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Ahbstract

Let T be a Hilbert space operator with T = A + 18, where A and B are Hermitian. We
prove sharp inequalities comparing the norms [T, with (A% + B1)U/2)|, and (||Ai|% +
1B 1R
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1. Intreduction
Every Hilbert space operator Tean be written as T = A 418, where A and B are
Hermitan; we have
1 * 1 *
A= ;{T+T yoand B =;{T—T ).
2 2i

We call this the Cartesian decomposition of T

Let |T]2 = (r T*T)"/* be the Hilbert-Schmidt norm of T. This norm is one
among the Schatten p-nomms. If T is a compact operator with decreasingly ordered
singular values s;(T), let

1T, = [ Y (s@)?]” . b0
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For 1 < p = oo, this defines & norm {on the class of operators for which 1T|pisa
finite real number) called the Schatten p-nomm. By convention, | T ||~ stands for the
usual operator bound norm of T; when Tis compact, ||T .o = 51(7T).
If T = A+ 1B isthe Cartesian decomposition, then
1712 = I(A* + B2
and

T3 = 1413 + 1813

These relations reflect the Euclidean character of the nomm || - ||2. For other Schatten
proomms || - || o, one looks for good inequalities to take the place of these relations.
The purpose of this note is 1o provide some. We shall prove the following.

Theorem 1. Let A, B be Hermitian operators and let T = A + 18, Then

(AT + BHY2), < || T, < 2Y2-1r) (4% 4+ BHY2, (1)
Jor2 < p < oc; and
2V2=UP AT + BY)YR), € 1T p € (A% + BHY2, (2)

forl= p<2

Corollary 1. For2 = p = oo, we have
2PNANG + 1Bl < 1T < 2173701405 + 1 B1) (3)
and for | < p < 2, we have
HPAL + 181D < IT1G < 2P7HIAL, + 1B (4)

All the inequalities (1)—(4) are sharp.

For several other results of this kind, and a discussion of their importance in the
analysis of operators, we refer the reader to books [3,7], and papers [ 1,6,8].

The proofs of these inequalities are given in Section 2. In Section 3, they are rein-
terpreted to become comparison inequalities between different norms. For simplicity
and brevity, we prove everything for finite dimensions only. Appropriate modifica-
tions are necessary in infinite dimensions.

2. Proofs

Let [[] - |} be any unitanily invanant norm, 1.e., anorm with the property ||| 7T V]|
= |||T]|| for all T and unitary I/, V. Such a norm is called a -norm, if there exists
another unitarily invariant norm ||| - ||| such that ||| T||* = [||T*T|||" forall T. The
Schatten norms are unitarly invadant for all 1 £ p < oo; and they are Q-norms if
2 £ p = oo(see[3).
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To prove inequalities like ( 1)—(4), it is often helpful to use general properties of
unitarily invariant norms, and the well-developed machinery of majorisation. Let
x be a real n-vector, and let .rfl 2.z .r,;l be its coordinates rearranged in the
decreasing order. We say that xis majorised by viffor | < k = n

If x is majorised by v, we wrile x < y.

Properties of majorisation, its relation 1o convex functions, and its special impor-
tance in the study of unitarly invariant norms are discussed in great detail in [3]. We
will use several well-known facts from here.

For positive operators A, B, the following inequality is well known, see [4,
Theorem 1]:

sIA+ BY & (A+ B)||| < [||A & Bl < [|I(A+ B) & 0]]). (5)

Using familiar majorisation and convexity arguments, one can derive from this, the
inequalities

2'=PlA+ B|L < Al + IBIh < A+ B|h forl €p <o, (6)

IA+BlL < IAIG+ IBIL <2'P|A+ Bl for0<p< 1. (7)

See [4] or [7,p. 20].
Nowy, consider the operator T = A 418, where A and B are Hermitian, Note that
A(A~ S By I o T, (8)

Since |||T*T ||| = |||ITT*|||, we get from this, |||A2 + B2||| < ||IT*T]||. Since for
p = 2, the Schatten norms are (-nomms, the first part of (1) follows from this.

From the second inequality in (5), we have |||T*T @ TT¥||| = ZHHAZ - BZ}I jas]
O)l]. This 15 equivalent Lo saying

IT@Tlg <22 (A*+ BHY 2 @0 g (%)

for all Q-norms. Now note that |T & T'||, = 2P ||T ||, for all p. Thus, we get the
second part of (1)
Again, from (8) we have forall 0 < p < o¢
7 2 f2
202 A% 4 B0 = | T*T + TT*| 73

If 1 = p < 2, using the first part of (7), we see that

e 2
| T ATTH 25 < EIIT*TllﬂjE-
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Hence,
12 42 212 Lipg e+ 1,2
2V5N AT+ B Jn = 2VEITET s
This gives the first inequality in (2). A similar argument using the second part of (7)
gives the second inequality in (2).
Theorem | has been proved, we twrn to the proof of Corollary 1.
Let p = 2. Note that
(AN + 1BIP =A% p2 + 1 B )lp2) "
<2P271(| A2 Py + | B21D))

2-1 2 2an/2
<2P5N A% 4 B s

Here, the first inequality is a consequence of the convexity of the function fit) =
72 and the second one follows from (6). From this, we get
2 3y1=2 2 2
Al + 181, =2 PIA® + B || pj2
_Al=2fpy a2 2,122
=1 (A" + B7) 7

The first part of (3) now follow s from the first part of (1),
From the second part of (1), we have

1713 <227 (A% + BH)'2)2
21730 A% + B o2
L21HP(| A pr2 + 1B py2)
21HP( AL+ 1B

This 15 the second part of (3).
The proof of (4) is very similar. We use (2) instead of (1), The added ingredient

is that for 1 < p < 2, we have

1A% 2 + 1Bl pr2 < 1A% + B2l pj2

<2743 g2 + 1B ).

The second of these inequalities is given in [3, Problem 1V.5.6]. The first may be
proved by familiar arguments. For convenience, and future reference, let us record it
explicitly.
Lemma 1. Let O = p < 1. Then, for positive A, B

[Alp +18]p = (A + Bp-

Proof. Let 24{A) denote the n-vector, whose coordinates are the eigenvalues of A
arranged in the decreasing order. It s well known [3, p. 35] that



K. Bhatia, F Kittaneh / Linear Algebra and its Applications 318 (2000) 109-11a 113

AMA+ B) <A + A

Since the function f(r) = 1" is concave, it follows that

i o
Y A+ BIP = Y (A (A) + AL (B
_||'=|_ _||'=|
(See (3, p. 41].) Now, take the pthroots of both sides and use the Minkowski inequal-
ity. O

All the inequalities (1)—(4) have been proved.
The first inequality in (1) and the second inequality in (2) are obviously sharp -
they are equalities when the operators are scalars. The 2 x 2 example

10 0 1
‘!‘:(n —1)‘ B:(l u)

shows that the other two inequalities in Theorem 1 are sharp too.
This example also shows that the second inequality in (3) and the first inequality
in (4) are sharp. The 2 x 2 example

1 0 o 0
2= (o ﬂ)' Bz(ﬂ 1)
shows that the other two mequalities in Corollary 1 are also sharp.

In a recent paper, Bhatia and Zhan [6] have shown that when A, B are positive the
factor 2'=%'7 gecurring on the right-hand side of (3) and on the left-hand side of (4)
can be replaced by 1. Our example shows that this cannot be done 1o the factor 22/7~!
in the other two inequalities, and that these inequalities are sharp i this restricted
cise.

3. Norms defined via the Cartesian decomposition

There is another interesting and illuminating way of interpreting, and proving
inequalities (1)—(4). We sketch this briefly.

Given any unitarily invarant norm ||| - |||, consider the following two objects:
T = (A% + BHY ), (10)
Tz = ANANE + MBNE'Y. (11)

For the special case of the Schatlen p-norms, we will use the notation
1T po = 1(A* + BHY2 ., (12)
1T 1o = (AL + 1 BI5) 2. (13)

1t turns out that these objects define norms on the space of matdces, with one restric-
tion: in the case of (11)and (13), we have to restnet the scalars to real numbers.
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It is easy to verify that ||| - |||z has all the properties of a norm. The restriction Lo
real scalars 15 needed to show that _[[[I!T!-“ﬁ: = |al EEETII',J:;.

The case of ||| - ||l is more interesting. Here, the triangle inequality is not obwi-
ous. One way of proving it is by using the variational expression

(A?+BHY = max |CA+ DB (14)
co* D=l

This may be found in [2]. For the reader’s convenience, we provide the simple proof.

A2 » 2 block matnx

(¢ 9)

is positive if and only if 4 = C*C (see [3, Theorem IX.59]). Now, given any two
positive matrices A, B and any C, D satisfying CC* + DD* = [

[ AT+ B ACT +BD*] = |:.—’1 B] |:,-’1 c*] Sl

CA+ DB I c Dp||B D*
Hence,
A2+ B> |CA+DBPA (15)

If A2+ B?= 0, for the particular choice C = (A2 + B*)~'2A. D = (A2 +
B>~ YR, there is equality in (15). Taking square roots, we get (14). The restriction
A® 4+ B? = 0 can be emoved using standard arguments.
Now, given positive matrices A, A2, By, B2, choose C, D, such that
[(A1 + A2)* + (B1 + B2)'1'? = |C(A| + A2) + D(By + By)|.
Regroup temms, use the matax tmangle mequality [3, Theorem HL5.6] and then use
{14) o see that

[(A1 + A2)” + (B1 + B2)’|'"=|(CA\ + DB1) + (CA2 + DBy)]
SU|CA + DB|U* 4+ V|C Az + DBa|V*
'gLr{AE-i-E?}Il'J:Lr*-F V{AE-FEZ}II"PIV*
for some unitardes L7, V. The tnangle inequality for ||| - |||, is & special consequence
of this inequality.
Inequalities (1) and (2) can be rewrillen as
| Tlpe <ITIp <2VEYP|T|pa for2 < pgoo (16)
and
212 UP T pa S ITNp € ITllpa forl € p<2. (17)
One can see that the norm ||T || o is dual to the norm ||T ||y, o if
1 I

-4 == 1.
Fr g
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This brings out even more clearly the fact that inequalities (16) and (17} are dual
relations.

It is worth remarking that for the operator norm the right-hand side inequality in
(16} can be proved by another simple argument:

ITI|*=T*T|| = |A* + B* +i(AB — BA)|
<A+ BY|| 4+ 2||AB| < 2||A% + BY|

172

=2|(A* + BH)2)2,

Here, we have used the arithmetic-geometric mean inequality 2| AB| < | A2 + B2,
[3,p. 263] and [5].

Since | T2 = | T||2.e, the other inequalities on the right-hand side in ( 16) could
be obtained by an interpolation argument from the ones for p = 2 and oc.

We should point out that in Section 2, we have proved that for all unitadly invar-
anl norms

(A2 + BH @ (A% + BHII < NT*T @ T*T|I| < 211I(A% + B*) & 0))).
Equivalently, for all (-norms
IT@&Tlpe<IT®Tle<2"T ®0|0e-

The inequalities are reversed for OF-norms (the duals of @ norms). These include
(16) and (17) as special cases.
Similar remarks can be made about (3) and (4). They can be rewrillen as

VP UAT s € ITp <2V YP T |ps for2 € p <o (18)
and
VNPT € I, £ 2V VT s fort < p €2 (19)

Once again the triangle inequality and the ordinary arithmetic—geometric mean in-
equality show that |||, = 21/2||T|| , s for all p. For the case p = oc, this is best
possible. For p = 2, we canreplace 212 by 1. For other p, we could appeal to duality
and o mterpolation.

Finally, we remark that the nomms defined in (10) and (11) are weakly unitarly
invariant [3]. More such norms may be constructed using these ideas.
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