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Ahstract

For positive semi-definite n = o matrices, the inequality 4/|[AB[|| < ||[{A + By is
shown to hold for every unitarily invariant norm. The connection of this with some other
matrix arithmetic—geometric mean inequalities and trace inequalities is discussed.
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1. Introduction

Some matax versions of the classical arithmetic—geometric mean inequality
({AGM) were proved in [3-5], and seem to have aroused considerable interest. See
[2, Chapter 1X; 6] for a discussion and further references.

In this note we prove one more inequality of this type, discuss its connection with
the known results, and with some others that seem plavsible but are yet unproved.

For positive real numbers a, b, the AGM says that

b
ﬁfabs;“j : (1.1)
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Replacing a, b by their squares, we could write this in the form

a* + b?
ab = (1.2)
2
We could also square (1.1) and write
a+b\?
ab = ( ) ' (1.3}

We wish to replace the numbers a, b by positive (semi-definite ) matrices A, 8. Here
two difficulties arise. Since A and B do not commute in general, the matrix A B is
not positive. One way 1o get around this is o compare not the matrices themselves
but their singular values and norms. The second difficulty (that makes the problem
more interesting) is that the matrix square root and square functions have different
monotonicity properties. Thus each of the inequalities (1.1)—(1.3) leads to different
matrix versions.

We label the singular values of ann x nmatrix T as s (T) 2 --- 2 (T U T
has real eigenvalues, we label them as A (T) = --- 2 4,(T). If T is positive, we
have 5;(T) = A;(T). We use the notaton [[|T]|] w denote any unitarify invariant
nevm of T A statement like 5;(8) = 5;(T) will be used 1o indicate that this inequal-
ity is true for all 1 < j < n. This implies the weak majorisation s;(5) < 5;(T),
by which we mean that the sequence {5;(5)} 1s weakly majonsed by {5 ;(7)}. This
15 equivalent to sayig that [[|S]]] < [||T]]l. by which we mean that any unitarily
invariant norm of § is dominated by the corresponding norm of 7. See [2] for details.
We use the symbol |T| for the operator absolute value (T*T)12.

In [4] we proved that, if A, B are positive, then

(AB) = & AR 1.4

5i(AB) = 55 —a ] (1.4}
and consequently,

1AB||| < H11A* + B (1.5)

These are matrix versions of the AGM akin to (1.2). In [3] a generalisation of (1.5)
was proved: forany matrix X

NAX Bl < 31IA*X + X Bl (1.6)

and it was noted that a corresponding generalisation of (1.4) fails 1o hold. Another
proof of {1.6) was given in [5].

If instead of (1.2) we were to start with (1.1) or {1.3) as the scalar AGM, we
are led to the following questions. If A, B are positive matrices, then which of the
following inequalities are true:

5;72(AB) < Lsj(A+ B), (1.7)

IABI2 I < 3114 + B, (1.8)
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I1AB||| < F1II(A + B)Y?||l. (1.9)
What are the relationships between these inequalities? The imequality (1.7) implies
(1.8), which in tum implies (1.9). Indeed, (1.9} is equivalent o saying that the in-
equality (1.8) is valid for all @-norms (see [2] for the definition). Note also that we
have written three inequalities instead of four because the inequality (1.7) is the same
assj(AB) = _—is}{ﬂ + B, that would have been obtained from (1.3). The difference
between (1.8) and (1.9) arises because of the fact that the square function preserves
weak majorisation between positive vectors but the square root function does not.

The square function on Hermitian matrices is matrix convex [2], ie.,

(A+B)1 _AT+8?

2 2

Hence, the statement (1.7) 18 stronger than (1.4).
Our main result is the following.

Theorem 1. The inequality (1.9) i true for all positive matrices A, B.

This is proved in Section 2. We have remarked that this says that the inequality
(1.8)is true for all @-norms (and hence for all Schatten p-norms for p = 2). We will
see that (1.8) is also true for the trace nomm (which is not a Q-norm). This leads us o
conjecture that this is true for all unitarly invanant norms. We will observe also that
when n =2, the inequality (1.7) 15 true. Again, this keads us o believe that it might
be true in all dimensions,

2. Prools

We give a proof of (1.9) for the case of the Hilberi-Schmidt ( Frobenius) norm
[| - ||z first As is often the case, this is simpler. For any matrix T, we have
ITI3 =D Wi TEHP, 2.1)
i
where {e;} and { f;} are any two orthonormal bases. (I1tis routine to write the expres-
sion (2.1) with e = f;. The one we have written follows from this since [Tz =
LT |2 for every unitary U} Choose {e;} and { f;} s0 thal Ae; = aje;. and Be; =
fej. Then

|47 + B* +2A4BI5 =) _ |{ei. (A + B* +24B) ;)
e
=Y (e + B2+ 2008 (e, £
b
=) e + B} — 20i ;)7 + 1667 571 I ex, f)12

i i
=A%+ B* —2AB|3 + 16| AB|3. (2.2
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Mow note that
Re (A2 + B> £ 2AB)=(A + B)*,

]
Im(A% + B> £ 2AB)=+—(AB — BA).
1

Here we have used the notations Re T and Im T for the matrices (T + T%)/2 and
(T — T*),/2i, respectively. Since ||T||§ = ||Re T||:-,f + ||lm T||§ for all T, we obtain

from (2.2)

1A+ B3 = (A — B)?|3 + 16 AB|3.
This shows that

4| AB|2 < (A + B) |2,

and there is equality here if and only if A = B.
Now for the proof of Theorem 1 in full generality. Using (1.6) we have

WABII = ||A"2(4"2B2)B' || < 51114*2B"2 4 AV2 8.

So to prove (1.9) it suffices to prove

NAY2B'2 + AY2B¥2))|| < S1IA + BY|II.
We will show more by proving

.\'J'{AMZBL"IZ + Al.l'JBl,n'Z} < flrﬁ'_,l'{ﬂ +B}IE_

The arguments are similar to the ones we used in [4]; see also [2, IX.4.2].
Let X bethe 2 = 2 block matnx

Al D
X=|:Eu2 ﬂ,]~

and let
A A”ZBUZ

T=XX*=|:BH2AUZ B 3

Then T is unitarily equivalent to the matrix
A+B 0
* e

ex=[t?
We have

T'Z_ * A:!-IIB”I_’_AUZBAI]

o Bl.-'ZAA.-'Z i Bl.l'ZAl.l'Z ¥ L]

and so if

(2.3)

2.4)

(2.5)

(2.6)
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then the off-diagonal part of T2 can be written as

[ 0 A.'!-."ZBL-"I + Al.l'ZBl.l'Z

R s
BY2AYZ | g3/ 412 0 ]= E{T‘—LT'U*}'-

Now follow the arguments in [4] (repeated in [2, 1X.4.2]) o see that 5;( AV 812 4
AYVERYYy < Lei(T?). Since T7 is unitarily equivalent to (A + B)* & 0, this is the
same as (2.6). This proves Theomem 1.

MNexl, we show that the inequality (1.8) is rue for the trace norm. By a well-known
result [2, Theorem IV.2 5] we have the weak majorisation

s)2(AB) <w 5} (A)s)(B). @7

By the AGM (1.1), the quantity on the right-hand side s bounded by 1/2(s ;(A) +
5;( 8)). Hence, i particular

A B2 < J (A + B). (2.8)

This is just the inequality (1.8) for the trace norm. We observed this already in
[4].

Note that in the case of the operator norm, inequalities (1.8) and (1.9) both reduce
Lo

02AB) € LA+ B). (2.9)
We will show that
52 (AB) € Jsa(A+ B). (2.10)

This is obviously true if either A, or B is not invertible. So assume A and B are
mnvertible. Then

sml(AB) =3, (BAB) =272 (B~1A-2B ).
Since

MABTATTB Yy =s(A7'B ) 2 AT BT,
this gives

J-':r{AB}éJ‘L._I{A—'B_'} :)Ll"{B'”ZA'lB'“I}

=A,(B l.l'"_’ABl.l'Z} s ""E{A l.l"'_"BI.-'Z}_

Using ( 1.4) now, we get from this
A+B
— .

sn(AB) < x,%(

This proves the inequality (2.107.
Thus, when n = 2, the inequality (1.7)is valid for all values of j.
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3. Bemarks

1. In arecent paper Zhan [9] has proved that for positive A, B, and for all X,
IAXB||| < }11A*X + 24X B + X BY|||. (3.1)
This can be derived by two successive applications of (1.6). The special case
IIABI|| < $II1A° + 2AB + BY|||, (3.2)
is an inequality weaker than {1.9). This is so because
(A+ B)® = Re(A” +24B + BY),
and hence,
A + Bl < NIA® + 248 + B

2. The mequality (1.7), if true, would mean that there exists a unitary matrix [/
(dependimg on A and B) such that
|AB|'? < JU(A + B)U*. (3.3)
This statement is stronger than a conjecture of Thompson [8] that says there exist
unitary matnees U7 and V' osuch that
|AB|'Y? € J(UAU* + VBV*). (3.4)
We have proved that (3.3) is true whenn = 2.
3. Using the polar decomposition, we can see that (1.9) implies the ineguality
NABII < HIAL+ 1B*D I (3.5)
for aff matrices A, B. The presence of B* instead of B on the right-hand side is
not fortuitous. The example

0 1 0o 0
=8 Ui =]

foils any attempt to replace B* by B.
4. The inequality (2.4) can be written in a different form

rA*B? < Lr(AJ;B)4_ (3.6)
Since

20AB+BA)=(A+ B —(A—B)Y <(A+ B~
we also have

rAf = E(A—:E)Z. (3.7)
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The inequalities (3.6) and (3.7) invite the conjecture

A+ B 2m
ir A™ g < Lr( ~ ) (3.8)
forallm =1,2...
A well-known inequality due to Lieh and Thoring [2, p. 279; 7] says that
tr{ AB}JH < rA™ g™ (3.9)
So, an inequality weaker than (3.8) is
A+ B 2m
I ABY" = |I( ) . (3.10)
This is true. In fact, we have a stronger inequality
A+ B 2m
)LJ'{AB}IJ”:‘E)-.J'( ) ; (3.11)

To see this note that

¥

)LJ_{AE}JH - [}-.J'{EI'JZAB _“m — [J.'}{Al"qﬂl"'

3

_::I IJH

By (1.4) this 1s bounded above by

on (A+BY_. (A+B 1‘”
57 — ) =41 (= :

. Since the square function is matrix convex, the m = 1 case of (3.11) gives the
meguality

Al4+ B
L) (3.12)

3

AlAB)Y < A (
When companng this with (1.4) one should remember that [& ;{X)] 15 not always
smaller than s;(X). An operator inequality that would imply (3.12) is the state-
ment

Bl."'IAEUI 'S: ?I',{AI e BI}I.

This is refuted by the example

NN

. For completeness, we should mention that an elegant theory of the geometric
mean A#B of two positive matrices A, B has been developed by Ando [1]. In
case B isinvertible

A#B = Bl.-'I{B—l.-'IAB—l.l"Z}I.l'IBI.l"I1

a definition given earlier by Pusz and Woronowicz. For this mean, Ando has
proved the AGM in its strongest form; we have the operator inequality
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A#B < L(A + B). (3.13)
7. Following Ando’s approach, one could ask whether for positive matrices A, B the
block matnx
1 2
A+ B) ; AB : (3.14)
BA HA+ B)?
is positive. If yes, this could be another formulation of the AGM. The inequality
(1.9 would follow from this, because every unitarily invariant norm is in the Lieb
class % [2, p. 269]. The example

[ a2 )

however, rules out this formulation. In this case, the matrix (3.14) is

9 0 8 -2
g 1 2 0
8 2 9 0
-2 0 0 1

The 3 x 3 wop left subdeterminant of this matrix is negative.
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Note added in prool

For m = 3, the conjecture (3.8) is refuted by the example

as[ % 5] a=[2 1)

We thank X. Zhan for this simple example.
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