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Abstract. In this paper we consider a two-person zero-sum discomnted stochastic game with ARAT structun:
and formulate the pmblem of computing a pair of pure optimal stationary stmtegies and the cormesponding
vilue vector of such a game as a vertical linear complementarity problem. We show that Cottle-Dantzig's
algonithm {a generalization of Lemke's algorithm ) can solve this problem under a mild assumption.
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1. Introduction

In this paper we consider a two-person discounted zero-sum stochastic game in which
for cach state s, Player L and Player 11 have a finite set of actions A, and B, respectively.
Let § be the set of states and ket k be its cardinality. When the game is played in state s,
Player] chooses an action § € A, and Player 11 chooses an action j € B,, the payoff o
Player 1 is ris, i, j); the payoll to Player Il is —ris, i, j). The game makes a transition
to state ¢ with probability pir|s, i, j) on the next day. The stream of resulting payoifs o
Player | over an infinite number of days, i.e., the time hordzon of the game, is evaluated
by the total discounted sum 3} 3, B¥Vr(s,i. j) assuming that on day N the game
15 played in state s, and the actions chosen by players are @ and j mespectively. The
transition probability pit|s, i, /) and the reward function ris, i, j) satisfy the following
additive properny:

pltls, i, j) = piltls, i) + pait]s, j)
ris, i, j) = rils, i) + s, J)

Due to this additive property assumed on the transition and reward functions, the game
15 called g-discounted zero-sum ARAT Additive Reward & Additive Transition ) Game.
As s usual in game theory, players are allowed 1o choose a probability distribution over
the set of actions available to them in each state and then choose an action with the
probability specified by the chosen distribution. The space of probability distributions
over A, iscalled the space of mived strategies for player Lin stale 5. A mixed strategy that
assigns probability mass 1 to a particular action 15 called a pure strategy. In a stochastic
game the players are required to choose a mixed strategy each day and such a sequence
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of actions or mixed strategies chosen by a player may be called a policy. A policy is
said o be stationary if the mixed stmtegies chosen on any day are the same whenever
the game is played at a specified state, ic., the chosen strategies depend only on the
state the game is played. A stationary policy may therefore be identified with a mixed
strategy at a particular state. For more details on these and related concepts see [14]
and [3]. We denote the matnx ((p(fs, i), f € & @ € Ag)) as Pris) where § 18 the sel
of states. This is a m(8) = & matrix where mop(s) 15 the cardinality of Ay and & is the
cardmality of §. Similarly the matrix Pr(s) of order mais) x & is defined where ma(s)
denotes the cardinality of the set B,.

ARAT games have been studied in the literature carlier by Raghavan et al. [17]. See
also [16] and [3]. Both the discounted and the imiting average criterion of evaluation of
strategies have been considered. It is known for example, that for a g-discounted zero-
sum ARAT game, the value exists and both players have stationary optimal strategies,
which may alsobe taken as pure strategies. In [17] afinite step method to compute a pair
of pure stationary optimal strategies and the value of the game has been suggested.
However this approach involves solving a sedes (finite number) of Markov decision
problems. It is interesting o ask whether one can find a one step solution method like
solving one linear program or one LCP mstead of solving a senes of Markov decision
problems. (Recall that a Markov decision problem can be solved as a linear program.
See [17, p. 459] in this connection.) We shall show in this paper that this 1s indeed
possible, with the following assumption on the ARAT game: Either for all 5 and for
all j £ By, palsls, j) s positive or for all s, and for each ¢ there exists 4§ € A;
such that pyit|s, i) = 0 and Pr(s) 1 not a null matnx. In otherwords, a pair of pure
stationary optimal strategies and the comresponding value for a zero-sum discounted
ARAT game with the above assumption, can be computed by solving a single vertical
linear complementarity problem.

In Sect. 2, we define the vertical linear complementarity problem (VLCP) and
supply relevant material on the VLCE. In Sect. 3, we formulate the zero-sum discounted
ARAT game as a vertical linear complementarity problem. In Sect. 4, we show that the
Cottle-Danteig algornthm can process this problem under 4 mild assumption.

2. Vertical linear complementarity problem

For a given square matrix M & R™" anda vector g € R" the linear complementarity
problem (denoted by LCP{g, M)} is to find vectors w, 7 € B" such that

w— Mz =g, w=0, z=10 (1)

wz =10 (2)

A pair (w, Z) of vectors satisfying (1) and (2) 15 called a solution to the LC Plg, M).
This problem is well studied in the Iterature over the years. For the recent books on this
topic see Cottle, Pang and Stone [2] and Murty [7]. The problem arises in some classes of
stochastic game problems, for example, see[ 18] [10]and [11]. The algonthm presented
by Lemke and Howson [6] to compute an equilibrium pair of stmtegies o a bimatrix
game, later extended by Lemke [5] to solve a LCP(g, M) contributed significantly o
the development of the linear complementarity theory.
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Cottle and Danteig [1] extended the problem considered above to a problem in which
the matrix M is not a square matrix. The generalization of the linear complementarity
problem introduced by them is given below:

A 1
W say that anm x & matrix A with the partiioned form A = | ¢ | s avertical
A.{
block matrix of type (m,ma, ... .mg) if A is of order mijxk 1< j<kand
ZJj-=| mj = m.

Given a vertical block matrix A € R™**, (m = k) of type (my,....my) and
g R" wherem = Eﬁ-=| m j, the generalized lincar complementarity problem is Lo
findw € R" andz € R* such that

w—Az=¢g,. w=l z=10 (3}

i

2 [l )

] w;
i=l

Il
-
=
e
Il
=
[
=

(4)

This generalization is also known as vertical generalization of the linear complemen-
tarity problem [1] and it 1s denoted by VLCP( g, A).

2.1 Algorithm for solving the vertical linear complementarity pmblem

Cottle and Danteig [ 1] descrbe a procedure for solving a vertical linear complemen-
tarity problem, which is an extension of Lembke’s algorithm for the ordinary linear
complementary problem. For the sake of completeness we present this algorithm below.
The Cottle-Danteig algorithm for the VECP{g, A) starts with the initial solution to (3)
and (4)

w=g+dzp z=0

where zq is large enough so that w = Oand d € R™ is a given positive vector. Let J; =

(1,2,....m} andlet Ji = (T im;+ 1L im;+2, ... Y5 my), 2<i<k

Step 1: Decrease zp to Zp =min{z | ¢ + dzo = 0, zp = 0} so that one of the
variables wy, 1 =i = m, say wp, is reduced Lo zero. We now have a basic
feasible solution with zg in place of w,. This is the initial almost proper basie
feasible solution. Wow let r be the unique index, 1 = r = k, suchthat p e J,.
Wi have exactly one pair of non-basic variables (z,, w ) which belong to the
same sel of related varables.

Step 2: AL each iteration, there is exactly one pair of non-basic variables belonging o
the same set of related variables. OF these, one has been eliminated from the
basis in the previouws iteration; the other is now selected to be included in the
basis. For example, i the second iteration 2, 15 selected o be included in the
hasis.
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Siep 3: If the variable selected at Step 2 wo enter the basis can be arbitrarly increased,
then the procedure terminates in an almost proper ray, to be called a secondary
proper ray. If a new basic feasible solution is obtained with zp = 0, or zp
15 non-basic, then we have solved (3) and (4) and have a solution for the
VLC Pg. A). Otherwise, we have obtained a new almost proper basic feasible
solution and a new pair of nonbasic variables (xg. ¥, ) belonging to the same
set of related variables, say the ™ sel, where either (xg, ¥r) = (zs,wy), with
te Jyorixg. ¥) = (wy,wy ), withn, 2 € J,.

We repeat Step 2.

The Cottle-Dantzig algorithm (Algorithm CD) consists of the repeated application of
Steps 2 and 3. Under the standard nondegeneracy assumption (see [8]), the procedure
either erminates in a selution o the VRO Plg, A) or n a secondary proper ray.

In [8]. Mohan et al. have shown that if the inpul matrix satisfies some propery
(Le., il A belongs o certain classes) then the Cottle Danteig algorithm can solve the
VLCPi{g., A). Sce also [9].

Definition 1. A issaid to be a vertical block E{d)-matrix forsome d = 0if VLCPd, A)
has a wunigue solution w =d, z =10.

Definition 2. A is said o be a vertical block Ry-matrix if VLC PO, A) has a unigue
sedution w =10, z= 0.

In what follows we denote the class of vertical block E(d) matrices as VB E(d) and
the class of wvertical block Ry matrnces by VERg. If the vertical block matnix A £
VB E{d) VB Ry then VEC Pg. A) s processable by Cottle-Dantzig’s algorithm. In the
nexl section, we show that the vertical block matrix arising out of discounted zero-sum
ARAT games belongs o VB E{d) N VB Ry when the components Py is) and Pais) of the
transition probability matrices satisfy a mild condition.

3. Compuling optimal pure sirategies of a discounted zero-sum ARAT game

We first state the following result.
Theorvem 1. (Theowm 6.4.2 in [3]) For ARAT stochastic games

{i)  Both players possess f discounted optimal stationary strategies that are pure.

{ii) These strategies ae optimal for the average reward criterion as well

{iii) The owdered field prmperty holds for the discounted as well as the average rewand
criteriomn

To formulate ARAT stochastic games we make use of the result that there is always
an optimal stationary strategy among the pure strategies for both the players and the
Shapley equations hold for this game.

The Shapley equations give us the following for state s, 5 € 5.

Val [r(s.i, j) + £ pltls. i, Hug(n] = vp(s)



Wertical linear complementarity and discounted zero-sum stochastic games with ARAT structune i3]

This implies

ris, i, i1+ JI‘:I'Z pitls. i, Jluglt) = vgls) for all § and for any fixed j

I

In particular, suppose the optimal pure strategy in state 5 is iy for Player 1 and jy for
Player II. Then

ri(s, ) +ra(s. jo) 4B piltls. gt + 8 pattls. jo)us(n) < vp(s) ¥ i.

These inequalibes yield

riis, i) +ﬁZp1{fEx.i}v,sl[f} = vgls) — nais) = Epls) Vi
I

where ng(s) = ra(s. jo) + 6 patels. jo)vg(r) and

Ep(s) = ri(s,io) + B Y piltls,io)ug(n) and
£5(s) + np(s) = vp(s).
Thus the mequalities are
(s i)+ B piltls, DER() — Ep(s) + B Y prltls.i)np(t) SOV i€ Ay s €S
(3)
and similarly the inegualities for Player 11 are
ra(s, j) + ﬁz piels, jing(t) — nals) + 6 szl[ffs. g =0V je By, s€S.
(6

Also for ecach s, in (5) there is an i(s) such that equality holds. Similary, for each s
in (6) there 1s a j(s) such that equality holds.

Let wi(s,i) = —ri(s,0) — B prltls,imp(t) + Exls)

—BY pitls. s =0, i€ A, (T)
and  wals, j) = rals, j) — np(s) + B Y paitls, mp(0)

+BY paitls. Jep(n) = OV j € B, (8)

We may assume without loss of generality that ng(s), £ (s) are stctly positive. Since
there is at least one inequality in (7) for each 5 £ 8 that holds as an equality and one
inequality in (8) for each s € 8 that holds as an equality, the following complementarity
conditions will hold.

ng(s) I—[ wils,i)=0f%frl =5 < kand (R3]

ied;
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Eals) l_[ wais, fl=0forl = s =4k (105
JEB

The mequalities (7) and (8) along with the complementanty conditions (9, (107 lead
to the VLCP(g, A) where the matrix A is of the form

[ -8 E-pP =t
A_[—E+.ﬁPz fPs ]‘“"“"[m-.-}]'

In the above VLCFE, Py = [pit]s, D)), P = [ p2(t|s, ji] and

el 0 ... 0

0 & ... 0
E=| . ]

L} ______ .-.JJ

15 a vertical block dentity matrix whene el 1< J = ks a column vector of all 1°s of
appropriate order.

In the next section, W show the convergence of Cottle-Dantaig algonithm we show
that the vertical block matrix arising from a zero-sum discounted ARAT game belongs
Lo a processable class under a mild assumption.

4. Convergence of Cottle-Danizig algorithm

We first observe the following property of the additive components Py and P of the
transition probability matrix P

Lemma 1. If p2itls. j) = Oforallt € 5 and for some j € B(s), then Pa{s) = 0.

Proof. Suppose pa(t|s, j°) = 0 forall r. From the condition

k &
Y pitels i)+ Y patils. 0 =1,
=1 =1

we oblain that } _ pitfs.i)= 1. Let j # j". Now since

k k
Zm{rlx. i)+ Z paAtls. j) =1,
=1 =1

it follows that Zf:l p2itls, j) = Oforall j &£ j“. Thus the matrix P2(s) = (0. This
completes the proof.
O
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We have the following theorem.

Theorem 2. Consider the vertical block matrix A arising fiom the zero-sum ARAT
game. Then A € VBE(e) where e is the vector each af whose entriesis 1.

d
FProof Letd = |:d2

] where d!' = 0 and 4 = 0. Consider the VLCP{d, A) where

A_[ —pPi E—ﬁPl]
T |—E4+ 8P AR |°

We shall show by contradictnon that VLOPd, A) has only the trivial solution
w=d, =10 whend =e.

;l j_l dl
Ltt[ﬁ;g].[g;]bcum:-lutiunt{:-VLCP{d,A}l.Thun[::F]=|:d2 + A gﬁ _

Assume [gﬁ] # [:;] .Let vgls) = &gls) + ngls) and vg ()= mu‘? va(s).
Now vg(s*) = Eg(s*) + nels®) = 0L

Case I. Let n}g{:.*} = (). Then there exists an i € A+ such that

dl =B piltls* DD — B Y piltls*, g (D) +&p(s*) =0.

or, Eg(s*) = —d} + .I‘:TZ prits iugln). i11)
W also have from the feasibility condition
&+ By paitls*, Pup(t) = np(s*) (12)
From (11)and (12), we have
d}—dl + By pls*.i. ug(n = va(s®).
Note that for our choice of 4, dj'.r = .n'].l s0 that
BY " plils®.i. Hus(t) = vp(s™).

which is a contradiction unless vg(s*) = Oor vg(t) = 0, forall t or £g(1) = nein =10,
for all 1.

Case 2. Let &g {#*) = 0. Then by complementarity there exisis a j € By+ such that
ﬂ‘% — npls™) + _HZ paitls®, flg(n =0

or, ﬂ'j_ + Jﬁz .PZ{-FE-‘-'*, j}l_lﬁ{f} = i‘]‘ﬁ{\'*}

Since d? > 0, it follows that 5j5(s*) > 0. Hence the theorem follows.
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Theorem 3. Consider the vertical block matrix A arvising from zero-sum ARAT game.
Then A € VBRy if either the condition {a) or the set of conditions (b) stated below is
satisfied.

{a) For each s and each j € By, paisls, j) = 0.
() (i) Foreach s, the matrix PLis) does not contain any zem column and
{ii) the matrix Pa(x) ix not a null matrix.

Progf. Consider the VLCP{0, A) where

A_[ —BPy E—ﬂﬂ]
T L-E+pR pR |

We shall show by contradiction that VLCP{0, A) has only the tivial solution
w=IM0, z=10.

| 1
| w N R o e Ng
Let |: 1::2] . |:'Eﬁ] be a solution to VLCP{0, A). Then |:u:2] = [[}] + A |:$ﬁ] .

Suppose g = 0 - Let vgls) = Egls) + ngls) and let vg(s™) = max vgis).
'i;..l-‘": 0 K{=h
Now vgls*) = Egls™) + ngls™) = O,

Case I. Let ggls™) = 0. Then by complementarity there exists ani € Ay such that

—BY_ pittls . DEpt) — BY_ pritls”. ip(n) + Ep(s%) = 0.

This implies B p1(tls*, Dug(r) = Ep(s™). (13)
W also have from the feasibility condition
BY . pattls®, pug(n) = np(s*) (14)
From (13) and (14}, we have
B pltls*.i, pug(t) = vp(s*).

which is a contradiction unless vg(s™) = Qor vg(n) = 0, for all 1 or £g(r) = ne(n =0,
for all v

Case 2. Next suppose ng(s*) = (. This implies £g(s*) = (). Therefore, by the vertical
block complementarity condition there exists a j € By such that

B paltls*, ugln) = na(s*).
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Suppose now condition (a) holds. Note that by this condition, pﬂ:.‘*l:.‘*, g1 =1} and
vgls*) = (.

Since np(s™) = § Z paitls®, Pugln) and both p2(s™[5%, ) and vg(s™) are positive,
it follows that ne(s™) = 0. Hence Case 2 does not arise if condition (a) holds.

Now suppose the set of conditions (b) holds. Since for each s, Pyis) does not have
a 0 column, we have by the feasibility condition

Eg(s)e's — BP1()(g + £p) = 0

where £ denotes the vector of order [A,] of 1's. From here it follows that £gis) is
positive for each 5. It follows from here that for s = s we have

nels’) = 'HZ pitls®, pugln = 0.

Thus again Case 2 does not arise if the set of conditions {b) holds. This completes the
proof,
o

The following example shows that if neither () nor (b) holds then, Theorem 3 may
not hold. In otherwords if both (a) and (b) are violated then VLC A, A) may have
a nontrivial solution.

Example I. Consider a two player zero-sum discounted ARAT game with 5 = 2 states.
Ineach state each of the two players has 2 actions. The transition probabilities are given

by
pi11L,1) =3, ;12| 1,1 =0,
pnL2) =1, p2]11,2) =0,
pi(112,1) =0, pi(212, 1) = 4,
p1(1]12,2) =0, ;(212,2)= 1,
pa(l|1, 1) =3, p22| 1,1) =0,
p2(111,2) =0, p2211,2)= 4,
pAl12,1) =0, p2(2]2, 1) = 1,
p2(112,2) = 3 and p3(2]2,2) = 0.

Note that pitls, i, j) = pi(tls, i) + paitls, j).
Let the discount factor § = é The matrix A is given by

-! 0 3 0

| i
-+ 0 3 0
0o -+ o 3
0 -5 0 3
=% H 1 @

3

1 1
-1 r o !
0 -3 0 i

1 |

|+ -1 § 0]
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where A is a vertical block matrix of type (2,2, 2, 2).

Now it is easy to verify that for this matrix, neither condition (a) nor the set of
conditions (b) holds. Also it is casy w verfy that g = g2 = £ = 0L & = 1 is
a nontrivial solution o VLC PO, A). Thus A is not a vertical block Ry matnx.

Even though we have shown the convergence of Cottle and Dantzig’s algorithm under
the conditions (a) or (b) of Theorem 3, in practical implementation, Cottle-Danteig’s
algonthm seems Lo succeed in computing a solution even when the assumplion s not
satisfied.

To see this consider the following example.

Example 2. To Example 1 we add the following rewards to complete the description of
an ARAT game.

L, =4 n(l,2)=5 2. 1)=3and r;(2,2) = 4.

(1, 1) =3,m(l,2) =6, m(2,1)=6and r2(2,2) = 2.r(s, i, j) = r1(s, £) +rals, ).

For this game our formulaton leads to the VEC Pg, A) where the vertical block
matnx A s as in Example 1 and

q =

woowddd i

Although the vertical block matnx A s not a vertical block Rpmatrix, Cottle-Dantzig
algorthm processes this matrix with the covering vector as e and produces the following
solution. gg(l) =7, gg(2) =6, Ea(l) =9 and &g(2) = 7.33. w(l) = 1.0,w(2) =1},
wi3)=1.0,w(d) = 0w(3) =0,w6) =233, w(7)= 3.33 and w(8) =1

Therefore an optimal pure strategy for the playersin the varousstates are as follows:

Player | chooses action 2 in states 1 and 2. Player [T chooses action 2 in states 1 and 2.

Remark 1. 1t s relevant 1o note bere that a given VECPg, A) can be equivalently
formulated as a LOPg, M) as in [8]. This requires constructing the square matrix
M from the given vertical block matrix A by copying its j* column as many times
as the j™ block size. We say that the matrix A is a vertical block E(0) matrix if
the equivalent square matrix M satisfies the following condition: (w, Z), 2 # 0 is
a solution to the LOAD, M) = there existsax = 0, x #£ 0, x € R such that
v=—Mxz=0 xr =3z v=m ltis known that Cottle-Dantzig algorithm processes
VLCP{g, A) if VLC F(d, A) has the unique solution w = d,z = 0 and A s a vertical
block E(0) matrix. ILis mlerestung o note that the vertical block matrix A in the example
above 15 also not a vertical block E(0) matrix.

Remark 2. The method of Raghavan et al. [17] requires solving a finite number of
Markov decision problems. Each Markov decision problem can be solved as a linear
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program. But on the other hand, the Cottle-Dantzig algorithm can solve the VLCP
formulation of the game problem if one of the conditions (a) or (b) stated in Theorem 3
holds. Then for such games a pair of pure statonary optimal strategies and the value can
be computed by solving a single VLCP. However we are not sure of the computational
superiority of the Cottle-Dantzig procedure over the procedure that solves a sequence of
Markov decision problems as linear programs. The gquestion of solving the VLC Plg. A)
for these stochaste games when the vertical block matrix A does not satisfy one of the
conditions (a) or (b) by using Cottle-Danteig algorithm still remains open. However the
VLCP(g. A) arising from such a game may also be solved by other methods such as
the the enumerative algorithm (finite step) of Gareia and Lemke [4] for computation of
pure strategies and the value vector of this game. See also [19].

Remark 3. We can enumerate various special cases where one of () or (b) holds. Notice
that it is also easy to verify the conditions in general by examining the entries of the
matrces Py oand Pz, In particular, when both Py oand Pz are positive both (a) and (b)
hold. It P> s posinve condition (a) holds. When Py is positive and P2(s) 15 not a null
matnx for each s condition (b) holds.

5. Conclusion

In this paper we considered the zerosum discounted stochastic game with ARAT struc-
ture and showed that a pair of staionary optimal pure strategies for both the players
{such optimal strategies are known to exist) and the corresponding value can be obtained
as a solution to a vertical linear complementarity problem. To show that the resulting
VLCP can be solved by Cottle-Dantzig algorithm, we had to impose certain conditions
on the VLCF, which restricted the scope of this approach to some extent. The possibility
of solving the VLCP ansing from a general zerosum discounted stochastic game with
ARAT structure by Cottle-Dantzig algorithm is still open.

Adnowledgemenis. The mithors wish to thank the unknown referees who have patiently gone through this
paper and whose sug gestions have improved its presentation and readability considembly.
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