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Two ideas tha t  pervade all of mathemat ics  are equiva- 
lence, and the related notion of reduction. If an object  
in a given class can be carried into another  by a trans- 
formation of a special kind, we say the two objects are 
equivalent. Reduct ion means the t ransformat ion of the 
object into an equivalent one with a special form as sim- 
ple as possible. 

The group of t ransformations varies wi th  the  problem 
under  study. In linear algebra, we consider arbi t rary  
non-singular linear t ransformations while s tudying al- 
gebraic questions. In problems of geometry  and analy- 
sis, where distances are preserved, uni tary  (orthogonal)  
t ransformations alone are admit ted.  In several prob- 
lems of crystal lography and number  theory, the  interest  
is in linear t ransformation with integral coefficients and 
de terminant  one. 

In this article, we restrict ourselves to n • n complex ma- 
trices. Two such matrices A and B are said to be similar 
if there exists a non-singular (invertible) mat r ix  S such 
tha t  B = S-1AS.  If this S can be chosen to be un i ta ry  
(S -1 = S*) we say tha t  A and B are unitarily similar. 
Similar matrices are representat ions of the same linear 
operator  on C n in two different bases. Unitari ly simi- 
lar matrices represent the same linear operator  but  in 
two different orthonormal bases. Similarity and un i ta ry  
similarity are equivalence relations. 

Similarity preserves (does not change) the  rank,  deter-  
minant ,  t race and eigenvalues of a matrix.  Uni ta ry  sim- 
ilarity preserves all these and more. For example if A is 
Hermit ian (A = A*), then every mat r ix  uni tar i ly  simi- 
lar to it is Hermit ian too. If we define the norm of any 
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matr ix  A as 
IJ A J[2-- ( ~  [aijl2) 1/2, 

i , j  

then every m a t r i x  uni tar i ly  similar  to A has the  same 
norm. T h e  s imples t  way to see this is to note  t ha t  

II A 112= (trA*A) 1/2 =11 U*AU 112, 

where t r  s t ands  for the  t race  of a matr ix .  

It is generally agreed that the more zero entries a matrix 
has, the s~mpler it is. Much of linear algebra is devoted 

to reducing a matrix (via similarity or unitary similarity) 
to another that has lots of zeros. 

The s imples t  such t heo rem is the  Schur triangularization 
theorem. This  says t h a t  every matrix is unitarily similar 
to an upper triangular matrix. 

Our aim here is to show tha t  t h o u g h  it is very easy 
to prove it, this  t heo rem has m a n y  in teres t ing conse- 
quences. 

P r o o f  o f  S c h u r ' s  T h e o r e m  

We want  to show tha t  given an n x n mat r ix  A, there  ex- 
ists a un i t a ry  ma t r ix  U and an upper  t r iangular  mat r ix  
T such tha t  A = UTU*. This  is equivalent  to saying 
tha t  there  exists an o r t h o n o r m a l  basis for C '~ wi th  re- 
spect  to which the  mat r ix  of the  l inear opera to r  A is 
upper  t r iangular .  In o ther  words, there  exists an ortho-  
normal  basis v l , . . . , v ~  such t h a t  for each k = 1 , 2 , . . . n ,  

the  vector  Avk is a linear combina t ion  of V l , . . . ,  vk. 

This  can be proved by induc t ion  on n. Let  A1 be an 
eigenvalue of A and vt an eigenvector of no rm one cor- 
r e spond ing  to it. Let M be the  one-dimensional  sub- 
space of C n spanned  by vl, and  let N be its o r thogona l  

complemen t .  Let  PN be the  or thogonal  pro jec t ion  wi th  
range N.  For y E N,  let ANy  = PNAy.  T h e n  AN is 
a l inear opera to r  on the  (n - 1)-dimensional  space N.  
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By the induct ion hypothesis,  there  exists an or thonor-  
mal basis v2, . . . ,  v,, of N such tha t  the  vector A y v k  for 
k ----- 2 , . . .  n is a linear combinat ion of v 2 , . . . ,  vk. The  
set v l , . . . ,  vn is an or thonormal  basis for C n and each 
Ark,  1 ~ k <_ n, is a linear combinat ion of v l , . . . ,  vk. 
This proves the theorem. The  basis V l , . . . ,  vn is called 
a Schur basis for A. 

Notice tha t  we s tar ted our a rgument  by choosing an 
eigenvalue and eigenvector of A. Here we have used the 
fact tha t  we are considering complex matr ices only. The  
diagonal entries of the upper  t r iangular  mat r ix  T are the  
eigenvalues of A. Hence, they  are uniquely specified up 
to permutat ion.  The entries of T above the diagonal  are 
not unique. Since, 

It jl = la,jl 2, 
i d i d 

they cannot  be too large. The  reader  should construct  
two 3 x 3 upper  t r iangular  matr ices which are uni tar i ly  
similar. 

T h e  S p e c t r a l  T h e o r e m  

A matr ix  A is said to be normal if AA* = A*A.  Her- 
mit ian and uni tary  matrices are normal.  

The  spectral  theorem says tha t  a normal matrix  is uni- 
tarily similar to a diagonal matrix. 

This is an easy consequence of Schur's theorem: Note  
tha t  the proper ty  of being normal  is preserved under  
uni ta ry  similarity, and check tha t  an upper  t r iangular  
matr ix  is normal  if and only if it is diagonal.  

The Schur basis for a normal  mat r ix  A is thus a basis 
consisting of eigenvectors of A. Normal  matr ices  are, 
therefore, matrices whose eigenvectors form an ortho- 
normal  basis for 113 '~. 
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Some D e n s i t y  T h e o r e m s  

A subset Y of a metr ic  space X is said to be dense if 
every ne ighbourhood of a point in X contains a point 
of Y. This is equivalent to saying tha t  every point in 
X is the limit of a sequence of points in Y. (The set of 
rational numbers  and  the  set of irrational numbers  are 
dense in ~ . )  

The space ~ / ( n )  consisting of n • n matrices is a met- 
ric space if we define for every pair A, B the distance 

between them as d(A, B) =11 A - B 112. We will show 
that  cer ta in  subsets are dense i n / ~ / ( n ) .  The  argument  
in each case will have some common ingredients. The 
property  tha t  characterizes the subset Y in question will 
be one tha t  does not  change under  uni tary  similarity. 
So, if A = UTU* and we show the existence of an ele- 
ment  of Y in an e-neighbourhood of an upper  t r iangular  
T, then  we would have also shown the existence of an 
element of Y in an e-neighbourhood of A. 

Invertible matrices are dense. A matr ix  is invertible if 
and only if it does not have zero as an eigenvalue. This 
proper ty  is not  affected by uni ta ry  similarity. We want  
to show tha t  if A is any matr ix  then for every e > 0, 
there exists an invertible mat r ix  B such tha t  

II A - B 112< e. Let A = UTU*,  

where T is upper  tr iangular .  If A is singular some of the 
diagonal entries of T are zero. Replace them by small 
non-zero numbers  so tha t  for the new upper  t r iangular  
matr ix  T ~ obta ined after these replacements,  we have 
II T - T '  112< e. Then  T ~ i s inve r t ib l e  and so is A'  = 
UT~U *. Further ,  

II A - A' 112--II U ( T -  T')U* 112< e. 

Matrices with distinct eigenvaIues are dense. Use the 
same a rgument  as above. If any two diagonal entries of 
T are equal, change one of t hem slightly. 
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Diagonalizable matr ices  are dense. A matr ix  is said to 
be diagonaIizable if it is similar to a diagonal matrix; 
i.e. if it has n linearly independent  eigenvectors. Since 
eigenvectors corresponding to distinct eigenvalues of any 
matr ix  are linearly independent ,  every matr ix  with dis- 
t inct eigenvalues is diagonalizable, ( the converse is not 
true). So the set of diagonalizable matrices includes a 
dense set (matrices with distinct eigenvalues) and hence 
is itself dense. 

These density theorems are extremely useful. Often it is 
easy to prove a s ta tement  for invertible or diagonalizable 
matrices. Then one can extend it to all matrices by 
a limiting procedure. We give some examples of this 
argument.  

The exponential of a matrix is defined as 

A 2 
e A = I w A + - ~ .  ~ - . . . .  

(The series is convergent.) We want to calculate the de- 
terminant  det(eA). It turns out that  det(e  A) = e tr(A). 
This is obviously true if A is a diagonal matrix: if the  
diagonal entries of A are A1, . . . ,  )~n then  det(e A) = e ~1 . . .  
e )~  : e "kl+' ' '+A'~ ~-~ e t r (A) .  From this one can see tha t  
this equality is also true for diagonalizable matrices; just  
note that  e SAS-1 -~ s e A s  -1 .  Finally, the equali ty car- 
ries over to all matrices since both  sides are continuous 
functions of a matr ix and every matr ix  is a l imit of di- 
agonalizable matrices. 

Let A, B be any two matrices. We know that  de t (AB)  = 
de t (BA) ,  and t r (AB)  = t r (BA).  More generally, it is 
true tha t  A B  and B A  have the same characteristic poly- 
nomial and hence the same eigenvalues (including multi-  
plicities). Recall that  the k-th coefficient in the  charac- 
teristic polynomial  of A is (up to a sign) the  sum of k • k 
principal minors of A. These are polynomial  functions 
of the entries of A, and hence depend continuously on 
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A. Thus, to prove that  AB and BA have the same char- 
acteristic polynomial,  it is enough to prove this when B 
belongs to a dense subset of ~ / ( n ) .  The  set of invert- 
ible matrices is such a set. But if B is invertible, then 
B ( A B ) B  -1 = BA,  i.e. AB and BA are similar. Hence, 
they have the  same characteristic polynomial. 

This theorem, in turn, is very useful in several contexts. 
Let A and B be two positive semidefinite matrices. Then 
all their eigenvalues are non-negative. The  product  AB 
is not Hermit ian (unless A and B commute) ,  so a priori 
it is not even clear whether  AB has real eigenvalues. We 
can, in fact, prove tha t  it has non-negative real eigenval- 
ues. Let B 1/2 be the  unique positive square root of B. 
Then AB  = (AB1/2)B 1/2 and this has the same eigenval- 
ues as B1/2AB 1/2. This matr ix is positive semidefinite, 
and hence has non-negative eigenvalues. 

The Cayley Hamilton theorem says tha t  every matr ix 
satisfies its characteristic equation; i.e. if X(z) is the 
polynomial in the variable z obtained by expanding 
de t (z I  - A), and x(A)  is the matr ix  obtained from this 
polynomial on replacing z by A, then x(A)  = 0. The 
reader is invited to write a proof for this using the above 
ideas; the proof is easy for diagonal matrices. 

A Bound  for Eigenvalues 

In many problems it is of interest to calculate the eigen- 
values of a matr ix A. This is not always easy. Some- 
times, it helps to know the  eigenvalues approximately, 
or at least tha t  they lie (or do not lie) in some region 
of the complex plane. From Schur's theorem, it is clear 
that,  if hi are the eigenvalues of A, then 

n 

i=1  i , j  

The two sides are equal if and only if A is normal. 

This leads to an amusing (but not  the easiest) proof of 
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the  ar i thmetic-geometr ic  mean inequality. Let al ,  �9 �9  an 

be non-negative numbers.  The eigenvalues of the mat r ix  

A = 

0 al 0 . . .  0 
0 0 a2 . . .  0 

0 0 . . . . . .  an-1  

an 0 . . . . . .  0 

are the n- th  roots of a l a 2 . . ,  an. Hence by the  above 
inequali ty 

n ( a l a 2  . . . an) 2/n <_ al 2 + . . .  + an 2. 

Changing a12 to hi, we get the inequali ty 

( a l a 2 . . .  an) 1/n <_ a l + . . .  + a n  
n 

between the geometric mean and the ar i thmet ic  mean.  
We even get the condition for equality; just  note  tha t  A 

is normal  if and only if al = a 2  = . . . .  an. 

Here is a more serious and powerful applicat ion of these 
ideas. 

T h e o r e m .  If A ,  B are normal  matrices such tha t  A B  

is normal,  then B A  is also normal.  

P r o o f .  Let Ai(AB), 1 < i < n, be the eigenvalues of 
A B .  Since A B  is normal  

n 

[Ai(AB)[ 2 =  II A B  1122. 
i = 1  

To prove tha t  B A  is normal,  we have to show tha t  this 
is t rue  when A B  is replaced by B A .  We have seen tha t  
Ai(AB) = Ai(BA). So, we have to show tha t  

II A B  1122= II B A  1122, 
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i.e,, 
t r ( B * A * A B )  = t r ( A * B * B A ) .  

Using the  fact t ha t  t r ( X Y )  = t r ( Y X )  for all matr ices  
X, Y, and the  normal i ty  of A, B, the  two sides of this 
desired equal i ty  are seen to be equal to t r ( A A * B B * ) .  
This proves the  theorem.  

The reader  might  t ry  to find ano the r  proof  of this the- 
orem. (If t he  reader  is unable  to find such a proof  from 
the mere defini t ion of normali ty,  she should not  be sur- 
prised. The  s t a t emen t  is false in inf ini te-dimensional  
Hilbert spaces. It is, however, t rue  if one of the  opera- 
tors A or B is compact . )  

Commuting Matrices 

Let A and B be two matrices.  Schur 's  theorem tells us 
that  there  exist un i t a ry  matr ices  U, V and upper  tr ian- 
gular matr ices  R, T such t ha t  A = URU*,  B = V T V * .  
It tu rns  out  tha t  if A and B c o m m u t e  ( A B  = B A ) ,  
then we can choose U = V. In other  words, if A and B 

commute ,  they  have a c o m m o n  Schur basis. 

To prove this, we first show tha t  A, B have a c o m m o n  
eigenvector. Let ~ be an eigenvalue of A, and let W = 
{x : A x  = )~x} be the  associated eigenspace. If x E W, 

then 
A B x  = B ( A x ) =  B ( A x ) =  A(Bx). 

Thus,  B x  E W .  This  says tha t  the  space W is invariant  

under  B. So, there  exists y, E W such t ha t  B y  = #y. 
This y is a c o m m o n  eigenvector for A and B. 

The rest of t he  proof  is similar to the  one we gave earlier 
for Schur 's  theorem.  

The same a rgumen t  shows tha t  if {As} is any family of 
pairwise c o m m u t i n g  matrices,  then  all As  have a com- 
mort Schur basis. 
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D i s t a n c e  b e t w e e n  E i g e n v a l u e s  

Let A and B be commuting matrices wi th  eigenvalues 
A1 , . . . ,An  and # l , . . . , # n ,  respectively. We have seen 
tha t  there exists a uni tary  matr ix  U such tha t  A = 
UTU*, B = UT~U *. The diagonal entries o f t  and T ~ are 
the numbers  A I , . . . , A s  and # i , . . . , t t ~  (in some order).  
Hence, 

n 

t, 12) I/2 T- T' II2<__I I A - B I12. 
i=1 

Thus,  it is possible to enumerate  the n- tuples  {Aj} and 
{#j} so tha t  the distance between them is smaller than 
the distance between A and B (in the sense made  precise 
by this inequality).  

This is no longer t rue if A and B do not commute .  For 
example, consider 

(01) 
A =  0 0 

(01) 
B =  t 0 " 
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A famous theorem of Hoffman and Wie landt  says tha t  
if A and B are both  normal,  then the above inequali ty 
is t rue even when A, B do not commute .  

This article is based on a talk given by the first author 
at a refresher course ]'or college teachers organized by 
CPDHE in April 1999. 
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