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Ahbstract

We construct chaotic actions of certain finitely generated infinite abelian groups on even-
dimensional spheres, and of finite index subgroups of SL; (Z) on tori. We also study chaotic group
actions via compactly supported homeomorphisms on open manifolds.
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1. Introduction

Caims et al. [2] introduced the notion of a chaotic group action as a generalization
of chaotic dynamical systems (see definition below). They showed that a group G acts
chaotically on a compact Hausdorff space if and only if & is residually finite. They
constructed chaotic action of the mfinite eyclic group on the 2-disk and observed that the
special linear group S, () acts chaotically the r-dimensional worus.

In the present paper, we construct many chaotic group actions on {even-dimensional )
spheres and tori using the examples of Cairns et al. as building blocks. More precisely
we show, among other things, that (i) many finitely generated infinite abelian groups act
chaotically on even-dimensional spheres; (ii) any finite index subgroup of SL,(Z), n = 2,
acts chaotcally on the nk-dimensional torus for any & = 1. For precise stalements sec
Section 2.
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We also consider chaotic group actions on (connected)  open manifolds where each
clement of the group is a compactly supported self homeomorphism. For a (self)-
homeomorphism f of space X, suppl f). the support of f, is defined to be the set
jre X | flx) #x} We say that a homeomorphism f of X is compactly supported if
suppl f) 1 melatively compact, 1.e., the closure of supp( f) 15 compact. A basic result
is that any compactly supported homeomorphism of a connected open manifold is of
infinite order (see [6]). The requirement that the group act chaotically (and effectively)
via compactly supported homeomorphisms, leads © many interesting results of group
theoretic nature. The results we obtain are by no means exhaostive. However, we do not
know of a single chaotic group action via compactly supported homeomorphism on any
open manifold. We conjecture that no such action can possibly exist on the Euclidean
space B", n = 2. The swrongest evidence for this conjecture is that it is true when one
restricts attention o such classes of groups as solvable groups, groups with non-trivial
center, groups which decompose as a direct product with one of the factors being finitely
generated (see Section 3). However a complete resolution of the conjecture has eluded us.
(It 15 not hard o show that no group can act chaotically on any 1 -dimensional manifold,
the case of the cirele having been covered in [2].) Most of our results regarding compactly
supported chaotic actions on open manifolds are valid for any noncompact, locally compact
space and are treated in that generality.

For the convenience of the reader, we reproduce below the definition of a chaotie action.

Definition [2]. Let & act effectively and continuously on a HausdordT topological space
X. The group & s said 1o act chaotically on X if
(i) (topological tansitivity) given non-cmpty open sets U,V C X, there exists g £ G
such that gL' NV &£ #, and
(i) the set of periodic points of X, i.e., those points with finite G -orbits, is dense in X.

Convention. All group actions are assumed to be effective.

2. Chaos on compact manifolds

In this section we shall construct chaotic group actions on specific manifolds such as
spheres and tori. The building blocks of our constructions are the chaotic Z-action on the
2-disk constructed in [2], and the chaotic action of the group SL,(Z) on the n-tomus. We
now state the main results of this section.

Theorem2.1. Let G =2' @& Fwhere l = 1, and F =Zy @---®Ey. k=0 Then G acts

chaotically on
(i) the 2d -dimensional spher ifk=l=d orif0 s k<[5 d,
(i1) the 2d -dimensionaltorus ift =l=d orifl st <l £d wherek =2t or 2t — 1.

Let sg, ....85,—1 denote a set of generators of 2. The group Z,, acts on Z™ by
cyclically permuting the generators 5. We denote the semidirect product of 2" with Z,,
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by H,,. Sumilady let g; 5, 0£i <=m, (} £ j < n, denote a basis for a free abelian group
of rank mn. The group Z,, @2, = {r.s | r™. 5", rsr s~} acts on 2™ where the action
15 defined by ree; j > i1 j, and 5.¢; j =€ jo1. where ey j=ep j, € a=€ip. Let Hy 4

denote the semidirect product 2™ » (Z,, & Z,).

Theorem 2.2,
(i) The group Hy = E" w0 Ly, acts chaotically on the 2-sphere for any m = 2.
(i) The group Hy, = Z™ w0 (E, & Z;) acts chaotically on the 2-torus for any
m.n =2

Theorem 2.3. Let n = 2, k = | be integers. Every finite index subgmoup of SL,(Z) acts
chaotically on the nk-dimensional torus.

Before we prove the main theorems of this section, we make a preliminary observation.
Recall that the action of &G on a space X is said 1o be topologically mixing if, given any
two non-cmpty open sets U and V', there exists a g € & and an mteger n = (), such that

gfUINV £R forallk = n.

Lemma 2.4,

(1) Let Gy and G act chaotically on X and X 3. Then product action of G =G x G2
on X1 x Xz is chaotic. If x; € X; is fixed by G, § = 1,2, then G acts chaotically on
the smash product X) A Xao =X % X /(X)) 22U x 2 Xa).

{ii) Let X be acted on by L such that the action is topologically mixing, then the
diagonal action of Z on X9 is topologically mixing forany d = 1.

Proof. (i) Note that (v, yv2) € X| »x X7 is a periodic point for the G-action if and only if
each y; € X; 15 a periodie point for the action of ; on X;. This implies that the & -peniodic
points on X = X2 form a dense subset.

Let LF, V be arbitrary open setsin X x X7, Let UG, V; be open subsetsof X;, i =1, 2,
such that Uy =« U c U, V) = Va© V. Let g € Gy be such that g (&) NV £ §. Then
gl NV #£Wlorg = (g, g2) € G. Thus the G-action is topologically ransitive.

The second assertion of Lemma 2.401) follows readily from the first.

(i) Let U =[], cjcq Ui, ¥V =[] cicq be basic open sets of XY Let f bea generator
of the Z-action. Choose n so large that F5(U) NV, £Aforallk=n, 1<i <d. Then it
15 clear that _f'k{Uj MV £ forall k = n. This proves (ii). 0O

Remark. There are several other well-known results concerning topological transitivity
and related concepts such as topological mixing, weak mixing ete. A theorem of Furs-
tenberg [5] says that if f:X — X is the generator of a Z-action which is weakly mixing,
then the diagonal action of Z on X9, d = 1, is wpologically transitive. Suppose Z acts on
X chaotically such that the restriction of the action to each subgroup nZ CZ, n = 1 is
transitive, then Banks [1] has shown that the action of £ is weakly mixing.
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Proof of Theorem 2.1. We first show that even-dimensional spheres and even-dimensional
tori admit chaotic Z-actions. Indeed, the chaotic Z-action on the 2-disk I constructed by
Cairns et al. [2] s topologically mixing. See Theorem A of [4]. Lemma 2.4011) implies that
the diagonal action of Z on the Cartesian product D¥ is chaotic. The desired action of Z
on the sphere 5% is obtained by semiconjugation since §™ is obtained by pinching the
boundary of I to a point. Again the chaotic Z-action on the 2-torus considered by Cairns
et al. [2] is topologically mixing, By Lemma 2.4(11) again, we obtain a chaotic Z-action on
any even-dimensional torus.

Case 1: F=0. Now, let & = P act on X = {SI}J where the action of the ith factor
% of G on the ith coordinate is the chaotic Z-action on 57 constructed in [2]. Note
that the “north pole”, #, of the sphere 57 is fixed under this action. Hence the subspace
Y={z=10z1,.. s zg) | z; = # for some i} 1s stable under the action of . Hence we obtain
an action of G on the gquotient space X/ ¥ = §™ The action of G remains chaotic on 52
by Lemma 2.4(i). Note that the “north pole™ ¥ € 82 is 4 G-fixed point.

Since the restriction of the above action to the diagonal copy A = Z is the same
as the chaotic Z-action on 5% constructed at the beginning of the proof, we see that
fACHCP = (7. then the restnction of G-action to A 15 also chaotic on 5 In
particular, any free abelian group of rank [, 1 <[ < d., acts chaotically on §7¢, This prove
Theorem 2.1(1) when F =10,

Before considering the case & = 1, we let m = 2, and construct a chaotic Z & 2, -action
on the unit disk D in B2, We then use this o construct a 2 6 %, -action on the 52, which
15 thought of the space obtained from I3 by collapsing its boundary, 80, o a point.

The Zy-action on I} is generated by a 27 /m rotation, r, about the center of the disk. Let
Dy denote a sector of the disk having angle 27 /m at the center of the disk. Denote by I
the image of Dy under the map r/, 1 < j <m. Our generator g of the infinite cyclic group
is the homeomorphism of D whichis £ on Dy and, on D, it is the map ! fr~', where f
is the chaotic homeomorphismof the 2-disk constructed by Caims et al. [2]. Note that since
the map f is identity on the boundary of Dy, g is a well-defined seli-homeomorphism of
D. Note that rgr " is the same as the map g. Thus we have obtained an action of Z& 2,
on D. Now the boundary 8D of D) is stable under the action of Z & Z,, and hence we
obtain an action of Z§ Z, on DD = 52 The resulting action 18 chaotic on 52 Note
that the “north pole”, namely the point determined by 90 15 fixed under this action.

Case 2: Let F #£0, sothat £ = 1. Let ¢ be as in Theorem 2.1(i), with k£ = 1. Then,
write G a5 [[pejcp Gi, where Go = 2t G =Za Eny, 1 =1 k. The group G;
acts chaotically on the sphere §; := §7 for i = 1. The group G acts chaotically on
Spo= SRV 5f o k. When =k, onehas k ={ =4 by hypothesis. In this case, it is
still true that Gy = {1} acts chaotically on the one point space, {#}, again denoted S, Thus
we see that @ acts chaotically on the product X = ]._[t]:-';j{;.t S;. Note that since the north
pole, #, of each of the spaces § are fixed by G; for each i = 0, we see that the subspace
¥Y={z=1izp.....2x) C X | zj = # forsome i = 0} is stable under the action of &. Hence
G acts chaotically on the quotient space X /¥ Z 5. This completes the proof of (i).

{i1) We first construet a chaotic £ @ £, @ E,-action on the 2-torus T. This 1% an
obvious generalization of the £ & Z; & Zp-action on T given in [2]. We regard T as
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space obtained from the unit square D = § = [ with opposite sides wentified in the vsual
manner. Now subdivide the square D into mn squares Iy ;. 0<i<m, 0= j<n,
where I j =[i/m, (i + 1)/m] x [j/n. (j + 1}/nr]. Note that (x, ¥} {x + 1/m, ¥}
and (x, ¥) — (x, v+ 1/n) define commuting homeomorphisms r, s of T of orders m
and n, mespectively. The generator g of the infinite cyclic group acts on T as follows:
Let g restricted 1o Dy be the chaotic homeomorphism f on the 2-disk constructed by
Cairns et al. [2]. § restricted to Dy ; defined to be the composition rislo fos~iri,
O<i=m, 0= j=n Itisstaightforward to check that ¥ defines 8 homeomaorphism g on
T and that g commutes with r and 5. Thus we obtain an action of Z @ Z,, 6 Z,,. That this
action is chaotic follows easily from the fact that f acts chaotically on Dy .

Observe that a similar construction keads to a chaotic £ & £, -action on the 2-tors T

Using these actions on 2-tori, and the chaotic action of Z on any even-dimensional wrus
as building blocks constructed at the beginning of the proof, one constructs the reguired
(G-action on the 2d-dimensional torus just as in the proof of (i), 0O

Proof of Theorem 2.2. (i) We use the notation introduced in the proof of Theorem 2.1
where we constructed a chaotic action of £ & Z,, on the 2-sphere. First we “expand”
the £ ¢ Ey-action on disk D as follows, Consider the homeomorphism s of the disk
defined as s(x) = fix), x € Dy, and 5(x) = x, x & Dy using the notation of proof of
Theorem 2.1. Let s; = rsr ~,0< j<m, s,y =59 =s. Note that supp(s;)  Dj. Since
Dy 1D has empty inerior for 0§ = §f < m, it follows s;5; =55 forany i, § = 1. Thus
the s; generate a free abelian group of rank m and that the group Z,, = {rlr™} acts on this
group by cyclically permuting the generators si. Hence we obtain an action of Hy on D,
Clearly the elements g = 51 -+ - 5 and r commute. The subgroup of H,, generated by g, r
is isomorphic o £ 42, and its action on I is the same as that constructed in Theorem 2.1,
It follows that the Hy,-action is chaotic since the periodic points for the H,,-action is the
same as for the action of Z @ Z, = {g,r) C Hy,. Since the boundary of I is stable under
the action of Hy,, we obtain an action of Hy, on D /D = g Clearly this action 15 chaotic
on §2.

(ii) Using the notation introduced in the proof of Theorem 2.1{ii), ket € ; be the
homeomorphism of the 2-torus T defined by e jiz) =r's! fs™/r~'{z), for z € Dy ;.
g jlzl=z. torz €05 ;. 0=<i<m, 0= j<n Thenthe e; ; generate a free abelian group
of rank mn. Conjugation by the homeomaorphisms r and s permute the e; ; insuch a manner
that the group of homeomorphisms of T generated by the ¢ j 0 <i=m_ 0= j<n, r5,
is the semidirect product Z2™ = (£, & 2, ) = H,y 4. The proof that H,, , acts chaotically
is exactly similar to part (i) above. O

Consider the usual 8L, (£)-action on the torus T = E* /2", As observed by Cairns et al.
[2]. this action is chaotc. Our proof of Theorem 2.3 involves a well-known propenty of 4
set of reals which are Tf-linearly independent.

Notation. The group SL,(E) acts on the keft of B and hence on the left of the n-torus
" /E" = T. The element of T determined by an x = (xy, ..., x,;) € B" will be written as
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[x] =[x1555m4 xpl. For g € SLy(E), x € [B", the element gix) is the product of g with the
column vector x'.

Proof of Theorem 23. Let G be any finite index subgroup of SL,(E). Consider the G-
action on the kn-dimensional torus X = T%, T = " /Z", obtained from restricting the
diagonal action of 5L, (Z) on X. We claim that this action of G on X is chaotic. Indeed
we need only verify topological transitivity. Replacing & by a (finite index ) subgroup of &
if necessary, we may as well assume that G is normal in SL(Z). For 1 <0, j<n, i |
let E; ; denote the n x n manix whose entry in kth row, Ith column is §;gd;;. Since
the element | + Ej 2 generates an infinite eyelic group, and since & is of finite index in
SL(Z), there exists a d = 2 such that 1| + dEy 2 € . Since & is normal, conjugating
1 +d E1 2 by suitable (signed) permutation matnees, it s seen that 1 +d E; j € 7 for all
i#£j. 1l j=n

Let x =[x1,....,x] € X, xi =[x 1,-.-s xix] € T, where the elements x; ; e B, 1<
i=k, 1< j<nand] form a Q-lincady independent subset of the reals.

Claim. The G-orbit of x is dense in X.

To prove the claim, let J = HIEIQR L, where U; = nlf;_.l'f;n Ui ; T, Ui ; being
any basic open set in E/Z. We need to find an element g € 7 such that gix) € U'. Since

LixE Fysumwa xg 2 are linearly independent over ), the set {[rx2,.. ., rxg 2]l red®} s a
dense subset of B /Z4 1t follows that translation of this set by [x11..... xy 1] 1% also dense
in[B* /2% Therefore we can find an ry € Zsuch that v; | == x; | +drixi2 e U forl €i<
k. Having obtained rj_; € Z such that Vi1 =xij1+drix el 1€i<k j=
n, inductively, we use (J-linear independence of 1, - X, j.ooblainanr; € # such
that 3 j i=x; j+drjx;js €U j. 1 5§ <k Finally, since 1,y 1,..., ¥i1 are C-linearly
independent, we can find an r, € £ such that v, c=dry v Fxia €Uy, 151 <k Now
the element y = (y;...., y¢) € U € T =X, where y; = [yi1... ., Yinl€T.
Wntee; j=1+dE;j€ G . Then, for 1 €1 £ £,
Ly L | Is
f.l: 1 ":’.l:— ¥ el ‘f"I].‘I{x"}I
¥
= f:‘rﬂ eyt 'Erlz"-{[ FilsXiZseros xinl)s
&

= ,:H“_'ﬁ'.l ----- _'ﬁ'..lr—lwr.lrf}

= [ 1. Finl
Hence writing g = :':_'|f:”_l’_” ---e}'5, we obtain g(x) = y € U, completing the proof. [

Remarks.
i) It follows from Theorem 2.3 that any free group of finite rank acts chaotically
on the 2k-dimensional torus as such a group can be imbedded as a finite index
subgroup of SLa(Z). A result of Caims and Kolganova says that any countably
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generated (nontrivial) free group can be made to act chaotcally on any compact
connected triangulable manifold of dimension at least two. (See Remark (i)
following Theorem 2.5 below.)

{ii) Let & = 2. Denote by X' the kth symmetric power of X; thus it is the quotient of
X* by the group permutation group Perm(k) which on X* acts by permuting the
coordinates. Note that if X is a 2-manifold then X" is a 2k-dimensional manifold.
If G acts on X, then the diagonal action of G on X* induces an action on X',

Theorem 2.5. There exists a chaotic Z-action on the complex pmjective space Pt Jor
anvk = 1.

Proof. One has the chaotic Z-action on TP! = §7 = X constructed by Cairns et al. As
observed in the proof of Theorem 2.1, this action is topologically mixing and hence, by
applying Lemma 2.4(ii), the diagonal action of Z on X* is chaotic. The induced Z-action
on the symmetric product © P* = (§7)"™ is easily seen to be chactic. 0

Remarks.

i) Cairns and Kolganowva [3] have constructed Z-actions, indeed, any countably
generated free group actions, on any compact connected triangulable manifold M
of dimension o = 2. This is achieved by first obtaiming such an action on the d-
dimensional disk on whose boundary the group acts as identity. The required action
on M is obtained via semiconjugacy as M can be realized as the space obtamed
from the d-dimensional disk by suitable boundary identifications. (See proof of our
Theorem 2.1 for chaotic £-action on even-dimensional disks.) However, it would be
interesting 1o have a more direct, “explicit”, desceription of chaotic group actions on
specific manifolds.

(i) We do note know if an arbitrary finitely generated infinite abelian group can be made
to act chaotically (and effectively) on a sphere of suitable dimension.

3. Chaos on open manilolds

Let X be a non-compact, locally compact, locally connected Hausdorfl space. For a
homeomorphism f of X, the support suppl ) of f is defined o be the set {v e X |
Fix) # x}. Denote by G X), the subgroup of those homeomorphisms f of X which
are compactly supported, ie., the closure of supp( f) is 8 compact subset of X. In this
section, we obtain some general results concerning chaotic group actions on X, The most
mteresting example of such a space 1s an open manifold. Their importance justifies our
choice of the ttle for this section.

W begin with some elementary observations.

Lemma 3.1. Ler G be any goup that acts effectively on a topological space X. Then
(i) suppi fef ") = flsupp(g)), forany f. g€ G.
(i) suppi fg) C supp{ fiU suppig) forany f.g € (.
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(i) If § C &, then supp(§) = suppl H), where H is the subgrmoup generated by 5. Here

suppi 8) denotes the set U,c;F.T suppig ).
(v) If H is normal in G, then supp(H) is a G-invariant open subset of H.

Proof. Staterments (i) and (ii) are trivial wo prove. (iii) follows from (ii) and the obvious
fact that supp( /) = supp{j'_l ). {iv) follows from (1). [0

Theorem 3.2. Let X be a locally connected, locally compact, non-compact, Hausdorff
topological space and let G a subgroup of GolX). Suppose that G acts topologically
transitively on X. Then
(1) If the set af periodic poinis is dense in X, then X is connected.
(i) supp(§) = Ugeﬂ' suppig) is dense in X for any set § C G that generates G, In
particular the gmoup G is not finitely generated.
(1) Nontrivial normal subgroups of G are not finitely generated.
(v} The center of G is trivial. In particular, G is not nilpotent.

Prool. (i) Since X is locally connected, its connected components are open in X. Suppose
that X is not comected. Using topological transitivity of the G-action, it 15 easy Lo see
that given any two distinel connected components I and V oof X, thereexists a g € G
such that g(l') = V. Since g is compactly supported, it follows that U7 C suppig) is
relatively compact. Smee [ 15 also closed, it follows that &7 must be compact. Thus every
component of X is compact. Since X itself is non compact, X must have infinitely many
connected components. On the other hand, since ¢ acts transitively on the set of connected
components of X, it follows that no element of X can have finite orbit. This contradicts our
hypothesis that periodic points for the G-action is dense in X. Hence X must be connected.

(1) By Lemma 3.1 (i) and (iv), we see that supp( §) 15 4 G-invariant open subset of X,
Simee the action of & is topologically transitive, suppl( 5) must be dense. Now, il § were
finite, then X would be a finite union of compact subsets of X, namely the closure of the
supports of elements of 8, contradicting the assumption that X s not compact. Hence §
has o be finite.

(111} Proofis similar o (1), using Lemma 3. 1(v).

(iv) To show that the center of 7 is trivial, let, if possible, g € G, g # 1 be in the center
of G. Since g 7= 1, there must an open set U C suppi(g) such that U N g7y =#. Let ¥
be an open set disjoint from suppi{g). By wpological transitivity, we can find h £ G such
that AL MV £ W Let y€ AU NV so that w:=h~Yy) € U. Now, g = hgh~! implies
¥ = gl¥) =hgh_l{_1;}l = hglu). Hence h“'{_‘r} =giu) € gil7). This 5 a contradiction
since UNg(l=W. O

As an immediate consequence abelian subgroups of Gol(X) cannot act chaotically on
X We shall later see that if a subgroup &G of Gl X) acts chaotically on X, then G cannot
even have a finite index solvable subgroup. In other words, virtually solvable subgroups of
Gipl X ) cannot act chaotically on X,

Let G be group acting chaotically and effectively on a Hausdorft space Y. Let H be a
subgroup of . Then H, being residually finite, acts chaotically and faithfully on some
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Hausdorff space. It is however not true that the action of H obtained by restriction of
the G-action on X 15 chaotic. For example, there exists a chaotic action of the group
£ w Fa x Zp on the 2-wrus such that no cyclic subgroup acts chaotically on the worus
{see [2], cf. Theorem 2.1{ii)). However, in our case we can prove the following.

Theorem 3.3. Let X be locally compact, non compact, Hawsdorff space. Let G act
chaotically on X and let H be a subgroup of G such that for some set § of distinct left
coset representatives af H in G, the set supp(§) = |, _c supp(s) is not dense in X. Then
the H-action on X by restriction is chaotic.

Proof. We need only check wpological transitivity for the H-action on X. Let U7 be any
non-empty open setin X which does not meet A := supp(§). Set Wy = |,y shlU), s €
5. (We shall assume that 1 € 85 We claim that W, — A = W, — A forany s € §. To see
this note that siW ) =W, and sid)= A forall s € §. It follows that W, — A=W, — A
forall v §.

We claim that Wy s dense in X, Note that this would imply topological transitivity
of the H-action. To prove the claim, observe that W= U.n=5 W, 15 dense in X since
¢ acts chaobically on X. In particular, W — A = UIFS{'I.’I-"_‘- — A=W, — A s dense
X — A, Therefore we need only show, for any open set V. A, that W NV s non-empty.
Let g € ¢ be such that V nog(L7) &£ #. Writing h[{_l =sh withse Sand i € H, we
see that V o fs(U) &£ #. Since U M A =W and suppis) © A, we have (') = U so that
Vhil) £ W It follows that VN W) £ W as AUy W, 0O

Corollary 3.4, Let G Gyl X) act chaotically on X and fet H be a finite index subgroup
of G. Then H acts chaotically on X. If H' is any subgroup of G which acts chaotically on
X, then the centralizer of H' in G ix trivial.

Proofl. Let H be a finite index subgroup of & and let § be a (finite) set of district left coset
rerpresentatives for H in 7. Then A = |_J,_; supp(s) is relatively compact as § is finite
and each g € 7 15 compactly supported. Since X 1 non-compact, it follows that A 15 nol
dense in X. Hence H acts chaotically.

Let g e G, g5 | commute with every element in . Then the subgroup K = {H', g} ©
G acts chaotically on M. For, opological transitivity of H™ implies the topological
transitivity of K, the densitity of periodic points for the K-acton follows from the
corresponding property for the G-action. As g € K is in the center of K this contradicts
Theorem 32, 0O

Proposition 3.5. Let H and H' be normal subgroups of G C Gol X ). Suppose G, H and
H' act chaotically on X_ Then the group | H, H'| C G acts chaotically on X. In particular,
na finite index subgmoup of G can be solvable.

Proofl. We need only show that the K :=[H, H'|-action is topologically ransitive. Let IF
and V be any two disjomt open sets in X, Let i € H be such that (07 MV s non-empty.
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Let ' = A-Y(V)NU. Let W be any open set outside the support of h e H. Let h' € H'
be such that UM AW ) is non-empty. Let U” = U NA(W), so that A~ H{U7) € W. Now
RIRTVRHUTY = R(U™Y © V osinee h{w) = w for all w & W. Henee [ ANV is
non-cmpty.

If K is a finite index subgroup of &, then K -action (via restriction) on X is chaotic, It
follows that &' = [K_ K| < K again acts chaotically on X. Repeated application of the
same argument shows that K cannot be solvable. O

Proposition 3.6, Let G © Gyl X)) act chaotically on X. Suppose that G decomposes as a
nontrivial product H » H'. Then neither H nor H' acts topologically transitively on X.

Prool. Let, if possible, the H-action be topologically transitive. Then so is the action of
K={H F)forany 1 £h" € H'. Since K C G, the perdodic points for the K-action is
dense in M. It follows that K acts chaotically on M. Clearly the £° is in the center of K
which contradicts Theorem 3,20 [0

Definition. We shall say that the group G satisfies property C if there exists a countable
collection {Nj}iz of finite index normal subgroups N, such that ﬂ‘- Ny ={1}.

Clearly & is residually finite if has property C. We state without proof the following
theorem, which implies that any group that acts chaotically on a connected open manifold
must have property C. Proof that (ii) implies (i) uses the observation that if G acts
chaotically on a second countable Hausdordt space X, then there exists a4 countable family
of finite orbits whose union 1s dense in X,

Theorem 3.7. Fora group G the following are equivalent.
(1) G satisfies C.
(i) & acts chaotically and faithfully on a second countable Hawsdorff X.

Note added in proofl
Theorem 2.1 can be improved to show:

Theorem. Any finitely generated infinite abelian group can be made to act chaotically on
an even-dimensional sphere.

Proof. We use the notation of Theorem 2.1 and its proof. Let G = Z' ¢ F where
F=Z,@® @&, 121, k20 Weassume 1 <1 < k. Let G = 7% @ F. Consider
the chaotic G-action on the k-fold product [, .., Di, where each D; is a copy of the
2-disk D, obined as the product of the L'hiit}ljl: E & E.,.rf -actions on the 0y, 1 <7< k,
constructed in the proof of Theorem 2.1, One has the induced action of the diagonal copy
ZZACP*P0cC G on [Ticici Pin € [1igick Di. where Dy C Dy is the 27 /n;-
sector used in the construction of the chaotic 2 @I Zyy action on Iy, Using the fact that
the Z-action on the 2-disk I} constructed by Caims et al. [2] is topologically mixing and
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applying Lemma 2.44ii) we see that the A-action on [ Dy g is chaotic. Since the translates
of [T Do by clements of F cover [ Dy, it follows that the action of A & F got hy
restricting the G-action on T8 is chaotic. Imbed G in Gsuchthat A@FC GCG.
The resulting G-action on [] D is then chaotic. The required chaotic G-action on the
sphere §2% = [T D;/3(]] Dy} is obtained by semiconjugacy. [
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