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SOME PROPERTIES RELATED TO NESTED SEQUENCE OF
BALLSIN BANACH SPACES

Pradipta Bandyopadhyay and Bor-Luh Lin

Abstract. In this survey article, we explore various natural situations where
the results about strict convexity of X like Vlasov's Theorem or Taylor-
Foguel Theorem are actually seen to be locally consequences of properties of
rotund points.

1. INTRODUCTION

We work with real Banach spaces. Let X be a Banach space. We will denote
by B(X;r) (resp. BI[x;r]) the open (rep. closed) bdl of radius r > 0 around
x 2 X. Qur notations are otherwise standard.

A Banach space X is sad to be grictly convex if every point of the unit sphere
S(X) is an extreme point of the unit ball B(X). Vlasov [18] (seedso [14, Theorem
2]) showed tha X" is grictly convex if and only if the union of any unbounded
nested sequence of balsin X is dther the whole of X or an open afine haf-space.

Definition 1.1. A sequence fBn = B(Xn;rn)g of open bdlsin X isneged if
foraln, 1, Bn l Bp+i.
A nested sequence fB, = B(Xp; 'n)g of balls in X isunbounded if rp ™ 1.

In [4], we observed that locdly Vlasov's theorem is actually a consequence of
the fact that if X" isstrictly convex, then every point of S(X®) is arotund point
of B(X") —anoction drictly sronger than extreme points

Definition 1.2 [8]. Let X be a Banach space. We say that x 2 S(X) isa
rotund point of B(X) (or, X is rotund at x) if kyk = k(X + y)=2k = 1 implies
X=Yy.
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Remark 1.3. Clealy, every rotund point of B(X) is an extreme point, indeed
an exposed point of B(X). But the converse is not generally true. For example, no
extreme point of B("1) or B("1) is arotund point of B("1) or B("1). However,
if X isstrictly convex, then every point of S(X) isa rotund point of B(X).

Observe that x is not a rotund point of B(X) if and only if there existsz & 0
auch that kx + ,zk =1 for all , 2 [0;1]. We will then say that x is not rotund in
the direction of z. In case X is not rotund in both the directions of z and j z, tha
is if kx 8§ zk =1 for some z & 0, then X fails to be an extreme point as well.

A dassicd result of Taylor [17] and Fogud [7] showed tha X° is strictly
convex if and only if every subspace Y is a U-subspace of X.

Definition 1.4. A subspaceY of aBanach space X is said to be aU -subspace
of X if eechy® 2 Y ® has a unique Hahn-Banach (i.e., norm preserving) extension
in X",

X is Hahn-Banach Smooth if X is an U -subgpace of X ™.

U -subspaces are gudied in [ 14] and [15]. They refer to them as subspaces with
the Property U in X. Our terminology is borrowed from [6]. In particular, U-
ubspaces have been characterized in [14] in terms of unbounded nested sequence
of bdls.

In[3], we observed that locdly the Taylor-Fogue Theorem is dso a consequence
of properties of rotund points.

Rotund points were introduced in [8] and, in fact, aversion of Theorem 2.1 is
proved there. The results are reproduced also in [9]. It israther surprising that the
notion of rotund points have not receved the atention it deserves

In this survey artide, we explore various natural situations where the results
about strict convexity of X* like Vlasov's Theorem or Taylor-Foguel Theorem are
actud ly seen to be locdly consequences of properties of rotund points.

2. LocaL ResuLTs

We begin with a direct proof of the locd version of Vlasov's Theoremin [4],
which brings out the essential features and smplicity of the argument.

Theorem 2.1. Let X be a Banach space. Then x° 2 S(X") isa rotund point
of B(X") if and only if for every unbounded nested sequence fBng of balls such
that x® is bounded below on [Bn; [Bn is an affine half-gpace determined by x".

Proof. Let TBn = B(Xn;rn)g be an unbounded nested sequence of bdlsin a
Banach space X, and let B = [Bn. Suppose B 6 X. Let

A =fx" 2 5(X") : x® is bounded bd ow on Bg:
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Then N
B = fx 2 X : X*(x) > infx*(B)g;

X" 2A
and it is easy to show that the set A is a convex subset of S(X®).

Now, if x® is a rotund point of B(X"), then the only convex subset of S(X7)
that contains x” is the gngleton fx°g. Thus if x° 2 A, then A = fx°g and B is
an affine hdf-space.

Conversdy, supposethereexistsy® 2 S(X”)nfx"g suchthat z° = (X" +y")=2 2
S(X9).

Let fxng i B(X) besuch tha (x° +y°)(Xn) ¥ 2. Then, in fact, X°(xn) ¥ 1
and y°(xn) ¥ 1. P

Choose a sequence fng such that 2, > 0 forall nand = =, +, < 1. Passing
to a subsequence if necessary, we may assume xX”(Xn) > 1j 4 andy®(Xn) > 1j #n.

Lea By =B( xj;n). Cealy fBnhg isan unbounded nested sequence of bdls
i1
And, for any n bl 1,

b~
-

X X
inf X" (Bp) = X" Xi in=ji [1iX&)]>i >l
And similarly, infy®(Bn) > j 1. Hence, X" 2 A, but A & TX°g. [ ]

Remark 2.2. Observe that our proof does not use smoothness of two-dimens ond
quotientsasin [8] or [18]. Nor does it use the Taylor-Fogud Theorem as in [14].

Definition 2.3. Let X be a Banach space.
(@) We say that x 2 S(X) is
(i) an LUR (resp. wLUR) point of B(X) if for any fxag u B(X), the
condition ° °

OX +XO
. o Xn o
|Inmo o=1

implies lim x, = x (respectivey, w-limx, = X).
(if) an almog LUR (ALUR) (resp. weakly ailmost LUR (WALUR)) point of
B(X) if for any fxhgp B(X) and fx7,g p B(X"), the condition
W 1

Xn + X

Ilnrpllrr]n Xm =1
implies lim x, = x (respectivey, w-limx, = X).

We say that a Banach space X has one of the above properties if every point
of S(X) has the same property.
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(b) Wesay that x” 2 S(X") isaw*-ALUR point (respectively, w*-wALUR point,
w*-nALUR point) of B(X") if for any fxpgu B(X") and fxmg 1 B(X),
the condition

)l

(xm) =1

H o

o]
n+X

lim lim
m n
implies w*-limxp, = x° (regpectively, w-limxy, = x°, (norm-)limxg = X°).
We actually have proved in [4]

Theorem 2.4. Let X be a Banach space. For X" 2 S(X?); the following are
equivalent:

(8 x® isarotund point of B(X");
(b) x* isaw*-ALUR paint of B(X");

(©) for every unbounded nested sequence fBng of balls such that x” is bounded
below on [By; if for any fyng p S(X"); the sequence finfy,(Bn)g is
bounded below; then w* limyp, = x°;

(d) for every unbounded nesed sequence fB,,g of balls such that x° is bounded
below on B = [Bp; if y° 2 S(X") is also bounded bedow on B; then
yD — XD,

(e) for every unbounded nested sequence fB,g of balls; if x® is bounded bdow
on B = [By; then B is an affine half-gpace determined by x".

And hereis adirect proof of the local version of Taylor-Fogud Theorem as in
[3].

Theorem 25. Let X be a Banach space. Then x° 2 S(X*) isa rotund point
of B(X") if and only if for all subspace Y p X such that kx®jy k = 1; x* isthe
unique Hahn-Banach extension of x"jy to X.

Proof. Let Y p X be such that kx’jyk = 1. If x°jy has another norm
preserving extension y* to X, then clearly, ky"k = k(x" + y*)=2k = 1.

For the converse, we follow the arguments of [7]. Suppose there exists y° 2
S(X®)nfx"g such that (X" +y™)=2 2 S(X"). Le Y =fx 2 X : x"(X) = y* (X)g.
It clearly suffices to show that kx®jyk = 1.

Let fxng 1 S(X) be such that (X® +y®)(Xn) ¥ 2. Then, infact, X*(xn) ¥ 1
and y"(Xn) ¥ 1. Let xp 2 X besuch that (X" j y")(Xo) = 1. Then for each
N, 1, Xn =Yn +@®pXo, Whereyn, 2Y and®pn = (X° j y°)(Xn) ¥ 0. It follows

5

that kynk ¥ 1 and x"(yn) ¥ 1. This completes the proof. [ |
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We actudly have proved in [3]

Theorem 2.6. Let X be a Banach space. For x® 2 S(X7); the following are
equivalent:

(@) x" isarotund point of B(X"™);
(b) for all subspace Y pu X such that kx®jy k = 1; any; and hence all; of the
following conditions holds:
(i) x* is the unigue Hahn-Banach extension of x"jy to X;
(ii) if Xp 2 Y; then

supfx®(y) i kxoj yk:y2Yg=inffx’(y) +kxoj yk:y2Yg;

(iii) if xo 2 Y and X" (xg) > ® (respectively; x°(Xp) <®) for ome® 2 R;
then there exigs a dosed ball B in X with centrein Y such that xo 2 B
and inf x*(B) > ® (respectively; inf x°(B) < ®);

(iv) if fxgg p S(X") is a net such that limg X3 (y) = x°(y) for all y 2'Y;
then w* i limxg = x%

(V) if Bxag 1 S(X?) is a sequence such that limy Xj(y) = X°(y) for all
y 2Y; then w” limxp, = x°.

Propostion 2.7. Let X be a Banach space. For x® 2 S(X"); the following
are equivalent:

(a8 x° isarotund point of B(X®);

(b) for all subspace Y p X such that kx®jyk = 1; xjy is a rotund point of
B(Y?);

(c) for all separable subspace Y p X such that kx®jy k = 1; x"jy is a rotund
point of B(Y °).

Corallary 2.8. Having a drictly convex dual is a separably determined prop-
erty. That is for a Banach space X; X" is strictly convex if and only if for all
separable subspaces Y p X; Y ? isstrictly convex.

This observation gppears to be new.

A recent reault of [10] shows that a Banach space X is %-fragmentebleif every
X 2 S(X) is, in our terminology, a rotund point of B(X"?). And they asked to
characterize this property. As a consequence of Theorem 2.4, we also observe in
[4, Corallary 8] the following

Theorem 2.9. Let X be a Banach space. For x 2 S(X); the following are
equivalent:
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(@ xisarotund point of B(X™);
(b) x is a w*-ALUR point of B(X™);
(% x is a WALUR point of B(X);

(c) for every unbounded nested sequence fBg of balls in X* such that x is
bounded bdowon [By; if for any fyy’g g S(X™); the sequence finf y;" (Bp)g
is bounded bdow; then w® limyg® = Xx;

(c") for every unbounded nested sequence fBZg of balls in X® such that x is
bounded below on [By,; if for any fyng i S(X); the sequence finf y,(Bj)g
is bounded bdow; then w-limy, = X;

(d) for every unbounded nested sequence B g of balls in X" such that x is
bounded beow on B® = [By; if any x* 2 S(X"") is also bounded below
on B”; then x = x"%;

(e) for every unbounded nested sequence fBJg of balls in X®; if x is bounded
below on B® = [Bp; then B® is an affine half-space determined by x.

3. More oN RoTuND POINTS
We start with an dementary characterization of rotund points.

Definition 3.1. Thedudity mapping D for a Banach space X is the set-vaued
map from S(X) to P (S(X?)) defined by

D(X) =fx" 2S(X") : x’(x) =1g; x2 S(X):
Lemma 3.2. Let X be a Banach gpace. x 2 S(X) isa rotund point of B(X)
if and only if x is exposed by every x* 2 D(X).

Corollary 3.3. Let x 2 S(X) be an exposed point as wdl as a smpoth point
of B(X). Then x is a rotund point of B (X).

Another way to emphasize the difference of rotund points and extreme points is
via the duality.

Proposition 3.4. Let x 2 S(X); x® 2 D(x). Consider the following sate-
ments:
(& X" isarotund point of B(X"),
(b) x is a smooth point of B(X),
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(¢) x is an extreme point of B(X").

Then (2) ) (b) D (c) and none of the converseistrue in general.

Propostion 3.5. Let X be a Banach space. For x 2 S(X); the following are
equivalent :

(@) xisaWwALUR point of B(X);

(b) x is w*-exposed in B(X"?) by every x® 2 D(X);

(c) for every x* 2 D(x); w*-slices of B(X"") determined by x* form a local
base for (B(X""); w?) at X;

(d) for every x® 2 D(X); slices of B(X) determined by x* form alocal base for
(B(X); weak) at x;

(e) for every x” 2 D(x) and for any fxng p S(X); if X’(Xxn) ¥ 1; then
w-limx, = X.

Definition 3.6. Let K u X be a closed bounded convex sa. A point x 2 K
is sad to be a point of continuity (PC) of K if x is a point of continuity of the
identity map from (K; w) to (K;k ¢k).

Corallary 3.7. Let X be a Banach space. For x 2 S(X); the following are
equivalent :

(@) xisan ALUR point of B(X);
(b) x isawWALUR point aswdl asa PC of B(X);

(c) For every x° 2 D(x); for any fxng b S(X); if x*(xn) ¥ 1; then limx, =
X,

(d) x is srongly exposed in B(X) by every x” 2 D(X);

(e) for every unbounded nested sequence fBpg of balls in X® such that X is
bounded below on [By,; if for any fyng u S(X); the sequence finf y,(Br)g
is bounded bdow; then limy, = x.

Remork 3.8. Clearly, if x isan ALUR point of B(X), then x is a rotund point
as wdl as a PC of B(X). Is the converse true? Notice that it would suffice to
show that if x is arotund point as wel as a PC of B(X), then x isa rotund point
of B(X""). Recall that if x is an extreme point as well as a PC of B(X), then x
is an extreme point of B(XX"%) [13]. On the other hand, if X is an exposed point as
wdl as a PC of B(X), then X is not necessarily an exposed point of B(X"%) [1].
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Clearly, an ALUR Banach space is drictly convex as well as Kadec and therefore
has a LUR renorming. |Is the same true of WALUR speces?

Talking of renormings, it is easy to seetha "1 or 9 sums of nonzero Banach
gpaces cannot have any rotund points. It follows tha every Banach space of dimen-
son , 2 hasarenorming that lacks rotund points. Contrast this with the fact that a
Banach space has the RNP if and only if the unit bal of every renorming contains
a strongly exposed point. It dso follows that having rotund points is not a three

goace property.

4, STRAIGHT NESTED SEQUENCE OF BALLS

Definition 4.1. An unbounded nested sequence of bdls fB(Xn; rm)g in X is
called straght if there exist x 2 S(X) and ., > 0 such that Xn = ,nX, N 2 N.
Such x is cdled the direction of this sequence.

Definition 42. x 2 S(X) is cdled a smooth (res., very smooth, Fréchet
snooth) point of B(X) if for every x* 2 D(x) and fx;gp B(X"), the condition
limn, x5 (X) = 1 implies w*-lim,x, = X* (resp. w-limpx;, = Xx°, limp, X3, = x°).
X is said to be smooth (resp. very smooth, Fréchet smooth) if every point of S(X)
is a anooth (reg. very smooth, Fréchet smooth) point of B(X).

Smooth, very smooth, Frechet smooth points of B(>X) can be characterized in
terms of straight unbounded nested sequence of bdls similar to Theorem 2.4. This
was obtained in [3].

Theorem 4.3. Let X be a Banach ace. For x 2 S(X); the following are
equivalent :

l. (8 x isa smooath point of B(X);

(b) for every straight unbounded nested sequence fBng of balls in the
direction of x; if for any x°; yp, 2 S(X®); x* is bounded below on [Bn
and the sequence finf y;,(Bn)g is bounded below, then wa limyp, = x%;

(c) for every straight unbounded nested sequence fBnhg of balls in the
direction of x; if for any x*;y® 2 S(X"); both x° and y* are bounded
below on [Bp; then x* =y~

(d) for every straight unbounded nested sequence fBnhg of balls in the
direction of x; B = [B,, is either the whole of X or an affine half-
spacein X.

[l. (&) x isa very smooth point of B(X);
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(b) for every draight unbounded nested sequence fBhg of balls in the
direction of x; if for any x*;yn 2 S(X"); x® is bounded below on [Bn,
and the sequence finf y,(Bn)g is bounded bdow, then w-limyp = x7;

(c) for every straight unbounded nested sequence fBR g of balls in X®®
in the direction of x; [By’ is dther the whole of X™ or an affine
half-space in X™°.

1. (a) x isa Fréechet smooth point of B (X);

(b) for every straight unbounded nested sequence fBng of balls in the di-
rection of x, if for any x°;y, 2 S(X"), X® is bounded bdow on [Bn
and the sequence finf y, (Bn)g is bounded below, then limyy, = x°.

Propostion 4.4. Let X be a Banach space. For x 2 S(X); the following are
equivalent :

I. (a) x isa WALUR point of B(X);

(b) for every dgraight unbounded nested sequence fB7g of ballsin X such
that x is bounded bdow on [ B}; if for any fyng u S(X); the sequence
finf y,(Bp,)g is bounded below, then w-limy, = x.

II. (a) x isan ALUR point of B(X);

(b) for every straight unbounded nested sequence B g of ballsin X® such
that x isbounded below on [B,; if for any fyng g S(X); the sequence
finf y,(Bp,)g is bounded below; then limy, = x.

Definition 45. A subsat B p S(X") is a boundary for X if for every x 2
S(X),B\DX) €& ;.

Corollary 4.6. Let X be a Banach space.

I. (&) X iswALUR if and only if every x* 2 D(S(X)) is a smooth point of
B(X"). In particular; if X is smooth; then X is WALUR.
(b) X is ALUR if and only if every x® 2 D(S(X)) is a Fréchet smooth
point of B(X"). In particular; if X" is Fréchet smooth; then X is
ALUR
II. (a) Ifrotund points of B(X") form a boundary for X (in particular; if X*
is rotund); then X is smooth.
(b) If WALUR points of B(X"®) form a boundary for X (in particular; if
X" is WALUR); then X is very smooth.
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(©) If ALUR points of B(X") form a boundary for X (in particular; if X"
is ALUR); then X is Fréechet smooth.

Remark 4.7. If evary x° 2 D(S(X)) isa very smooth point of B(X"), then
what is the exact rotundity condition that we get in X? We will answer this at
the end of the next section. Clearly that would be a notion between wALUR and
ALUR. Observe that the condition X" is very smooth already implies the reflexivity
of X and therefore, we have X" isvery smooth if and only if X is rotund (WALUR)
and reflexive

5. EXTENDING VLASOV'S THEOREM

Starting from Vlasov’sresult, Sullivan [ 16] introduced astronger property, called
Property (V) (cdled Vlasov Property in [5]). The following reformul aion of the
definition comes from [5, Proposition 3.1].

Definition 51. A Banach space X is said to have the Vlasov Property, if
for every unbounded nested sequence fBg of balls and x°, yp, 2 S(X7), if x°
is bounded below on [By,, and the sequence finfy;(By)g is bounded below, or,
edificdly, if there exists ¢ 2 R such tha

(@] x®(), c foral b2[Bn,
2 yr() , c foral b2Bn; n- K,
then w-limyp, = x°.

Let us observe that if fy, g sdtidfies (2) and X* is a duger point of fy, g in any
compatible vector topology on X°, then x° saisfies (1).

In [16], it is shown that X has the Vlasov Property if and only if X is Hahn-
Banach Smooth and X" is strictly convex. In[2], this characterization was used to
show that the Vlasov Property is equivalent to w*-ANP-1I’.

Definition 5.2. (@ A subsst © of B(X") is cdled a norming set for X if
kxk = sup x°(x) for dl x 2 X.
X 20
(b) A sequence txng in B(X) is sad to be asymptoticaly normed by © if for
any " >0, theeexigssax® 20 and N 2 N such that x*(xn) > 1 " for
aln, N.

(© For - =1, 11, Il or 111, a sequence fxng in X is said to have the property -
if
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I. fXng is convergent,
II. fXng has a convergent subsequence,
1. fxng is weakly convergent,
1. fxng has a weakly convergent subsequence.

(d) For - =1, 11, 11" or 1ll, X is said to have the asymptotic norming property -
with respectto© (O-ANP--), if every sequencein B (X) tha i sasymptotically
normed by © has property - .

(e) A seguence fxpg in X® is said to have the property IV if fXpg is w*-
convergent.

(f) For - =1, 11, 1% Il or 1V, X is said to have the w*-ANP--, if every sequence
in B(X") that is asymptoticaly normed by B(X) has property - .

Remark 5.3. The original definition of ©-ANP-11I was different. The equiva
lence with the one above was established in [11, Theorem 2.3].

For various geometric notions rdated to w*-ANPs refer to [11, 12]. The ©-
ANP-1° and w*-ANP-I1 were introduced and studied in [2]. The w*-ANP-V is
new. In particular, we recdl the following result from [11, Theorem 3.1] and [2,
Theorem 3.1]

Theorem 5.4. A Banach sace X
(8 has w*-ANP-1 if and only if X* is strictly convex and (S(X");w") =
(S(X®); k ¢k).

(b) has w*-ANP-11 if and only if (S(X®); w®) = (S(X®); k ¢K).

(c) has w*-ANP-11° if and only if X® is strictly convex and (S(X");w?) =
(S(X®); w).

(d) has w*-ANP-II1 if and only if (S(X°);w™) = (S(X”); w) if and only if X is
Hahn-Banach smooth.

Observethat in the definition of the Vlasov Property, if we replace “w-limy;, =
x™" by “w*-limyp = X" then by Theorem 2.4, we simply get X" is strictly convex.
It was observed in[5] that if wereplace it by “limy;, = X" then we get w*-ANP-I.
Indeed, as observed in [5], if we replace it by fyng has property -, then for - =
L, 1% or IV, we get the correponding w*-ANPs. But for - = 1l or Ill, we do
not get anything new. Indeed, strict convexity of X" remans. So we need some
modification, as was considered in [5].

Definition 5.5 [5]. A Banach space X has property V-- (- =1, II, 1%, Il or
IV), if for every unbounded nested sequence TBnrg of bdls, and fypg p S(X®) if
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the sequence finf yn(Bn)g is bounded bdow, i.e, Condition (2) in Definition 5.1
is satisfied, then fySg has property - (- =1, 11, 1%, 111 or 1V).

In [5], the authors show that the above “Vlasov-like” Properties are equivalent
to thew*-ANPs by observing that if for some unbounded nested sequence TBnhg of
balls, and fy,g p S(X?), the sequence finf y; (Bn)g is bounded below, then fysg
is asymptotically normed by B(X). In particular, they show

Theorem 5.6 [5, Theorem 3.9]. A Banach space X has w*-ANP-- if and only
if X hasV-- (- =1, 11, 1" or 11).

We observe in [3] that V-IV and w*-ANP-IV are alo equivalent and, as ex-
pected, equivdent to the strict convexity of X®. That is,

Proposition 5.7. For a Banach space X; the following are equivalent:
(& X hasw*-ANP-V;
(b) X hasV-IV;
() X* isstrictly convex.

In attempting to localize these properties, we observe that the formulation of the
Vlasov Property is readily localized as: x® 2 S(X®)isaV-- (- =1, I’ or IV)
point of B(XX?), if for every unbounded nested sequence fB,g of bdls such that x°
stisfies (1), if for any fypg u S(X®), (2) is stidfied, then y;, ¥ Xx° in w*, weak
or norm topology, respectivey. From Theorem 2.4 again, a V-1V point is simply
arotund point of B(X"®). Laer we will identify V-l and |1’ points as respectively
w*-nALUR and w*-wALUR points of B(X"). But again Smilar locdization for Il
or 11l does not work. We can get an alternative locdizaion for Il via w*-w PCs
But localization for 1l gppears to be much more difficult.

We now give a reformulation of rotund points which makes the role of strict
convexity of X® in the discussion on w*-ANP more transparent.

Theorem 5.8. Let X be a Banach space. For X" 2 S(X?); the following are
equivalent:
(@ x" isarotund point of B(X");
(b) for any fxpgp B(X?); if F(x;+x%)=2)gis asynptotically normed by B (X);
then w*-limx}, = x°.
It follows the following

Proposition 5.9. Let X be a Banach space. For x 2 S(X); the following are
equivalent:
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I. (a) x isa WALUR point of B(X);

(b) for any fxng u B(X); if f(xn + X)=2)g is asymptotically normed by
B(X"); then w-limx, = x.

II. (a) x isan ALUR point of B(X);

(b) for any fx,g u B(X); if f(x, + X)=2)g is asymptotically normed by
B(X"); then limx, = x.

Definition 5.10. Let K p X" be adosed bounded convex set.

(@) A pointx® 2 K issaidto beawesk* point of continuity (w* PC) (respectively,
weak*-weak point of continuity (W*-w PC)) of K if x* isapoint of continuity
of the identity map from (K; w”) to (K;k ¢k) (regectively, (K; w)).

(b) A point X" 2 K is said to be a weak* point of sequentid continuity (w* seq
PC) (respectively, wesk*-weak point of sequentid continuity (w*-w seq PC))
of K if fxpg p K and w*-limx, = x° implies limx, = x° (respectively,
w-limxg, = x7).

The Taylor-Fogud Theorem says that X" is drictly convex if and only if every
subgpace Y of X is aU-aubspace of X, while X is Hahn-Banach Smooth if and
only if X is a U-subgpace of X"°. It follows tha X" is strictly convex and X
is Hahn-Banach Smooth if and only if every subgpace Y of X is a U-subspace of
X" The following locd version of this phenomenon was obtained in [3].

Theorem 5.11. Let X be a Banach space. For x* 2 S(X"); the following are
equivalent:

(a) x° is arotund point of B(X®) aswel asa w*-w PC of B(X");
(b) x" isarotund point of B(X") aswdl as a w*-w seq PC of B(X");
(c) for every unbounded nested sequence fBng of balls in X such that x” is

bounded below on [Bp,;, if for any fypg u S(X®); the sequence finf y3(Bn)g
is bounded bedow; then w-limyp = x7;

(d) for every unbounded nested sequence fB;°g of balls in X" with centres in
X auch that x° is bounded bdow on [Bp?; if any x™® 2 S(X™) is also
bounded below on [By"; then x**% = x*;

(e) for every unbounded nested sequence fB; g of balls in X"® with centres in
X such that x* is bounded below on [B*; [B5" is an affine half-gpace in
X" determined by x7;
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(f) x* isaw*-wALUR point of B(X");

(9) for all subspaceY p X suchthat kx®jy k = 1; any of the following conditions
holds.

(i) x® isthe unigue Hahn-Banach extension of x"jy to X"°;
(i) if fxggp S(X") is a net such that limg Xg (y) = x(y) for all y 2'Y;
then w-limxg = x;
(iii) if Ao S(XT) is a sequence such that lim, x;(y) = x°(y) for all
y 2 Y; then wlimxp = x°.

By Theorems 2.4 and 5.11, we have the following :
Corollary 5.12. Let X be a Banach space. If X" 2 S(X") is a rotund point
of B(X""%); then x® isa rotund point of B(X") aswell as a w*-w PC of B(X").

In particular; if X°°® is strictly convex; then X® is grictly convex and X is Hahn-
Banach Smooth.

I's the converse of any of the above results true?

Remark 5.13. It follows that the wdl-known result that X"** drictly convex
implies X is Hahn-Banach Smooth [16] is again a consequence of properties of
rotund points of B (X"™).

Replacing the week topology by the norm topology in the aove Theorem, we
immediady obtan

Corollary 5.14. Let X be a normed linear space. For x° 2 S(X"); the
following are equivalent :
(@ x" isarotund point of B(X") aswell asaw* PC of B(X");
(b) x* isarotund point of B(X") aswell asa w* seq PC of B(X");

(o) for every unbounded nested sequence fBnhg of balls such that x® is bounded
below on [By; if for any fy g p S(X"); the sequence finfys(Bn)g is
bounded below, then limyp, = x°;

(d) xX* isaw*-nALUR point of B(X");

(e) for all subspaceY p X suchthat kx®jy k = 1; any of the following conditions
holds:

(i) if Ixggp S(X®) is a net such that limg X5 (y) = x°(y) for all y 2'Y;
then lim xg = x7;
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(i) if fxpg u S(X®) is a sequence such that limp xp(y) = X°(y) for all
y 2Y; then lim x, = x°.

We now answer the quedtion raised a the end of Section 4.
Corallary 5.15. Lea X be a Banach space. For x 2 S(X); the following are
equivalent:
(@ x isaWwALUR point of B(X) aswell asa w*-w PC of B(X");
(b) x isawALUR point of B(X) aswell asa w*-w seq PC of B(X");
(c) every x® 2 D(X) isa very smooth point of B(X");
d) for every x* 2 D(x); w*-slices of B(X"") determined by x® form a local
base for (B(X"?); w) at x;
(e for every x” 2 D(x) and for any fxp'g g S(X™); if x5 (x”) ¥ 1; then
wWHinxy® = x;
(f) for every unbounded nested sequence fBg of balls in X" such that X is
bounded below on [B}); if for any fy’g u S(X®"); thesequence finf y° (Bj)9
is bounded beow; then w-inmy® = x;
(9) for every unbounded nested sequence fB.""g of balls in X"™ with centres
in X such that x is bounded bdow on [B;™; [Br™" isan affine half-gpace
in X" determined by X;
(h) x isaw-wALUR point of B(X"?);
(i) for any fxp'g u B(X"?); if f(xy + x)=2)g is asynptotically normed by
B(X"); then w-limxyy = X°.
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