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Two ideas that pervade all of mathematics are equiva-
lence, and the related notion of reduction. If an object
in a given class can be carried into another by a trans-
formation of a special kind, we say the two objects are
equivalent. Reduction means the transformation of the
object into an equivalent one with a special form as sim-
ple as possible.

The group of transformations varies with the problem
under study. In linear algebra, we consider arbitrary
non-singular linear transformations while studying al-
gebraic questions. In problems of geometry and analy-
sis, where distances are preserved, unitary (orthogonal)
transformations alone are admitted. In several prob-
lems of crystallography and number theory, the interest
is in linear transformation with integral coefficients and
determinant one.

In this article, we restrict ourselves to n x n complex ma-
trices. Two such matrices A and B are said to be similar
if there exists a non-singular (invertible) matrix S such
that B = S'AS. If this S can be chosen to be unitary
(S7! = S*) we say that A and B are unitarily similar.
Similar matrices are representations of the same linear
operator on C" in two different bases. Unitarily simi-
lar matrices represent the same linear operator but in
two different orthonormal bases. Similarity and unitary
similarity are equivalence relations.

Similarity preserves {does not change) the rank, deter-
minant, trace and eigenvalues of a matrix. Unitary sim-
ilarity preserves all these and more. For example if A is
Hermitian (A = A*), then every matrix unitarily simi-
lar to it is Hermitian too. If we define the norm of any
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matrix A as

| All2= (Z lasi|?)"2,

then every matrix unitarily similar to A has the same
norm. The simplest way to see this is to note that

| A ll2= (trA*A)Y? =|| U*AU |2,

where tr stands for the trace of a matrix.

It is generally agreed that the more zero entries a matrix
has, the sjmpler it is. Much of linear algebra is devoted
to reducing a matrix (via similarity or unitary similarity)
to another that has lots of zeros.

The simplest such theorem is the Schur triangularization
theorem. This says that every matriz is unitarily similar
to an upper triangular matriz.

Our aim here is to show that though it is very easy
to prove it, this theorem has many interesting conse-
quences.

Proof of Schur’s Theorem

We want to show that given an n x n matrix A, there ex-
ists a unitary matrix U and an upper triangular matrix
T such that A = UTU*. This is equivalent to saying
that there exists an orthonormal basis for C" with re-
spect to which the matrix of the linear operator A is
upper triangular. In other words, there exists an ortho-
normal basis vy, ..., v, such that foreach k =1,2,...n,
the vector Avy is a linear combination of vy,. .., vk.

This can be proved by induction on n. Let A; be an
eigenvalue of A and v; an eigenvector of norm one cor-
responding to it. Let M be the one-dimensional sub-
space of C™ spanned by vy, and let N be its orthogonal
complement. Let Py be the orthogonal projection with
range N. For y € N, let Ayy = PyAy. Then Ay is
a linear operator on the (n — 1)-dimensional space N.
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By the induction hypothesis, there exists an orthonor-
mal basis vg, ..., v, of N such that the vector Ayvy for
k = 2,...n is a linear combination of vg,...,vx. The
set vq,...,v, is an orthonormal basis for €" and each
Avg,1 < k < n, is a linear combination of vq,...,vg.
This proves the theorem. The basis vq,...,v, is called
a Schur basis for A.

Notice that we started our argument by choosing an
eigenvalue and eigenvector of A. Here we have used the
fact that we are considering complex matrices only. The
diagonal entries of the upper triangular matrix 7" are the
eigenvalues of A. Hence, they are uniquely specified up
to permutation. The entries of T above the diagonal are
not unique. Since,

Z It =3 lag; 2,
i

1:1j

they cannot be too large. The reader should construct
two 3 X 3 upper triangular matrices which are unitarily
similar.

The Spectral Theorem

A matrix A is said to be normal if AA* = A*A. Her-
mitian and unitary matrices are normal.

The spectral theorem says that a normal matriz is uni-
tarily similar to a diagonal matriz.

This is an easy consequence of Schur’s theorem: Note
that the property of being normal is preserved under
unitary similarity, and check that an upper triangular
matrix is normal if and only if it is diagonal.

The Schur basis for a normal matrix A is thus a basis
consisting of eigenvectors of A. Normal matrices are,
therefore, matrices whose eigenvectors form an ortho-
normal basis for C".
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Some Density Theorems

A subset Y of a metric space X is said to be dense if
every neighbourhood of a point in X contains a point
of Y. This is equivalent to saying that every point in
X is the limit of a sequence of points in Y. (The set of
rational numbers and the set of irrational numbers are
dense in R.)

The space M (n) consisting of n x n matrices is a met-
ric space if we define for every pair A, B the distance
between them as d(A, B) =| A — B ||o. We will show
that certain subsets are dense in M (n). The argument
in each case will have some common ingredients. The
property that characterizes the subset Y in question will
be one that does not change under unitary similarity.
So, if A = UTU™ and we show the existence of an ele-
ment of Y in an e-neighbourhood of an upper triangular
T, then we would have also shown the existence of an
element of Y in an e-neighbourhood of A.

Invertible matrices are dense. A matrix is invertible if
and only if it does not have zero as an eigenvalue. This
property is not affected by unitary similarity. We want
to show that if A is any matrix then for every ¢ > 0,
there exists an invertible matrix B such that

| A= B |la<e Let A=UTU*

where T is upper triangular. If A is singular some of the
diagonal entries of T are zero. Replace them by small
non-zero numbers so that for the new upper triangular
matrix T’ obtained after these replacements, we have
| T — T |l2< e Then T’ is invertible and so is A" =
UT'U*. Further,

A=A o=l U(T-TU" |l2< e
Matrices with distinct eigenvalues are dense. Use the

same argument as above. If any two diagonal entries of
T are equal, change one of them slightly.
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Diagonalizable matrices are dense. A matrix is said to
be diagonalizable if it is similar to a diagonal matrix;
i.e. if it has n linearly independent eigenvectors. Since
eigenvectors corresponding to distinct eigenvalues of any
matrix are linearly independent, every matrix with dis-
tinct eigenvalues is diagonalizable, (the converse is not
true). So the set of diagonalizable matrices includes a
dense set (matrices with distinct eigenvalues) and hence
is itself dense.

These density theorems are extremely useful. Often it is
easy to prove a statement for invertible or diagonalizable
matrices. Then one can extend it to all matrices by
a limiting procedure. We give some examples of this
argument.

The exponential of a matrix is defined as

2

eA:I+A+—gT+....
(The series is convergent.) We want to calculate the de-
terminant det(e4). It turns out that det(e?) = etl4),
This is obviously true if A is a diagonal matrix: if the
diagonal entries of A are Ay, ..., A, then det(ed) = e ...
et = eMtetrn — o14)  From this one can see that
this equality is also true for diagonalizable matrices; just
note that eS457" = SeAS-1. Finally, the equality car-
ries over to all matrices since both sides are continuous
functions of a matrix and every matrix is a limit of di-
agonalizable matrices.

Let A, B be any two matrices. We know that det(AB) =
det(BA), and tr(AB) = tr(BA). More generally, it is
true that AB and B A have the same characteristic poly-
nomial and hence the same eigenvalues (including multi-
plicities). Recall that the k-th coefficient in the charac-
teristic polynomial of 4 is (up to a sign) the sum of k x k
principal minors of A. These are polynomial functions
of the entries of A, and hence depend continuously on
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A. Thus, to prove that AB and BA have the same char-
acteristic polynomial, it is enough to prove this when B
belongs to a dense subset of M (n). The set of invert-
ible matrices is such a set. But if B is invertible, then
B(AB)B™! = BA, ie. AB and BA are similar. Hence,
they have the same characteristic polynomial.

This theorem, in turn, is very useful in several contexts.
Let A and B be two positive semidefinite matrices. Then
all their eigenvalues are non-negative. The product AB
is not Hermitian (unless A and B commute), so a prior:
it is not even clear whether A B has real eigenvalues. We
can, in fact, prove that it has non-negative real eigenval-
ues. Let B2 be the unique positive square root of B.
Then AB = (ABY/?)B'/? and this has the same eigenval-
ues as BY2ABY2. This matrix is positive semidefinite,
and hence has non-negative eigenvalues.

The Cayley Hamilton theorem says that every matrix
satisfies its characteristic equation; i.e. if x(z) is the
polynomial in the variable z obtained by expanding
det(zI — A), and x(A) is the matrix obtained from this
polynomial on replacing z by A, then x(A) = 0. The
reader is invited to write a proof for this using the above
ideas; the proof is easy for diagonal matrices.

A Bound for Eigenvalues

In many problems it is of interest to calculate the eigen-
values of a matrix A. This is not always easy. Some-
times, it helps to know the eigenvalues approximately,
or at least that they lie (or do not lie) in some region
of the complex plane. From Schur’s theorem, it is clear
that, if \; are the eigenvalues of A, then

n

YoM <Y eyl
i

=1
The two sides are equal if and only if A is normal.

This leads to an amusing (but not the easiest) proof of
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the arithmetic-geometric mean inequality. Let aq,...,a,
be non-negative numbers. The eigenvalues of the matrix

0 a 0 .. 0

0 0 as ... 0
A= :

0 0 ... ... ap_1

a, 0 ... ... 0

are the n-th roots of ajas...a,. Hence by the above
inequality

n(aias. .. an)Q/" <al+... +axt

Changing a;2 to a;, we get the inequality

a1+...+a
(a1a9...a,)/" < at.. +an

n
between the geometric mean and the arithmetic mean.
We even get the condition for equality; just note that A

is normal if and only if a1 = ags = ... = a,.

Here is a more serious and powerful application of these
ideas.

Theorem. If A, B are normal matrices such that AB
is normal, then BA is also normal.

Proof. Let \(AB),1 < ¢ < n, be the eigenvalues of
AB. Since AB is normal

3" M(AB)2 = || AB |)2°.

i=1

To prove that BA is normal, we have to show that this
is true when AB is replaced by BA. We have seen that
Mi{AB) = Xi(BA). So, we have to show that

| AB || = || BA ||2%,
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ie.,

tr(B*A*AB) = tr(A*B*BA).

Using the fact that tr(XY) = tr(YX) for all matrices
X, Y, and the normality of A, B, the two sides of this
desired equality are seen to be equal to tr(AA*BB*).
This proves the theorem.

The reader might try to find another proof of this the-
orem. (If the reader is unable to find such a proof from
the mere definition of normality, she should not be sur-
prised. The statement is false in infinite-dimensional
Hilbert spaces. It is, however, true if one of the opera-
tors A or B is compact.)

Commuting Matrices

Let A and B be two matrices. Schur’s theorem tells us
that there exist unitary matrices U,V and upper trian-
gular matrices R,T such that A = URU*, B = VTV™*.
It turns out that if A and B commute (AB = BA),
then we can choose U = V. In other words, if A and B
commute, they have a common Schur basis.

To prove this, we first show that A, B have a common
eigenvector. Let A be an eigenvalue of A, and let W =
{z : Az = Az} be the associated eigenspace. If z € W,

then
ABz = B(Az) = B(Az) = M(Bz).

Thus, Bx € W. This says that the space W is tnvariant

under B. So, there exists y € W such that By = uy.
This y is a common eigenvector for A and B.

The rest of the proof is similar to the one we gave earlier
for Schur’s theorem.

The same argument shows that if {A,} is any family of
pairwise commuting matrices, then all A, have a com-
mon Schur basis.

W
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Distance between Eigenvalues

Let A and B be commuting matrices with eigenvalues
A1y -, An and py,..., 4,, respectively. We have seen
that there exists a unitary matrix U such that A =
UTU*, B = UT'U*. The diagonal entries of T and 7" are
the numbers A1,..., A, and u1, ..., pn (in some order).
Hence,

Qo= w2 < T =T o< A= B 2.

i=1

Thus, it is possible to enumerate the n-tuples {A;} and
{#;} so that the distance between them is smaller than
the distance between A and B (in the sense made precise
by this inequality).

This is no longer true if A and B do not commute. For

example, consider
01
(00

A famous theorem of Hoffman and Wielandt says that
if A and B are both normal, then the above inequality
is true even when A, B do not commute.

This article s based on a talk given by the first author
at a refresher course for college teachers organized by
CPDHE in April 1999.
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