Optimal designs for binary data under logistic regression
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Abstract

A unified approach is presented for the derivation of D- and A-optimal designs for binary
data under the two-parameter logistic regression model. The optimal design is constructed for
the estimation of several pairs of parameters. The E-optimal design is also obtained in some
cases.
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1. Introduction

Consider a binary response ¥, resulting from a non-stochastic dose level x. Assume
that ¥, takes the values 0 and 1 and the probability that ¥, takes the value 1 s given
by

—1 1.1
Alx)= 1 e—ariy’ (1.1}

where 2 and § are unknown parameters with § = 0. Consider m distinet dose levels
X1aX2s. e oo X and suppose we wish to obtain #; observations on ¥ at dose level x; (i=
1.2,....m). Let 3" n; = n. For the estimation of x and f§, or some functions of z
and fi, the optimal design problem m this context consists of optimally selecting the
x:'s (in a given region) and the n;'s, with respect to some optimality cnterion, for a
fixed n. The estimation problems that are usually of interest refer to (a) the estimation
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of f, or 2/f, or some percentle of Plx) given i (1.1), or (b) the jomt estimation of
a pair of parameters such as (1) 2 and §, (11) § and 2/, (111) § and a percentile of
Pix), and (iv) two percentiles of P(x). For estimating any of the individual parameters
given above, we can consider the asymptotic vanance of the maximum likelihood
estimator, and then choose the x's and #;7s optimally by minimizing this asymptotic
variance. For the joint estimation of two parameters, we can consider the information
matrix of the two pammeters and then choose the x;'s and the »'s to minimize a
suitable scalar-valued function of the information matrix. This amounts to minimizing
suttable scalar-valued functions of the asymptotic vaniance—covanance matrix of the
maximum likelihood estimators of the parameters. The D- and A-optimality criteria
are well-known examples. Some of the relevant references on this specific optimal
design problem include Abdelbasit and Plackett (1983), Minkin (1987), Khan and
Yaredi (1988), Wu (1988), Ford et al. (1992), Sitter and Wu (1993) and Hedayat
et al (1997). While the D-optimality ertenion has received considerable attention in
this context, A-optimality has also been considered by some authors { see Sitter and W,
1993). The optimum dose levels actually depend on the unknown parameters = and 7,
as 15 typical in non-linear settings. In fact, solutions to the optimal design problems
mentioned above provide optimum values of 2 + fix;. Hence, in order to implement the
design in practice, good mitial estimates of @ and § must be available. In spite of this
unpleasant feature, it 1s important to construct the optimal designs in this context; see
the arguments in Ford et al. (1992, p. 569).

In the present article, we consider the jomnt estimation of (1)  and f, (1) § and 2/,
(i) f and a percentile of Pix), and (iv) two percentiles of Pix), and provide a unified
approach for the construction of D- and A-optimal designs. 1t should be noted that if
Iz, ) denotes the information matrix of (2, ) and if ) and (f are two functions of
x and f, then the information matrix of (0, 02 ) 15 Jf(2, 5077, where the matrix J does
not depend on the dose levels. Hence, the D-optimal design 1s the same for estimating
any two functions of 2 and . Even though we have constructed mainly the D- and
A-optimal designs, we have been able to derive the E-optimal design in some special
cases. Most of the time, we have been able to derive the A-optimal design only within
the class of symmetne designs, i1.e., the class of designs where the dose levels x;oare
such that both 2+ fx; and —(2 + fx;) oceur with equal weights.

For simplicity, we shall consider the continuous settmg m which n;/n 15 replaced
by &, where the &'s satisfy &> 0 and } ", & = 1. Thus, a design can be denoted
by %= {{x. &) i=12....m}. We tacitly assume the dose region to be 00 < x < oo,
As a general reference on optimal designs, we have used Pukelsheim (1993) as and
when necessary. In particular, for Lemma 1 in Section 2, we have borrowed clues from
Pukelsherm (1993, Section 10.5).

2. Estimation of x and [

The following lemma will play a crucial role m our denvation of optimal
designs.
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Lemma 1. Let &'s (i = 1,2,....m) be positive real mumbers satisfying ¥, &= 1.
For any given set of distinet real mumbers ajas, .. a,. there exisis ¢ satisfying

- e

ZB‘{1+"Jf 27 (1+eP =)
o e
Zg“{HcﬂF“‘ (14e) (22)
The proof of the lemma 15 given in the appendix.
Let
@ = o + fix;. (23)

Usmg the notation &; instead of a;/k, the information matrix for the joint estimation of

x and f is

¢ i & . £ &
=157 amay? i=1e T s
(14 e) (1+e)
Ha = . 24)
! ot g O mga O7T {

where a; is given in (2.3). Note that for any real number a, ¢*/( 1+¢*)* =™ /(14+e79)%
This is a property that we shall frequently use.

2.1, D-optimality

The solution w the D-optimal design problem is already available in the hierature
{sce Minkin, 1987; Khan and Yazdi, 1988; Sitter and Wu, 1993). We shall give a
simple derivaton, applying Lemma 1. We need to maximize [[{z, )] in order to obtain
the D-optimal design. Note that

)

ﬁzlf{mﬂ}|=LZr;1 L HZH;] Lz.;;}

l[1+1,“I {14 e™) (1l 4+e =)
(25)

It 15 readily seen that a D-optimal design should be symmetric in the a;'s, i1.e., both
a; and —a; should oceur with the same weight. For such a symmetric design, (2.5)
simplifies to

o —
PO

! - i o —11 26
BB = Z';{1+Lf+ gr; T re=) (2.6)
where we have also used the fact that e ™ /(14 ¢ ) =e*/(1 +¢*)*. In view of
Lemma | and (2.6), for any symmetric design, there exists ¢ satisfying

5 14
Iﬁ_lf{.: IH}l""‘-{‘l_i_ ..g}‘.!'c e

d+er “O+e 5
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In other words, the symmetric design {(c, 1 L(—c. 1)} maximizes |[[(z, )|, where ¢ is
obtained by maximizing e /(1 4+ ¢ The m&ximizing value of ¢ is cp = 1.5434.
Hence the D-optimal design consists of the points x;p and xap, with weights 5 cach,
satisfying 2 + fivyn = —cp and o + fivap = o )

2.2 A-optimality

In order to obtain the A-optimal design, we shall minimize Var{ )+ Var{ﬁ}, where
& and ﬂ are the maximum likelihood estimators of 2 and § and the vanance being
computed is the asymptotic variance. From the expression for the information matrix
given in (2.4), we pet

—LI

Var(#) + Var(f) = Zm g [ + V(2 B))

(1+e

Z e |:1 3 {a; ;gﬂ_]/ (s, 5. (2.5)

d'u

(1+ea)

using (2.3). We do not have a complete solution to the A-optimality problem. However,
i we restrict attention to symmetric designs, Le., designs that are symmetric in the a;'s,
then the A-optimal design can be casily obtamed by applying Lemma 1. Note that for
a symmetric design, (2.8) simplifies to

e i e

LT et 2”“2*““]/

Var(d) + Var{ll‘.i} = [ﬁL

I\J'Lr

[1 i i Z i ]
IHEJE'-IHJ{.]'-'-L lJr I= {1+L—ﬂr}—
2 3 1

Sy +t o . (29)
Lribore sl Lot 0L fe- ol e 0 ) ¥

where we have also used the expression for [[{x )] in (2.6). Now, let ¢ satisfy (2.1)
and (2.2), where we are using the fact that ¢~ /(1 + ¢ %)* = ¢* /(1 +¢% ). Then, in
the class of symmetric designs,
3 2

= + 1

A,
o {1 + e }2 o {‘1 + ¢ }_
In other words, in the class of symmetric designs, the A-optimal design is given by
{ic, 2'— },{—c',,z'— )b where ¢ minimizes

2
3 1
CAF = (2.11)
Aef(l+e)y (1 +e)

Var(3) + Var(f) = 5 (2.10)

Once initial estimates of  and f§ are available, the A-optimal choice of ¢, say ¢!’ can

be numerically obtained, by minimizing the expression in (2.11). For varous values
of 2 and §, Table 1 gives the values of c'_:“, numerically obtained. In the table, Af,]',f
denotes the minimum value of the expression in (2.11), which is also the minimum
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il

Table 1
e 2l 1 that minimize (2.12). AL}

Values of ¢ =£'_[|]' that minimizes (211}, and 3 =&}, ez =2y, and {1 = £
and A:‘_(‘]' denote the minimum values of (2.11) and (2.12), mespectively

(= f f:ﬁ]' AE# ﬁ'i]_ll' £'|:l]|| .j{]_jl' A:g' Loss of
efficieney (%)
{10, 5) 23300 273141 23832 —23832 1.4056 2872913 14887
{5 5] 2464 1260928 23065 =265 0. 3908 1204704 46591
{1, 5) 21477 T0.8927 21526 =2 1526 04647 T0.5414 0.49749
(1,2 23175 2494336 23954 —23a54 0.3851 2373101 51087
(5 2) 2. 1667 78308 2403 =230 03043 BR.1277 14,2425
(1, 2) 1.7550 208724 1.7701 — L7 03854 1985340 52353
(10, 053 23148 2408808 23000 —2.3090 03804 2R 2756 55219
{5, 0.5) 21424 69,1552 2.3932 —2.3032 0.2617 576540 199485
{1, 0.5) 13612 103111 1.2747 =1.2747 0. 1968 75763 60972
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Fig. 1.

value of Var(d) + Var{lf}} in the class of symmetric designs. The other quantities in
Table 1 will be explamed shortly.

In Fig. 1, we have plotted the functions ¢°/(1 +¢ ) and ’e*/(14+¢° ), for ¢ 20. The
function ¢ /(1 + ¢°)* is a strictly decreasing function of ¢, for ¢=0, with maximum
value of 3' attained at ¢ = 0. For ¢ =0, the function ¢%¢*/( 1 + ¢ F increases, reaches
a maximum at ¢ = 2.399 (approximately ), and then decreases. Consequently, if we are
minimizing any decreasing function of ¢/(1 4+ ¢y and ¢%¢*/(1 + ¢)*, the minimum
will be at a value of ¢ that will not exceed 2.399. Hence, the values of op and c'_':i”
mentioned above, also do not exceed 2.399,

Even though we have denved the A-optimal design within the class of symmetric
designs, it should be clear from the second expression m (2.8) that an A-optimal design
within the class of all designs may not be a symmetric design, unless =0 1t appears
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difficult to chamcterize the A-optimal design within the class of all designs. We shall
now restrict attention to a two point design {(cq. & )2 £2) ) and numerically obtain
the A-optimal design within the class of all such designs, Restricting attention o such
two point designs, the A-optimal design problem reduces to that of minimizing

E1C B +(c1 — 2P+ E:G[F + (c2 — 2]

(2.12)
(E1C + ECNEAC + E03Ca) — (L1010 + EaCa )P
where
iy |

The minmization of the expression n (2.12) can be done numerically with respect
to o, o oand & (&2 =1 — &) For vanous values of o and 5, Table 1 also gives
the values of ¢y, ¢2 and £y, denoted by cilli’._, c':.,l; and .f‘l_lf that muinimizes (2.12). .4:,:,”
in Table | denotes the minmum value of (2.12). Ao mncluded are the percentage
loss of efficiency of the symmetric A-optimal design {(c!| ’,_.',},{—c'_‘i' ', 1)}, relative to
the A-optimal design {{LH,J, I;},{c'{llar,,l - ﬁ‘lf;}}-. The expression for the percentage
fnl,: 4;;:‘— 1) = 100, 1t 15 clear from the results m Table 1 that
the loss of efficiency mereases as f becomes smaller. Another mteresting feature s
that ¢f!) = —¢!!]. That is, the A-optimal design is point symmetric. However, it is not
weight symmetric, 1.e., .:ll; # 0.5, unless 2 =0. We have not been able to theoretically
establish the pomnt symmetry of the A-optimal design.

loss of efficiency 1s (A

: : i |
Our numerical results show that when 2 15 replaced by —a, the values of c"l_i', c';;

wi sl I .
and Am{ﬂ' do not change. However, .;‘I_; eets replaced by 1 — .:‘H’. Thus, in the above
table, we have reported numerical results only for a positive 2.

3. Estimation of & =2/ and f

The mformation matnx s now given by

—H —ily

i ¢
ﬁ Z 1 i a Z‘U—N:’ {1 =
i= ] a—il 2 Ll 1 —il; &
I{h.p)= { +_Lu } 1 . +L_: 5 (3.1)
b Y e
(1 +e=)> #° (1+e =y
where
@ = o+ fx; = filx; + 0. {(32)

We shall first prove the following lemma. The lemma provides a result on weak super-
majorization involving the vector of eigenvalues of [0, f) (see Marshall and Olkin
{1979, p. 107 for the defimtion of weak supermajorization ).

Lemma 2. Let [, ) be av given din (3.1) and et LB denote the information
matriv of the design {(c, :.', LA—c, ::, Vb where o satisfies (2.1) and (2.2). Then the vector



T. Mathew, B.K. SinhalJonrnal of Sttistical Plamnng and Inference 93 (2001) 205307 301

of eigenvalues of L0 B) is weakly supermajorized by the vector of cigenvalues of

I g

Remark 1. Let A(0 ) = (4000 B0 (0 ) and A 00y, ) = (000, F) e, )
denote the vectors consisting of the eigenvalues of [, f) and L(0), #), respectively,
where, we also assume A(0, Bz ia(0, fyand 4 (0L Bz 000,00 I A0, ) 1s
a noninereasing Schur-convex function of A0, §), then Lemma 2 imples that 400, §)
minimizes ¢{ A0 f)) where ¢ satisfies (2.1) and (2.2). Henee, if ¢y provides the
minmmum of ¢ (. f)) with respect to e then {(cy. _% Lo{—cy. :I? i} 18 an optimal design
with respect to the optimality crterion ¢, For example, the D-, A- and E-optimal
design can be obtained by minimizing [L(0, £)| 7", tw([L(0. f)]") and the maximum
cigenvalue of L(0, 5)~', respectively. Also note that [0, 8) s a diagonal matrix
with diagonal elements ﬁEL_" (1 +e~)? and (1, 'ﬂj}c'z (1 +e ¥. Henee, the vector
i 0. ) consists of the gquantities f7e ~*/(14+¢7) and (1/87 e /(1 +e ), ordered
from the larger o the smaller. The approach to optimality via weak supermajonzation
15 described in Bondar (1983 ), m a very general setup. In the context of binary data,
Khan and Yaedi (1988) have also used majorization in order to derive D-optimal
designs,

Proof of Lemma 2. 1t is well known that the vector of eigenvalues of a real symmetric
matrix majorizes its vector of diagonal elements. In other words, the vector of diagonal
clements of f{0, f) s weakly supermajorized by the vector of eigenvalues of I{i, 5.
When ¢ satisfies (2.1) and (2.2), it follows that the vector of eigenvalues of Ll f),
namely the vector

2 e 1 4 e
(ﬁ_{l +C—:'}2’Ec {1+u—¢}z)

is weakly supermajorized by the vector

r

(ﬁ'Zm e e s ])

(1 +e =) ”,Hz (1 +e=
Since the latter vector 15 the vector of diagonal clements of £, ), the proof of
Lemma 2 s complete.
As already pointed out, the D-optimal design denved for the estimation of 2 and
f continues to be D-optimal for the estimation of ) and f. We shall now consider
A-optimality and E-optimality.

3. A-optimality

The A-optimal design mmimizes

1 =y 1 2
( +L. Ik [ﬁz"'fz]- (33)

Ln.—I:
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Tahle 2
Values of ¢ = ﬁ'EIE' that minimizes (3.3, A{i_‘ denotes the minimum value of (3.3)

i iz
# 3 A4
0s 0.6925 203415
2 20510 11,5939
5 23843 574389

Tahle 3
Values of ¢ =5 that minimizes (34, .E.f;" denotes the minimum value of (3.4)
P 41
# ﬁi. ! f:.tF'
03 0.2500 16,2513
23004 9. 1064
5 2399 56,9179

The numerical mimmization of (3.3) s easily accomplished, once a value of [ is

available. For a few values of f§, Table 2 gives the optimum value of ¢, say c'f}, that
mininizes (3.3), along with the minimum value of (3.3), denoted by A:f__f

Sitter and Wu (1993) have also addressed the optimal design problem in the context

of estimating  and . However, the A-optimal design that they have constructed is

for the estimation of ) and 1/f (see Sitter and Wu, 1993, p. 331). In this case, the

expression to be mmimized becomes

e

{1+1:. I3 [1+ 1].

= 3
cl: F

3.2, E-optimality

The problem now is the mmimzaton of

[1;1 +e~)P F(l +c-f1r’-]

| . 14
IH.ZL—:' 5 et { )

For various values of . Table 3 gives the resulting optimum value of ¢, denoted by
12}

oy, along with the minimum value of (3.4), denoted by Ef,i{

4. Estimation of f and the 100yth percentile of FP(x)

Let & denote the 100yth percentile of Pix). Then

= 100y
0= —— “hL‘TLf=In(m) {4.1]
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The mformation matrix of & and § 15 given by

1 FYL m ~2iibila = D ey
N RS ot ot s
—3 g — | )—— [ N— ;
ZJ:II;"{H }{‘1 +L—u.-::| ﬂzz g{' {_1 + % }2
(4.2)
where
@ =a+ fx =1+ fx; —d). (4.3)

It 15 casily seen that
2
_“.- o L‘_u" c_“.- b
I = 7 A a .
HEY] L}:‘r;{lﬂ_u} ] L eﬂfil_'_L_u}] LZ-: e }]
(4.4)
The A-optimal design minimizes

e . (a; ”2
Var(d) + Var(f) = ZQ{HL ) [ﬁ TR ]/If{a Bl (4.5)

where 0 and § denote maximum likelihood estimators and the vananees under consid-
eration are the asymptotic variances. If we consider only designs that are symmetric
in the a;'s, then (4.5) simplifies to

T s 1 fit+ 2 1
)+ V)= g | S Tt al(l e e T S, Geaf(1 T e )

i=l
(4.6)

similar to (2.9). Now, we can apply Lemma 1 and conclude that the A-optimal design
is given by {(c.3).(—c. 3)}, where ¢ minimizes

1 p+ P 1 ]
)

(4.7)

2

B e f(1+e) T ef(14 )2
This 15 similar to the minimization of (2.11), once we have an nitial value of fi.

If we are interested m the 50th percentile of Pix), then [ =0 in (4.1). The 50th per-
centile 15 the quantity —az/f8. In other words, the estimation of the 50th pereentile and
s equivalent to the estimation of =8 and S, the problem considered in
Section 3.

5. Estimation of two percentiles of Pix)

Let 4y and da, respectively, denote the 100y th and 100ysth percentiles of Pix),
where we assume that 3 = 72, Define

B 1007, B 1007
f|—|ﬂ(m) H.H'I'j fz_ln(—]_{]ﬂ{‘l—:‘z'ﬂ) {5.1}
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Then
a‘-.=‘r'||;Dt and 52=‘r3;’ (52)
The information matrix of {4, d2) is given by
- 1
oo =
{ 1% 2} {‘él — 52}3
" Zf;, .f,-{a, -lrj} m —Z:-J;p‘;";{ﬂ;— Iy Wa; — fﬂ}ﬁ
_Zf; I':l'{.ﬂl' - f' H.al' - !2}“-;:——:.-}! Zf;l Eﬂ{al' l }_Hh::rb-
(53)
where
1
n,-=:+ﬁx,-=bl—----[{a.f-..—mf.}+{f.—h}x,] (54)
Then
{lﬂ | ﬂz } o . C_ﬂr ar N 2 c_ iy
18,5 = e =
(h - ?-H héa)| = L.g‘(lﬂ-ﬂr}!] [gg ‘{1+L-ur}2]
e 2
LZr;.al{lJrL_u }r] : (55)

The A-optimal design minimizes
Yo Ede T (1 + e 9 )[(a; — 1)* + (@ — )]

i Gies/(1+e= 2| o, date /(1 +e )2 i, Lo {1+ e F]" '
(5.6)

Onee again, 1if we consider only designs that are symmetne in the g's, (5.6) smplifies
Lo
2 B+ B
S Ge e Y | T Gae (Lt e}

Applying Lemma 1, we see that the A-optimal design is given by {{c. 3 )1(—c 3)}

where ¢ minimizes
2 B+5
ef(l+e) el +e )

(5.7)

6. Concluding remarks

For a vanety of estimation problems mvolving two parameters that are functions of
a and § in (1.1}, we have provided a unified approach for deriving D- and A-optimal
designs by applying Lemma 1. In some cases, we have succeeded in denving the
A-optimal design only in the class of symmetne designs. No such restriction s needed
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for D-optimality. In one siwation, we have also chamcterized the E-optimal design.
It should be noted that restricting to the class of symmetric designs could result in
considerable loss of efficiency with respect to the A-opumality critenion (see the nu-
merical results in Table 1), All ouwr optimal designs are two point designs. Numerical
results show that the A-optimal design s likely o be pomnt symmetric, but 1s not a
symmetric design. Whether the A-optimal design is always a two point design 1s an
open question.

Appendix Proof of Lemma 1

Note that we can assume without loss of generality that g, =0, since e /(1 4+¢% ) =
e % /(1 + e %), We shall first prove the lemma for m = 2. For m = 2, we need to
prove the following. Let p and g be nonnegative real numbers satisfymg p 4+ g = 1.
For a, zz0, we shall show the existence of ¢z 0 satisfying

-3 - &

) - Al
Piver el (rer i)

H e e (-

. + _3 ﬂ-z £ .&_2
P e T (4o = 4oy e

We shall assume without loss of generality that a < = We shall fix g and treat the
left-hand side of (A1) as a function of z. Thus, ket

3 ¢

POty iy

Alz) (A3)
Since for any x, 0 <e*/(14+¢*) &‘-I_;", we also have 0 = A(z)= 3' Writing w=¢, (A1)
is equivalent to w/{1 + w)® = A(z), which can be solved for w = 1. The solution is

(1 —=24(2)) + /1 — 44(2)
N 24(z)

W

{Recall that 0 < .4{:}%_'7.} Hence, ¢ satisfying (A1) is given by

(1= 2AE)) g8 i)

c=oz)=lnw=In |— 24(2) {A4)
Since /(1 + ¢ ) is a decreasing function of z, it follows from (A.2) that

aso(z)=z {A5)
We need to show that ofz) satisfies (A2), for z=a Let

P — (A6)
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and let
. , e . e s &
fz)={clz)} (It e@p [*”“'m TE ey
= g(c(=)) — [ pg(a) + qa(=)]. et

In order to show that c(z) satisfies (A2), we have to show that f{z)=0 for = za.
From (A4), it readily follows that o{a) = a and hence f{a) = 0. Thus, in order to
show that f{z)z0 for z za, 1t 15 enough to show that f(z) 1% an mcreasing function
of = In other words, we have to show that d f(z)/dz = 0. From (A7),

df(z) _dglc(z))  dglz)

d- ds 4 dz
_ dgle(z)) de(z) did(z))  dglz)
h de(z) dA(z) d:= 4 dz * (A8)

where A(z) 1 given in (A3). Using the defimitions of 4(z), ofz) and g(z) given in
(A3 (Ad) and (A6), respectively, straightforward caleulation of the denvatives in
the last expression in (ALR) mves

dfz) _ dz) ., . e savoaet=1]
o~ L0 g &) -5
—qm[{:+2}—u:[:—2}].
Hence, d f(z)/dz = 0 if and only if
L:L} 1Hc{:}+2} — e Ne(z) — 2} > = _ lz+2)- e(z — 2)). (A9)

Sinee cfz) =z (see (A5), (A9) 1s established 1f we can show that the function

hz)= =3 1[.[_— +2)—e(z—2)]
15 a decreasmg function of = That 15, we need to show that dh(z)/dz = 0. Now

dhiz) =_2{:+1}+1:""{:— 1)
dz (e —1)?

k]

which can be shown to be less than zero for any = = 0. Thus, we have established
{A9) and hence the existence of =0 satisfying (A1) and (A2). In other words, we
have established Lemma 1 for the case m = 2.

In order to prove the lemma for m =3, e, m order o establish (2.1) and (2.2), let

E1 =& /(1 s za,-) and &, =¢z/(1 = ze;). (A.10)
i=3 i=3
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Mote that £y, +£2.=1. Proving the existence of ¢ satisfying (2.1) and (2.2) 1s equivalent
to showing that there exists ¢ satisfying

ar c.ul .ﬂ'." L.,H.- ‘.:I:
1= &) [fer——— + & L Fh .
( Eﬁ) [*' Trenp T2 {1+ﬂ~}2] Z'; +e)  (I+e)

g gl 3 iz
(1—Z§,) ['; iy j+§3¥ﬂ2 ]+Z':-l

(1+en) (1+e=)? {1+u~}2
<ot (A1)
=L {1+{f‘}2l 3
Since we have already established the result for m =2, there exists o, satisfying
i L..UI i L..ul cl:'-
e reap Ty (te
g 2 & i a e’ e A12)
S ey TR T S ey b

In view of (A.11), {A.12) is established if we can show that there exists o satisfying

(I—Z-‘:«) e Z-‘:J e e

(1+e) (1+e)?  (14e)
e e ; &
( Zr;,) “Trey +Zr;,ﬂ Tre) < Trep (A.13)

We note that the lefi-hand side expressions in (A 13) s similar to those in (2.1) and
{2.2), cxcept that (A 13) mvolves only m — 1 terms. Proceeding as in the denvation of
{A.13) given above, we can reduce the problem to the case of m =2, This completes
the proof of Lemma 1.
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