Water wave scattering by a submerged thick wall with a gap
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Ahstract

This article is concerned with scattering of surface water waves by a thick submerged rectangular wall with a gap in finite depth water.
Multi-term Galerkin approximations involving ultraspherical Gegenbauer polynomials for solving first kind inte gral equations are utilised in
the mathematical analysis to obtain very accurate numerical estimates for the reflection coefficient, which are depicted graphically against the

wave number.
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1. Introduction

The problem of water wave scattering by thin vertical
barriers of vanous configurations and its  modificaton

when another wentical bamier 15 inrodoced in water of

uniform finite depth, have been studied extensively in the
literature assuming linear theory (ef. Packman and Williams
[1]. Losada et al. [2], Mandal and Dolai [3], Kanona and
Mandal [4], Banegea et al [5], Das et al. [6]) by employing
various mathematical techniguoes. When the obstacle 15 in
the form of a thick vertical barrier with rectangular cross-
section present in waler of uniform finite depth, the corre-
sponding water wave scattering problems for normal inci-
dence of a wave train have been investigated earlier by Mei
and Black [7]. They considered surface piercing and bottom
standing thick vertical barriers and wsed vanational formu-
lations as the basis for numencal computations of the reflec-
tion and the tmnsmission coefficients, and obtamed an
accuracy within one percent for the numencal results. Bai
[8] stodied the problem of oblique wave scattering by a
surface piercing long cylinder in finite depth water by
employing finite element technique and presented graphi-
cally the numerical results for the reflection and transmis-
sion coclficients when the eylinder 15 of reclangular cross-
section. Liv and Wu [9] used the method of matched asymp-
totic expansion to study the problem of oblique wave scat-
tering by a thin as well as thick rectangular wall with a
narrowy gap in water of finile depth. However, their study
15 limited to long wave case only since they approximated
the Helmolte™s equation by Laplace™s equation for obtaining
the linear solution. When the gap is not narrow, the method
of matched asymptotic expansion 1o handle the associated

wave scatlenng problem 1s no longer suitable. Recenty,
Muandal and Kanoria [14] and Kanoria et al. [15] considered
the problems of oblique and normal wave scattering by thick
barriers respectively, wherein the barriers have four types of
configurations such as surface-piercing or bottom standing
thick barrier or a submerged block, or a thick wall with a
gap. They used multi-term Galerkin approximation method
involving  ultraspherical  Gegenbaver  polynomials  for
solving first kind integral equations ansing in the mathema-
tical analysis tooblain very accurate numerical estimates for
the reflection coefficient.

The present problem is concemed with scattering of a
train of surface water waves obliquely or nommally incident
on a submerged thick vertical wall of reclangular cross-
section with a gap in water of uniform finite depth. Using
the symmetry in the geometry, the boundary value problem
deseribing the physical situaton is split into two separate
problems involving symmetric and antisymmetric parts of
the potential function. Appropriate cigenfunclion expansion
of each of these potentials in different regions, followed by a
matching process across the vertical line through the nght
corner points of the gap, produce an integral equation for the
unknown derivatives of the symmetne and antisymmetric
potential functions along the honzontal directon. Also, for
ecach case of the symmetric and antisymmetric potential
function a real guantity related o the reflection and rans-
mission coefficients is defined which is expressed in terms
of an integral involving this unknown derivative across the
zaps. Solutions of two integral equations ultimately provide
the reflection and ransmission coefficients. The two integral
equations are solved here by appropriate multi-term Galer-
kin approximations involving ultraspherical Gegenbauer
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Fig. 1. Sketch of the problem.

polynomials, an idea onginally suggested by Porter (cf
Evans and Fernyhough [ 10]).

The numencal estimates for the reflection coefficient are
obtained with a six figure accuracy by choosing only four
terms in the aforesaid multi-term expansions, and are
depicted graphically agamst the wave number. [Lis observed
that in contrast to the case of wall with a gap whose upper
part 15 surface picreing, the reflection coefficient (for both
obligue and nommal incidence) has oscillatory behaviours as
the wave number inereases. This may be attributed o the
interaction between the two ends of the submerged wall.
Also, in the limiling case when the lower part of the wall
15 made very small and the distance between the bottom and
the lower end of the upper part of the wall 1s also made small
{but still greater than the small vertical length of the lower
part) so that the submerged wall almost assumes the form of
thick bamrier standing at the bottom. The corresponding
curves for the reflection coefficient almost coincide with
those of Mandal and Kanoria [ 14] (obligue incidence) and
Kanona et al. [13] (pormal incidence) which are also
depicted here, for the same configuration.

Again, when the configuration assumes the form of
submerged rectangular block over a rectangular bottom
deformation of very small height, the reflection coeflicient
curves (for oblique as well as nommal incidence), are seen Lo
be gualitatively similar to the comesponding curves for a
submerged block drawn earlier by Mandal and Kanoria
[14] and Kanoria et al. [15] (also depicted here), although,
these hie slightly above the curves for submerged block for
some wave numbers and below for some other wave
numbers. This may be attributed o the interaction between
the two ends of the thick wall of very small height lying at
the bottom.

Also, for very small values of the wave number the reflec-
tion coefficient in each case 15 seen to tend o z2ero, a result

confirmed earlier for any obstacle by Martin and Dalrymple
[12] and Melver [13] employing matched asymptotic
CRpansions.

2. Formulation of the problem

We consider an obstacle in the form of a thick submerged
vertical wall with a gap present in walter of uniform finile
depth fi and choose y-axis vertically downwards along the
line of symmetry of the thick barner so that the obstacle
occupies the region —b=x= b, veE L= [lac)+ (dR) ).
where () << a <2 ¢ << d <2 . Here a s the depth of the upper
portion of the wall below the mean free surface, 26 15 the
thickness of the wall, d — ¢ 15 the gap length. This geome-
trical configuration of the wall 15 desenbed in Fig. 1

We first consider the case of a train of surface water
waves obliguely incident on the wall. The case of nomnal
incidence can be dealt with after appropoate modifications
in the analysis for obligque incidence. Under the assumption
of Imearised theory of water waves, the train of progressive
surface water waves obhquely mewdent on the wall from
very large distances on the right side 1s represented by the
velocity potential Re{ '™ (x y)e*"* ™}, where

2cosh ky(h — yje #x—H

i1 nnc _

(x,v) = i1
¢ ¥ cosh kyh )
kg 15 the umgue real positive oot of
ktanh kh = K 2)

with K = /g, o being the circular frequency of the incom-
ing wave train, g being the accelertion owing Lo gravity,
o= kyeos o, v = Ky sin e, o being the angle of incidence
of the wave train. As aresult of the symmetry in the geome-
try of the thick wall, the z-dependence can be eliminated by



M. Kanoria / Applied Ocean Research 21 { F999) 6980 Ti

assuming the velocity potential descnbing the motion in the
fluid to be of the form Re{ ¢'"(x e ™'}, Henceforth the
factor ¢*** ™" will always be suppressed. Then ¢'"(x,v)
salisfies

(P — )" =0  in the fluid region (3)
K¢'"+ =0  ony=0 (4)
d"=0 onx=xbyEL (5)
FOvg" s bounded as r— 0 (6)
where r is the distance from any submerged edge of the
barrier,

di_‘.,_lil =10 on yv=a,cd |l:| < h {7
d:_‘.'.” =0 on y=hlx =5 (8)
' Vix, vy — o Linc: v+ RV —x ) 4% X —+ 00
d V) = TV y) as x— —00 9)

where B'" and T denote respectively the reflection and
transmission cocllicients (complex) and are to be deter-
mined.

For normal incidence of the wave train, we will have e =
0 so that v = 0, p = kg and the incident wave rain is
represented by Ref ¢ ™ (x y)e "'} where

2eosh ky(h — vie - kylx—b)
cosh kgh

"M, y) = (10)

The velocity potential describing the ensuing motion is
denoted by Re{ "™ (x y)e ™'} where ¢""(x,y) satisties Eq.
(3) for » = 10, the conditions (4)-(9) with supersenpt (1)
replaced by (0) everywhere.

3. Method of solution

Due to geometrical symmetry, é'"(xy) can be split into
symmetric and antisymmetric parts, &' (xr.y) and ¢'™(x,y)
respectively, so that

M, v = M0y + @M w) (11}
where

¢ = ¢"M—x3). (= —¢"Mxy

(12}

We need to consider only the region x = 0. Now ¢ "(x,v)
satisfy the Egs. (3)-(8) together with

0 =0, ¢"M0y=0 0<y<h (13)

Let  the behaviour  of d:“:“"f.r,}'} a5 x=— o0 be

represented by

cosh kylh — v)

h i J [C. Tpol x— ) + Rl: | 1'\.',¢|c1_r.|.|:.1: '.'r:ll
COSN K

¢ (y) =

45 x —+ 00
(14
where R are constants, then by using (9), they are related

to R and T by

R“:I, TH] = %{RHI\' t.Rl;l:lu}C ipk (15)

The eigenfunction expansions of ¢'"(xy) satisfying
Eqgs. (3)=(5), (7) and (8) for x = 01 given below.

Region I {(x = 5,0 < y < h):

) osh kglh — v .
dl“:“'“{.l',}'} e Lu;u%;{; J! .1'} [l: iplx =) + .R{ |:I.'L.il':1_|'.l.'i.'l .'r]!
. 1]

ol
+ ZAEII:“'HL'{}S k(h — yje = )
n=I

{16)
where k(n = 1,2,...) are positive rools of
ktankh+ K =10
and
5o =k + v (17

For the case of nommal incidence, the representation of
&"""*“(x,¥) can be obtained from Egs. (16) by making a =
One. v =10, p =k and replacing the supersceript (1) by (00
and s, by k.

Region II{(0 <x < b, 0 <y < a):

( &' i, _1.'}) B (B:,' *eos(og — v )" x ) cosh agyla — v)

d:“"”f_-;,_r} B:,' ?"5infafé Lo ,L,-’}IL’_._. cosh o

= ¢ B Ycosh 1 x
+ cos a,la —v)
n=I1 BEII:':ISiFIh X
(18)

where =+ oy, * e, (n = 1,2,...) are the moots of the
equation
a tanh oea = K
and
t,=1{ac+v)%n=12.. (19)

For the case of nommal incidence, the representation of
&"""*“(x,¥) can be obtained form Egs. (18) by making a =
0 and replacing the superscnipt (1) by (0) and 1, by a,.
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Region IL (0 << x << b,e << v << d):
( &M _1.‘}) Ci M eosh wx
d’mu{-f,}‘} C':,I “ginh

= ' eosh £ x
+ Z ( E‘ )L‘U
C ¥ ginh &

n=]

na(d — ¥)
e
d—«¢
where
12

a
£ ={( d"—wc') +v"} =12 (20

(0)sa

For the case of nommal incidence, o are obtained from

{200 by putting » = Ound replacing the supersenpt (1 by (0)
with the modification that there is no E'[;:':“' and the first temm
in the expansion of dimx'{.-.',}'} 1% E’é:m'.r.

Let us define

dlilfl.tﬂ{b +0,7) =_.|F“1u'f_1‘}|, 0<y<h, (21}
then

¥ ey=0  for yE L, (22)

¢B = 0,3) = f(),
and due to Egs. (6)

O<y<ac<y=<d(23)

£ =0a — ™"

as y—a—10

Fagy =0y —o " as y—e+0 (24)

as y=—d—10

fﬁlfl.'-'.ﬂ{r} o ﬂ'{ld o _‘-‘| -I.f.’l}I
Use of Egs. (16), (18) in (21) followed by Havelock™s

inversion formula produces, after noting Egs. (22),

dikgeosh kyh

1 _ R{I:u.,:l —
Ly

J-_JFH:MI (whcosh ky(h — yvidy
i
(25)
with
8y = 2koh + sinh 2kyh, L= (0,h) — L = (0,a) + (c, d)

s ’
Alsa — _ -f—é—'- J-__f*m"'{_v}uns by (h — vidy

b ' |

(26)
with §, = 2k, + sin 2k i (n = 1,2....),

gilwa — 49"{‘“5_11_&"“
i 2 ]

! 1
X( B 5in{ﬂﬁ T L'U};-frla = v!}lﬂb)

>< J- FEyeosh ayla — yidy (27)
1]

with yq = 2aga + sinh 2oa

4& ]_ 1 ” .
BEII e R L ( ) J A 1w
Ty ¥ sinh 'r.ub, cosh -r.ub (Ff f} }

®eos a,la — ydy

with
Y =208+ sim2oa (n=1,2,..) (281

Using Eqgs. (200 in Egs. (23) and taking Fourier cosine
mmversion we oblain

; 1 1 1 d
G = ( : )J. e indy, (29
[} ir{ﬂ‘ e {,} sinh vh " cosh v |:...rc {}}' ¥ f ::'

iser = ( ]' ]' )
% £4d — )\ sinh &b cosh £,b

4 e
¥ J- FH (eos "ﬂ:i ) dy.

—C

(n=1,2..) (30)
For the case of nomal incidence, f"”{r}l must satisfy
ﬂl q
f F%ouy =0, (31
and the constant Ef,m” 15 given by
1
E“"“ = — AN R J"J “r"“f'r v 12
=g | fMom (32)

The other constants {with superscript (0)) are obtaned in
terms of integrals involving f*“(y) with suitable modifica-
tions m the above relations Egs. (25)-(30).

Now, matching of ¢""“(x,y) across the line x = b
through the nght comer points of the gap produces

dj‘”:'-‘-.ll b+ ﬂ’},} - 'Iii“:w'“fb -0, .F::'!.r e f (33)

which ewentwally produces the integral equations  for
¥4y, y € Lin the form

cosh ky(h — v

MI:I.-.,:l } Fﬂl‘-‘#' — N = .II__ 34
J.r'_ . u) i) cosh kgh 7 2 i
where

dkycosh’k, -
pilka o) = peosh™kyh _,|F1 n.x-.u{},}’ ye L. (35)

(1 + R
M54y w) are real and symmetric in y and v, and their
expressions are given in Appendix A,

If we now define the constants ' by

. 1 — Rt
g . _ o
! == [T R’ (36)
then Egs. (25) produces, after using Egs. (33),
osh kglh — v)
Fﬁ Vier o COs ¥ ! dy = ':-1 1 e : 17
_J-F_ ) cosh kyh ¥ )
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Tahle 1
Reflection coefficient |87, o = 45

Tahle 2
Reflection coefficient [R™|

afh = 0.2, ofh = 04, df = 06 b =1

afh= 02, ch =04, dh= 08, bh =

KR N=10 N=1 N=12 N=3 N=4 N=3

001 0383943 0381812 0381797 0381794 0381704 0381794
L0 042127 0443033 04348 044348 0443648 0443048
1.8 077051 0.T98831 0.79157 079156 079150 079156

Eh N=10 N=1 N=2 N=3 N=4 N=3

001 0477645 0475608 0475549 0475546 0475540 0475546
10 0469505 0457956 04576019 0457586 0457582 (457582
18 0793509 (0793524 0793230 0793227 0793226 (0.79322a

i 1hs,

It is important to note that F (v} and '™ are all real
quantitics. Thuos, if the integral Eg. (34) are solved, then
these solutions can be utilised to obtain ¢ from Eq.
(373, which in tum produce the actual reflection and trans-
mission coefficients |R'" and |T""| respectively by using

1 +C'i|:'-‘-":‘i|:ﬂl C-{I:I.'._ 1 et
R = % 5= % (38)
where
A= {1 + “:-l; I:Iﬂ}_"' + {Cﬂfm}_’ + {Eﬂ: |1\'El; I:IH}E}”"’ f_‘!‘:i}l

the relations (38) being oblained from Eqgs. (15) and (36).
To solve the integral Eqgs. (34), we seck an approximation

F-; Ifl.unf}.} - _:};_-l: ”x'“f_\‘}l, v ‘=i f*'u}}

where #"“(y) will be expressed as multi-term Galerkin
expansion in terms of suitable basis functions.
For the double interval L= (0, a) + (c.d), # gt "{1.'} are

expressed as

:}._“1-._;.{1'} e zﬂﬁli-..ufillr.u{},}, 0= ¥ <1
=i
(41}
N
.:};‘_“:“'“f_\‘} _ Z bﬂl\.ﬂ Hl\.:lh} o ¥ < d
n=(

where the basis I'umti{}ns_,f';m"h} (0= v = a) and g“h‘”f v
(c <y <"d)in Eq. (41} are given in Appendix C.

We substitute the expansion (41) in Eq. (34) multiply first
by £ and then by g'"(v) and integrate over (0.a) and

o
{c.d) respectively to obtain the two lincar systems

z ':Ii-.,u( Ir";-url.'l:\':I ) i B 1t ( ‘L‘rj.lrl.'::.\."I ) (Pi,rl:"“" )

ﬂ“ " L

n=0 'F.Ejlra::ul n=i} {:_}LIH::“" lrllrilrlil't.r.l
m=0,1.N “2)

where

Gl = J-“ {Jﬁ MUIBay ulf*im"{u}du} Hady,
4] 4]

{1
H.um

i o
J-“ {J. : M-¢|:'-'.-.EI£1 “:Lulfﬂ}ld :rl i, :| ‘}H’.!_'L',

R BT
Pum

o i
J- {J. Mﬂ 1 ‘I{_T, “yﬂ I:IMI(I!HH} Llr:'-.-,qu ::'d_"l's
]

i

ke ‘J. U MDAy, uy*'1‘*'{::}'11*}31!“"(1}d.n (43)

so that Hiw = pllisa 404
Fillrlul = J.H M Ijrlfl.\'.u“.}dr’
o cosh kb FI
; (44)
.21 cosh &,k »
i’ =J. # gy,
F cosh kgh

The expressions in Egs. (43) and Egs. (44) can be simpli-
fied and these are given Appendix C.

Approximation o C'"" in this case is obtained from Eq.
(37) as

|:I.‘-..l| . Z ‘ﬂ: | e EII e b‘ Lisen lf_EII g } {45}

ar=l}

For the case of normal incidence, the supercript (1) 1s
replaced by (0) and comesponding results for the kernel
M'm“{l,u}l, the basic functions _f:?'h‘“, ff::w' and G'ff:,::u',
HOY PO, 0004, p0#. g0 ure given in Appendix

A, B and C respectively.

4. Numerical resulis and discussions

“ 3 i - -
Since |[RY|* + |V = 1, j = 0,1, we confine our atten-
tion to the reflection coefficient |[RY| (j = 0.1) only. For this
we have to compute the infinite series GUN, ik pUlia

an ] amn an
and QE;’,};‘"', =1 1} of the form dLHLFIhL‘I.! in Appundlx C.

racy 1% H.thL"r'Dd by taking two hundred terms in each senes.
The accuracy can be further increased by following a
numerncal procedure suggested by Porter and Evans [11].
This is not pursued here.

A representative set of these numerical estimates for [R'
and |[R"| are tabulated in Tables 1 and 2 respectively, taking
some particular values of afh, bh, oh, dh, Kh = 001, 1.0,
1.8 and a = 457 (for |[R""|). It is observed that the computed
results for the reflection coefficient converge very rapidly
with &V, and for N = 4 an accuracy of almost six figures is
achieved. For other geometnes and other values of the wave
numbers, very accurate estimates (six figures) for [RY] (j =
0.1 are obtaimed and these are illustrated by plotting curves
for [RY] (j = 0,1) against the wave number Kh. The reflec-
tion coefficient is depicted graphically against Kh in Fig. 2,
ah =02, c/h =04, dfh = 0.6, R = 1, and for a = 0, 30,

|:-|
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Fig. 2.

Reflection coefficient versus wave number, afh = 0.2, o = 0.4,
dfe = 04h.

U]

607, It is observed that the reflection coefficient decreases as
a increases for a fixed wave number, and for fixed e, 1t
oscillates and its zeros occur at certain wave numbers. The
oscillatory  behaviour s attributed  due w0 interaction
between the ends of the submerged wall. This 15 in contrast
with the results for a thick wall with a gap, whose upper part
15 surface piercing. In that case the reflection coefficient as a
function of wave number steadily increases with Kf from
zero (at Kh — 0) o unity (as Kfh — oo).

To ascertain the effect of wall thickness, in Fig. 3, |[R""] is
plotled against Kh by taking aft = 0.2, ot = 04, dh = 0.6,
a =45 for bR =0.01, 001, 1.0, 2.0. It s observed that the
number of zeros of |[R'"| increases as the thickness increases.
It is also seen from Fig. 3 that when the wall s compara-
tively thin (b/h = 001), |R"| first increases and then

l?;—'l
0.8 3 il m i x - 007
i ] hl.. -
0'5 -} : ' [ Tt B
_ i |
= [ | ,
I:£ D./:I J-F.-| |I 1 I
1 & I :
[ |
08 el & g |
I I| .':I i 1 ; 1.
K = ! 1

Fig. 3. Reflection coefficient versus wave number, af = 0.2, ofh = 0.4,
difh = 06, & = 45°.

decreases asymptotically to zero with the increase of wave
number. The same behaviour is also seen for |[R"™], which is
not illustrated here. This 15 the usoal behaviour for infinitely
thin barrier. As thickness increases, |R'| starts fluctuating
and the fluctuation increases as the thickness of the wall
increases further. The same behaviour of |[R"™] is also
ohserved, although [R™ is not depicted here. This oscilla-
tory behaviour of the reflection coefficient is doe 1o interac-
tion between the two ends of the thick wall.

MNow, in the limiting case when the lower part of the wall
15 made very small (d/ = 0.999), and the distance between
the bottom and the kywer end of the upper part of the wall is
also made very small (o = 0.99), so that the submerged
wall with a gap almost assumes the form of 4 bottom stand-
ing thick bamier, the comesponding curves for the reflection
cocllicient against the wave numbers are plotted in Figs. 4
and 5 for a = 457 {(@/h = 05) and @ = F {a/h = 0.5)
respectively. It is seen that the curve in Fig. 4 almost coin-
cides with the one given by Mandal and Kanoria [ 14], also
platted in the same figure. Similarly, in Fig. 5 the curve
obtained coincides with the curve of Kanona et al. [15],
also plotted i the same figure. These provides some partial
checks on the correctness of the numerical method adopled
here.

Again, when the vertical length of the lower pant of the
wall is made very small, the configuration assumes the form
of a submerged rectangular block over a rectangular bottom
deformation  of very small  height. The result for a
submerged thick rectangular block have been obtained
recently by Mandal and Kanoria [14] for oblique incidence
and by Kanona et al. [15] for normal incidence. In Figs. 6
and 7 |[RY| (j = 0,1) are depicted against Kh for & = 45° and
07, and by taking ah =02, ch =04, dh =099, bh = 1.0
(i.e. the vertical length of the lower part of the wall is very
small) in both figures, respectively. In this case the reflee-
tion coclficients for a submerged wall whose lower part is
very small in beight and a submerged block of the same
dimension as the upper part of the submerged wall, are
also similar except that they do not exactly coincude
although  being quite near to cach other. The small
difference s perhaps due W the interaction of waves
between the two ends of the lower part of the wall which
still Ties at the bottom and s at a considerable distance from
the upper part

It may be noted that the long wave limit of the reflection
cocflicient is seen to be zero in Figs, 2-7. This provides a
partial check on the comectness of the numerical method
utilised here. The long wave limit, zero, of the reflection
coelficient for any obstacks has carlier been confirmed by
Martin and Dalrymple [12] and Melver [13] by using
malched asymptotic expansions for normal meidence.

5. Conclusion

The method of multi-term Galerkin approximations in
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The expression for M™(va) is obtained from (A.1) by The expression for M™(y, 1) is obtained by replacing
putting ¥ = 0, p = ky. Similarly M (y.u) can be obtained. “coth™ by ““tanh’’. The expression for M"™"(y,1) is obtained
For yv.u = (c.d) from Egs. (A.2) by putting v = (), g = k and deleting the
- term [eothvb P Hd — c)v 1s the square bracket. Similarly
MU ) = “—&E[ {.{',,ms ku(h — y)eos &i(h — u) .I.rfr“x-lf_l',[!} 15 obtained by deleting the term [tanh wvb]/
' kycoshkoht | 1 S 4d — c)win the square bracket of M'"®(y.x).
1 cothé, b nwid — ¥) nwid — 1) Forye(ale e (c,d) and v € (e, dhu = (0a)
a & T dee T g } N
ﬂ_f'il.l.ul f"-' I!::I et ,U.li;,"_ - '{‘-HLIUS '{'-.'I['h 1 ."_I-:Ii:"“ 'kn'l['h g “-:!
. kycosh’kyh = 5 8y

1 coth vh ] (A2)

+ CAR-E PO R
Hd — ) v (A3)
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Fig. 6. Reflection coefficient versus wave number, &% = |, a = 457,
The expression for M"*“(y,u) are obtained from (A.3) by If we introduce
putting o = (). . a
Fiy)= Fiy) — .‘EJ Flodn, O0<y<a (B.3)
Appendix B. Basis lunctions o
then
Fory = (a) o
) ) i ) » Fivi=0 on y=1(, (B.4)
In this case we have o consider the free surface condition
and the hi:.huviuur F"'"""_"[_l'}_ ~{@— ¥ ”_'t j=0lasy — O il =5y 13 i i (B.5)
a — O derived by considering the flow field near the corner ’ ’ ’

point (b,a). Thus F/*
KF() +F'(y) =0

(v) = Fiy)j= 0,1, satisfies

on y=10, (B.1)

Fiy) ~{a —¥) e as y—a—1 (B.2)

The condition (B.4) shows that -‘?[_1."} can be continued as
an even function of y into { — af). Thus, because of the
condition (B.4), [uj — _1.'1}”" !:_[_1.']! can be expanded in (0.a)
as a complete set of even  ultraspherical Gegenbaver
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Fig. 7. Refection coefficient versus wave number, &l = 1.

polynomials €3 (va). Thus in this case the basis functions

for P'""‘""[_1.','1(F"("""'"[_1.':|) are found to be

IHII 1 f_'l.":l(f::::"“ﬂ ['I.J) :Ilf;“ [1} —- — j_l & Ky J‘n EM_.F....,[ r,'ujr]

O<y=<a (B.6)

where f,(v) 15 chosen as

o

2" /ey 2m)! 1
al(2m + 1/3)a"a® — )7 "

.-f-:.'ll [.1".:| = [_"-'-'rﬂ_:l ( B?_:I

For v = (cgd), we have o consider only the behaviours

Flsamy A"y~ (y—¢) '™ as y = ¢ + 0 and
Filia f_v}(F‘“'-“"' [_1'}) ~(d—y) " as y = d — 0, and
full set Cy,"((2y — ¢ — dW(d — ¢)) of ultraspherical Gegen-
baver polynomials are wsed for expansion of [y — o)
(d — y)}'"F " 4(y) in (c.d). Thus we choose

2" [T 16 m!

,l; | g

En (¥ =

3
wlim + ]f?n}l(%)” iy —edid — vy 1o

TPy — o —
XCI"{'(—_" : d], c<y<d

" d—r

(B.8)
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For F"*(v), we observe that F""(v) satisfies the additional conditions (see Eq. (31))
J- d F %y = 0 (391
Noting again the result

J-u' 1 CIJ’&( Zy—d—«¢ )-:!-,- _ J‘l (=28 ndr=0 for n>0 (B.10)
e ([d—cl2)Pfy —ayd =" "\ d—c J7 . : :

We observe that the basis functions F"(y)(c < v < d) are given by

g )= €100 m=0.1,..N (B.11)
while the basis functions for F"™"(v)(c < v < d) are given by

g =g ) m=012..N (B.12)
Appendix C

Expressions for Gii, Hibwe plisa giia plo g j=0,1.

o el » o ¥

For L = (0,a) + (¢, d)

) o= kocos Yk Jap s vl s, o g e(k,a) i 5 Japelogalla, o el a)
(-.I:Ij.'\. e Iu'aﬂ _1 LR ] ] 2o+ 106Ny e S P L + Fii Lh i b e 2n+ 1% d] 2mE 16 r
fon kyeosh<kh sl ; 5,8, (k,a)'" Y CORIRios e (a,a)'"
: .y 12
S0l -] b
oy i {(ﬂﬁ } o Ayl ogai el oga) 4
MR . —T cosh™oga A (C.1)
Yo (o — ) " (o)
Gl is obtained by replacing “‘coth’ by “‘tanh’” and ** — cot”” by “‘tan’” in Egs. (C.1).
Jff:,:,“"' are obtained from (C.1) by putting &« = 0 (v =0, g = k).
c+d d—c
- (—1Y"cos .{',(I: — ) : e T
Filsa _ 4y Z kpcos kh 2 % T 16Uk @M 116 K 2 (€2)
iz kycosh’kgh &= 5,6, | +d e =
z oh = (1) 2 sin .I.( = . ) {k,n}"“'(krT)
where upper term is for even n, while the lower ones for odd m, while
H:ﬂ:l.'\. i H~: (RT3
o masll o
J-ll"'\-"u
and
H':“:lﬂ =i Hﬂ:lll
an o Il'l||
+ d
@ (— 1" cos .I:,(I: _E = )
lis __ =
= 2 z
e Ky cosh®kyh Lush k H = n-l +d
o ol = (1) T sin J’c,(!z - )
_ a2 C+d d—c G v mia T
™ eos &, (I: Fix |.rﬁ(k:-T)Jm- 'ﬁ'(k’T) cotith {(—1) Lt}h?
. L
+ﬂ1 d—c 1/3 {d_f}'fr o=l T
f—l}_é_q.mﬂ(.h ¢ ) (ﬂ'r ~ ) E_I}THHT
{—1}””3(_'{15—} J ( )J (E)
2 n+ 184 2 o 116! 3 ljw{j}l.ﬁl L{}ﬂ']l"f?
X = T o— o S{hlaﬂur EC'E}

m=1  ra | (r'n' ”T R d — o AP

(—1) z sm?
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Here, also the upper terms are for even n, even m while the lower ones for odd n, odd m. QE,I,,::” 15 obtained by replacing “coth™
by ““tanh™ in {A3).
s ¢ obtained by taking ¥ = 0, p =k, n=n + 1, m = m + | and deleting the term [1272)" % cothvb]vd,, 8,/

[(d —C}IF{IB}I}"‘] in the square bracket of Eq. (C.3) and

+d
@ (—1)"cos .kj.(h _ e )
o _ __ Do 4 2
" cosh’kyh | <= | 8, a—1 +d
e kS (—1)7 sink,(h - ; )

{ arf 2 c+d d — d — . I
{—1}"!"'1_'{}5.&,(!‘!— 2 ) Jal-l.‘.‘r(kr_zC)Jm—l."ﬁ(kr_z C) wnhdq-i‘ {—l}ﬂunsT
= .urd:'l X c+d ) d—r 153 - 44 {_1}%%“2
";{_1} 2 sm.{',.(h— 3 ) .{,T) T) 2 sin—
o qmid E
(— 1" cos 5 L i, - s o N
* mel  par |Pnrie T) 146 T) +: @—o (TanF o B (C4)
'x{_” T sin 5

The upper term are for even i, even m and lower ones for
odd n, odd m.

(g Lo 176 Rgad)
ar

(kya)'®
d—c
VEGE {_ 1 }‘-"cku'i-r' %:I + g kplh %:I -lrur— I."ﬁ('kﬂ 2 )
et 2eosh kyh d —cy''®
kiy 5 )
(C.5)
PO = pithe
Wl C6
r.Fa.lr = II,”,.| { ¥ ::I
T =G
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