On the equisummability of Hermite and Fourier expansions

E K NARAYANAN and § THANGAVELU

Statistics and Mathematics Division, Indian Statistical Institute, 8th Mile, Mysore
Road, Bangalore 560059, India

E-mail: narn@isibang ac.in; veluma®® isibang.ac.in

M35 received 10 March 2000

Abstract. We prove an equisummability result for the Fourier expansions and
Hermite expansions as well as special Hermite ex pansions. We also prove the uniform
boundedness of the Bochner-Riesz means associated to the Hermite expansions for
polyradial functions.
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L. Introduction

This paper is concemed with a comparative study of the Bochner-Riese means associated
o the Hermite and Fourier expansions. Recall that the Bochner-Riesz means associated to
the Fourier transform on [ are defined by

’i‘j‘ Fix) = (2= i [ e (1 — h—:_) }'{_r]ld_r.
Sv|= £

wherne
Fp) = (2m)™2 [ e flx)de

is the Founer transform on B, Let ®,,, 0 € N" be the r-dimensional Hermite functions
which are eigenfunctions of the Hermite operator H = —A + i.r|! with the eigenvalue
(2la| + n) where ja| = a; + --- +a,. Let P, be the orthogonal projection of L?([R")
onto the kth eigenspace spanned by &, o = £ More precisely,

Puf(x) =3 ( [ f{.vll‘h.iﬁ.v)d.r) B (x).
Jexl=k **
Then the Bochner-Riesz means associated to the Hemite expansions are defined by
i 2k +n\"’ ¥
Shf(x) = Z(l e ) Pif(x).
+

For the properties of Hermite functions and related results, see [6].
In our study of the Bochner-Riese means associated to Hermile and special Hemmite
expansions we make use of a tansplantation theorem of Kenig-Stanton-Tomas [2]. Let us

95



96 E K Narayvanan and § Thangavelu

briefly recall their result. Let P be a differential operator acting on CF([R") € L*(R")
which s self adjoint. Let

Pf= [ ME;,

be the spectral resolution of P. Let m be a bounded function on [ and define

: A
melP) = f:n (R)dEﬁl

Let K be a subset of R" with positive measure and define the projection operator  on

L*(R") by
Qu fx) = xx(x) flx),

where y gl x) is the characteristic function of K. Let p(x, £) be the principal symbol of P.
Since P is symmetric pois real valued. Then we have the following theorem.

Theorem L.1. Assume | < p < o0 and that there is a set of positive measure Ky for
which the operators Oy, mg (PO, are uniformly bounded on LU{[R"). If xy in Ky is any
point of density, then m{p{xg, £1) is a Fowrier multiplier of L©{[R").

Let B be any compact set in [ containing origin as a point of density and let vy be the

operator
xeflx) = xu(x)flx).

Then from Theorem 1.1 it follows that the uniform boundedness of xS,y s on LE(R")
implies the uniform boundedness of 87 on L#{[R"). Thus once we have the local
summability theorem for Hermite expansions then a global result is true for the Founer
transfomm. Al this point a natural gquestion arises, Lo what extend the converse 1s true? In
this paper we answer this question in the affrmative in dimensions one and two and
partially in higher dimensions. We also study the equisummability of the special Hermite
expansions, namely the eigenfunction expansion associated to the operator

1.9, . . i i
L= —.l+3|4| - PZ(I‘[E_}‘[E)

on C". In this case we show that the local uniform boundedness of the Bochner-Riesz
means for the special Hermite operator is equivalent to the uniform boundedness of 8 on
R, Using a recent result of Stermpak and Zienkiewice [4], on the restriction theorem we
study the Bochner-Riesz means associated to the Hermite expansions on [ for functions
having some homogeneity. We also prove a weighted version for the Hemmite expansions
which slightly improves the local estimates proved in [5]. Eigenfunction expansions
associated to special Henmite operator L has been studied by Thangavelu [6].

2. Hermite expansions on R"

The Hermite functions i on [ are defined by

k

he(x) = (2 RV H 1L ey

dx*
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In the higher dimensions the Hermite functons are defined by taking tensor products:
b, (x) = hy (x1) .. F, (x,).

Given f e LY [R) consider the Hermite expansion

o

Fx) = (f e hulx),

=0
where (f, ) = [ flx)he(x)dx.

Let Sy f(x) = St _o(f. hi)he(x) be the partial sums associated to the above series. In
1965, Aslu:y Wainger [1] proved the following celebrated theorem.

Theorem 2.1. Syf — f in the L? nom iff $<p <4.

Let S, be the partial sum operator associated to the Fourier transform on [ Then it is
well known that 5, f — Fin LF nomm for all 1 < p < o0 In this section we show that on a
subelass of L¥( ) the same is true for the Hermile expansions.

In the higher dimensions it is convenient to work with Cesaro means rather than Riesz
meians. These are defined by

ay flx) = = ZA*; CPfix),

N k=i

Ck+84+1)

where A] are the binomial coefficients defined by A} = s 7 - It is well known that
oy are uniformly bounded on LP([R") f S, are um]m’mly bounded. We have the
following equisummability result. Let E stand for the operator Ef{x) = ¢ ‘hr_fl'lt:l

Theorem 2.2. Eoy E are uniformly bounded on LY(R") iff 8 arve uniformly bounded,
provided & = max {05 — 1}.
As g corollary we have the following.

COROLLARY 23

Let | < p < oc. Then for the partial sum operators associated to the one dimensional
Hermite expansion we have the uniform estimate

f'ﬂwf IC "‘rd*""f[u yilFedrd

Thus for f € L*(e¥dy), | < p < o the partial sums converge to fin L (e 5 dx).

For a general weighted norm ineguality for Hermite expansions, see Muckenhoupt's
paper [3].

The celebrated theorem of Carleson-5jolin for the Fourier expansion on R? says that if
&= 2{# - i'jl — :,!,, l<p< “‘T then & are uniformly bounded on L"’{I{E"]. As a corollary o
this we obtain the following result for the Cesaro means oy, on [2°

COROLLARY 24
Letn=21<p<jand § > 2(——_{,)—— Then for f € L*(R?)

f i f ) Petfdr < f ) et gy,
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It is an interesting and more difficolt problem o establish the above without the
exponential factors.

We now proceed to prove Theorem 220 It 1s a tvial matter to see that uniform
boundedness of Eoj E implies the same for y g}, ys for any compact subset B of [, In
fact, if EayE are unlf{}rnﬂy bounded then

[ Ixeoyxafldx
= [ e eit o et (xas el
< C [ ERE(f et 0
<c [ Iftwras

which proves the one way impheation, by the transplantation theorem [2]. To prove the
converse we proceed as follows. Let

"L‘k{.l' ¥ Z ‘bq.{r -n':,}
|ex|=k

be the kernel of the projection opertor Py, Then the kernel o) (x. v) of the Cesaro means
is given by

ayix,¥) = — ZA,\. TR AR

Ay =3
We first obtain a usable expression for this kemel in terms of certain Laguerme funcions.
Let L (1) be the Laguerre polynomials of the type a > —1 defined by

k
l:',—lrk+n:|_ £ 0.

= g gy f ]'d
e () = (-1 5oz (e

We have the following expression.

PROPOSITION 2.5

Ay 1 2 k845 1 2 —Lr—y]* 51 —1'r ¥
ﬂii-r-.ﬂ=A——~Z'i—1lll_~_1(;l-f—.vl )c el g ( |t+‘|) st

N k=0

Progf. The generating function identity for the projection kemels @ x, v) reads

n 2 1l % ey
Zrk‘l’k{.h}') =7 1-F)te Sl P
k=)

Since
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the generating function for of (x, ¥ is given by

oy

;
] o H 2

[

> A y) = (1-n" 14
k=ib

The night hand side of the above expression can be writlen as

(1 — )il e (] 4 )3 e ilebsf

Now the generating function for the Laguerre polynomials LY s

= 1 el tr 2
Yot (3’3)“'31 = (1 —p) e
k=(p =

Therefore, we have

ir"Aﬂu’i{x v =(Zr"L ( e —w" ) p il "l)

k=0 J=0

(Z{—ﬂ"ﬁ" (1 e+ ) S )

Equating the coefficients of #* on both sides we obtain the proposition.
The Laguerre functions L) are expressible in terms of Bessel functions J,. More
precisely, we have the formula

—x i 1 i -1 et
[ '.TSLJ‘ |:T2| =m\/{; [ .Fk EJ,,{E \fﬂjdf

Using this, the kernel u'ﬁ""lu_"'m{x, _1r‘:Il:_£|-"'|J of the operator Eoy E is given by,
u_il'ﬂl:ﬂ, {x, _v]lu_él-"': -

£f1f1 c_;c__\-{f— Y qJ*ﬂ{@LT—."”Jg—l{@“ +'F|:|drd+.
(1]

N 7 (VeI

where O depends only on & Now the kernel of the Bochner-Riese means 5’]" on " is
given by

o Jsgltlx — ¥|)

(tlx — y)"

8 (x3) =

Whenn =1,

and hence

w
EayEf(x [ f e "‘ i F\"Tﬂj{t]drd\
0 Nl
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where
T f(x) = f Szt y) cos(v2slx + y) f(¥)dy
g V2

and C an absolute constant.
By Minkowski’s integral inecquality we get

el 2 T e i Y e
e, <cgs [ [ e g ftimta s
<cliifl,

since

8 s o . |
f f e e ¥t — s s drds
o Jo
= ] ] | =] |
< f e P (/ e s iy + f e 5Ny d:.') dr
0 0 [

= 1 =
< [ e Ndr 4+ T (N + —) [ et dr
Jo 2} Jo

< CNIN'

which proves the theorem in one dimension.
When n = 2 we have the Bessel functions Jq:oy inside the integral. If dp is the surface
measure on the unit circle [x| = 1in [B" then we have

Jo_q (]
) _ / e *du(y),
=

bt

where C is an absolute constant. If we use this in the above we get Eoy Ef(x) equals

C T R —1 —_\-I:f—n‘i':'N Ao ] i £ UER 3
Efm:IL L e {8 'St (F()eV ) (e drdsdp(£).

As before, using Minkowski's inequality we get

||EayEfll, < CIIAl,

o0 o0 Noam
[ [ e'e ™t — s s \deds
Joo S
o I o
E [ C—Jfﬂ([ u_"r'""sf_ld:.'+ [ l:_'l'..‘-'m-‘-:_ld.\')df
o Ja Ao

o -
<C [ etV 4+ T (N % ;) f e~
J 1]

< CT(N+ 6+ 1)

since

provided & = § — 1. This completes the proof.
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3. Special Hermite expansions

Let &, 5. cv, 3 &£ N, be the special Hermite functions on C" which form an othonormal
basis for L*({C"). The special Hermite expansion of a function f in L”(C") is given by

f = Z Zl:..f ‘I’h I:I‘I’<1.f-

The functions &, ; are the cigenfunctions of the operator L with eigenvalues (2]3] 4 n).
Let

Ouf =) (f Bus)us

=k 7

be the projection onto the kth eigenspace. Then we have

O f(z) = (2m) 7" % ul),
where wp(z) = Ly (3 |z|":|u‘£|‘|: are the Laguerre functions and f x g is the twisted
convolution

£x8@)= [ fla= gt Taw.

The special Hermite expansion then takes the compact form
= (2m)™" Z.f X .
k=t
The Cesaro means are then defined by

- N

"':"-'\l.-.-IF r\-k.-fx\r'k z)-

k=0
In this section we prove the following theorem.

Let 8§ be the Bochner-Riesz means for the Fourier transform on R = ",

Theorem 3.1. Let B be any compact subset of T containing the origin. Then gy yu
are uniformly bounded en LV, 1 < p < oo jf and only if 8 are uniformly bounded on the
same LV,

Progf. The kemel a3 (z) of o, is given by

ZAN Jpr:'ﬂ

k=0

—JI

r:rq, (z)

Using the formula

ZAJ'I J.;L:I:_-F L-n+£"+ll:: :|

k=(p

wi have

a(z) = s ‘**"( Iz ) o Hlzf

AL S
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As in the previous section we can express the Lagoerre function in terms of the Bessel
functions, thus getting

aylz) = (?wj _‘;c_,'—l:lJ [ P aray sl \"'If_dl-h!l d
Ay TIN+1) o (v21]z])

Now, oy f = f x af so that

"Ii-.f':::' = /‘U‘i. (z.w) flw)dw,
wherne

aylzw) = '-‘jhm'ﬁﬂ‘_f'\. (z—w).

Writing |z — w|'!I = |;|3 +|w|'!I + 2Re z - w we have

L L= 1 o Js UF|E— Lp
W) = \.qul ,—é...u A s ot it ntN 'H'— -|||.|'d-F
N{ -“':I & e Aﬂ‘,l{N + 1:| € v.r'_l _ e‘-+a|

. Z(_ l) |ex] {:.Wj“ u_]|_k|1 1
=\ 2 al AZT(N +1)
1

5 [1 —Jff'+al+“JJ<"H| \"f_l‘-_ W) Il"rdf
<'l+|ll
) (v 2]z —w|)

where (z-%)" = (W)™ --- {2, W,)™. Therefore,

1 1 k'll 1 = — 1 AN S
kﬂf{j ‘.ﬁmg(_z) ‘?L e tTNT s f(2)dt

where

Je"-l-ﬂ“f"l{_l“- —w|)
Vr|4— e'-+.u

If we assume that 87 are uniformly bounded we get
T 551, < CRAN| A1,

when B is contained in the ball {z:[z] < R}, Using this in the above equation we get
lIxeayxafll, = Cullfll,

The converse is the ransplantation theorem of Kenig-Stanton-Tomas.
In [5]. Thangavelu has established the following kocal estmates for the Cesaro
TS,

T, :f(z) = xalz :'I."C‘Ll H{W]W“u“"'ff{w:ldw.

Theorem 3.2. Let 3—'-_,::‘:'%"1 <p=ooand &= 8p)=2n( .:I? — 3) — 5 then for any compact
subset B of C"

[1asare<a [inore
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Recently Stempak and Zienkiewice have proved the global estimate

[ ds@resc [ ir@ra:
for the above mange. The Key point is the restnction theorem namely, the estimate

I1f % @ll, < CRFIH )],

which they established in the mnge 1 <p < 2240 I the next section we use this

]
restriction theorem in order to prove a positive result for the Hemmite expansions on R,

4, Hermite expansions on R

In this section we consider the operator —A + | * rather than the operator — —A 4|z 0f
P, (x, ¥), p € N™ are the cigenfunctions Ul LhL {}le'd[{}l' —.l + |;_| then "lf“{ I =
'ilﬁ“{?- dIL the eigenfunctions of —.i+
-M+ T z|” has another family of ngLnIunLuum n.irnLIy the special HL‘I[TIIIL fune ions.
In fact, ®,5 are eigenfunctions of the operator —A + |z|” with eigenvalue (|al+
|3] + n); here o, 3 € N

In this section we study the expansion in terms of ¥, for functions having some
homogeneity. The torus T{n) = { (e e e ) : ¢ € B"} acts on functions on C" by
wf(z) = fle®z) where ¥z = (e 7, ez, ..., ez ). We say that a function is m-
homogeneous if f(z) =" flz), heem € Z" and mf =m0, +---+m,-8, Itisa
fact that &, 5 is {7 — o) homogencous. O-homogencous functions are also called
polyradial.

The operator —A +u|1 |z|! commutes with m for all &, therefore Py f = 7Py f which
shows that Ppf s m-homogencous if f 1s . In particular, Ppf s polymadial af §f s
Therefore, for such functions L(Pf) = (-A + IzP 1P f = (k +n)Pyf. This shows that
Py f 15 an eigenfunction of L with eigenvalue &+ n. But the spectrum of Lo
2k+n:k=01,...} which forces P f = 0 when k is odd.

FROPOSITION 4.1
Let f be polyradial on C". Then Py f =0 and Py f = f x

FProagf. We show that when f is polyradial the operators P f oand f = 5 have the same
kemel. Let

Wplz,w) = 3 W20, (w)
[pe]=k
be the kemel of P, Then by Mehler's formula
Y (g, w) = 71 — ) e HERR ) g Rete)
k=10
so that

Zrkpkfl:. _ —.-| :I—.ll fc—ﬁ:;_:;[|;|J+|||'F'I+I—‘ERu[;.il:_lf-l::w:ldw

k=(p
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. R R —— -
Let w; =u;+ iv; = e

When [ is polymdial fiw) = falr,m, ... vyl oand so owe
have
s

Zrkﬂf{ f f s, rifalr, ..., TS T rodrpdr .o dr,

k=0
where s = (5, 52,...,5 ). 5 = |g| and ¥ is given by

(s, r) = (1 —r"l'_"[ e iAo ¥ g, dg, . - - 8.

S0 27"

Now Re z; - W, = s, cos(8; — ;) where z; = 5;¢'% w; = r,e” . Consider the integral

27
f ETL'i—r-""'-' coa [, — ) d 'ﬁ'}'
[}

which eguals, if we recall the definition of the Bessel functions, Jy(+% r‘,f.:,:l Thus we
have proved

Wis,r)=(1- rij—alc—_!l:=E[J_‘+.-._~]I_l{|_ (

it
=10 g ?]'J-'j)-

On the other hand when § 15 polyradial § » o reduces to the finite sum

f o= Z{f ‘I"'nn:l -'m{ :l

|ea|=k

x “[“nnl::sl----~5n:|
where we have wrllen
‘1’1111 I:Z:I = ‘I“em{rh seag r.u:I

as it s polyradial. Then f x4 18 given by the integral operator

We have the formula (see [6])

' A 1 5 _
4“.11.'1':.‘::' =|:2]T:| J'“'_.f:l'lr".”u'( |‘J| ) ll l

Recalling the generating function identity for the Laguerre polynomials of type ()

Z Ll L (O = (1 — w) e =l (a:__—.l:_ij!)
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we get, if Sgir, 1) is the kernel for § x4

- ? 5 — _Llser3 3 i

Y ASilr,s) = (1 — ) eI gy (f—i 5-&5)'

k=0
Comparing the two generating functions we see that

Zf&.’i'k{r_j:l = Zf"‘l"k{r,:;:l

k=(p k=0

from which follows Wag(r, &) = 5(r, ) and this proves the proposition.
Consider now the Bochner-Riesz means associated o the expansions in terms of W, (z)
defined by

Sef(2) = Z(l e w) (s ) W(z).

[ +

For these means we have the following result.

Theorem 4.2. Let 1 <p <2(24), &> 8(p) = (1 — 1) — 5 and let f €LP(C") be
polvradial. Then
I15%A1, = ClUFI,,
where C iy independent of f and R.
The key mgredient in proving the above theorem is the LY — L? estimates
. A L W T
IPefll2 < CE2 £,

which now follows from the comresponding estimates for f x . We omit the details,
We conclude this section with the following remarks. As we have observed, P f
5 m-homogencous whenever fis and so Ppf can be obtained in temms of f = @ when
[ is m-homogeneous. S0 an analogue of the above theorem is true for all m-homo-
geneous functions, More generally, et us call & function f of type N if it has the Fourer
CXPENSION
) =" fuld),

|| N

where
_,ﬂ,.r':Zj e \[-'r{cﬂ::lc_ﬁnﬂd'ﬂl =i -d'ﬂll'

Note that £, 15 m-homogencous. We can show that when f s of type N then

ISkl = Cullf1l,s
under the conditions of the above theorem on p and & where now Cy depends on N. We
keave the details o the interested reader. It 15 an interesting problem o see if the theorem
is true for all functions.
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