Mathematica Slovaca

Goutam Mukherjee; Parameswaran Sankaran
Minimal models of oriented Grassmannians and applications

Mathematica Slovaca, Vol. 50 (2000), No. 5, 567--579

Persistent URL: http://dml.cz/dmlcz/136790

Terms of use:

© Mathematical Institute of the Slovak Academy of Sciences, 2000

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must contain
these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
O with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz


http://dml.cz/dmlcz/136790
http://project.dml.cz

Mathematica
Slovaca

© 2000
Math. Slovaca, 50 (2000), No. 5, 567-579 shathomarical Institute

MINIMAL MODELS OF ORIENTED
GRASSMANNIANS AND APPLICATIONS

GOUTAM MUKHERJEE* — PARAMESWARAN SANKARAN**

(Commaunicated by Julius Korbas)

ABSTRACT. We construct the minimal models for the oriented Grassmann
manifold én,k of all oriented k£ dimensional vector subspaces of R™ and ver-
ify that they are formal. As an application we obtain a classification of real flag
manifolds according to nilpotence, which was first established by H. Glover and
W. Homer. We also establish a result of K. Varadarajan that the classifying space
BO(k) is nilpotent if and only if k is odd.

1. Introduction

The purpose of this paper is to give an explicit description of minimal models
of oriented Grassmann manifolds. The construction of minimal models of com-
pact simply connected homogeneous manifolds is well understood from the work
of Sullivan [15] and others. (Cf. [4], [7].) However, we have not been able
to find explicit reference for the description, depending only on the parame-
ters n_and k, 1 < k < n, of minimal model of an oriented Grassmann man-
ifold G i Of oriented k-vector subspaces of R". It is our hope that such a
descrlptlon will be useful in answering many questions about Grassmannians
(oriented as well as unoriented). Using our description of the minimal model,
we prove that Gn . is formal. Of course, this is a well-known result since
the oriented Grassmann manifolds are Riemannian symmetric spaces (see [15;
p. 326], [8; p. 158] and [9]). (Cf. Remark 2 below.) We apply our results to
show that the action of the fundamental group of G, ;, the Grassmann mani-
fold of k planes in R*, on m,(G,, ;) is not nilpotent in case k is even. We
deduce a result of H. Glover and W. Homer that the real flag mani-
fold G(n,,...,n;) = O(n)/(O(ny) x --- x O(n,)), n = Y mn; is not nilpo-

1<i<s
tent when one of the n, is even. We also obtain a new proof of a result of

2000 Mathematics Subject Classification: Primary 55P62, 55P99.
Key words: Grassmann manifold, flag manifold, rational homotopy theory, minimal model,
formality, nilpotence.
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K. Varadarajan that the classifying space BO(k) is nilpotent if and only
if k is odd.

We hope that our method of explicit construction and proof, more than the
results themselves, will be of some interest. Our approach to nilpotence via the
theory of minimal models is probably new.

We now state the main result of this paper. Write &k = 2s or 2s+1, n—k = 2t
or2t+1,1<s,teZ,n>2k.

Let P denote the polynomial algebra R[p,,...,p,], where each p; is homo-
geneous of degree |p;| = 4] Define homogeneous elements h; € P of degree 4j
by the equation (1+p1 ++p)A+h +---+h;+--)=1.Thus h;, j 21,
is a certain polynomial in p,,...,p,.

Introduce elements o, 7,_, of degree k and n — k such that o} = p, if
k is even, o, = 0 if k is odd; 7,,_, = 0 if n — k is odd, otherwise it is an
indeterminate. Let A be the algebra got by adjoining o,, 7,,_, to P. Note that
A is a polynomial algebra in even degree generators.

Let M := M, , denote the commutative differential graded algebra over the
reals defined as follows Recall that commutativity is in the graded sense: for
homogeneous elements u and v, uv = (=1)!“I*lyy,

Case 1:

Let n =2m, k=2s, n—k=2t, s >t. Let M = Afug,vy,...,v,_,], lv;| =
4(t+34)—-1,0<j<s, |uy| =2m —1. The differential d on M is defined as
d(4) =0, d(v;) = ht+j> 1<j<s,d(vy)=h,—712_,,and d(uy) = 0,7, _-

Case 2a:
Let n=2m+1,k=2s,n—k=2t+1, k <m.Let M = Afv,,...,v,], where

Case 2b:
Let n=2m+1, k=2s+1, n—k=2t, Kk <m. Define M = Alyy,v,,...,v,],
where Juj] = 4(t+3)~1,0 < j < s, d(4) = 0, d(vy) = h,~72_, d(v;) = hy,,
l<_7<s

Case 3:

Let n=2m+2, k=2s+1, n—k=2t+1. Let M = Alv,,v,,...,v,], where
lujl =4(t+7)=1,1<5 <5, Jyy| =2m+1, d(4) =0, d(vy) =0, d(v;) =k,
1<j<s.

MAIN THEOREM. Let 2 < k < [n/2]. With notation as above, the commu-
tative differential graded algebra M, . is the minima! model for the oriented

Grassmann manifold G,
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n1 = S"71, the (n — 1)-sphere, is well known

the hypothesis that k < [n/2] is not a re-

The minimal model of G
(see [3]). Since 611,}9 =G

striction.

n,n—k’

The paper is organized as follows: In §2 we recall a basic theorem needed in
the construction of minimal models of homogeneous spaces. In §3 we prove the
Main Theorem stated above and deduce the formality of the oriented Grassmann
manifolds. In §4 we obtain results on nilpotence of flag manifolds (Theorem 6)
and the classifying space for the orthogonal group (Theorem 7).

2. Minimal Models of homogeneous spaces

Let G be a connected compact simple Lie group. Let H be a closed connected
subgroup of G. One has the following description of the minimal model of the
smooth homogeneous manifold G/H. Let T C G be a maximal torus in G
such that S :=T N H is a maximal torus of H. Denote by W the Weyl group
of G with respect to T' and by W’ the Weyl group of H with respect to S.
Let m = dimT, and let r = dimS. The group W acts on T and hence on
the real cohomology algebra H*(BT;R) of the classifying space of T' which
is a polynomial algebra over R in m generators each having degree 2. The
W -invariant subalgebra can be identified with the real cohomology algebra of
BG . The cohomology algebra H*(BG;R) is a polynomial algebra R[F}, ..., F, ]
in homogeneous elements F; having even degrees. (See Borel [2].) Similarly,
H*(BH;R) = Rz,,...,z,]. Let p: H*(BG;R) - H*(BH;R) denote the map
induced by the inclusion H C G. Let f, = p(F;), 1 < i < m. Now let C =
C(G, H) denote the differential graded algebra (d.g.a) H*(BH;R)[u,,...,u,,],
where |u;| = |f;| — 1, and the differential d is defined as d(H*(BH;R)) =0,
and d(u;) = f;, 1 <i < m. Note that since |u;| is odd, graded commutativity

implies that w,u; = —u.u,, and, in particular, that u? = 0.
i 3 j

THEOREM 1.

(i) (H. Cartan) With notation as above, the minimal model Mg,y of G/H

is isomorphic to the minimal model of the d.g.a. (C(G,H),d).
(ii) (Cf.[15;p. 317, Example (ii), (v)].) The space G/H is formal if for some

integer s, 1 < s < m, the sequence [y, ., f, is a regular sequence in
H*(BH;R), and the elements fo 15> [, belong to the ideal generated
by fio.o5 fs-

A proof is sketched in [16; §4, Chapter 5].
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Remark 2. It is known that the sequence f; ..., f,, is a regular sequence in
H*(BH;R) when H is of maximal rank in G. Hence when H is of maximal
rank, G/H is formal. See [16; Chapter 5, Theorem 4.16].

3. Minimal Model of G,

In this section we prove the Main Theorem stated in the introduction. We
apply Theorem 1 to the case G = SO(n), H = SO(k) x SO(n — k). Write
n=2mor 2m+1,and k=2sor 2s+1, n—k =2t or 2t + 1, m,s,t being
integers. We shall assume that k > 2, since minimal models of spheres are well
known. We take T to be the standard maximal torus which consists of elements
t=[t,...,t,] € SO(2m) C SO(n), t; € R, where

t(e;) = cos(2mt;)e; + sin(2nt,)e,, ; ,
t(e;41) = —sin(2mt;)e; + cos(2mt;)e,

where i =2j —1, 1 <i < 2m. (Here the e, denote the standard basis of R™.)
When n is odd or k is even, H is of maximal rank, m. When n is even and
k isodd, S := HNT is of dimension r = s+t =m — 1. For w € W, and
t = [t),...»t,] € T, w-t € T is obtained by a permutation of the ¢; and
changing certain of the t; to —t;. When n = 2m the number of sign changes
is to be even. From this it is easy to compute the W -invariant subalgebra of
H*(BT;R) = Rlt,,...,t,], |t;| = 2. Let P; denote the jth elementary symmet-
ric polynomial in ¢2,...,¢2 , and let o, =t ---¢,,. Then, H*(BSO(2m);R) =
RP,...,P _,,0,], and H*(BSO(2m + 1);R) = R[P,,...,P,]. Note that
P = 0% € H*(BSO(2m);R). The element (—1)"P, is the Pontrjagin class
of the canonical n plane bundle over BSO(n); when n = 2m + 1 the (inte-
gral) Euler class of the canonical bundle is of order 2 and hence it vanishes in
real cohomology (cf. [12]). The calculation of H*(BH;R) is similar. One has
H*(BH;R) = R[p,,..-,Py,dys---+4>Op> Tn_y], Where o, =0 (resp. o7 =p,) if
k is odd (resp. even), and 7,,_, = 0 (resp. 72_, = ¢,) when n —k is odd (resp.
even). The restriction map p: H*(BG;R) - H*(BH;R) is given by

(l) p(Pr) =+Z sz] = fr7 1STSS+t,
i+j=r

o, T =:0 if (n,k)=(2m,2s),
(@) plo,) = { g ) = (2, 22)
0 otherwise.
(It is understood that p, =g, =1.)
It can be shown that when (n,k) = (2m,2s) the elements 6, f,,...,f, . _;

form a regular sequence in the ring R := H*(BH;R). To see this, we note
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that, R/(6) is isomorphic to the polynomial ring over R in p;,...,P4q5---,G,
modulo the ideal generated by p,g, = f, . (This is because §* = p,g,.) Since,
by [3; Proposition 23.7], f,,..., f,. forms a regular sequence in the polynomial
algebra R[p;,...,p,,q;,---,¢,] it follows that 0, f,,..., f,,_, forms a regular
sequence in H*(BH;R). Theorem 1(ii) shows in particular that the space G,
is formal when n and k are both even. Similarly it is seen that f,,...,f,, is
a regular sequence in H*(BH;R) when n = 2m + 1. Thus we conclude that
én'k is formal when n is odd or k is even. Note that H is of maximal rank

in G except when n is even and k odd. Therefore the formality of én,k when
n is odd or k_even follows from Remark 2. In any case, as remarked in the
introduction, G, , is formal since it is a Riemannian symmetric space. We shall

verify formality of @n’k directly for all values of n and k.

Let P =Rp,,...,p,] be a polynomial algebra, where lpj| =45,1<j<s,
and let h, € P be defined by (1+h;+hy+---+h,+---) = (1+p,+---+p,)7 ",
where |h;| = 4j. We have the following lemma:

LEMMA 3. For any non-negative integer t, the elements h, ,,...,h,, form
a reqular sequence in the polynomial algebra P = Rlp,,...,p,].

Proof. Let P =R[p,,...,p,]. When s = 1, the lemma is obviously true
for any t. Assume inductively the statement holds for any ¢ when s is replaced
by s —1.

By the induction hypothesis, for any ¢, f_Lt FRTTE ,ﬁt 4+s—1 is aregular sequence
in P:=P/(p,) = Rlp,,...,p,_,]. Equivalently, h, ,...,h,,,_;,p, is a regular
sequence in P. In particular, p, mod (h,,,,...,h,,,_;) is not a zero divisor in
P/{hy\yy---Pypy_y). Note that by +h,,  _,p,+---+hp,=0in P. Hence
h, s = h,p, modulo the ideal (h, ,,...,h; ;) CP

When t = 0, it is clear that the ideal (h, ,,...,h,, 1) = (P;,...,P,_;) and
h,,, = hyp, = p, is clearly not a zero divisor in P/(h, ,,...,h, ,_;) in this
case. Assume that ¢ > 1 and that the lemma holds when ¢ is replaced by ¢t — 1.
Hence h,,...,h, ,_; is aregular sequence. It follows that h, is not a zero divisor
in P/(h; 5.y hyy,_q). It follows that h, , = h,p, modulo (h, ..., ;)

is not a zero divisor in P/(h,,,,...,h;,,_,). The lemma follows. O

We shall now establish the Main Theorem stated in the introduction.

Proof of Main Theorem. Let 2 <k <[n/2].
Case 1:
Let n =2m, k =23, n—k =2t, 1 < s < t. In this case the commuta-
tive d.g.a. C, , := C(S0(n), SO(k) x SO(n—k)) is H*(BH;R)[uy,...,u,,_,],
where d(H*(BH;R)) = 0 and du, = f, for 1 < r < m, d(uy) = 6. Thus,
writing w,, = 0 - u,, one has du,_ = 0 -du, = 60> = p,q, =: f,,, and hence
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(I+duy+---+du,) =1+ fi+-+f,) =(1+p, +---+p,)1+g +-- +4q,)-
Weiting (1+ hy + ) = (149, -5, one has b = & (2)(-1)lep,
llall=7
where a = (a,,...,a,) is a sequence of non-negative integers, |la|| = Y ia;,
1<i<s

la] = 3 e, (1) denotes the multinomial coefficient |a|!/(e,!""a,!), and p,
1
denotes the monomial [] p{*. One has the following inhomogeneous equation
1<i<s
in C’n,k: l+¢+-+q=(01+du, +---+du,)(1+h, +---). In particular
we obtain, for 1 < j <s,

hpj=—(heypjoqdug + - +hyduyy ;g +du, ;).
When n — k is even, g, = 72_, and hence
h,—72_, = —(hy_yduy + -+ + du,).

Let A = R[p,,...,p,1,0%Tnt] C H'(BH;R). Let M, = A[uo’”m
.»V,_;] denote the commutative d.g.a. over R, where |v;| = |h,y ;| -
(t+_1)—1 0 <j<s,and |up) = 6] —1 = 2m — 1. The dlfferentlal d

on M, , is defined as follows d(v;) = hyy;, 1 <5 <, d(vy) = h, — 12_,,
d(uy) = 0,7, _, and d(A) = 0. Clearly M, , is a free d.g.a. over R.

Note that since t > s, h, +j € A is decomposable for j > 1. Also, since
p, =0}, h, € A is decomposable. It follows that M nk is minimal as a d.g.a.
over R. We shall prove that M, , is a model for the d. g-a. C, ;. From The-

orem 1, it will follow that M, , is a minimal model for Gn k-

Let ¢: M, = C, , be the A- algebra homomorphism defined by ¢(ug) =u,,
d’(”j) = (ht+] 1% o +ut+) 1<j5<s, ¢(vy) = —(hy—quy+---+u,). Then
¢ is a morphism of d.g.a.’s. Indeed, d(¢(uy)) = d(uy) = 8 = #(8) = ¢(d(u,)),
and, for 1 < j < s, one has d(qb(vj)) = —d(ht+j_1u1 + - + “t+j) =
—(hypjg duy + -+ duyy ) = hyyj = $(hyy;) = ¢>(d(v,-)), since d(h,) = 0
as h, € R[p,,...,p,] C A. Similarly, d(¢(v,)) = h,—72_; = ¢(d(v,)) . To show

that the chain map ¢ induces an isomorphism in cohomology, first observe that
H*(C, ;,d) = H* (G’ R). This is because (C,, ;,d) is a model for the space

n, kI
én’ . (see Theorem 1). Alternatively, one applies a Koszul complex argument
(cf. [11; Chapter XXI, §4]) and uses the fact that 6, f;,...,f,,_; is a regular
sequence to see that the cohomology of C,, ; is H*(BH;R)/(0, f1,.. s fuey) =

H*(Gn k,R) Using the relation (1+f,+: - -+ £, )(14+h;+-- )= (1+q,+ - +q,),

we see that 0=f.= > pg;, 1 <r<t,in H*(BH;R)/(0xTrn_is f1r+ s frne1)
i+j=r

= (Gn +;R). In particular, q; = h; for any j, 1 < j <t and i r=q =h,
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in H*(BH;R) /{0, Tp_js f1r-- - » fm)- Hence
H*(Gn k3 ) Rlp; . "ps—l’ak’Tn—k]/<ht+1’""Ilt+s—1’0an—k’ht_T2>'

. Using Lemma 3, one sees that 7,,_,h, — 3 o Pogrs s hypq and oy, by —
To—ksPeyqs- - Py gy are regular sequences in A. From [3 Lemma 23.6] it fol-
lows that 6, Tn g—Peshyyqse-o by, 1 is a regular sequence in A. Again by ap-
plying a Koszul complex argument we obtain that

H*(Mn,k’d) = A/(Tz—k = hyshyyrs oy P15 Oy Ty ) 2 H (én,k;R) :

Under our identifications, the map ¢ actually induces the identity map of
H*(G, ;R). This proves that M, , is quasi isomorphic to C, . and hence

it is the minimal model of én,k in this case.

Case 2:
Let n =2m+1=2s+2t+1, k£ = 2s, or 2s + 1. We assume that £k < m
(equivalently s < t with equality only if k¥ = 2s). In this case C,; =
H*(BH;R)[uy,...,u,,], where d(H*(BH;R)) =0,du; =f;,1<j<m.

Let A ¢ H*(BH;R) be the polynomial algebra over R in generators
Pis---1Pg_150p (T€SP. Pyy-.. Dy To_y) for k even (resp.k odd). Thus p, = o}
when k = 2s. ’ '

Subcase (a):

Let k = 2s Let M, , = Afv;,...,v,] be the d.g.a. over R, where |v;| =
Aol = (]+t)—1andd(v) hyyjr 1<5<s,d(4)=0. Thefreedga
M, is mlnlmal since the h,,; are decomposable for j > 1. The A-algebra
map ¢ : M, , = C, , defined by ¢(v;) = —(hj i1ty +- tuy,), 1<) <s,
is a morphism of d.g.a.’s. Also, the elements h, +j» 1 £ J < s, form a regular
sequence in A. Therefore arguing as in case 1 above, we conclude that ¢ is a
quasi isomorphism. Hence M,, ; is a minimal model of G, .

Subcase (b):

Let k =25+ 1. Let M, = Afvy,vy,...,v,] be the commutative d.g.a. over
R, where |v;]| = |ht+| 1_4(t+j)—1 0<j<s,and d(vy) = h, —T2_,,
d(v;) = ht+], 1 <j<s,and d(4) = 0. Since s < t, h;,; is decomposable
for j > 0. Therefore M, , is mmlmal The A-algebra map ¢: M, , — C, |

defined by ¢(v;) = —(hyy;_ju “tu;),0<j<s,isa morphlsm of d.g.a.
over R. Using the fact that h r,‘,%‘,f, ht7L17 ..., h,, is a regular sequence in
A=Rpy, Py Toop]s W conclude, as before, that M, , is a minimal model
for én iy
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Case 3:

Let n=2m+2, k=2s+1,n—k =2t+1, 1 < s <t.In this case the
subgroup SO(k) x SO(n — k) is not of maximal rank in SO(n). The c.d.g.a.
C,  has the description H*(BH;R)[uy,...,u,,,uy] with |u;| = 4(t +j) - 1,
lugl| =2m+1=n—1, and du; = f;, 1 <j <m,and dy, =0.

Let A = P = Rlp;,...,p,] C H*(BH;R). Let M, , denotc the d.g.a.
Afvy,...,v5,v], where |v;| = 4(t +j) =1, 1 < j < s, |yy| = 2m + 1,
d(vj) = th, 1 <j<s,dy, =0, and d(A) = 0. As before, ./\/(n,,c is free
and minimal.

The A-algebra map ¢: M, , — C,  defined by ¢(v].) =u;, 0<j<s,isa
chain map as can be verified as in Case 1. Note that the cohomology of M,, ; can
again be computed using the Koszul complex of A with respect to the sequence

hypir---sheys, 0 € A. Again using the fact that h,,,,...,h,,, is a regular
sequence, a simple calculation leads to:

H*(M,, 1 B) = Alue)/(hyyrs - Ry ) -

This is also the cohomology of C, , and as in Case 1. we see that ¢ induces
isomorphism in cohomology. Hence M, , is the minimal model of én k-
This completes the proof of the Main Theorem. a

COROLLARY 4. The oriented Grassmannian én,k is formal forall1 <k <n.
In particular all Massey products in H* (én’k; IR) vanish.

Proof. First let n = 25+ 2t + 2, k = 2s + 1. With notation as above,
note that the A-algebra map M,  — Afuyl/(hyyy,--- Ry ) = H* (M, 15 R)
defined by vy — uy, v; = 0,1 < j <s,isamap of d.g.a.’s where the differential

on H*(M,, ,;R) is defined to be zero. Hence én,k is formal.

The same argument as above shows that én,k is formal for all parities of n
and k. a

COROLLARY 5. Let dimg(7,(G,, ) ®,R) =,.
(i) Let n=2s+2t, k=25, 1<s<t.
Then 3 m2" = L4201 4225 4220 4 2471 4 5 (4 4 24+ 1)
r>0 1<5<s
(ii)
(a) Let n=2s+2t+1, k=2s, s<t. ‘ ‘
Then Y .2 =1+ 228 4 pA(stt)—1 4 > (z4j + 24(t+1)—1) )
r>0 1<j<s
(b) Let n=2s+2t+1,k=2s+1, s<t. ‘
Then Y. T2 = 14 22t 4 4t-1 4 Y (z‘” +z4(t+j)_1).
720 1<j5<s
(iii) Let n=25s+2t+2, k=2s+1, 1<s<t.
Then Y w2z =1+z2""1+ Y (Y + z4(f+j)—1),
r>0 1<5<s
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_ Proof. This follows from the above description of the minimal model of

G, and the fact that Hom,(7,.(G, ,),R) is isomorphic to the rth degree
component of the graded vector space M, /D, where D denotes the ideal

MEL A/t:,k of “decomposable elements”. O

4. Nilpotence of Grassmannians and related spaces

Let X be a path connected topological space with base point z. Recall that
X is called nilpotent if the fundamental group 7 = 7, (X, z) of X is nilpotent
as a group and all the higher homotopy groups of X are nilpotent as modules
over the integral group ring Zx. That is, denoting the augmentation ideal of Z=
by I, X is nilpotent if and only if 7 is nilpotent and, for each n > 2, there
exists an integer N = N(n) such that IV -7 (X,z) =0.

A path connected topological space X is said to be of finite Q-type if
H"(X;Q) is finite dimensional for all n > 1. If X is nilpotent, then X is
of finite Q type if and only if H,(X;Q) and 7, (X)® Q are finite dimensional
for all » > 2. When X is a nilpotent space of finite Q-type, one associates to
X the minimal model My of the Sullivan-de Rham complex of X which is a
c.d.g.a. over Q. The minimal model M, contains all the rational homotopy
information of X in this case. That is, My and M, are quasi isomorphic if
and only if X and Y are of same rational homotopy type, where both X and Y
are of finite Q-type. We refer the reader to [1; Chapter 2] for details. (See also
(4; 89].) In case X is a smooth manifold, it is more convenient to work with the
real homotopy theory via the minimal model of the de Rham complex of X .

Let ny,...,n, be asequence of positive integers, and let n = ) n,. Denote

1<i<s
by X = G(ny,...,n,) the flag manifold consisting of flags (V},...,V,), where
V; is an n; dimensional vector subspace of R™ such that V, L Vit i # 7,
and V; @ --- @V, = R*. The flag manifold X can be identified with the coset
space O(n)/(O(n;) x --- x O(n,)) so that it is naturally a smooth compact
manifold of dimension 3 n;n;. When s =2, it is identified with the Grass-
1<i<j<s
mannian G, . The uni—ver]s_al covering of the flag manifold is the oriented flag
manifold X = G(n,,...,n,) = 50(n)/(S0(n;) x - -- x SO(n,)), which consists
of “oriented flags”, that is, flags (V,...,V,) together with orientations on each
vector space V; so that the direct sum orientation on )V, = R™ coincides with
the standard orientation on R™. The natural map p: X = X that forgets the
orientations on oriented flags of X is the covering projection. The deck transfor-
mation group is generated by the involutions «;, 1 <7 < s, which reverse the
orientation on ith and sth vector space in cach oriented flag, and is isomorphic
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to (Z/2)*!. We note that, when n;, and n, are odd, a; can be realized as
multiplication on the left by the clement A, € SO(n), where A, has, as a block
diagonal matrix jth block down the diagonal the identity matrix of size n if
J # i,s and the ith and sth block being negative identity matrices of sizes n,
and n, respectively.

In this section we prove the following theorem:

THEOREM 6. (Glover —Homer [6]) Let X = G(n,...,n,), s > 2, de-
note the real flag manifold. Then the following are equivalent:
(i) all the n; are odd,
(ii) X is simple,
(iii) X is nilpotent.

THEOREM 7. (Varadarajan) The classifying space BO(k) is nilpotent if and
only if k is odd.

We need the following lemma (cf. [14; Chapter 7, §3, Lemma 7]). We shall
denote the free homotopy classes from the n-sphere to ¥ by =, (Y). Note that
when Y is a simply connected space, m, (Y) may be identified with = (Y,y).

LEMMA 8. Let p: X = X be the universal covering projection of a path con-
nected finite CW complez, and let r > 2. Then p induces an isomorphism
between m (X) and 7 (X,x), which is compatible with the action of the deck

transformation group on 7 (X) and that of 7, (X,z) on 7 (X, ).

Proof of Theorem®.

(i) = (ii): Assume that all the n; are odd. Since SO(n) is connected,
maps induced on X by multiplication by elements of SO(n) are all homotopic
to the identity map. In particular the «;, 1 < i < s, are homotopic to the
identity map of X . Since the «; generate the deck transformation group of the
universal covering projection XX , it follows from Lemma 8 that the action
of m (X) = (Z/2)*! on any =, (X) is trivial and so the space X is simple.

It is evident that (ii) implies (iii).

(iii) = (i): We will first assume that s = 2 so that X is the Grassmann
manifold X = Gn’m. For simplicity of notation let ¥ = n,. Assume that at
least one of the integers k,n—k is even. We will prove that X is not nilpotent.
Indeed, let 7 be an even integer in the set {k,n — k}. We will prove that the
action of the generator of 7, (X) = Z/2 on 7,(X)®,R has —1 as an eigenvalue.

When r =n —k > k it will be convenient to denote by o, the element that
was denoted 7, _, in §3.

We first note that the deck transformation « := «; of the covering projection

G, . = G, is not homotopic to the identity. In fact « reverses the orientation
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on the canonical k-plane bundle over X = G . When r is even, the Euler
class o, of the canonical oriented r-plane bundle is not torsion and in real
cohomology one has a*(o,) = —o,. The map a induces an endomorphism &
of the d.g.a. M, , which is unique up to chain homotopy. The map & induces
an involution [aI, which depends only on the chain homotopy class of &, of
the graded R-vector space M, , /D such that the following diagram commutes,
where the vertical arrows are natural isomorphisms (cf. [5]). Here a* denotes

the R-linear involution on Homz(wr(én,k),R) induced by a.

(M, /Dy s (M, /D)

! !

Hom,, (wr(én’k), R) -, Hom,, (wr(én'k), R)

Note that by Corollary 5 the vector space Homy (7, (G, &)»R) is non-zero. In
fact the class o, is not in the ideal D of decomposable elements of M, k- Also
[a](g,) = —o, since in de Rham cohomology a* maps the Euler class of the
canomcal r- plane bundle to its negative. Hence it follows that the —1 eigenspace
of a*: Homg (7, (G, ), R) — Homg(m,(G, ,),R) is non-zero. It follows that
—1 is an eigenvalue for the action of the generator of the fundamental group of
G, on 7. (G, ;) ®; R. Hence G, , is not nilpotent.

Now let s > 3 and assume without loss of generality that n, is even.
One has a natural inclusion j:Y := G(n,,n,) - X and a projection map
q: X = G(ny,ny + -+ +n,) = Z. Explicitly, j(A) = (4,E,,...,E,) and
q(Vy,...,V,) =V,, where E_ denotes the span of the standard basis vectors e,,
ny+--+n._;+1<t<n, +---+n,.. Note that go j is the natural inclusion
of Y into Z induced by the inclusion of R™ +72 into_R™ and hence induces
an isomorphism of fundamental groups. Denote by f: Y — Z alift of gojop
to Z =G where p: Y := G, ,,,, — Y is the universal covering

pro;ectlon The map f pulls back the canonical n,-plane bundle on Z o that
on Y. Hence it maps the Euler class o, (Z) to the class +o,, (Y) Replacing

n,ni+ny’

f by foa if necessary one may as well assume that f*(o,, (Z)) = am(?). As
in the case when s = 2, using naturality properties of minimal models, one con-
cludes that the morphism of d.g.a. induced by f maps the class O, (Z) € M3 to

O, (f’) € Mg . This implies that the —1 eigenspace for the action of 7, (") (via
the isomorphism of fundamental groups induced by g o j) on Hom(m, (Z),R)
is non-zero. Hence the action of 7, (Y’) via the monomorphism of fundamental
groups induced by j on Hom(w, (X),R) must have non-zero —1 eigenspace.
This clearly implies that the action of 7, (X) on m, (X) is not nilpotent. O
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Remark 9. Theorem 7.2 of [10] can be readily applied to show that (iii)) = (i)
once this is known for Grassmannians. Our proof, however, exhibits a higher
homotopy group of X on which the action of the fundamental group is not
nilpotent. Alternatively, one can deduce the same result from our result for
Grassmannians using the second Claim in the proof of [10; Theorem 7.2]. We
record, as a corollary of the the above proof, the following proposition for pos-
sible future reference.

PROPOSITION 10. Let X = G(n,,...,n,), s > 2. If n; is an even integer,
then m, (X) is not nilpotent as a m (X) module.

Proof of Theorem?7. Notethat BO(k) = | G, , where we regard
n>2k

Gn,k as the subspace of Gn+1,k in the usual way, considering the vector space
R" as the subspace of R**! consisting of those vectors with last coordinate
being zero. The inclusion map i,: G, , — BO(k) is an (n — k)-equivalence and
hence, given any r > 1, for n > k +r + 1, the map 7 induces isomorphism of
the 7th homotopy groups. Also the action of the fundamental group of G, , on
T.(G, x» ) is compatible with the action of the fundamental group of BO(k)
on 7, (BO(k),z) via the map induced by i, . In particular if k is even, choosing
r =k and n > 2k+ 1, one sees from our proof of Theorem 6 that BO(k) is not
nilpotent.

When k is odd, one can always choose n to be even (in addition to n >
k +r+ 1) to conclude that the fundamental group of BO(k) acts trivially on
T, (C:'n,k) for any r > 1. Hence we conclude that the space BO(k) is nilpotent.
In fact we have shown that BO(k) is simple. |
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