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Abstract

Let X�� � � � � Xn be independent random variables following the proportional haz	

ards model so that Xi has survival function F
�i
x�� i � �� � � � � n� Let Y�� � � � � Yn be

a random sample of size n from a distribution with survival function F
��

x�� where


� � 

Qn
i�� �i�

��n� is the geometric mean of the �i�s� It is shown that if the baseline

survival function F is new worse than used 
NWU� then the sample range of Xi�s is

stochastically greater than the sample range of Yi�s� This result gives a simple upper

bound on the distribution function of the sample range of Xi�s in terms of 
� and F �

�



The resulting bound when applied to exponentials is sharper than the one given by

Kochar and Rojo 
������ which is in terms of the arithmetic mean of the �i�s�

� Introduction

Order statistics and statistics based on them� play an important role in reliability

theory and statistics� The time to failure of a k	out	of	n system of n components

corresponds to the 
n�k���th order statistic� In particular� the lifetime of a parallel

system is the same as the largest order statistic� Sample range is a simple and popular

statistic for comparing variabilities in distributions and it is important to study its

stochastic properties� These statistics have been studied extensively in the literature in

case the components are independent and identically distributed� But in real life� often�

the systems are made up of components with non	identically distributed lifetimes�

Since the distribution theory becomes quite complicated then� relatively fewer results

are available in the general case�

The exponential distribution plays a very important role in statistics� Because

of its non	aging property� it has many nice properties and it often gives very conve	

nient bounds on survival probabilities and other characteristics of interest for systems

with non	exponential components� Pledger and Proschan 
����� studied the prob	

lem of stochastically comparing the order statistics and spacings of non	identically

distributed independent exponential random variables with those corresponding to in	

dependent and identically distributed exponential random variables� This topic has

been followed up by many researchers including Proschan and Sethuraman 
������

Boland� El	Neweihi and Proschan 
������ Kochar and Korwar 
������ Kochar and

Rojo 
������ Dykstra� Kochar and Rojo 
������ Kochar and Ma 
������ Bon and Pal	

tanea 
����� and Khaledi and Kochar 
������ among others� For a recent review of

this area� see Kochar 
������

�



In this note we study the stochastic properties of the sample range when the

parent observations come from di�erent distributions� First we review some well	

known notions of stochastic orders� These can be found at one place in Shaked and

Shanthikumar 
������

Let X and Y be two random variables with distribution functions F and G� and

survival functions F and G� respectively� Let F�� and G�� be the right continuous

inverses of F and G� de�ned by F��
u� � supfx � F 
x� � ug and G��
u� � supfx �

G
x� � ug� u � ��� ��� We shall assume that densities exist and shall denote by f and

g the densities of X and Y � respectively� Throughout this paper the term increasing

is used for monotone nondecreasing and decreasing for monotone nonincreasing�

De�nition ��� Y is said to be stochastically smaller than X �denoted by Y �st X�

if

G
x� � F 
x� for all x� 
����

It is well known that 
���� is equivalent to

E��
Y �� � E��
X�� for all increasing functions � � R � R� 
����

for which the expectations exist�

De�nition ��� Y is said to be smaller than X in the sense of hazard rate ordering

�denoted by Y �hr X� if
F 
x�

G
x�
is increasing in x� 
����

In the continuous case this is equivalent to

rF 
x� � rG
x� for all x� 
����

where rF � f�F and rG � g�G are the hazard �or failure� rates of F and G� respec�

tively�

�



One of the basic criteria for comparing variability in two probability distributions

is that of dispersive ordering�

De�nition ��� Y is less dispersed than X �Y
disp

� X� if

G��
v�� G��
u� � F��
v�� F��
u�� 
����

� � � u � v � ��

This means that the di�erence between any two quantiles of G is smaller than the

di�erence between the corresponding quantiles of F � A consequence of Y
disp

� X is

that jY� � Y�j �st jX� � X�j and which in turn implies var
Y � � var
X� as well

as E�jY� � Y�j� � E�jX� � X�j�� where X�� X� 
Y�� Y�� are two independent copies of

X 
Y �� For details� see Section ��B of Shaked and Shanthikumar 
������

Bagai and Kochar 
����� established the following connections between hazard

rate ordering and dispersive ordering under some restrictions on the shapes of the

distributions�

Theorem ��� �a� If Y �hr X and either F or G is DFR �decreasing failure rate��

then Y
disp

� X�

�b� if Y
disp

� X and either F or G is IFR �increasing failure rate�� then Y �hr X�

First we study the stochastic properties of the range of a random sample from a

continuous distribution� Let X�� � � � � Xn be a random sample from F and let Y�� � � � � Yn

be an independent random sample from another distributionG� It follows from Lemma

�
c� of Bartoszewic 
����� that Y
disp

� X � Yn�n� Y��n �st Xn�n�X��n� This observa	

tion along with Theorem ���
a� leads to the following theorem�

Theorem ��� Let Y �hr X and let either F or G be DFR� Then

Yn�n � Y��n �st Xn�n �X��n� 
����

�



Next we consider the case when the parent observations are independent expo	

nentials but with unequal parameters� Let X�� � � � � Xn be independent exponential

random variables with Xi having hazard rate �i� i � �� � � � � n� Let Y� � � � � Yn be a ran	

dom sample of size n from an exponential distribution with hazard rate � �
Pn

i�� �i�n�

Kochar and Rojo 
����� proved that in this case Yn�n�Y��n �st Xn�n�X��n� In Section

� we improve upon this bound by replacing � with 
� � 

Qn
i�� �i�

��n� the geometric

mean of the �i�s� In Section �� we extend this result to proportional hazards model�

� The case of heterogenous independent exponen�

tials

Let fx��� � x��� � � � � � x�n�g denote the increasing arrangement of the components of

the vector x � 
x�� x�� � � � � xn�� The vector y is said to majorize the vector x 
written

as x
m
� y� if

Pj
i��y�i� �

Pj
i��x�i� � for j � �� � � � � n� � and

Pn
i��y�i� �

Pn
i��x�i�� The

following result is proved in Kochar and Rojo 
������

Theorem ��� Let X�� � � � � Xn be independent exponential random variables with Xi

having hazard rate �i� for i � �� � � � � n� Let X�
� � � � � � X

�
n be another set of exponential

random variables with ��i as the hazard rate of X�
i � i � �� � � � � n� Let � � 
��� � � � � �n�

and �
� � 
��i � � � � � �

�
n�� then �

�

m
� � implies

X�
n�n �X�

��n �st Xn�n �X��n 
����

This theorem immediately leads to the following corollary�

Corollary ��� Let X�� � � � � Xn be independent exponential random variables with Xi

having hazard rate �i� i � �� � � � � n� Let Y� � � � � Yn be a random sample of size n from

an exponential distribution with hazard rate � �
Pn

i�� �i�n� Then

Yn�n � Y��n �st Xn�n �X��n� 
����

�



In this paper we improve upon this bound by replacing � with 
� � 

Qn
i�� �i�

��n� the

geometric mean of the ��s� We shall need the following lemmas to prove it�

Lemma ��� �Theorem ��� of Khaledi and Kochar� �			� Let X�� � � � � Xn be indepen�

dent exponential random variables with Xi having hazard rate �i� i � �� � � � � n� Let

Z�� � � � � Zn be a random sample of size n from an exponential distribution with common

hazard rate 
� � 

Qn
i�� �i�

��n� Then

�a� Zn�n �disp Xn�n�

�b� Zn�n �hr Xn�n �and hence Zn�n �st Xn�n��

The proof of the following inequality can be found in Theorem ��� of Dykstra� Kochar

and Rojo 
������

Lemma ��� For yi � � � i � �� � � � � n


nX
i��

yi
�� e�yi

�

�
nX
i��

yi

�
nY
i��


�� e�yi��
�

n � 
����

Now we prove the main result of this paper�

Theorem ��� Let X�� � � � � Xn be independent exponential random variables with Xi

having hazard rate �i� for i � �� � � � � n� Let Z�� � � � � Zn be a random sample of size n

from an exponential distribution with common hazard rate 
�� the geometric mean of

the �i�s� Then�

Zn�n � Z��n �st Xn�n �X��n�

Proof � The distribution function of the sample range Xn�n�X��n 
see David� �����

p� ��� is

FRXn 
x� �
�Pn

i�� �i

nX
i��

�i
�� e��ix

nY
i��


�� e��ix�� x � �� 
����

�



and that of Zn�n � Z��n is

GRZn

x� �

�
�� e�

��x�
�n��

� x � �� 
����

Using 
���� and 
����� we have to show that for x � ��

nX
i��

�i
�� e��ix

nY
i��


�� e��ix� �
nX
i��

�i
�
�� e�

��x�
�n��

� 
����

Multiplying both sides of 
���� by x 
� ��� it is su�cient to prove that for x � ��

nX
i��

�ix

�� e��ix

nY
i��


�� e��ix� �

�
nX
i��

�ix

��
�� e�

��x�
�n��

� 
����

From Lemma ���� for x � ��

nX
i��

�ix

�� e��ix
�

�
nX
i��

�ix

�
nY
i��


�� e��ix��
�

n �

and hence

nX
i��

�ix

�� e��ix

nY
i��


�� e��ix� �

�
nX
i��

�ix

�
nY
i��

�
�� e��ix

�n��
n � 
����

for x � �� From Lemma ��� 
b�� under the given conditions� Zn�n �st Xn�n� That is�

for x � ��
Qn
i��
�� e��ix���n � �� e�

��x� Using this result� we �nd that the expression

on the R�H�S� of 
���� is less than or equal to that on the R�H�S� of 
���� and from

which the required result follows�

As a consequence of this result we get the following upper bound on the distribution

function of Xn�n �X��n in terms 
��

Corollary ��� Under the conditions of Theorem ���� for x � ��

P �Xn�n �X��n � x� �
h
�� e�

��x
in��

� 
����

This bound is better than the one obtained in Kochar and Rojo 
����� 
which was

in terms of the arithmetic mean �� since the expression on the R�H�S� of 
���� is

increasing in 
� and 
� � ��

�



� Extension to the PHR model

In this section we extend Theorem ��� to the proportional hazard rates 
PHR� model�

Let F denote the survival function of a nonnegative random variable X with hazard

rate h� According to the PHR model� the random variables X�� � � � � Xn are inde	

pendent with Xi having survival function F
�i
��� so that its hazard rate is �ih
���

i � �� � � � � n� In the next theorem we assume that F is new worse than used 
NWU��

that is�

F 
x� y� 	 F 
x�F 
y�� for x� y 	 ��

or equivalently�

H
x� y� � H
x� �H
y�� for x� y 	 ��

where H
x� � � logF 
x� denotes the cumulative hazard of F �

Theorem ��� Let X�� � � � � Xn be independent random variables with Xi having sur�

vival function F
�i
x�� i � �� � � � � n� Let Y�� � � � � Yn be a random sample of size n from

a distribution with survival function F
��

x�� where 
� � 


Qn
i�� �i�

��n� If F is NWU�

then Xn�n �X��n 	st Yn�n � Y��n�

Proof �

The distribution function of the sample range Xn�n�X��n 
see David� ����� p� ���

is

FRXn 
x� �
nX
i��

Z ��

	
�ih
t�e

��iH�t�
nY
j ��i

�
e��jH�t� � e��jH�t�x�

�
dt

�
nX
i��

Z ��

	
�ih
t�e

��iH�t�
nY
j ��i

�
e��jH�t� � e��jH�t�e��jH�x�

�
dt


since F is NWU �

�
nX
i��

�i
Y
j ��i


�� e��jH�x��
Z ��

	
h
t�

nY
j��

e��jH�t�dt

�



�
nX
i��

�i
Y
j ��i


�� e��jH�x��
Z ��

	
h
t�e�H�t�

Pn

j��
�j

�
�Pn

i�� �i

nX
i��

�i
�� e��iH�x�

nY
i��


�� e��iH�x��� x � ��

Now� replacing x with H
x� in the proof of Theorem ���� it is easy to see that

FRXn 
x� � FRYn 
x��
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