More Operator Versions of the Schwarz Inequality
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Abstraet: Some new operator versions of the Schwarz inequality are oblained. One of

them is a counterpart of the variance-covariance inequality in the context of noncom-
mutative probability.

The Schwarz inequality has appeared in several avarars. Some of these are its versions
for operators [1, 2, 4, 7-9]. More are presented here.

1. A Variance-Covariance Ineguality

Let f and g be random vadables — elements of the space La(X, p), where p is a
probability measure. The covariance between [ and g is defined as

cov(f. g) =E(fg) —EfEg. (1)
where Ef = [ fdp denotes the expectation of f. The variance of f is defined as
var(f) = cov(f. f) = E(|f") — [Ef|’. (2)
The inequality
icuv{.f',g}il = var{ fivar(g), (3
much used in statistics, 15 just the Schware inequality.

A noncommutative analogue of vardance and covariance is defined as follows. Let
B{H) be the space of all (bounded linear) operators on a {complex separable) Hilbert
space H. Let @ be a unital completely positive linear map [ 10] on B{H). We define the
covarianee between wo opertors A and B as

covid, B) = @(ATB) — (A" D(B). (4)
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The variance of A 1s defined as
var{Ad) = covid, A) = ©{AYA) — DA D(A). (5)

The famed inequality of Kadison [7], extended in several directions by Choi [4], says
that
var{A) = 0. ()
[We write T = 0to mean that the operator T is positive (semidefinite).| This generalises
the simple fact that var{ f) is a nonnegative number.
A good generalisation of the inequality (3) is given by the following theorem.

Theorem 1. The 2 x 2 operator matrix

var{A) coviA, B)
cov(A, B)*  var(B) )
i5 positive.
Proaf. We have 1o prove that
D(A*A) D(A*B) | _ DAY D{A) DA D(B) q
P{B*A) D(B*R) = DB DAY D(B*D(B) |- (8)

First consider the special case when @ is the map ©(T) = V*TV, where V is an
isometry; Le., V¥V = I. Then the inequality (8) can be rewritlen as

v 0 A*A A*B Voo
0 v+ B*A B*B 0 Vv
- v 0 [ A*VV*A A*VV*B Voo
a% 0 Vv* B*VV*A B*VV*E 0 Vv

This will follow from the inequality

[ A*A A*B [ A*VV*EA A*VV*E ]

B*A B*B | = | B*VV*A B*VV*B

This, in turn, can be wrllen as

A* 0 A B 5 A* 0 vv* 0O A B
B* 0 0 0 = B* 0 0 Vv* a o

Butas VV* < [, this is certainly true. We have proved (8) for the special @,

The general case follows from this via the Stinespring dilation theorem: there exists
a Hilbert space K, an isometry V of H into K, and 8 #-homomorphism 7 of B(H) into
Bk such that ©(A) = VEx(A)V. O

R T
Remark I, 10 is well-known [1.4] lha[|: T+ § ] = (ifand only if R, § are positive and

R = TS5~ 'T* Hereif § isnot invertible §~! is understood to be its generalised inverse.
iThe same convention is followed in such contexts throughout the paper.) Theorem 1 is
thus equivalent 1o the statement

variA) = covi A, E}[va:{B}l'lunv{A, By ()]

This equivalence will be used repeatedly.
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Remark 2. The Schwarz inequality proved by Lieb and Ruskai [8] says that
®(A*A) = O(A*B)D(B*B)~'®(B* A), (1}

or, equivalently,

[ D A*A) D(A*E) ]::ﬂ. (a1

D B*A) D(B*B)
The inequality (8) is & considerable sirengthening of this result.
Remark 3. Say thata function f is in the Lieb class £ if f{ &) = 0 whenever R = 0, and
(TP = f(R)f(S) whenever [ ?‘E‘ 1:
may be foundin [2, pp. 268-270]. Many Schware-type inequalities for such f may thus
be obtained from (7). For example, we have

= (1. Several examples of such functions

I coviA, B)|® < || var(A)|| || var(B)|. (12)
for every unitarily invarant nomm. This gives a variety of good generalisations of (3).

1tis often of interest 1o weaken the hypothesis that the map @ be completely positive.
We will comment below on this much studied class of maps [4]:

Definition. Let O be a linear map between C*-algebras. We say that & is n-positive in
cave the condition [ Ajjli; = Qonann x n operator matrix A;; implies [$(A;)]i; =0

Thus ordinary positivity is 1-positivity; complete positivity is n-positivity for all n.

Remark 4. 1f @ is assumed only to be a unital positive linear map then the inequality (6)
is not always true. It is true under additional hypotheses such as self-adjpintness of A.
However, the inequalities (6) and (11) are true if & is just assumed to be 2-positive. We
do not know whether we have (8) under this weaker condition. If & in addition 1o being
2-positive, has the averaging property [5] (AR (B)) = P {A)d( B), then the inegquality
(8) does hold. Another strengthening is given in Remark 7.

Remark 5. When @ 15 the wdentity map, the mequality (107 reduces o
A*A = A*B(B*B)"'B*A. (13)

An easy proof of this is given in [9]. The operator B{B* B)~'B* is idempotent and
Hermitian. Hence, I = B(B*B)~ ' B*; and (13) follows at once.

Remark 6. The argument in the proof of Theorem 1 can be used o show that for any
operators Ay, ... . Ay, the n % n block operator matnx [coviA;. A ;)] 1s positive.

Remark 7. The referee has pointed oul to us an ingenious proof of (8) (that is, the
conclusion of Theorem 1) under the hypothesis that 4 is unital and 4-positive. This will
be sketched here. From the easily verified relation

A*A A*B A* AT
B*A B*B B* B*
A B I 1
A B I 1
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and the 4-positivity of & follows

DiA*A) D{ATB) $(AT DAY
${B*A) D(B*B) GBS D(B)*
d(A) (B ! !
dr{A) (B I I

=

Applying again the equivalence in Remark 1, this yields(8). The referee remarks that this
improvement can be made equally to the generalisation in Remark 6; here one assumes
of & only that it is unital and 2r-positive.

2. An Operator Version of the Wielandt Inequality

Let A be a positive operator on ‘H. For any two vectors x, vy in H, we have from the
Schware inequality

Hx, A¥}* < {x, Ax) {y, Ay). (14)

A well-known inequality of Wielandt [6, p. 443] gives a much improved inequality in
the special case when v and v are orthogonal. I mi = A = M7, and x L y, then

1 Fy

il
) {x, Ax} {y, Ay}. (15}

Iz, Ap)* < ( ey

From this one can dernive another well-known result called the Kantorovich ineguality:
for every unit vector x,

M +m)?
(x, Ax) {x, A" x} < %. (16)

See [6] for details. We discuss operator versions of these inegualities.
Let A be a positive operator and X, ¥ any two operators. Replacing the A and 8 in
(13} by AY2X and AY?Y, respectively, we oblain
X*AY(Y*AY) 'Y*AX < X*AX. (17}
From this we get for every 2-positive linear map 4

Q(X*AY)D(Y*AY) ' O(Y*AX) < O(X*AX). (18}

i(See Remark 1.) This is an operator version of (14). A similar extension of (15)is given
below.

Theorem 2. Let A be a positive operator on H withml = A = MI. Let XY be two
partial isometries in H whose final spaces are ovthogonal to each other. Let @ be a
2-positive linear map on B{H). Then

M—
QX*ANO(Y*AY) ' D(Y*AX) < ( =
M+ m

)_¢{X*AX}I. (19
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Proof. An operator version of (16) is known [3, 9]. 1t says that for every positive unital
linear map W,

(M +m)*
4Mm
Now consider a direct sum decomposition H = H & Ha, and a corresponding block

decomposition of A as
| An Az
A= |: Az Azz ]

A-l = {r’!|1—r’112r’!«_721r’!11}_' *
* ¥ |

wAhH = wid)y~l. (20)

Then we have

See [6, p. 472). If we put W A) = Ay, we get from (20)

(M +m)?

—1
Ay
A Mm

(A1l —ApAn )7 <
This 15 equivalent 1o
A AT A A
11 1244 11_{M+m}1 11,
and thereby 1o

_1 M—my?
Appdsy Az = Ay

M+ m
If X, ¥ are projections onto H and Ha, respectively, then this inequality can be writlen
as
M 2
M —m
X*A]”{]”*A]”}_IY*A.Yi(--« ) X*AX. 21y
M +m

A minor argument shows that this remains rue if X, ¥ are mutually othogonal projec-
tions whose ranges do not span all of ‘H. This proves the inequality (19) in the special
case when 4 18 the wentity map.
Leto = (M —m)/ (M 4+ m). As pomnted out in Remark 1, the inegquality (21) 1s
equivalent to the statement
aX*AX X*AY | 0
PAX artay | =7
From this we get the inequality (19) for every 2-positive linear map &, 0O
Remark 8 The referce has proved, under the stronger hypothesis that @ is 3-positive, a
somewhat stronger inequality than our (19).
Remark 9. The inequality (21) was proved recently in [11] by a different argument. In
the scalar case generally the Wielandt inequality (15) is used to derive the Kantorovich

inequality (16). In our proof for the operator version we have gone in the opposile
direction. Similar ideas have been used by F. Zhang [12].
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