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In this paper, we study the dependence properties of spacings. It is proved that if
Xi,. oo, X, are exchangeable random variables which are TP; in pairs and their joint
density is log-convex in each argument, then the spacings are MTP; dependent.
MNext, we consider the case of independent but nonhomogeneous exponential ran-
dom variables. It is shown that in this case, in general, the spacings are not MTP;
dependent. However, in the case of asingle outlier when all except one parameters
are equal, the spacings are shown to be MTP; dependent and, hence, they are as-
sociated. A consequence of this result is that in this case, the variances of the order
statistics are increasing. It is also proved that in the case of the multiple-outliers
model, all consecutive pairs of spacings are TP: dependent.

1. INTRODUCTION

LetX,,.... X, be nrandom variables. We shall denote by X, the ith-order statistic of
XX, LetD, =X, —X,_ ., denote the ith spacing, i =1,....n, with X, = (.
1t is well known that if X, .., X, is & random sample from an exponential distribu-
tion, then Dy, ... D, are independent. In this paper, we study the dependence
properties of spacings when X;'s are nol necessarily independent and identically
distributed as exponentials. The related problem of stochastic orderings among spac-
ings has been extensively studied in the literature. For details, the reader is referred
Lo a recent review paper on this topic by Kochar [9]. Throughout this paper, increas-
ing means nondecreasing and decreasing means nonincreasing.

There are several notions of positive and negative dependences among random
variables with varying degrees of strength. There is a vast literature on this topic,
with important contributions by Lebmann [ 11], Esary and Proschan [3], Barlow and
Proschan [1], Block and Ting [2]. and Karlin and Rinott [6,7], among others. Per-
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haps the strongest notion of positive dependence between random variables S and T
is that of TP; dependence (also known as [ikelihood dependence). § and T are TP;
dependent if their joint density f{ s, 1) is totally positive of order 2in s and ¢, or, more
precisely, if

Flst) flsn)
=1 (1.1)
flsa, ) flsa,ta)
whenever 81 << s and £ << 1.
We say that T is right-tail increasing in § if P[T = t|5 = 5] is increasing in
& for all 1, and we denote this relationship by RTLIT|8). Finally, random variables
S and T are associated [written A (5, T)] if cov[T(S.T),A(5,T)] = 0 for all pairs
of increasing binary functions ' and A, As shown in Badow and Proschan [1,
p. 143], the following chain of implications holds among the above notions of
positive dependence:

TP:(85,T) = RTL(S|T) = A(5,T). (1.2)

There are many other notions of dependence, but we will not discuss them here.

These concepts of bivariate dependence can be easily extended to the multivar-
iate case. A functionr : B" — [0,20) is said to be multivariate total positivity of order
2 (denoted by MTF, ) if

drix)l(y) = ix Ayhfixwvy) foreveryxand yin R,

where X A ¥ = (min{x,, w),....min{x,v,)) and x v ¥ = (max(x;,y),
cosmaxx,,v,)). Random vanables X,,..., X, are said to be MTP, dependent if
their joint density function is MTP;. It is shown in Kemperman [8] (see also Block
and Ting [2]) thatif the support of a random vector X = (X,.. ... X, ) is a lattice (i.c.,
if x and ¥ are in the support of X, then so are X ~ y and x v ¥), then X is MTP, if
and only if its density function f is TP, in each pair of its variables when the other
n — 2 vanables are held fixed. See Karlin and Rinott [6] for more details on the
properties of MTP, functions. Random variables X, ..., X, are conditionally in-
creasing in sequence if P [X,- =x|Xi=x,. . X =x |] 15 INCTEASIANZ N X, oeny X
fori=2,...,n. Finally, aset of random variables X = (X ,... . X, ) are associated if
coviu(X),v (X)) = 0 for all increasing binary functions i and . Karlin and Rinott
[6] proved that if a set of rmndom variables are MTP, dependent, then they are
conditionally increasing in sequence, which, in turn, implies that they are associated
(cf. Badow and Proschan [ 1, p. 146]), a result which extends (1.2) to the multivar-
LALE Case.

It is known that spacings of a random sample from a DFR (decreasing failure
rate) distribution are conditionally increasing in sequence (cf. Barlow and Proschan
[1, p. 151]). Karlin and Rinott [6] have pointed out that if the DFR assumplion is
strengthened wo assume that the parent distribution has alog-convex density, then the
spacings have the corresponding stronger property of being MTP: dependent. In
Section 2, we extend this result to the case when the random vanables X, X, are
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dependent. It is proved that if the joint probability density function (pd.f.) of X,'s
15 permutation symmetric, TP> in pairs, and log-convex in each argument, then
their spacings are MTP; dependent {Theorem 2.1). In Section 3, we study the de-
pendence properties of spacings of independent but nonidentically distributed ex-
ponential random variables. We show with the help of a counterexample that in this
case, the spacings may not be MTP, dependent. In fact, forn= 3, even RTL D, 5| D4 5)
does not hold for some values of the parmmeters (Example 3.1). However, it is
shown that covi Db, 05.5) 15 nonnegative (Corollary 3.1) due w its Schur convexity
{ Theorem 3.2). It is also proved that in the case of a single outlier when all
except one of the parameters are equal, the spacings are MTP; dependent (Theo-
rem 3.4). A consequence (Corollary 3.2) of this result is that in this case, var{ X, ) =
var( X, ) = --- = var(X, ). We also prove that in the case of the multiple-outliers
model { Theorem 3.5), any pair of consecutive spacings Dy, and D, ., are TP, de-
pendentfori=1,....n —1.

2. DEPENDENCE AMONG SPACINGS OF EXCHANGEAEBLE
RANDOM VARIAELES

As pointed out in Kadin and Rinout [6, p. 483], the spacings of a random sample
from a distribution with log-convex density are MTP; dependent. In Theorem 2.1,
we extend this result w the case when random variables are exchangeable and TP: in
pairs.

THEOREM 2.1: Let X, ..., X, be exchangeable random variables with absolutely
continwous joint pdf. f(x,....x,), which is positive on ITL (¥, 0, C R,
i =1,....n, and satisfies the following conditions:

ia) fxis TPain pairs.

ib) fx iv log-convex in each argument when remaining arguments are held
Jixed.

ic) The first partial derivative of fx(X) with respect to x; exists fori=1,...,n.

Then, D,.,..... D, are MTP, dependent.

& Ll

Proor: The joint p.df.of D, ,.... D, 15

) s

-

Foldysevnnd,) = nlf, (d,,j s St S ::J).
i=1

i=1 =l
By Theorem 1.5 of Karlin [5], fpld,.....d, ) will be TP, in pairs of d,,..., d, if and
only if for any i # j, 1 = i,j = n, (8/dd; )log fold,.....d,) is increasing in d;. Let
i = j. By the chain rule of differentiation,

a " a 3‘ i "
(;)Iugj',_,l{d,,...,d“} =% (}—)Iugjg (::,, 3 R 3 SR, ::,),
o 7 = =

k=i y g =] =l =1

{2.1)
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where v, = >0_,d; fork € {1,...,n} The term (8/dx;) log fx (%) is increasing in xg
fork € {1,....n}, as fx is log-convex in x, for each k. [t is increasing in x,, m # k,
m € {1,...,n} because fx is TP; in pairs. Now, x,, and x; are both increasing fune-
tions of d;. This implies that (8/8d; Jlog fp(di. ... d,)is an increasing function of d;.
Hence, fpld,.....d,) is TP, in pairs. Cleardy, the support of spacings is a lattice
under the given conditions. Combining these facts, we get the required result,. W

Remark: In Theorem 2.1, if instead of conditions (a) and (b), we assume that fy is
RR, (reverse regular of order 2) [two random variables S and T are RR, dependent
if the inequality in (1.1) is reversed ] in pairs and fy is log-concave in cach argument,
then one can prove that the joint p.d.f. of spacings is RR; in pairs.

LEMMA 2.1: For a bivariate random vector (X, Y),

covi¥Y — X, X)=0=var(X) = var(¥) (2.2)
Proor: The inequality cov(¥ — X, X ) = 0 implies cov(X,¥) = vari( X' ), which, in
turn, implies that

var( X} X Y) <1
=p° =
vari¥) et ?
where p(X,¥) is the correlation coefficient between X and ¥. The required result
follows from this, L]

This lemma and Theorem 2.1 lead to the following interesting corollary.
CoroLLary 2.1: Under the assumptions of Theorem 2.1,
‘I'U.F|:X|:“} = "I‘IJII:X]:M} = = "‘I‘Ilrl:xaul 2

Proor: Because under the given conditions D;,'s are MTP; dependent, they are
associated. This implies that forn=1,...,j — 1,

i1
L'U"'Il:xjul o XJ" |:JI!XJ— |:JI} = oo (DJ:JI!I 2 DJ'JI) = {}s [.2’-3:'

jm]
-] . . . . " .
as =471 D, and Dy, are increasing functions of (D.,,..., Dy, ). The required result
follows from Lemma 2.1, L

Example 2.1 (Inverted Dirichlet Distribution): Let X, i =0, ..., n, be independent
gamma random variables cach with scale parameter 1 such that X, has shape param-
eter 8 and X, has shape parameter @, for i € {1,...,n}. Then, the joint pd.f. of
Y, =X;/Xp.i=1.....,n 15

_ Ta+p) (.
}"ﬂl:}n...s_"ln} = I:I.-I:ﬂ'”“riﬁj ( n )mt—,ﬂ
¥i

fory, = (0.

1+
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Itiseasy tosee thatfy, (v}, ....¥,) isexchangeable, TF; in pairs, and log-convex
in each argument when 0 << o <2 | and nee + 8 = 1. Thus, the conditions of Theorem
2.1 are satisfied, and as a result, the spacings of ¥y,.. ., ¥, are MTP; dependent. By
Corollary 2.1, the vardances of the successive order statistics increase as i goes from
1 e n.

3. THE CASE OF HETEROGENEOUS EXPONENTIALS

The exponential distribution plays a central role in reliability theory. In this section,
we study the dependence properties of spacings when the observations X, ..., X, are
independent with X; having exponential distribution with parameter A;, i =1,... 0.
Their joint density is given by (cf. Kochar and Korwar [10])

I—-['A‘ n n "
.-f.;')m,.....f.'rﬂﬂl:'rl!"“!"l.al } = 2 + I—[(E ,JI.(fJ-})l:Kp {_'tl ﬂ(i}}}
ir} I—_[EAI:G}J_I J=i d=i
i=] je=i

i3.1)

forx; =0,i=1,...,n, where (r) = (r,...,r,) is a permutation of (1,... .n) and
Ali) = A; Lt is a mixture of products of exponential distrbutions. From (3.1), it is
casy to find that the joint p.df. of (D, D, Jforl =i<j=nis

[ IR

I A,
=1

Jo .0 (0 y)= ) R
ir} IS Alr)

=1 j=i

® (Z ).[rm])exp{ .mzi[rm]}(ZA[rmJ)ex}:{ ¥y J.[rmJ}
=i =i A= 7l M= 4

i3.2)

forv,yv=0.
The next example shows that the spacings may not be MTP, dependent if the
A;'s are all different.

Example 3.1: Let X1, X5, and X5 be independent exponential random variables with
respective hazard rates 5, 4, and 1. Using (3.2), we find, afier some simplifications,
that

hiv) = P(Dy =2y = ¥)

2 BTt i e ¥ = :
A J‘II(( g }(_) tI‘I-‘-( i3 }(_) .a+( iz } !)
& Ge®  fetr S5, 2 Qe Sg% TN 4 e Gesr  5ery £ '

',,..:I +4£.'.-|| +5('-.'EI
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It is clear from Figure | that the function (v} is not monotonically increasing,
proving thereby that D555 even not RT1 in Do, Hence, 5.5 and D55 are not TP,
dependent.

The covariance between Dy, and Dy, for i < jis

l_[l A-’ ] ol | ] -1
cov(D,,,Dp,) =3, —{ b A[r,,,J} {E Mm]}
irt HZ-‘”I‘__.J m=j
i=1J=i

l:[ A % , f[ A 2 ;
Zm{&um} gm{gﬁ.[m}

=i

=i

We conjecture that, in general, the covariance between Dy, and Dy, for i << jis
nonnegative. We prove this conjecture for n = 3 in Corollary 3.1, In fact, we prove
in Theorem 3.2 that the covanance between D55 and D55 15 Schur convex in A;'s.

Let {xy = x7 = +-- = xy,y} denote the increasing arrangement of the compo-
nents of the vector X = (x, xa,. .., 5, ). The vector y is said to majorize the vector x
(wrilten X = yI X v, =2 xforj=1,....n—land X7, v;,= 2| X
Functions that preserve the ordering of majorization are said to be Schur convex;
that is, a real function ¢ defined on a set .4 C B" is said 1o be Schur convex on A if
X =y = dbx) = diy). SeeMarshall and Olkin [12, Chap. 3] for properties and more

0.109 ¢

0.10875

0.LOES b

0, L0E3E

0,10775

T

LA0TEF

0.L07:2%

Ficure 1. Graph of ( v).
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details of such functions. The following characterization of Schur-convex functions
will be used to prove Theorem 3.2,

Tueorem 3.1, (ef. Marshall and Olkin [ 12, p. 57]: Let! C R be an open interval and
et b : 1" — R be continuously differentiable . Necessary and sufficient cond itions for
b to be Schur convex on " are o is symmetric on 1" and, for all § # j,

{2 — ZJ}I{ﬁH?I:‘EJ )= {f"Ui'I::J N=0 forallz €I,
where dvy;y [ z) denotes the partial derivative of & with respect to its ith argument.

THEOREM 3.2: Let X\, Xa, and X5 be independent exponential random variables
having hazard rates A, A., and A5, respectively. Then, cov(D,. 5, Do 5) is Schur
COnvex in A;'s.

Proor: The covariance between Dy and D 5 is
@A Az Az) = coviDys, D)
(A1 A2 A5) (A, + Ay + 45)7!

X [(AT2 + 23+ )73 (A2 +A330(A + A3) 2
+ (A2 + A3 (A2 + A3) 77
— A+ A AT A+ A+ AL+ A5
+ A ST+ A
KA ALAD A, + A+ 4!
AT+ A3 A, + A
+ (AT AR+ A
+ (AT + A%+ )7 3.3)
After some simplifications, we find that (A, — A ey (AL A 45) —
(A, Az, A3)} s equal to
8(A, — A,5)%43
(A + A (A + A3 A+ A0 (A + Aa+ A3)

which is nonnegative for all A, A5, A; = 0. Because the function ¢ is symmetric in
(A, A, A7), the required result follows from Theorem 3.1. |

CoroLLary 3.1: Under the assumptions of Theorem 3.2, coviDas, Di;) = 0 and
var( X, ;) = variX,1) = var(X,;).

ProoF: Let A be the average of A,’s. It is easy to see that (4,4, ) = (A, A2, A5).
From Theorem 3.2, we gel

{ﬁ(isisi}ﬂfﬁiﬁlsﬁlsﬁ.ﬁ}s {3-4}
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where the function ¢ is given by (3.3). The lefi-hand side of (3.4) is zero, since
spacings of a random sample from an exponential distdbution are independent. This
proves that cov(Da.3, Dy ) =0, Since D 5 is independent of D53 and D5, it follows
that cov (X;.; — X135, X5.5) = 0. The required result follows from Lemma2.1. W

Gross, Hunt, and Odeh [4] considered the single-outlier model in which all
except one of the A;'s are equal; thatis, A, = Aand A, = --- = A, = A", A # A*. They
incomectly pointed out that in this case, the spacings Dy, and Dy, are independent for
J—i=2. Although itis true that D, is independent of { D, .., Dy, ), the other I)'s
are not independent. In fact, for n= 4,

-

2% (A — A)2
(A* + DA + 234 + )2

cov( Doy, Day) =

which is positive unless A* = A, Theorem 3.4, which follow s, replaces the incorrect
result of Gross et al, [4] for the single-outlier model,

To prove the remaining results of this section, we shall repeatedly use the fol-
lowing known resull.

THEOREM 3.3 (Shaked and Spizzinchino [ 13]): Let the joint distribution function of
X=(X,....X,) be

oo on

F(XiyensXy) = 1 Fx o) dGia),
- im=]
where F.(-|8) is an absolutely continuous distribution function with respect to Le-
besgue measure on R for each 8 in the support of © with density function f( - |#) for
i =1,....n. Suppose that the support of (Xy,. .., X,) is a lattice. If f;(x|8) is TP;
(RR,)in (x,@) forall i € {1,...,n}, then (X,....,X,) is MTP,.

In the next theorem, we prove that in the case of a single-outlier exponential
model, the spacings are MTP; dependent.

THeorREM 3.4: Let X;, i = 1,...,n, be independent exponential random vaviables
such that X\ has hazard rate A and X; has hazard rate X' Jari € {2, vovs 2} Then,

(D D) is MTP, dependent.

) mwas

Proor: Using (3.1}, we find that the joint p.df. of (D,,..., 0, )i« this case is
; e (n = 1) A(A" !
.-ful.,,,....f.iml:-'-'l e Xy ) = E

=

H_I:I:n —iJA*+A) ﬁ_ (n—i+1)A
im] i=i+1

L

* H (n— i) + ,ill}f-wl—:m‘—a:x__

im]

L

X J] (n—i+1)atet-izis

i+
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which can be expressed as

oo on

fop (X1peeyx,) = 1 fo (xi|8) dPa(8),

—am im]
where 8 is a discrete random variable with the probability mass function,

(n—1)LA(A* !

Palft) = 5 ; foréd=1,....n,
[Ttin—0x+a) [I (n—i+1)a
] i=i+1

and

: I:I:H i ”A.‘ + A}{,--HJI—J&J‘—JJ.T’ i=g
fo (x|8) = . 35
LT I:H_r-_'_l}lhxe—m—J—I!l-l.T’ i=g+1.

We show that the conditional densities as given by (3.5) are all TP, if A <0 A" and are
all RR, if A = A" Suppose 8, << &, and &, 8, £ {1,...,n}. Then, the ratio

L, i=#,
.f})_.“(xlﬂzf . ((n— DA+ A}E--HJI—JJJ.'—.U.T

S, (x|dy) fn—i+ 1A% ot
L [ ]

: & =<i=#

is increasing (decreasing) inxif A < (=) A*fori=1,... n;thatis, fi_(x|8)is TP;
i RR.)in (x, #). The required result follows from Theorem 3.1. |

CoroLLary 32: Under the assumptions of Theorem 3.4,

var( X, )= var(X,, ) =--- = var(X,,)

In the next theorem, we consider the multiple-outliers model. According o this
model, X,,. .., X are i.i.d. exponentials with hazard rate A and X0 q,. .., X, are i.id.
exponentials with hazard mte A", where k € {2, ... .n — 2}, We prove that in this case,
D, and D, ., are TP, dependent fori = 1,...,n — 1. It is not known whether the
spacings are MTP; dependent in this case.

THEOREM3.5: Let X,.i=1,..., n, be independent exponential random variables such
that X; has hazard rate A for i € {1,... .k} and hazard rate A* for i € {k+1,...,n},
kE{2,...,n =2} Then, D, and D, ., are TF; dependent.

Proor: Without loss of generality, we assume that k= n — L.
Case(i): Letk < i=n—4k From (32),the joint pd.f of (D, D, ., ) for this setl

of A;'s can be expressed as

.-ﬂ'.r_..ﬂ,n_.. L.,':-Ts y) = J‘ .-ff_n;ﬂ('-'lﬂffﬂ L.ﬂ(."lﬂ}de(H}s
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where 8 is a discrete random variable taking values 0, 1,2, .., 2k with the following
probability mass function. For§ =0,2.4,... 2k,

; o : 1
pa(8) = A (A" K — k) > ———,
{rgh I—_[E .-]ll:i}}
im=] j=i
where the summation is taken over all permutations of
k=@ i=1—=k+8/2 1 2 =iy

i T i i T e T = —

M) = (A, LA LA A AL (3.6)

for which the ith component of () is A* and its last n — § components consist of
(#/2) X'sand (n—i— #8/2) A7s.
For@=1,35,....2k—1,

1
pol(8) = A (A*)"Fkl(n — k) 2, ——,
tre) I—[E .-]ll:rj’}
im=] fe=i
where the summation is taken over all permutations of
Ro{BelyD i-l=ke{@e1l2 1 (@121 n-i—{f41)241
—— ey AR i 1Y i = iy
k= Fdisnsdy ALKy sy AN AY) (3.7)

for which the ith componentof i}, ) is Aandthe last n — i components of (1}, ) consist
of ((B+1)2—-1Asand (n—i—(#+1)/2+ 1) A%s.
For & €10,...,2k},

fo, (x|8) = {(n—i—[(8+1)/2] + )X + [(8 + 1)/2]A}
e L,—lm—:—[u?— 1y2]+ I;l.i'—[ﬁ.i‘—l:l_."Z].lI-:c’ {33}

and

f}]r,:“':-rlﬂ} s {I:J'i —ofi {Hf?]}ﬂ.‘ + {Hf?].‘l}f_“"'"['m“'r +[H2 |.H-:r’ {39}
where [ x] denotes the greatest integer less than or equal o x.
To prove the required result, we show that f;, (x|#)and f,
if A << A" and are all RR; if A = A%,
So (x[@+ 1) fln—i—[(0 +20/2] + 1A + [(8 + 2)/ 2] A}e Homi —l0+ 221+ 147 H{A+21Z]40
fo (x|0) {ln—i—[0+ 1)/2] + A" + [0 + 1)/ 2] A}e ~Hrn-i-H8 11V 1A+ {8+ 1)/2]As
L ifd=1,35..2k=-1
=1 {in—i— /2K + (8/2+ 1A}
fln —i— @72 + 114" +(8/2)A}

(x|@) are all TP,

e AN irg=0,2,4,...,2k 2,

i3.10)
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From (3.10), we conclude that if A << A" (A = A%), thenf;, (x[#)is TP, (RR;)
fori=1,...,n. Similarly, for fp, (x[#), we have

Fou (218 +1)  fin—i—[(8 + 1)/2])A° + [(8 + 1)/2] A} lni o n/ziueviaT /2

Folxlo) o= &~ [OJ2 A+ [0/ 2] Ao~ O TR R
1, if6=10,24,...2k-2
=1 dln—i—(8+1)/2)A" + (0 + ”f?]—'”'e-m-m e
{in — i = (0= 1)/2)A" +{(8 — 1)/2)4} ' T
(3.11)

Again, from (3.11), it follows that fi, | (x|#)isTP; (RR;)if A < A" (A =A%),
Using these observations, the required result follows from Theorem 3.1,
Case(ii); i >n— k. Inthis case for 8 €4{0,2,...,2(n — i)}, (rg)is given by (3.6),
and for 8 € {1,3,....2(n — i) + 1}, (r},) is given by (3.7). Hence, for 8 €
{0,1,2,....2(n—i+ 1) — 1L fo_(x|8)and fi Il_ﬂl:x|6‘}arc the same as given by (3.8)
and (3.9), respectively. The required result follows from the same kind of arguments
as in case (i)
Case (iii): i = k. The proof is similar 1o the previous case. The vectors (r,;) and
i ry) comesponding to (3.6) and (3.7) are as follows, For §=0,2,. .., 2i — 2,

P=1—2 2 | k—it@f2  a—k-#2

[} PN P T P LOUI LA B TUR B LAY L N

for which the ith componentof (v, ) is Aandthe last n — i components of (r;) consist
ofl (k—i+8/2)Asand (n — &k — 8/2) AV's.
Forg=13,...,2i—1,
i=((@+1)2y (e 102=1 1 Ek—is({@+1)/2) n=k={{@+1)/2)

(Epd =0 A AL A LA A, A LA, AL A ),

for which the ith componentof (r}) is A" and the lastn — i components of ()} consist
ofl (k—i+(@+1)/2) Msand (n— k— (8 +1)/2) A*'s.
Therefore, for ¢ € {0,...,2i — 1},

fo lxl@)={k—i+1+ [8/21)A +in—k—[8/2])4"}
9 gtk =it 1L T A k[ 2]

and

fo,,(xl8) ={k—i—[(6+1)/2DA + (n —k—[(8 +1)/2])2"}

s g —im A+ 12 A +n—k [+ 1] A" e

The required result follows from the same kind of arguments as in case (i). L
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4, CONCLUDING REMARKS

In this paper, we have obtained some new results on dependence among spacings of
heterogeneous independent exponential random varables. Whereas in the case of a
single-outlier exponential model, the spacings are shown o be MTP; dependent, it
is not known whether the same result holds for the multiple-outliers model. In the
latter case, we are only able o establish TP; dependence between conseculive spac-
ings. Another unsettled question is to examine whether in the case of independent
exponential random variables, in general, the spacings are positively correlated. We
have given a proof of this conjecture forn = 3.
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