
Linear Algebra and its Applications 323 (2001) 1–5
www.elsevier.com/locate/laa

A key inequality for functions of matrices
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Abstract

An inequality is proved for convex functions applied to self-adjoint matrices. Several
known inequalities are shown to be consequences, but properly weaker. © 2001 Elsevier
Science Inc. All rights reserved.
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We derive several previously studied matrix inequalities from one; and that one
turns out surprisingly (at least to us) to be simple, and to be sharp where most of its
predecessors were not.

We deal with self-adjoint matrices or operatorsA, for which we assumem 6 A 6
M. HeremandM are real numbers, and the order between operators is that in which
A 6 B meansB − A positive (semi-)definite. The inequalities we consider are of
the form

U(f (A)) 6 · · · (1)

Heref is a real function defined on[m,M], f (A) is defined by the usual functional
calculus, andU is a unital positive linear mapping. That is,U takes the identity to the
identity (perhaps of a different algebra of operators), andB > 0 impliesU(B) > 0.
The right-hand member of (1) will involvem,M andUA, and of course it will be
different for differentf.

The assumptions just made will be in force throughout the paper. Typical of these
unital positive mappingsU is the mappingUB = ∑m

j=1 PjBPj , wherePj = P ∗
j
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andPjPk = Pjδkj . In case
∑m

j=1 Pj = E is the identity, this is called a “pinching”;
if not, U must be thought of as mapping to the algebra of operators living on range
(E), soU(1) = E.

Several inequalities of the form (1) have proved their worth, withf assumed con-
vex. These are sometimes called “matrix converses to Jensen’s inequality” [12] and
we pause to explain why. AsU is a sort of averaging, forf convex we expectU(f (A))

to be bounded below byf (UA), and a special case is known as Jensen’s inequali-
ty; thus (1) is, if not really converse, at any rate complementary to the expected
inequality. Now

f (UA) 6 U(f (A)) (2)

does indeed hold for theseU, providedf is not merely convex but matrix-convex
[5,6]. This means that for all matricesA,B and all 0< λ < 1, f (λA + (1 − λ)B) 6
λf (A) + (1 − λ)f (B). For suchf, then, adducing (1) along with (2) meansU(f (A))

is bounded both above and below.
Many of the importantf are matrix-convex and so satisfy (2), but some likef (t) =

et are not; still we will obtain the other bound (1). Functions that are not even convex
can be brought in by comparing them to convex ones, as pointed out by Li and
Mathias [8].

Our comprehensive result is Theorem 1. We state two known corollaries first.

Corollary 1.1.

U(A2) 6 (M + m)UA − Mm.

Corollary 1.2. Assume0 < m. Then

U(A−1) 6 − 1

Mm
UA + 1

M
+ 1

m
.

Theorem 1. If f is convex, then letting L be the linear interpolant

L(t) = 1

M − m
(f (M)(t − m) + f (m)(M − t)), (3)

we have

U(f (A)) 6 L(UA). (4)

Proof. As f is convex andL linear on(m,M), with agreement at the end points,
f (A) 6 L(A). BecauseU is positive, we deduceU(f (A)) 6 U(L(A)). But sinceL
is linear andU unital,U(L(A)) = L(U(A)). �

Theorem 2. Equality holds for everyU in the conclusion of Theorem1 if and only
if either f is linear or spectrum(A) ⊆ {m,M}.

Proof. If f is linear, thenf = L and equality holds. If spectrum(A) ⊆ {m,M}, then
for a spectral projectorP, A = mP + M(1 − P),
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f (A)=f (m)P + f (M)(1 − P)

=L(m)P + L(M)(1 − P) = L(A),

and equality holds.
In any other case, choose the spectral projectorP of A belonging to an interval

whereA has spectrum (soP is non-zero) andL(t) − f (t) > δ for suitableδ > 0.
ChooseU which does not annihilatePj ; for example, any pinching. Then equality
cannot hold in (4), for

L(UA) − U(f (A))=U(L(A) − f (A))

>U(P (L(A) − F(A)))

>U(P δ) = δUP
>

/= 0. �

Now for the functionf (t) = t2, we get Corollary 1.1, forL(t) = (M + m)t −
Mm fits the prescription in Theorem 1. This is our result [4, Theorem 2]; it appeared
different there because a further quadratic term(UA)2 was subtracted from both
sides. By Theorem 2, the inequality is sharp.

There is more to say about the functionf (t) = t−1 (for 0 < m). Corollary 1.2 is
obtained using

L(t) = − 1

Mm
t + 1

M
+ 1

m
;

the result was in the proof of our [4, Theorem 3]. (We ought to have pointed out,
and we point out now, that the reasoning was earlier known [9].) By Theorem 2, this
inequality is sharp.

Corollary 1.2 implies [4, Theorem 3]

U(A−1) 6 (M + m)2

4Mm
(UA)−1. (5)

(A survey of proofs of related inequalities is in [1].)
Or, Corollary 1.2 implies

U(A−1) 6 (UA)−1 + (
√

M − √
m)2

Mm
; (6)

this is the bound we would get by using an argument of Mond and Pec̆aríc [12, The-
orem 3], and it generalizes their inequality [11, (4)]. Indeed, Corollary 1.2 implies a
continuum of inequalities (the parameterµ ranging over[m,M]):

U(A−1) 6 1

Mm
{µ2(UA)−1 − 2µ + M + m}. (7)

To prove (7) from Corollary 1.2, one simply calculates that

− 1

Mm
t + 1

M
+ 1

m
6 1

Mm

{
µ2

t
− 2µ + M + m

}
.
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The choiceµ = (M + m)/2 yields (5), and the choiceµ = √
Mm yields (6); neither

of (5) and (6) implies the other. But (5)–(7) are not sharp; indeed, even for

A =
[
M 0
0 m

]

andU trivial, (7) does not become equality for anyµ. These competitor inequalities
are more natural, in that their right-hand member is in terms of an inverse, but they
are weaker.

Like remarks apply to the bounds obtained by parellel reasoning for other convex
f.

Corollary 1.3. Under the conditions of Theorem1,

U(f (A)) 6 f (UA) + max{L(t) − f (t) : t ∈ [m,M]}.

Proof. This can be proved as in [12, Theorem 3]: Letg denote the negative con-
vex functionf − L, with g(m) = g(M) = 0 and min{g(t); t ∈ [m,M]} = −β; we
have to show thatU(f (A)) − f (UA) 6 β. But U(f (A)) − f (UA) = U(g(A)) −
g(UA) becauseg − f = L is linear, andU(g(A)) − g(UA) is tractable:g(A) 6 0,

soU(g(A)) 6 0; and spectrum(UA) ⊆ [m,M], so−g(UA) 6 β. �

However, it is at least as edifying to see Corollary 1.3 as a corollary of Theorem
1. For that, we have to show that its bound is bigger than the right-hand member in
(4) – that is, that

L(UA) 6 f (UA) + max{L(t) − f (t) : t ∈ [m,M]}.
Well, of course; and this is one of the steps in the proof we just gave!

Corollary 1.3 in casef (t) = t2 is the Popoviciu inequality (cf. [7] and [4, Cor-
ollary 1]). Corollary 1.3 in casef (t) = t−1 is (6). All non-trivial f give non-sharp
inequalities in Corollary 1.3 and must turn to Theorem 1 to get sharp ones.

After this work was completed, we learned of the earlier independent work [10],
which uses linear interpolants in a similar way.
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