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Abstract. We consider the problem of comparison of one test treatment (tq)
with a set of v control treatments (1), t2,..., 7,) using distance optimality |DS-
optimality| criterion introduced by Sinha [1970) in some treatment-connected
design settings. It turns out that the nature of DS-optimal designs is quite
similar to that for the usual 4A—, D— and £— optimality criteria. However, the
optimality problem is quite complicated in most situations. First we deal with
the CRD model and derive DS-optimal allocations for a given set of treat-
ments. The results are almost identical to the A-optimal allocations for such
problems. Then we consider a block design set-up and examine the nature of
DS-optimal designs. In the process, we introduce the method of weighted
coverage probability and maximize the resulting expression to obtain an op-
timal design.

Key words: Okamoto Lemma, Weighted Coverage Probabilities, Completely
Randomized Design, Block Designs, Complete Classes of Designs.

1 Introduction

Our purpose here is to apply the distance optimality |DS-optimality| criterion
for inference on the vector of parameters given by

g=(To —T1,T0 —T2,---,Tg — Ty)' (1.1)

where 1y refers to the effect of the test treatment and 7)., 72, ..., 7, refer to
those of the control treatments.

These are known as treatment-control designs. In the literature, both types
of comparisons, viz., comparing a set of test treatments with one or more
control as well as comparing a set of controls with one or more test treat-
ments, have been considered. See Majumdar (1996) and references therein.
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Let j denote the BLUE of yin a given design context. Then, according to
the DS-optimality criterion, we seek to

minimize P[[i — | > ¢ (1.2)

by a proper choice of the “design™ out of the class of competing designs, uni-
formly in & > 0. In the above, || - | refers to the Euclidean distance.

This criterion was put forward by Sinha (1970) who established that under
the normality assumption for the errors, in the completely randomized design
setting with a given number (1) of experimental units:

Yy =+ 2y, (1:3)

;
l<i<vp, 1 <j<m, Y n=n, the design to minimize P[||g— | > £| uni-
|

formly in & = 0 is the completely symmetric design (when n = in; is divisible

[
by v). When n is not divisible by v, the most symmeitric allocation [ ie., one for
which n;’s differ at most by unity) is one of the prominent competitors. The
structure of other competing designs was also given in the form of a complete
class of designs. In the above, g is the vector of treatment effects in (1.3).

In the block design setting, the balanced incomplete block design (BIBD)
minimizes P{|ij— g| > & uniformly in £ > 0, where y = Pr refers to a full set
of orthonormal treatment contrasts.

Without any further reference to it, we shall assume that the errors are
independently normally distributed.

It turns out that the usual canonical reduction of the problem leads to:

maximise P [Zi,-zf < .ra!] uniformly inz = 0 (1.4)
where A;'s are the eigenvalues of the dispersion matrix of the BLUE’s of the
vector of parameters under consideration and Z;%s are i.id. N(0 1) A result
due to Okamoto (1960} — also to be found in Marshall and Olkin (1979) —is of
immediate applicability in this context. This is stated below for the sake of
completeness.

Okamoto Lemma:

P

k
3 A7}l < 33] < Plig; < &7 (1.5)
1

where ;7 refers to central z*-variate with k d.f. and
L= (1), (1.6)

Recently, Liski et al. (1998) initiated a study of optimal regression designs
using the DS-optimality criterion. In Sinha (1970) as also in Liski et al. [ 1998)
some other corollaries/generalizations of Okamoto’s Lemma have been found
useful. These are stated below without proof.
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Corollary 1:

k
o B 33] < P + Ak < &Y (1.7)
|
where,
k=K +&" 2 =¥ )Y and " =%, )Y, (1.8)

Generalization 1:

PlMZE 4+ aZ] < &) < Pl 2} + 123 < &7 (1.9)
provided that

Ada Z gy and A vida =gy v, (1.10)

Generalization 2:

Plite, + 4376, < &) < PA"x, + 13’1y, <€) (1.11)
where

(A" (42)" = ()" ()" (1.12)
and

e dies I i e I A I i R AL (1.13)

For the model (1.3}, in a situation where n is not divisible by v, the most
symmetric allocation (msa) turns out to be DS-optimal in view of General-
ization 1, once the complete class of designs is characterized as in Sinha
( 1970). This completely settles the problem dealt by Sinha (1970) who deduced

the optimality of msa only when n = ;{mori v). Recently, Liski et al. (1999)

studied further properties of the distance optimality criterion.

In this paper we attempt a solution to the problem formulated in (1.2} in
both the CRD and the Block design settings. It turns out that the DS-optimal
designs do depend on the parameter ¢* and, therefore, we need to bring the
concept of weighted coverage probahility and minimize it. In the CRD set-
ting, the DS-optimal designs are not different from A-optimal designs. In the
block design settings, designs with similar structure of the C-matrices as for
the A-optimal designs are found to be DS-optimal.

2 Conirol-Treatment comparisons in a CRD model
As is well-known, there has been considerable amount of study in the char-

acterization and construction of optimal design for inference on gin (1.1) writ
the usual optimality criteria such as A—, D— and £— optimality. We refer to
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Hedayat et al. [1988) and Majumdar (1996) for a comprehensive review of
these resulis.

In this section we confine ourselves to the DS-optimality criterion for a
completely randomized design (CRD) model.

.
Let ng,my,. .., 1, be the allocation numbers subject to ¥ n; = n. We set
0

i
p=nn i=0,1,2,..., vso that 3 p, = 1. In the sense of the approximate

0

design theory, we shall seek optimal values of the p’s so as to satisfy (1.2}
uniformly in & = 0.
It is evident that

Diip) = ﬂ,l[n—.ﬁ +.f|.|.:| 2.1)
Hy
where
% = diag(~, - 1) d = {(1 2.2
n " =diag peue e Ll = an w = (1)1, (2.2)

It is easy to see that the eigenvalues of D{(j) /a” satisfy

1 fn v o om

mly=|a?+1, =—I[—=]= fy 23

Vi, = |m? + J,, iin, (Hﬂ) = (n - Hﬂ) = (2.3)

Further,
. Vin? + T/l 511+ vy
Amay = T =
11 v
2 .2 :
> P fim—my)+ v ,-’n.;p= ne _ (2.4)
v Hgln —mg)

In(2.3) and (2.4), =" holds whenevern) = n: = --- = n, = (n — ny) /v for

every fived mg.
We now refer to the probability inequality [1.11). We set

o =1,00=0— 1L, & = Amax, A3 = (JTAi/dma )"/
A =nvfmpln— ) and A3 = of(n — mg). {2.5)

We now consider two cases. We first consider the case where 4; = 4", In
this case an application of Corollary 1 gives

it

Y LZE< 31] < Plhyait] + Aoyt <27
1

P

< PR+ 4 < 2. (2.6)
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Here, the last inequality follows by implication of events. If on the other hand,
Ay < 43", conditions (1.12) and (1.13) are satisfied and hence, the above result
follows from application of Corollary 1 followed by that of Generalization 2.
Thus, (2.6} holds in all cases.

Thus, for every fixed my, the allocation (nﬂ,n_un“,...,n_unﬂj is uni-
fonnlj, (in & = 0) better than (ng,ny,....n,) for all choices of n,’s subject to
H— My H — Hpy .

Zn, = 1 — ng. Hence for fixed ng the allocation (nﬂ, e ) 15

ﬁssennallj, complete in th& sense that it is uniformly better than any other
allocation (my,ny,....n0, Zn =Hn—Hy

Denoting the RHS of (2.6} by Pin. v, ng,e) we have

n 4 v 3 2
J = el 3 £ 2
Pin,v,mg.e) =P nﬂ{n—nﬂj‘{' +n_nﬂ,(;_| < & ] (2.7

According to the approximate design theory, we try to choose pg(= ng,)
optimally i.e. in such a way that we maximize

P(v,po.&) = Plxi +poxi < pol(l — po)e’] (2.8)

for every given & > (). The above expression (2.8) follows from (2.7) where ¢ is
used as a “‘generic”’ notation .

We carried out extensive computations to determine the optimum value of
o Le., the value of py which maximizes the coverage probability P for a given
value of &*. The results of these computations are presented in the following
table.

Table 21, Optimal values of py

r==5 r=10 r=15

2 p P s om P 2 m P

5 | 023 02622 15 | 0.21 | 04954 20| 08| 04439
0| 0.28 | (edie 20 | 024 | 07108 3] 0.20 | 07802
15 | 031 0.7962 25 | 026 | 0EM3 351 022 | OR73R
20 | 032 09002 M| 027 08129 40 | 025 0932
25 | 037 09523 35 ) 028 049534 45 | 020 | 09642
M) 037 08757 40 | 034 | 09766 55 | 0.32 | 09894
35 ) 036 | O9ERS 45 | 0.32 | 09877 65 | 0.3 | 09977
40 | 040 0997 50 | 0.37 ] 09957 75 0.37 | 09993
45 | 044 [ 09976 35 | 0.34 | 09973 B5 | 0.37 | 09999
5010 042 0991
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The above computations were based on 10,000 simulations and hence the
values of py are only approximate. However, our computations indicated the
following.

(a) The values of P are nearly constant in a broad range of values of pg which
are close to the optimum value. This is especially true for large values of
I

(b) As e’ increases both the optimum value of py and the corresponding value
of P increases at least initially. After that, optimum value of gy appears to
decrease whereas the value of P continues to increase.

(e) No single value of py maximizes P for all values of &°.

(d) Since A-optimal allocations satisfy the relation my = /v/n |vide Ma-
jumdar (1996)], the DS-optimal allocations are almost the same as A-
optimal allocations.

(e) Since DS-optimal allocation tends to be E-optimal as £ tends to infinity
[vide Erkki et al. (1999)], it is possible to obtain approximately E-optimal
allocations by choosing . These computations indicate that it would be
desirable to choose a value of py which maximizes P averaged w.r.t. an
appropriate weight function for &. We address this problem in the next
section.

3 Weighted coverage probabilities

We shall consider the coverage probabilities discussed in the previous section
averaged wrl. £ using a probability distribution for & Prompted by the ex-
pression (2.7), we shall start with the p.d.f. of £? as that of 3 ie., ¢/ for
0 =< g = oo, Subsequently, we shall show that our resulis can be applied for a
large class of density functions for £

The weighted coverage probability is obtained by integrating the RHS of
(2.7) w.r.t. & using the p.d.f. for &£* given above. Let A} = v/npg(1 — py) and
Az = v/n(l — py). The weighted coverage probability is given by

L 3
Punin = || Pl + iy <) @), (3.1)
|

This may be written as
_ o0 .
Pona = “j o gfﬂzhdﬂ'z.-?_.)]r-’”dwz:l
[i] A tdae <

T arA [ ar2 [ erawi
L . {mL ‘ Lr._ﬁljﬁf d(?/2)

where T = iz} + 4ax2 . This is easily seen to be



Comparison ol test vs. control treatments 153

i ol
j j e T2 dF (33) dF (12 )
o JO

=i
{:ﬂlj_ I ."EE— (144 1 /2 nryl

=zvﬂr@p(”;1) L /

x
3 I {IE—I :I[I'—J]."lf—[|+:.1].{_:_l ."Enrxf_ i

Evaluating the integrals we get
B,aa={(1 +4)(1 +A) 1} 1A (3.2)
In the limiting case where i becomes indefinitely large, 1) = 4 = 0 and in the

limit, P = 1.
We have seen that

(B2 =1+ + )" (3.3)

We regard P2 as a function of p, and try to minimize it w.r.t. p,. For this, we
define ¢(py) = ¢/n( F2) and set ¢'{ py) = 0. This gives

2pg — 1 v—1
3 . —=0
pil+d) 1+4

On simplification, this gives
A{(2po = 1) + (e — 1} + (1 —po){2p0 — 1) + pis(v — 1)} = 0,

where 4 = v/n.
Take limit when n — oo ie. when 4 — (. This gives

(1= po){(2po— 1) + pylv — 1)} = 0. (3.4)

It can be easily seen that only admissible root of this is pg = (1 + ﬁ]_l.

We now consider the case when 4 = (. We note that 43 is small compared
to v and so (1 + 42)""" can be approximed by 1 + (v — 1)42. Under this ap-
proximation, we have

(P)™2 = (A(v— 1)+ (1 — po))(A + po — p2)/Pol1 — po)™-

We set a value for P and search for a value of py which will maximize 4 = v/n
and thereby minimize the value of n required to attain P.

The table given below gives the optimum values of py and the corre-
sponding values of n when P = .9 or 95 We give these for v = 2,3, 5, 10 and
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15. We also give the common value of n;, the replication number for the con-
trol treatments.

=23
r P n i m
2 0409 52 2 15
3] 0380 102 ¥ 22
5 0.304 241 7 34
10| 0238 B9 IR 62
15 | 0202 1671 336 89
P= 95
r Mo n Hiy m
2 0412 1o 46 32
3] 033 214 ™ 45
5| 0.306 3 153 !
0| 0238 1676 396 I2R
15 [ 0.204 3453 TORE IR

Relative efficiency of two designs having proportions pg and py for the test
treatment may be measured by the ratio of the values # and »* required to
attain the same average coverage probability P. This would in fact depend
upon £. However, if we use the approximation used above we get this mea-
sure of relative efficiency as

Poll — ol (1 4+ (v — Llpg ) i s
po(L—pi)(1+ (0= 1)pa) (3.5)

Epg,py =

Remark 1: It is interesting to note that the allocations under the DS-optimal
designs displayed above in both the Tables do satisfy the approximate rela-

tion: ? = \/v. In other words, the DS-optimal designs are approximately A-
|

optimal. [vide Majumdar [1996)].

Remark 2: We can easily incorporate a scaling factor in the p.d.f. for 2. If the

p.d.f. for £ is ze/% /5, the value of n is given by n; = n/d. Thus, small values
of 4 will lead to larger values of ny.

Remark 3: One way to generalize the form of the probability distribution of £
would be m use a mixture distribution for &2 i.e., a mixture of scaled 3 pd.f’s

given by - Z 2 '“""ﬁf_ The coverage probability would now be given by

i Z ”"J;ﬂ (4 4) 78 4 dg) IR

For given w;'s and 4;’s an analysis similar to the above can be carried out.
This will be somewhat more complex.
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Remark 4: If for some design settings 4,77 + Ay> | is replaced by .F.|;{f_| +
.-:..3;:‘%_1, we can use the same technique for computing P.

4 Conirol-Treaiment comparisons in treatment-connected designs

For a treatment-connected design o, let C,; denote the usual C-matrix which is
also known as the information matrix for varietal contrasts. We shall formu-
late the current inference problem in terms of the matrix C;. Clearly,

g=Lt. L =(1,-0,t=(tg.11,....7)" 4.1
so that
=Lt Dy(i) = (LCjL")o" = a7 Zy. (4.2)

where A7 denotes the Moore-Penrose inverse of the matrix A.

Let 41,...,4, denote the eigenvalues of £; = LCJL" so that (1.2) can be
written as [1.4). We will write Ay (d) for Ay, of £,

We note that

x'(LCHL )x

A () =
X'y

for any x # o.

Taking x =1, we get

S (d) 2 1'{LC;L1
v
_ (o1, —1)CJ{E._—1,—1._...,—1]|’
v
= Ch (v+ 1) /v (4.3)
It is not difficult to verify that
ChoCiw = (v/ (v + 1)) (4.4)
so that

Let d* be a design related to o for which C;. has the structure
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a |—aly - e —afp
—afe| Bfv —¢iv - —fp
Cp = |-ate| ~clv bje o e s

| —ajv | —¢fv —cfv ---  Bfu _|
where a4 = Cyyp and b = tr{Cy) — Ciue

We claim that 4" improves over  uniformly in ¢ > 0 in terms of increasing
the coverage probability whenever the condition

tr(Cy) = 2Cy, (4.7)

is satisfied. The precise statement and proof are given below.

Theorem 1: Let o be a design for estimation of w in (4.1) in a given design sei-
ting. Let d* be a design satisfving (4.6). Then, under (4.7 )

Pa(llg —wll < &) < Pa(llig —ull < 2) (4.8)
uniformiy in g = 0.

Proofs Observe that

a‘lﬂ,;-{ﬂ =Xp =LCLL ={a— M1, + ], (4.9
where,
Dt=l_|_{u—1j|- P 1 (e—1) 4.10)

a vh—a’ a vh—a

Thus, the eigenvalues of X are

2+ (v—1)f = v/a with multiplicity 1

and

2—fi = L“—_” with multiplicity (v — 1. (4.11)

vy — o

Whenever (4.7} holds ie., b = a, it turns out Ay, (d*) = v/a so that in view of
(4.5),

Ama () = Amax(d*). (4.12)

We now argue exactly as in the case of CRD indicated after (2.5).

Case I IT'i(d) = T'4{d*) = {imi,.{n"jj"". Here I1' (X) indicates product
(sum) over all eigen values excluding the maximum.
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We have
- - N gl Foa oy ol HE
Pli—nll < ¢ = P[u ()2} + 23 d) 2} < J] (4.13)
P
=P [}lm{n" ]|.2|1 + X ’,:_,-{:szf = F] 4.14)

(by implication of events, using (4.12))

gP[s.m{d‘:lzf+{ﬂ’ﬁu-{:f:l:l'”""-‘z.-?_.f: ] (4.15)

Q-f.ln.-
(R (=]

[

< P[,:.m{d*:lzf + (1A ) < J ] (4.16)

[

(by implication of events)

=Pyl —n < by (4.11). (4.17)

Case I IW(d) < T {d*) = (Amin(d*))" ™"

Here we trace our steps as in Case 1. The proof follows from Corollary 1
and Generalization 2 after noting that

(i) [LCL'| = |LC}.L'|, (Condition (1.12) in Generalization 2)
and

(i) Amax(Za) = dmax (L) = Ain(Za-) = (I 2(d)) V7
hold here. For verification of (i), one may refer to Shah and Sinha (1989,
pp 132-134). This completes the proof of the theorem.

If we restrict our attention to the class of designs of the type °, the prob-
lem reduces to that of choosing C 4, 50 as to maximize

L% Gl (4.18)

o vh—a ©
where a = Cy,, and #r(Cy) = a + b, in situations where b > a.

As is noted before, the solution is very much &”-dependent and, hence we
can maximize appropriate weighted average probability by using a suitable
weight distribution for £,

We will now specialize to specific design-settings and examine appropriate
designs for distance optimality.

BLOCK DESIGNS

We start with the following block design set up. There are B blocks each of
size k({=<v) and we have v+ 1 treatments of which the control treatment has
effect 7y and the other v treatments have respective effects 7, 72,..., 7. AS
before the parametric functions of interest are as in » given by (1.1) and the
optimality criterion to be used is the one given by (1.2).
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Let g, o1 denote the class of binary connected block designs (&) under
consideration for given 8. v and & where R is the replication number for the
test treatment.

1
We note that for all designs (d) in €, 5.6, Cive = Rﬂ(l - E) and hence

. vk

At this stage we introduce a design * €%g, g, Which has the following
structure:

0 | BIBD in
0
Byblocks | 0| 1,2 v
0
0
d*: (4.20)
B, blocks BIBD in
S e
B blocks BIBD in
0,1,2,...,0

It is readily seen that C;- assumes the structure as in [(4.6). Let ry denote the
replication number for a control treatment in the By blocks of the first BIBD
and let r; (i =1,2) denote the corresponding replication numbers in the
BIBDs comprising of B blocks (i = 1,2). This gives us the relations

Rﬂ = Bn+f'g,mi,‘ = Rﬂ{k = 1:|,J"|L‘= E|k1r3{ﬂ+ 1:| = ng. {421)
Further, in (4.6), o and » will have the following expressions:

a= Rylk =11 /k.b=virg +r1+r)ik—-1)/k

and b=a+(r-1c (4.22)
We note that
- vk — lj{rz +r 4+ ra) o 2 +ralk—1) - (4.23)
so that for 3.,
v vk (4.24)

.-:..maxlid‘j =E=m.
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Hence, in view of Theorem | it is enough to concentrate only on designs of the
type d*.

At this stage, we note that &* in (4.20) is thus demonstrated to be superior
to any design o providing the same replication number Ry for the control
treatment. We now go ahead to examine if an optimal choice of Ry can be
made for further improvement.

We write T = Tr{Cy- ) = a + b which can be seen to be the same for all &*
within Cg, g, ¢ and for all values of £, We also write y =h/T. Since a < b
(as seen in (4.23)) we have ! < y < 1. Thus, (4.18) reduces to

v 4 viv—1)

P - A 4.25

Ta—n" "Tios py— 7t <° (23]
which can also be written as

Plyi +poiy_y < £ A( po)] (4.26)

where pg = (v— 1)(1—7)/[(v+1)y—1] and A“Eﬂ =1l—y= upﬂ}-;[{u+ L)pe+v—1].
+ ra 0

We also note that A{p)=1-—1y 4 Ty
proportion of experimental units receiving the test treatment. In (4.25) and
(4.26), we have used the same &” as a generic notation.

We carried out extensive computations to determine the optimum value of
o for a fixed value of 2. Again we find that different values of £ give different
values of py and hence a uniformly optimal design does not exist. One can
determine the value of p, to maximize P, the weighted coverage probability as
in Section 3.

As in the case of CRD we can average over the pd.f. of &* which is as-
sumed to be that a ;7 with 2 d.f. to get weighted coverage probability. This
zives

which s the

P={(1+4))(1+4)} "2
where 17 = v/T(1 —y) and i3 = o(v — 1)/ T[(v+ 1)y — 1]. Let ¢(3) = —2/nP.
We wish to choose y to maximize P or to minimize ¢(y). Setting ¢'(y) =0
yields

AP + By +C=0
where

A=Tw—-1DYv+1) = T(v+1)*

B=-2T(v+ 1)(v* —20) —F(0* — 1)

and

C=Te— e+ 1) =1+ (v 1)



160 M. K. Mandal et al.

This would give a value of y which will maximize P for fixed values of T" and
v. We do not find a simple limiting pattern as we did for a CRD. We present
here values of y,,, and max P for various values of n when k = 3and v = 5. It
can be seen from these that for fixed values of i, v, and k&, the desired values of
F may not be attainable.

Table 4.1, 7, and maximal £ for given n
n Fapt max P
L] 192 4236
[o]] 7036 i A
75 b R4
150 936 202
225 RS 744
300 BETS A034

Asin the case of a CRD, we considered a fixed value of P and computed the
necessary values of T for many values of . Since T relates to the size of the
experiment, the best value of y is the one which gives the smallest value of T.
The following table gives the results of some calculations along these lines. We
have taken P = 9 and 95.

Table 4.2, Optimal values ol n and &
F =050

k| o 7 T n Ry B

5 | (L6REL 192 289 a0 96

6 | 0078 | 271 407 119 | 136

7 ] 07238 | I3 54 150 | 181

3| OB | 07372 | 467 LY 184 | 233

9 | 07487 | 582 74 | 230 | 291

10 | 07587 | 710 1065 | 257 | 335

7 | 07238 | I3 484 13 | 121

4| B [ 07372 | 467 622 Ied | 155

9 | 07487 | 5B2 776 195 | 194

10 | 0.7587 | 710 947 | 228 | 237

10 | 07587 | 710 BET [ 214 | 177

51 11 0.7a75 | 49 a2 | 247 | 212

12 | 07753 | 1000 | 1251 | 281 | 250
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F =095

k v 7 T n Ry B

5 | 0.6RSE | 400 adl I8 | 200

6 | 055 | 564 B4h [ 249 | 282

7] 07217 | 753 1129 [ 314 | 376

3| B | 0.7352 | a7 1450 [ 384 | 483

9 | 0.7468 | 1206 | IBOR | 458 [ 603

10 | 0.7569 | 1469 | 2203 | 536 | 734

7| 07207 | 753 o4 | 27 | 251

4| B [ 07352 | 9a7 1289 [ 341 | 322

9 | 07468 | 1206 | 1607 [ 407 [ 402

10 | 0.7569 | 1469 | 1958 | 476 | 490

10 | 0.7569 | 1469 | 1836 | 446 | 367

5 11| 0758 | I756 ( 2195 | 514 | 439

12 | 0.7737 | X067 | 2584 | 585 | 517

We note that in all cases, the values of » and B, are
rather large.

Design d* (with B, = 0) is identified as a Balanced Treatment Incomplete
Block (BTIB) design defined by Bechhofer and Tamhane [1981). See also
Hedayat et al. {1988). We note that any design 4* having the form of C;. as
given in (4.6) would have the same optimality properties. Thus, any BTIB
design would have the same property as *. For computations, we would have
to take an appropriate parametrization of Cy,, in terms of the design param-
eters.

Thus, if there exists a BTIB with approximately the above values of # and
R, for given v and k. it is optimal for the given coverage probability. The
optimality is in the class of binary designs with the same values of B, v and &.
The design is optimal in the sense of maximum averaged coverage probahility.

GENERAL SETTING

The results of the previous sections reveal a pattern which may be useful in a
more general setting. Consider a setting in which the C-matrix for a design 4*
has the form given by [4.6). This will lead to the X;. matrix of the form given
in (4.9). This will give the eigenvalues for X' - as given in (4.11). Further, for
any competing design , whenever (4.12) will hold, the analysis of the previous
section demonstrating superiority of d* over the competitor & will remain
valid. What remains to be done is to identify a design * for the particular
setting. For a value of ¢ which is of interest to us, we try to compute the
optimum value of Cj;.,, and then try to see if a design &* having C,. of the
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form (4.6) exists. Here, the combinatorial structure of the setting plays a very
important role. We have seen how optimal designs may be obtained for zero-
and one-way classification designs. For two-way designs the families of de-
signs given in Hedayat et al. [1988) provide A-optimal designs. The class of
designs available here is not very rich and hence we do not carry out compu-
tations as we did in the other two cases.
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