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MINIMAL MODELS OF ORIENTED 
GRASSMANNIANS AND APPLICATIONS 

GOUTAM M U K H E R J E E * — PARAMESWARAN SANKARAN** 

(Communicated by Julius Korbas) 

ABSTRACT. We construct the minimal models for the oriented Grassmann 
manifold Gn k of all oriented k dimensional vector subspaces of lRn and ver­
ify tha t they are formal. As an application we obtain a classification of real flag 
manifolds according to nilpotence, which was first established by H. Glover and 
W. Homer. We also establish a result of K. Varadarajan tha t the classifying space 
BO(k) is nilpotent if and only if k is odd. 

1. Introduction 

The purpose of this paper is to give an explicit description of minimal models 
of oriented Grassmann manifolds. The construction of minimal models of com­
pact simply connected homogeneous manifolds is well understood from the work 
of S u l l i v a n [15] and others. (Cf. [4], [7].) However, we have not been able 
to find explicit reference for the description, depending only on the parame­
ters n and k, 1 < k < n, of minimal model of an oriented Grassmann man­
ifold Gn k of oriented k-vector subspaces of R n . It is our hope that such a 
description will be useful in answering many questions about Grassmannians 
(oriented as well as unoriented). Using our description of the minimal model, 
we prove that Gn k is formal. Of course, this is a well-known result since 
the oriented Grassmann manifolds are Riemannian symmetric spaces (see [15; 
p. 326], [8; p. 158] and [9]). (Cf. Remark 2 below.) We apply our results to 
show that the action of the fundamental group of Gn k, the Grassmann mani­
fold of k planes in Rn, on nk(Gnk) is not nilpotent in case k is even. We 
deduce a result of H. G l o v e r and W. H o m e r that the real flag mani­
fold G(nl,... ,ns) = 0(^/(0^) x ••• x 0(ns)), n = J2 n{ is not nilpo-

l<i<s 
tent when one of the ni is even. We also obtain a new proof of a result of 

2000 M a t h e m a t i c s S u b j e c t C l a s s i f i c a t i o n : Pr imary 55P62, 55P99. 
K e y w o r d s : Grassmann manifold, flag manifold, rational homotopy theory minimal model, 
formality, nilpotence . 
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K. V a r a d a r a j a n that the classifying space BO(k) is nilpotent if and only 
if k is odd. 

We hope that our method of explicit construction and proof, more than the 
results themselves, will be of some interest. Our approach to nilpotence via the 
theory of minimal models is probably new. 

We now state the main result of this paper. Write k = 2s or 25 + 1 , n — k = 2t 
or 2t+ 1, 1 < s,t e Z , n > 2k. 

Let P denote the polynomial algebra R[pl,... ,ps], where each p• is homo­
geneous of degree |p 1=4,7 . Define homogeneous elements /i £ P of degree 4j 
by the equation (1 +px + • • • +ps)(l + hY + • • • + hj + •••) = 1 . Thus hj , j > 1, 
is a certain polynomial in pl,..., ps. 

Introduce elements ok, rn_k of degree k and n — k such that o\ = ps if 
k is even, ok = 0 if k is odd; Tn_k = 0 if n — k is odd, otherwise it is an 
indeterminate. Let A be the algebra got by adjoining ok, Tn_k to P. Note that 
A is a polynomial algebra in even degree generators. 

Let M := Mnk denote the commutative differential graded algebra over the 
reals defined as follows. Recall that commutativity is in the graded sense: for 
homogeneous elements u and v, uv = ( — l ^ l ^ W . 

Case 1: 
Let n = 2m, k = 2s, n — k = 2t, s > t. Let M = A[u0,v0,... ,vs_l], \vj\ = 
4(£ + j) — 1, 0 < j < s, \u01 = 2ra — 1. The differential d on M is defined as 
d(A) = 0, d(vj) = ht+j, 1 < j < s, d(v0) = ht - T2

n_k, and d(u0) = okTn_k. 

Case 2a: 
Let n = 2ra + 1, fc = 25, n — k = 2t + l, k < ra. Let M = A[vx,..., vs], where 
\Vj\ = *(t + J) ~ 1, d(vj) = ht+j, 1 < j < 5, d(A) = 0. 

Case 2b: 
Let n = 2ra + 1, A; = 2s + 1, n — k = 2t, k < ra. Define M = A[v0,v1,... ,vs], 
where |^-| = 4(t+j)-l, 0<j<s, d(A) = 0, d(v0) = ht-T

2
n_k, d(Vj) = ht+j, 

l<j <s. 

Case 3: 
Let n = 2ra + 2, A; = 2s + 1, n — k = 2t+ 1. Let M = A[v0,vx, ...,vs], where 
K-l = 4(t+j)-l, l<j<s, \v0\ = 2ra + l , d(.A) = 0, d(v0) = 0, d(^.) = ht+J, 
l<j<s. 

MAIN THEOREM. Let 2 < k < [n/2]. With notation as above, the commu­
tative differential graded algebra Mnk is the minimal model for the oriented 

Grassmann manifold Gn k . 
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The minimal model of Gnl = S ' n _ 1 , the (n — 1)-sphere, is well known 

(see [3]). Since Gnk = Gnn_k, the hypothesis that k < [n/2] is not a re­
striction. 

The paper is organized as follows: In §2 we recall a basic theorem needed in 
the construction of minimal models of homogeneous spaces. In §3 we prove the 
Main Theorem stated above and deduce the formality of the oriented Grassmann 
manifolds. In §4 we obtain results on nilpotence of flag manifolds (Theorem 6) 
and the classifying space for the orthogonal group (Theorem 7). 

2. Minimal Models of homogeneous spaces 

Let G be a connected compact simple Lie group. Let H be a closed connected 
subgroup of G. One has the following description of the minimal model of the 
smooth homogeneous manifold G/H. Let T C G be a maximal torus in G 
such that S := T C\ H is a maximal torus of H. Denote by W the Weyl group 
of G with respect to T and by TV' the Weyl group of H with respect to S. 
Let m = d imT, and let r = dim S. The group W acts on T and hence on 
the real cohomology algebra H* (BT\ R) of the classifying space of T which 
is a polynomial algebra over R in m generators each having degree 2. The 
IV-invariant subalgebra can be identified with the real cohomology algebra of 
BG. The cohomology algebra H* (BG\ R) is a polynomial algebra R[F X , . . . , Fm] 
in homogeneous elements F- having even degrees. (See B o r e l [2].) Similarly, 
H* (BH-, R) = R[x x , . . . , xr]. Let p: H* (BG] R) -» H* (BH; R) denote the map 
induced by the inclusion H C G. Let fi = p(Fi)1 1 < i < m. Now let C = 
C(G, H) denote the differential graded algebra (d.g.a) H*(BH; R)[ux,..., um], 
where \u{\ = \f{\ — 1, and the differential d is defined as d(H*(BH]M)) = 0, 
and d(i^) = f{, 1 < i < m. Note that since \ut\ is odd, graded commutativity 
implies that u{u- = —u-u^ and, in particular, that u2- = 0. 

THEOREM 1. 

(i) (H. Cartan) With notation as above, the minimal model MG/H of G/H 

is isomorphic to the minimal model of the d.g.a. ( C ( G , i f ) , d ) . 
(ii) (Cf. [15; p. 317, Example (ii), (v)].) The space G/H is formal if for some 

integer s, 1 < s < m, the sequence f1,...Js is a regular sequence in 
H*(BH; R), and the elements / 5 + 1 , . . . , fm belong to the ideal generated 
by fl, • • •, fs. 

A proof is sketched in [16; §4, Chapter 5]. 
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Remark 2. It is known that the sequence f1... , / m is a regular sequence in 
H* (BH\ R) when H is of maximal rank in G. Hence when H is of maximal 
rank, G/H is formal. See [16; Chapter 5, Theorem 4.16]. 

3. Minimal Model of Gnk 

In this section we prove the Main Theorem stated in the introduction. We 
apply Theorem 1 to the case G = SO(n), H = SO(k) x SO(n - k). Write 
n = 2m or 2m + 1, and k = 2s or 2s + 1, n — k = 2t or 2t + 1, m,s,t being 
integers. We shall assume that k > 2, since minimal models of spheres are well 
known. We take T to be the standard maximal torus wThich consists of elements 
' = [*i > • • • > U e SO(2m) C SO(n), tj G R, where 

t(e{) = cos(27r^.)ei + s i n ^ T r ^ e - ^ , 

*(c i+1) = " sin(27r^.)e. + cos(27rt j)e.+1, 

where i = 2j — 1, 1 < i < 2m. (Here the e{ denote the standard basis of Rn .) 
When n is odd or k is even, H is of maximal rank, m . When n is even and 
k is odd, S := H D T is of dimension r = s + t = m — 1. For w G W, and 
t = [£ l 3 . . . ,£ m ] G T , w • £ G T is obtained by a permutation of the £. and 
changing certain of the £ • to — t-. When n = 2m the number of sign changes 
is to be even. From this it is easy to compute the W-invariant subalgebra of 
H* (BT; R) = R [ ^ , . . . ,tm], |^. | = 2. Let P. denote the j th elementary symmet­
ric polynomial in t\,..., tm, and let vm = t1--tm. Then, if* (BSO(2m)\ R) = 
R[P X , . . . , P m _ x , crm], and H* (£SO(2m + 1); R) = R[P X , . . . , Pm]. Note that 
Pm = am G H*(B5'0(2m);R). The element ( - l ) r P r is the Pontrjagin class 
of the canonical n plane bundle over BSO(n)\ when n = 2m + 1 the (inte­
gral) Euler class of the canonical bundle is of order 2 and hence it vanishes in 
real cohomology (cf. [12]). The calculation of H*(BH;R) is similar. One has 
H*(BH]R) =R\pl,...,ps,ql,...,qvok,Tn_k], where ak = 0 (resp. a\ = ps) if 
k is odd (resp. even), and rn_k = 0 (resp. Tn_k = qt) when n — k is odd (resp. 
even). The restriction map p: H*(BG;R) -* H*(BH,R) is given by 

(i) p(Pr) = £ PiQj^'fr* l<r<s + t, 
i-\rj—r 

(... . . f < V T „ - f c = : 0 if (n,fc) = (2m,2a)> 
( H ) / , ( < T - ) = j 0 otherwise. 

(It is understood that p0 = q0 = 1.) 
It can be shown that when (n,k) = (2m, 2s) the elements 6, / 1 ? . . . , fm_l 

form a regular sequence in the ring R := I7*(M;R). To see this, we note 
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that, R/(6) is isomorphic to the polynomial ring over R in plt... ,p s , qx,..., qt 

modulo the ideal generated by psqt = fm. (This is because 02 = psqt-) Since, 
by [3; Proposition 23.7], /-_,..., fm forms a regular sequence in the polynomial 
algebra R\px,... ,p5, qx,..., qt] it follows that 0, fv . . . , / m - 1 forms a regular 
sequence in H*(BH;R). Theorem l(ii) shows in particular that the space Gnk 

is formal when n and k are both even. Similarly it is seen that /-_,..., fm is 
a regular sequence in H* (BH; R) when n = 2ra + 1. Tims we conclude that 
Gn k is formal when n is odd or k is even. Note that H is of maximal rank 

in G except when n is even and k odd. Therefore the formality of Gnk when 
n is odd or k even follows from Remark 2. In any case, as remarked in the 
introduction, Gn k is formal since it is a Riemannian symmetric space. We shall 

verify formality of Gn k directly for all values of n and k. 
Let P = R\px,... ,ps] be a polynomial algebra, where \pA = 4j, 1 < / < 5, 

and let hr G P be defined by (l + /i1+/i2 + -•- + /ir + -• •) = ( 1 + ^ + - • - + P J " 1 , 
where \hA = 4j. We have the following lemma: 

LEMMA 3. For any non-negative integer t, the elements ht+1J... >ht+s form 
a regular sequence in the polynomial algebra P = R\p1,... , p j . 

P r o o f . Let P = R\px,..., ps]. When 8 = 1, the lemma is obviously true 
for any t. Assume inductively the statement holds for any t when s is replaced 
by s - 1. 

By the induction hypothesis, for any t, ht+1,..., ht+s_1 is a regular sequence 
in P := P/(ps) = % ! , . . . ,p 5 _J . Equivalent^, ht+1,..., ht+s_1,ps is a regular 
sequence in P . In particular, ps mod (ht+1,..., ht+s_1) is not a zero divisor in 
P/(ht+v..., -Vs-i) • N o t e t h a t ht+s + ht+s-iPi + * *' + htPs = 0 in P . Hence 
ht+s = htps modulo the ideal (ht+1,..., ^ t + s - 1 ) C P . 

When t = 0, it is clear that the ideal (ht+1,..., ht+s _x) = (p1,... ,ps_-_) and 
/i t + a EE ̂ 0p5 = ps is clearly not a zero divisor in P/(ht+1,..., ht+s_1) in this 
case. Assume that t > 1 and that the lemma holds when t is replaced by t — 1. 
Hence ftt,..., Z^+s^ is a regular sequence. It follows that ht is not a zero divisor 
in P/(ht+1,..., /**+,_!>. It follows that ht+s = htps modulo (hi+1,..., ht+s_x) 
is not a zero divisor in P/(ht+1,..., / i t + 5 - 1 ) . The lemma follows. • 

We shall now establish the Main Theorem stated in the introduction. 

P r o o f of M a i n T h e o r e m . L e t 2 < f c < [n/2]. 
Case 1: 
Let n = 2ra, k = 2s, n — fc =- 2t, 1 < s < t. In this case the commuta­
tive d.g.a. Cntk := C(SO(n), SO(k) x SO(n- k)) is F ( M ; I ) [ w 0 , . . . , V l ] , 
where d(H*(29H;R)) = 0 and dur = fr for 1 < r < ra, d(M0) = 5. Thus, 
writing um = 9 • u0, one has dum = 6 • du0 = 62 = psqt =: / m , and hence 
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(l + du1 + ... + dum) = (l + f1 + ... + fm) = (l+p1 + ...+p3)(l + ql + --- + qt). 

Writing (1 + h1 + ...) = (l+p1...p3)-\ one has hr = _T ff)(-l)'a'pa, 
l | a | l = r 

where a = ( a _ , . . . , a3) is a sequence of non-negative integers, | |a| | = ___) iai, 

Ial = _Ca»> ( a ) denotes the multinomial coefficient | a | ! / (a x ! • • •<-*_!), a n d P a 
i 

denotes the monomial \\ p?{. One has the following inhomogeneous equation 
-<«<* 

in Cnk: 1 + qx + • • • + qt = (1 + du_ + • • • + du m ) ( l + /i_ + • • • ) . In particular 
we obtain, for 1 < j < s, 

ht+j = ~(ht+j-i dui + ""' + hi dut+j-i + dut+j) • 

When n — k is even, gt = r ^ ^ and hence 

/i t - Tl_k = -( / i t__ du_ + • • • + d u t ) . 

Let A = R[P i , . . . ,P . - i^ fc^n- fc ] C fT*(B.ff;R). Let A 4 M = -4[u0 , t ;0 , . . . 
•••>va-_] denote the commutative d.g.a. over R, where |v.j = | ^ t + J | — 1 = 
4(t + j) - 1, 0 < j < s, and |u0 | = |0| - 1 = 2ra - 1. The differential d 
on Mnk is defined as follows: d(vj) = h t + J . , 1 < j < s, d(v0) = ht — r^_fc, 
d(u0) =akTn_k, and d(.A) = 0. Clearly Mnk is a free d.g.a. over R . 

Note that since t > s, / i t , • € A is decomposable for j > 1. Also, since 
p3 = crk, h3 e A is decomposable. It follows that Mn k is minimal as a d.g.a. 
over R . We shall prove that Mn k is a model for the d.g.a. Cnk. From The­
orem 1, it will follow that Mnk is a minimal model for Gnk. 

Let <\>: Mn k -» C n k be the _4-algebra homomorphism defined by <f>(u0) = u 0 , 
4>(vj) = -(ht_lJ_1u1+... + utH), l<j<s, <f>(v0) = - ( V 1 u 1 + --- + u t ) . Then 
<£ is a morphism of d.g.a.'s. Indeed, d(<f>(u0)) = d(u0) = 0 = <f>(0) = <j)(d(u0)), 
and, for 1 < j < _., one has d(<f>(vj)) = -d(ht_rj_1u1 + .«• + u t+J .) = 
-(ht+f-i dux + ..-+ d u t + i ) = fcl+i = 4>(hi+j) = </>(d(vj)), since d(hr) = 0 
as / i r e R[p_, . . . , p j C .A. Similarly, d ( # v 0 ) ) = ht - r* ,* = ^(d(v0)) . To show 
that the chain map <f> induces an isomorphism in cohomology, first observe that 
H*(Cnk,d) _. H*(Gnk;R). This is because (C n i k ,d) is a model for the space 
C n k (see Theorem 1). Alternatively, one applies a Koszul complex argument 
(cf. [11; Chapter XXI, §4]) and uses the fact that # , /_ , . . • , / m __ is a regular 
sequence to see that the cohomology of Cn k is H*(BH\ R) / (0 , / _ , . . . , / m __) = 
H* iPn fc!R) * U s i n S t h e relation ( 1 + / . + - • • + / m ) ( l + ' » 1 + - ' *) = ( 1 + 9 . + - ' •+<?_), 
we see that 0 = fr = _T Ptf; , 1 < r < <> in H*(BH;R)/(<TkTn_k, f^ . . . , / m _ _ ) 

«+>=r 
- II* (G„ i t ; R) • In particular, qj = hj for any j , l<j<t and r*_fc = qt = ht 
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in H*(BH;R)/(akTn_k,fv , / J . Hence 

-**(G„,fe;R) =%!,••• ,P , - i , ' t i , vJ / (Vi V . - i . V n - ^ - "T2) • 

Using Lemma 3, one sees that Tn_k, ht — Tn_k,ht+1,..., ht+8_1 and crk,ht — 
Tn_k,ht+1,..., ht+s_1 are regular sequences in A. From [3; Lemma 23.6] it fol­
lows that 6,Tn_k—ht,ht+1,...,hm_1 is a regular sequence in A. Again by ap­
plying a Koszul complex argument we obtain that 

H*(Mn<k,d) e. A/(Tl_k - hvht+1,...,hm_x,crkTn_k) 9. H*(Gny,R) . 

Under our identifications, the map (j) actually induces the identity map of 
H*(Gn k,R) . This proves that M k is quasi isomorphic to Cnk and hence 

it is the minimal model of G k in this case. 

Case 2: 
Let n = 2m + 1 = 2s + 2t + 1, k = 2s, or 25 + 1. We assume that fc < m 
(equivalently s < t with equality only if fc = 2s). In this case Cnk = 
H*(BH;R)[u1,...,um], where d(H*(BH;R)) =0, duj-fj, 1 < j < m.' 

Let A C H*(BH;R) be the polynomial algebra over R in generators 
P i r - . , P M , ^ (resp. Pi , . . . ,P5 ,Tn_fe) for fc even (resp.fc odd). Thus ps = ^ 
when fc = 25. 

Subcase (a): 
Let fc = 25. Let A t n fc = A ^ , . . . ,vs] be the d.g.a. over R, where 1^1 = 
| / i j + t | - l = 4 ( j + t ) - l and d ( ^ ) = ht+j, l<j<s, d(A) = 0. The free d.g.a. 
Mnk is minimal since the ht+J- are decomposable for j > 1. The A-algebra 
map (j) : Mnk -+ Cnk defined by <f>(Vj) = -(hj^^u^ + • • • + uj+t), l<j<s, 
is a morphism of d.g.a.'s. Also, the elements ht+j, 1 < j < s, form a regular 
sequence in A. Therefore arguing as in case 1 above, we conclude that (j) is a 
quasi isomorphism. Hence Mnk is a minimal model of Gn k. 

Subcase (b): 
Let fc = 25 + 1 . Let Mnk = -4[t>0,i'1,... ,-uJ be the commutative d.g.a. over 
R, where | ^ | = \ht+j\ - l = 4(t + j) - 1, 0 < j < s, and d(v0) = ht - T*_k, 
d(vA = ht+j, 1 < j < 5, and d(A) = 0. Since s < t, ht+- is decomposable 
for j > 0. Therefore Mnk is minimal. The A-algcbra map 6: Mnk —> Cn k 

defined by ^(Vj) = —(ht+J_lul + • • • + Uj), 0 < j < s, is a morphism of d.g.a. 
over R. Using the fact that ht — T^_k, hi+1,...,hm is a regular sequence in 
A = R\p1,... ,Ps,Tn_k], we conclude, as before, that Mn h is a minimal model 
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Case 3: 
Let n = 2ra + 2, fc = 2$ + l , n — fc = 2£ + l , 1 < 5 < t . In this case the 
subgroup SO(k) x SO(n — k) is not of maximal rank in SO(n). The c.d.g.a. 
Cnk has the description H*(JBH;E)[u1,... ,u m , i i 0 ] with | i* | = A(t + j ) — 1, 
|ii01 = 2ra + 1 = n — 1, and du- = / •, 1 < j < ra, and du0 = 0. 

Let A = P = % ! , . . . , p s ] C H*(BH;R). Let yVfnfc denote the d.g.a. 
A ^ , . . . , ^ , ^ ] , where \vj\ = A(t + j ) - 1, 1 < j < '5 , |u0| = 2ra + 1, 
d ( f ) = ^ J + t , 1 < j < «s, df0 = 0, and d(A) = 0. As before, Mnk is free 
and minimal. 

The A-algebra map </>: Mn k —r Cn k defined by 4>(v-) = u-, 0 < j < 5, is a 
chain map as can be verified as in Case 1. Note that the cohomology of Mn k can 
again be computed using the Koszul complex of A with respect to the sequence 
/ i t + 1 , . , . , / i t + s , 0 G A. Again using the fact that ht+1,... ,ht+s is a regular 
sequence, a simple calculation leads to: 

H*(Mny,R) = A[u0}/(ht+1,...,ht+s). 

This is also the cohomology of Cn k and as in Case 1, we see that 0 induces 

isomorphism in cohomology. Hence Mnk is the minimal model of Gn k. 
This completes the proof of the Main Theorem. D 

COROLLARY 4. The oriented Grassmannian Gn k is formal for all 1 < k < n. 

In particular all Massey products in H* (Gn k] R) vanish. 

P r o o f . First let n = 25 + 2t + 2, k = 25 + 1. With notation as above, 
note that the A-algebra map Mnk -> A[u0]/(ht+1,...,ht+s) = H*(Mny,R) 
defined by v0 i-> u0, v • i-> 0, 1 < j < s, is a map of d.g.a.'s where the differential 

on H*(Mn k]R) is defined to be zero. Hence Gnk is formal. 

The same argument as above shows that Gn k is formal for all parities of n 
and k. • 

COROLLARY 5. Let dimRv7rr(<5n^) cg)z R) =7 r r . 

(i) Let n = 2s + 2t, k = 2s} l<s<t. 
Then £ 7Trz

r = 1 + zn~l + z2s + z2t + zAt~l + £ (z^ + z 4 ^ ' ) " 1 ) . 
r>0 l < j < 5 

(ii) 
(a) Let n = 25 + 2t + 1, fc = 25, s<t. 

Tfen E v r = 1 + ^ + ^4(s+tH+ £ (z*i + z 4 ^ - 1 ) . 
r>0 l < j < 5 

(b) Let n = 2s + 2£ + 1. k = 25 + 1, s <t. 
Then £ frrz

r = 1 + z2t + zU~l + £ (*4j + £ 4 ( i + j ) _ 1 ) . 
r>0 l < j < s 

(iii) Let n = 2s + 2t + 2. fc = 25 + 1, 1 < 5 < t. 
Then £ nrz

r = 1 + zn~x + £ (z4^' + z 4 ^ ' ) - 1 ) . 
r>0 l < j < 5 
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_ P r o o f . This follows from the above description of the minimal model of 
Gnk and the fact that Homz(7rr(Gn k),R) is isomorphic to the r t h degree 
component of the graded vector space Mnk/V, where V denotes the ideal 
Mnk-Mnk of "decomposable elements". • 

4. Nilpotence of Grassmannians and related spaces 

Let X be a path connected topological space with base point x. Recall that 
A" is called nilpotent if the fundamental group 7r = 7r1 (A

r, x) of Ar is nilpotent 
as a group and all the higher homotopy groups of X are nilpotent as modules 
over the integral group ring Zrr. That is, denoting the augmentation ideal of ZTT 
by 7, Ar is nilpotent if and only if n is nilpotent and, for each n > 2, there 
exists an integer N = N(n) such that IN • 7rn(A, x) = 0. 

A path connected topological space Ar is said to be of finite Q-type if 
Hn(X]Q) is finite dimensional for all n > 1. If X is nilpotent, then X is 
of finite Q type if and only if HX(X; Q) and nn(X) ® Q are finite dimensional 
for all n > 2. When X is a nilpotent space of finite Q-type, one associates to 
Ar the minimal model Mx of the Sullivan-de Rham complex of X which is a 
c.d.g.a. over Q. The minimal model Mx contains all the rational homotopy 
information of X in this case. That is, Mx and MY are quasi isomorphic if 
and only if Ar and Y are of same rational homotopy type, where both X and Y 
are of finite Q-type. We refer the reader to [1; Chapter 2] for details. (See also 
[4; §9].) In case Ar is a smooth manifold, it is more convenient to work with the 
real homotopy theory via the minimal model of the de Rham complex of X. 

Let n j , . . . , ns be a sequence of positive integers, and let n = ^2 ni • Denote 
l<i<s 

by Ar = G(nx,..., ns) the flag manifold consisting of flags (V 1 5 . . . , Vs), where 
\] is an n{ dimensional vector subspace of Rn such that V{ ± V- if i ^ j , 
and \\ 0 • • • © Vs = Rn . The flag manifold X can be identified with the coset 
space 0(n)/(0(nx) x ••• x 0(ns)) so that it is naturally a smooth compact 
manifold of dimension ^ n{n •. When s = 2, it is identified with the Grass-

l<i<j<s 
mannian Gnni. The universal covering of the flag manifold is the oriented flag 

manifold Ar = G(nx,... , n j = SO(n)/'(50(71,) x • • • x SO(ns)), which consists 
of "oriented flags", that is, flags (V 1 ? . . . , Vs) together with orientations on each 
vector space V{ so that the direct sum orientation on ^ V{ = lRn coincides with 
the standard orientation on En ._The natural map p: X -> X that forgets the 
orientations on oriented flags of Ar is the covering projection. The deck transfor­
mation group is generated by the involutions a •, 1 < i < s, which reverse the 
orientation on zth and 5 th vector space in each oriented flag, and is isomorphic 
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to ( Z / 2 ) 5 - 1 . We note that, when n{ and ns are odd, a{ can be realized as 
multiplication on the left by the element A{ € SO(n), where A{ has, as a block 
diagonal matrix j th block down the diagonal the identity matrix of size n • if 
j ^ i,s and the zth and 5th block being negative identity matrices of sizes n{ 

and ns respectively. 
In this section we prove the following theorem: 

THEOREM 6. ( G l o v e r — H o m e r [6]) Let X = G(nx,... ,n3), s > 2, de­
note the real flag manifold. Then the following are equivalent: 

(i) all the n{ are odd, 
(ii) X is simple, 

(iii) X is nilpotent. 

THEOREM 7. (Varadarajan) The classifying space BO(k) is nilpotent if and 
only if k is odd. 

We need the following lemma (cf. [14; Chapter 7, §3, Lemma 7]). We shall 
denote the free homotopy classes from the n-sphere to Y by 7rn(F). Note that 
when Y is a simply connected space, nn{Y) may be identified with 7rn(F, y) . 

LEMMA 8. Let p: X —•> X be the universal covering projection of a path con­
nected finite CW complex, and let r > 2. Then p induces an isomorphism 
between TT (X) and 7rr(X,x), which is compatible with the action of the deck 
transformation group on nr(X) and that of TTX(X,X) on irr(X,x). 

P r o o f of T h e o r e m 6. 
(i) -==> (ii): Assume that all the n{ are odd. Since SO(n) is connected, 

maps induced on X by multiplication by elements of SO(n) are all homotopic 
to the identity map. In particular the at, 1 < i < s, are homotopic to the 
identity map of X. Since the a • generate the deck transformation group of the 
universal covering projection X —> X, it follows from Lemma 8 that the action 
of n1(X) = ( Z / 2 ) s _ 1 on any 7rr(X) is trivial and so the space X is simple-

It is evident that (ii) implies (iii). 
(iii) =-> (i): We will first assume that 5 = 2 so that X is the Grassmann 

manifold X = Gnn . For simplicity of notation let k = nx. Assume that at 
least one of the integers k,n—k is even. We will prove that X is not nilpotent. 
Indeed, let r be an even integer in the set {k,n — k}. We will prove that the 
action of the generator of TT1(X) = Z /2 on 7Tr(X)®zR has —1 as an eigenvalue. 

When r = n — k > k it will be convenient to denote by ar the element that 
was denoted Tn_k in §3. 

We first note that the deck transformation a := ax of the covering projection 

Gn k —r Gn k is not homotopic to the identity. In fact a reverses the orientation 
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on the canonical k-plane bundle over X = G , . When r is even, the Euler 
class ar of the canonical oriented r -plane bundle is not torsion and in real 
cohomology one has a*(ar) = —or. The map a induces an endomorphism a 
of the d.g.a. Mn k which is unique up to chain homotopy. The map a induces 
an involution [a], which depends only on the chain homotopy class of d, of 
the graded R-vector space MnkjV such that the following diagram commutes, 
where the vertical arrows are natural isomorphisms (cf. [5]). Here a* denotes 
the R-linear involution on Homz(7r r(Gn fc),R) induced by a. 

(M„,JVY -!=L> (M„:JVY 

I I 
Homz(7rr(Gnife),IR) - ^ - > Homz(7r r(Gn>fe),E) 

Note that by Corollary 5 the vector space Homz(7r r(Gn fc),R) is non-zero. In 
fact the class crr is not in the ideal V of decomposable elements of Mn k. Also 
[a](crr) = — crr since in de Rham cohomology a* maps the Euler class of the 
canonical r-plane bundle to its negative. Hence it follows that the —1 eigenspace 
of a*: Homz(7r r(Gn A;),R) —> Homz(7rr(Gn fc),R) is non-zero. It follows that 
— 1 is an eigenvalue for the action of the generator of the fundamental group of 
Gn,k o n *AGn,k) ® z R - H e n c e Gn,k i s n o t nilpotent. 

Now let s > 3 and assume without loss of generality that nx is even. 
One has a natural inclusion j : Y := G(nx,n2) —r X and a projection map 
q: X -> G{n^n2 + ••• + n8) =: Z. Explicitly, j(A) = (A,E2,...,E8) and 
q(\\,..., Vs) = Vl, where Er denotes the span of the standard basis vectors e t , 
nx-\ h nr_x + 1 <t <nx-\ \-nr. Note that qoj is the natural inclusion 
of Y into Z induced by the inclusion of R n -+ n - into Rn and hence induces 
an isomorphism of fundamental groups. Denote by f:Y—>Z a lift of q o j o p 

to Z := G n n i + n 2 , where p: Y := G n i + n 2 ? n i -> Y is the universal covering 
projection. The map / pulls back the canonical nx -plane bundle on Z to that 
on Y. Hence it maps the Euler class an (Z) to the class +an (Y). Replacing 

/ by / o a if necessary one may as well assume that /* (an (Z)) = ani (Y). As 
in the case when 5 = 2, using naturality properties of minimal models, one con­
cludes that the morphism of d.g.a. induced by / maps the class a (Z) G Mg to 

O~n (Y) 6 My • This implies that the —1 eigenspace for the action of n^Y) (via 
the isomorphism of fundamental groups induced by qoj) on Hom(7rn (Z),R) 
is non-zero. Hence the action of 7r1 (Y) via the monomorphism of fundamental 
groups induced by j on Hom(7rn (X),R) must have non-zero - 1 eigenspace. 
This clearly implies that the action of ^X(X) on 7r (X) is not nilpotent. • 
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R e m a r k 9. Theorem 7.2 of [10] can be readily applied to show that (iii) = > (i) 
once this is known for Grassmannians. Our proof, however, exhibits a higher 
homotopy group of X on which the action of the fundamental group is not 
nilpotent. Alternatively, one can deduce the same result from our result for 
Grassmannians using the second Claim in the proof of [10; Theorem 7.2]. We 
record, as a corollary of the the above proof, the following proposition for pos­
sible future reference. 

PROPOSITION 10. Let X = G(nv...,ns), s > 2. If n{ is an even integer, 
then itn.(X) is not nilpotent as a 7r1(X) module. 

P r o o f of T h e o r e m 7. Note that BO(k) — |J Gn k, where we regard 
n>2k 

Gn k as the subspace of G n + 1 k in the usual way, considering the vector space 
Rn as the subspace of Mn+1 consisting of those vectors with last coordinate 
being zero. The inclusion map in: Gn k —» BO(k) is an (n — k) -equivalence and 
hence, given any r > l , f o r n > k + r + l , the map in induces isomorphism of 
the r th homotopy groups. Also the action of the fundamental group of Gn k on 
nr(Gn k,x) is compatible with the action of the fundamental group of BO(k) 
on 7rr(BO(k), x) via the map induced by in. In particular if k is even, choosing 
r — k and n > 2k + 1, one sees from our proof of Theorem 6 that BO(k) is not 
nilpotent. 

When k is odd, one can always choose n to be even (in addition to n > 
k + r + 1) to conclude that the fundamental group of BO(k) acts trivially on 
nr(Gn k) for any r > 1. Hence we conclude that the space BO(k) is nilpotent. 
In fact we have shown that BO(k) is simple. D 
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