median have been derived
recently by Bai and He (1998

One serwus practical problem associated with all of the above-mentioned affine equivanant versions of
multivariate median is that they are all quite difficult to compute for high-dimensional data. The algorithm
proposed by Ninmmaa (1992) and Nimimaa et al. (1992) for computing Oja’s median by converting the
simplicial volume minimization problem into a least absolute deviations lincar regression problem s not very
useful when the dimension ¢ of the data is large since the computational complexity for this algonthm s
of the order of the dth power of the sample size. Exact and efficient algorithms for computing Lin’s and
Tukey's median are available only in the case of bivariate data (see Rousseeuw and Ruts, 1996, 1998; Ruts
and Rousseeuw, 1996). Computation of both the medians require solutions of certain difficult optimization
problems m computational geometry and no good algorithms are available for them in the literature for
high-dimensional data. Interestingly, though both of the coordinatewise and the spatial medians are not affine
equivanant, they are both quite easy to compute even for data with faidy large dimensions. Computation
of coordinatewise median requires only the ordering of the values of cach of the coordinate variables and
determiming theirr middlemost order statistics. On the other hand, efficient algorithms for computing spatial
median in any dimension are available in the literature {(see eg. Chaudhuri, 1996).

All these motivated Chakraborty and Chaudhun (1996, 1998) and Chakmborty et al. {1998) to propose a
transformation and retransformation procedure for converting non-equivariant cordinatewise and spatial me-
dians into some equivariant estimates of multivariate locanon. They have demonstrated how this strategy
can be used as an effective tool for repainng some of the deficiencies of a non-equivariant estimate and
thereby improving its statistical performance. Suppose that X),....X, € RY, where n > d + 1, are n multi-
variate observations, and 5, denotes the collection of all subsets of size & + 1 of {1.2,....n}. For a fixed
o= {igf1e.oosiy } €8, consider the d x d matnx X({2) whose columns are X, — Xj..... X, — X5, We will
assume that the X;'s are such that X(z) 1s an invertible matnx. Clearly, if the X;'s are 1.1.d. observations with



B Chakrabarty, P Chandhuri | Statistics & Probabifity Letters 45 (1909 ) 269-276 271

a common ahsolutely continuous distribution on B9, the invertability of X(x) is ensured with probability one
for any choice of z= 5, We next transform all the observations into the new coordinate system determined
by the data-driven transformation matrix X (z), so that for 1 <i<n, we will write ¥'*' = {X({2)}~'X,. Let
@' be the coordinatewise median or the spatial median based on P';:zhs, l=i=n. Then the transforma-
tion retransformation median @ is formed by retransforming @ into the origmal coordinate system as
el — {X{:}}lﬁf,“. Cleady, when the dimension o = 1, the tansformation retransformation median reduces to
the usual median, which is the middle most order statistic of a univariate data set. Chakraborty and Chaudhun
(1996) and Chakmaborty et al. (1998) have shown that &' is an affine equivariant estimate, and if the mul-
tivariate observations X;'s are ii.d. with a common probability density function satisfying some appropriate
regularity conditions, @, converges at #''? mte and has an asymptotically normal distribution. Further, it
follows from Chakraborty and Chaudhur (1998) and Chakrmaborty et al. (1998) that if the common density
of the X;'s is elliptically symmetric having the form {det{Z£)}~'? fi{x — @)'2 " '(x — @)} with & as the
location of elliptic symmetry and X as the scatter matrix, @, (which is a n"?-consistent and asymptotically
normal estimate for @) achieves its maximum asymptotic efficiency when the subset of indices 2 and the
associated transformation matrix X(x) is chosen in such a way such that the matrix {X(2)}72 " X{(x) is as
close as possible to a diagonal matrix with all diagonal entries equal. They suggested an adaptive algorithm
for computing @' by selecting that subset » for which

_ tmtu[{Xf:]_}Ti'__l -{X{_‘ﬂ}_]
(det[ X (2)1TE 7 X ()} )

is minimized. Here £ is an affine equivariant and consistent estimate of the scatter matrix £. We will gradually
see that 1t 1s sufficient to use a high breakdown estimate of X in order to achieve good robustness properties for
transformation retrans formation medians. Note that the above mentioned minimization problem is equivalent to
the problem of minmizing the ratio of the arithmetic and the geometric means of the eigenvalues of the matrix
{X{:]}'E_I{X{:}} though it does not ivolve explicit computaton of the cigenvalues. Efficient algonthms
for computing adaptive versions of transformation retransformation coordmatewise and spatial medians have
been discussed in Chakraborty and Chaudhun (1998) and Chakmaborty et al. (1998), respectively. They have
demonstrated numencal implementation of those algorithms using multivanate data with faidy large dimensions
for which any of the affine equivariant versions of multivariate median proposed by Tukey (1975), Oja
{1983) and Lin (1990) will be computationally problematic. Numencal implementation of such an algorithm
will require computation of £, and one can conveniently use the FAST-MCD algorithm of Rousseeuw and
Van Driessen (1997), which 15 a very fast algonthm for obtaming an affine equivariant high breakdown
estimate of the multivariate scatter matrix.

2. Robustness of transformation retransformation medians

So far not much has been reported on the robusmess and the breakdown properties of such transformation
retrans formation medians, and that s what will be considered in details in this note. Let us begin by recalling
the defimition of finite sample breakdown point of an estimate following Donoho (1982). For an estmate
TiX,,....X,) based on data X, ... X, its finite sample breakdown point & ,(T) 1s defined as

EAT)= m{%: sup |T(¥i..... ¥u) — T(Xi..... X)) = .’x:},

1=t

where the observations ¥y,.... ¥, are obtamed by replacing m of the observations of the origmal data
set Xy.... X, (sce also Huber, 1981). It is quite apparent that the robusmess of the adaptive transfor-
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mation retransformation medians will entically depend on the robustness of the estmate 2 used inoats
construction. The following  theorem  deseribes  the  breakdown  properties  of  such  multivanate
medians.

Theorem 2.1. Suppose that a high breakdown estimate X of the scatter matrix X (e.g. the S-estimate
proposed by Davies (1987) and Roussceuw and Leroy (1987) o the minimum covariance determinant
{MCD) esiimaie proposed by Rousseeuw (1984)) iy weed in forming the transformation matrix X(x). Then
Jorn =d + 1 the finite sample breakdown point of the adaptive version of the transformation retransfor-
mation median will be at least n™'[(n — d + 1)/2), where [x]= the largest integer smaller than or equal to
x, and consegquently ity asymptotic breakdown will be 30% for all d =1

Proof. Let us set Z{z)=[ |det{ X(2)} 7" X (2) so that det{ Z(2)} = 1. Clearly, in view of the construction
of the transformation rLtrami{}rmatmn median €% described at the begmning of this section, this median will
not be affected if one wses {Z (20! instead of {X(2)}! to transform the data points X;'s, and then the
resulting @, ( which will be altered by the change in the transformation matrix) is retransformed using Z(2)
instead of X(x). Then the entenon for choosing the optimal subset 2 can be modified to the mmimization
of tmee[{ Z{:}}Ti’_l{2{:}}]{‘{1&{2:'}}' 4 Suppose now that we have corrupted m of the observations such
that m=[{n —d +1)/2], and X 15 a high breakdown estimate like the S-cstimate or the MCD estimate. Then
2 will not break, and its mmimum eigenvalue will emain bounded away from zero while the maximum
cigenvalue will remam bounded. Now, for the optimal choice of 2 according to the aforesaid criterion,
tracu[{z{:‘.l}"'i'_l{2{:‘1}]{{11.:[{2:'}}'”' must remain bounded even after comupting m of the data points in
view of the fact that n = & + 1. In other words, we must have trauuHZ{:}}"'i'_l{2{:}}] < M{det( X)} 14
for some M = 0. This implies that

trace[{ Z(2)} {Z(2)} ") < Mp.

where p is the ratio of the maximum and the minimum eigenvalues of £. Thus the maximum eigenvalue of the
matrix {Z(a)}{Z(x)}" must remain bounded in spite of corrupting m of the data points. As the determinant
of this matrix s one, the smallest cigenvalue of this matrix too will be bounded away from zero.

Now, for the transformed observations ]’fzhs, we have

1 ¥ = X[ Z(2){ Z(2)}7]7' X, < {421 1XG ),

where A% 1s the smallest cigenvalue of Z{x){ Z(x2)}". This implies that with the optimal choice of the
transformation matnx, a transformed data point P'f" cannot be made to explode to oo without making the
corresponding untransformed data point X; w prludL to oo. Therefore, if we use the coordmatewise median
veetor or the spatial median vector as our l.'P,, , m order © have |¢f,”|| — o0, we must comupt at least
[(m + 1)/2] of the obscrvations. In other words, if we corrupt only m=[(n —d + 1)/2] of the data points,
I lﬁ,”ﬂ will not explode to ~c.

Recall now that @) = {Z(x2) 1, which implies that '|l5=i':’}:|','="p"’"|lﬂ" |‘2 where 1! 1s the largest
cigenvalue of the matrix {Z(2)}"{Z(2)}. This proves that our transformation—retransformation median el
will not break if we corrupt only m< [(n — d + 1)/2] of the observations.

The S-estimates as well as the MCD estimate of the scatter matrix X are affine equivanant and
known to be consistent {sce Rousseeuw, 1984; Davies, 1987). Hence, the preceding theorem establishes that
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it 15 possible o construct high breakdown affine equivanant versions of multvariate median using the
transformaton retransformation strategy, and those multivanate medians will have good statistical efficiency
in view of the resulis proved in Chakmborty and  Chavdbunt (1998) and Chakmborty et al
(1998).

3. Discussion and concluding remarks

Transformmation retransformation medians are probably the only multivariate affine equivariant medians that
are known so far to possess adequately all the deswed properties of the univanate median discussed in the
Introduction. Among other affine equivariant multivanate medians, Tukey’s half-space depth-based median is
known to possess an asymptotic breakdown of § when the underlymg probability distribution is absolutely
continuous and angularly symmetric. Chen (1996) provided some upper and lower bounds for the finite sample
breakdown point of Tukey™s median when the observed data 1s m general position. But those bounds depend on
the underlying probability distributions. In the bivanate simation, Oja et al. (1990} showed that it is possible
to break Opa's simplicial volume based median by comrupting only two data points, and consequently, it has
a very poor (Le. 0%) asymptotic breakdown. Chen (1995) observed that when the undedying distribution 1s
absolutely continuous, an upper bound for the asymptotic breakdown point of Liu's simplicial depth based
median s 1/{d +2), where & is the dimension of the data. He also obtained some upper and lower bounds of
the finite sample breakdown point of Liv's median but those bounds depend on the data points. Interestingly,
we have observed that one can break Liu's median by just replicating some corrupted observation only a few
LIS,

To illustrate the breakdown properties of some of the affine equivanant multivanate medians, we have pen-
erated 50 observations from standard bivanate nomal distnbution (e, zero means and correlation and unit
s.d.’s) and computed their transformation retransformation coordimatewise and spanal medians (denoted by
TR and TR2, respectively ), Liu's simplicial depth median (denoted by LIUY), and Tukey’s half-space depth
median (denoted by TUKEY ), and they are shown in Fig. 1{a). There are very little visible differences among
the positions of these four versions of affine equivanant medians. In Fig. 1{b), we have plotted the same 50
bivanate nommal observations with another 25 observations from bivariate normal with mean = (10, 10) and
standard deviation of each of the two uncorrelated coordinate vanables as 0.01. There we see that Tukey's
half-space depth median is well outside the onginal data cloud, but both the transformation retransformation
medians remain almost at the same positions as i Fig. 1(a). In Fig. 1{c), we have added 7 replications
of the point (10,10} to the set of 30 onginal observations. We observe in this case that Lin's median is
completely shified to the pomt (10, 10) whereas ransformation retransformation medians continue to remain
inside the original data cloud. In all cases, the optimal transformation matrix was chosen based on the MCD
estimate of multivariate scatter computed usmg the FAST-MCD algonthm of Rousseeuw and Van Driessen
{1997).

Among other affine equivariant high breakdown estimates of multvariate location, the minimum volume
ellipsoid (MVE) estimator proposed by Roussecuw (1984) is quite popular. But this estimator 15 not a mul-
tivanate generabzation of univariate median — in the univanate situation, this estimator does not coincide
with the middle most order statistic of the data. Apart from that MVE estimator is not n'”-consistent and
its asymptotic distribution 1s non-Ciaussian (see ez, Davies, 1992). On the other hand, the minimum covari-
ance determinant estimator of location proposed by Roussecuw (1984, has very high breakdown point, and
it is n'?-consistent, and asymptotically normally distributed (see Butler et al., 1993). Nevertheless it too is
not a multivarate generalization of univanate median for the same reason mentioned in the case of MVE
estimate. We conclude our discussion by noting that i the univarate situation, it is possible to find M-esti-
mators with breakdown point arbitrarily close to 50%. But in higher dimensions, this fact no longer holds.
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Fig. 1. Differenmt bivariate medians for corrupted and uncomupted data: (a) » =50 bivariate standard nomal data points; {b) # =75 data
points: 3 bivariate standard normal and 25 bivariate normal with mean={( 10, 10}, s.d. ={001,001) and correltation =040; {c) » = 57
data points: 50 bivariate standard nomal and 7 replications of {10, 10}
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Maronna (1976 formally defined M-cstimators for d-dimensional data and gave the upper bound of 1/(d +1)
for their breakdown points (see also Huber, 1981). Other affine equivariant estimators such as those based
on convex hull peeling or classical outlier rejection are also known to have breakdown points bounded by
1/(d + 1) (Donoho, 1982).
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