Oscillating Multipliers for some
Eigenfunection Expansions

EK. Narayanan and §. Thangavelu

Cammurticated by Hans (. Feichiinger

ABSTRACT Lot P bw o now-megative, seli-adinint differentiel operatar of degree d on B Asswme Rt
e aoeariated Bocleer—Riet, fermel Si Seiiafing the carimore, 5-*,'15;-{1. W)l £ € RYE(L 4 gV |5 — ypy—eb+F
fior some fiecd constane o = 0and 8, We stedy LY boundednesy of operators of the form m{ Py m ooty
Froen the gymebal clavs 57", We prove thay P} iy baunded on L2 ifo = &1“:-""—:'“—? - % We alzm shudy
wmcelripiiers arepeiaied in the Hermire dperator ® on BY and the special Bermite aperator L on O given by
the symbols mo{h) = L 2 h {t4/2 1. Ax a specud ease we obiein 1.7 boundedness af sofudions i e Binig

equetim asseiated to B and L.

1. Introduclion

Suppose P is a differential operalor of degree o on a Riemanniao manifold M, which is self
adjoinr and formally non-negative. Let
O

Pf={ adF.f
i ]

b the spectral resolution of 2. Given a bounded function me (i) we can define the operawr s (P) by
0
miPy = f miAdE, -
i}

Such operators are always bounded on L2(M). However some smoothness assumptions arc needed
an m{A) to ensure that m{F)y : LA{M) — LP(M) is bounded for p 3 2. There is a universal
muliiplier theoren due to Stein | 19], which guarantees that m{ Py isbounded on ££{M), 1 =< p = o0,
His condition on mii} reguires that #ria) 1% in fhe svmbol class S'[}[R}.

Recall that the symbol classes 57 (R}, € B, 0 < p = | are defined [ be the cl2ss of alt &7
functions on K which satisly the estimates

|m“"{:-.} =g, {1+ A
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for =000 Sharp resulls under weaker regularity asswnplions are known in many particular
CAses. When # = —A on R” the comespending resall is the classical theorem of Marcinkiewicz—
Mihlin-Hbrmander and one requires the above estimate to hold only for f = 0.1, .. . N where ¥ ix
the smallest integer bigger than % The case of compuct Ricmannign manifolds has been sludied by
Seeger and Sogge [15]. In most of the particular cases, optimal conditions on m(h}) that guarantes
boaundedness of m{PY on a given LF have been obtarned,

Operatars of the furm m({P) with m coming from S;“{RJ_.G < o < Lo = 0 are also
important as they ocowr namrally in applications. For example, the solution to the Cauchy problem

&}su(x, A4+ Pulx, =0 pwix, =0 0ulx, 0) = fix)

is siven by
sin f\"lf_
wix,t) = 7P fix}
and the funchion m{i) = B comes frim the symbal class 3 T3 { ¥}, The boundadness properties

oy

of this aperator have been investigated in various contexts,

When P = —A on R™, Miyachi [$] and Peral [12] have shown that ﬁi'lf_j;;& iz bounded on
LP(R™) for |— - n] = —f The case of the sublaplacian on the Ileisenberp group H® has besn
recently qn;.ll.]ed by “Miiller and Stein [11]. Operators of the firm P = —A + V{x) wherc ¥V s a
non-negative porential huve been studied in the thesis of Zhong [6]. Mare generally, multipliers of
the form

Map(a) = [ PP (i), Rep=0, =0

where ¥ denotes a O™ (R} functiom which vanishes fur [4] = % and equals | it [3] 2 1 have attraceted
tnoch interest. For the Eoclidean case ses the works of Hirschman |3 |, Wainger |24], Miyvachi [10],
Schonbek [14], and cthers. Multiphiers of the above type on hon-compact symmetric spaces have
been studied by Giolini and Meda [2]. Resuolts for the sublaplacian on stratified proups have bean
obtained by Mauceri and Meda [8].

In thig amichke we are mainly concerned with uperators ¥ tor which the associated Rochner—
Riesz kernel s5(x, v} satisfy a pood poimtwise cstimale for large values of 5. We first recall the
definition of the Bochner-Ricsz means associated to P. These means are defined for Re 4 = O by

the equation
SR_f f ( ——) dE f .

We assurme that the operutirs Si are integral operalors. Let .vf-t{x, v1 be the kermel of Si defined by
the equation

ShF(x) = f sbieay Fiyels

We consider operators P for which the kernels .I;j';_.{x, v satisfy an estimate of the form

[shix )| = CRE {1+ RE|x - }'E)_“5+fﬂ (1.1)

where @ »= 0 and f is a fixed constant, for all large §

Esthnates of the type (1.1) are known in various special cases such as the Taplacian —A an
A the Hermitc operaor 5 = —A + 1x|* on K7, the special Hermite operator L = —A + %Iz!z =
Y (x ‘?%r —¥j %] on € and soon. Another class of operators for which estimates of the form {1.1)
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are know is the class of Rockland operators on steatified nilpotent Lie groups. I€ L ix a Rockland
operator of homogencous degree 4 on 4 stratitied nilpotent group &, then the cstimate

Z §
lsgeo] < CRT (14 Rim) i

has been proved in Ilulanicki [$]. Here @ 15 the homogeneous dimension of &,

Using a heat kernel estimate proved in [1] and following an idea of Hulanicki and Tenking (4]
ume can prove the following, If L is a Rocldand operator of homogeneons degree 2, then the Riesz
kernel agsociated W L sabishes

» g 3 Y TAER
[shen)| = crE (14 Rim)

In | 7| Mauceri studicd operators of the form p(fT, £ on the Heisenberg group H® where T = 4, £
it the sublaplacian and p is a homogeneous palynomial of degree & with cortain properties. We
remark that they fall under the categury o+f Rockland operators. Among other things he has proved
that the Riesz kernel satsfies the estimare

sh| = crE (L R¥g)

We mow state a gencral multiplier thecrem valid for operaiors of the above kind.

Theorem 1,

Letm € 5 °R) 0= p<landl < p < o, Assione thar the spectral measure of P hos no
sreney ot the origin, If the Bochner=Riesr bernel .'i'i {x, ¥} asseciated wo F savisfies e estimares (11)
then mi{ P LA( Y — LP{ B") i» bpunded whenever o = #% = ]§|

Mext we specialize 1o some particular cases and study certain multipliers in detatl. Finst we
consider the special Hermite opararor £ on &, We remark that L s related to the sublaplacian on

the Heisenberg proup f". The Heisenberg gronp If* Is the Lie group whose undetlying manifold
is ©° x &, with the group operation

(z 8hlw, x) = (z +w.r+5+ élm z.E) ;
The sublaplacian £ is explicitly given by
1 2
f=h— 1|z|2 aF — N

where M s the rotation operator ¥ _; (x; E,f— - ¥ ﬁ}-}. The special Henmile operator L and the

sublaplacian £ are related by £(=7 £{z)) = e Lf(z). For this reason L is called the twisted
Laplacian. Spectral decomposition associated to L iy given by the special Tlermite expansions,
pamely

[ u]
LF(e) =(2my™" ) (2 +mf = ple) .
k=0
Here {7} are the Laguerre functions of type (e — 17,

T i, e G
wrizy = L1~ (Elzl‘)ﬂ akl” |
and the twisted convolution f x g of two lunctions is given by

Iowpiz) ——f fiz — w)gfw}eilmz.wdw )
E.ll
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We remark that this is related 1o the group convolution on F*.
Given a bounded tanction m# on B define the operator

]
milyf =22y Zm(ﬂc + b % .
k=0

Multiptiets for the special Hermite expansioos have been extensivel y studied in recent times, sce the
works [21] and |22 | and the references given there. Consider the multipliers piven by

Mgy =1 154, (:JI) _
Ohbserve that when o = {5
P () = I."_fsinrﬁ
alA) = I'III :‘T ,“,.-";_

and so, 'k"lll% PRy : U DYF(D) = (7, 1) solves the wave equation

(af + L}ulz, £ = 0,u(z, ) = 0, 8r(z,0) = 12} (L2]
The funclion m, belongs to S?%_i{ﬂ{) and so Theorern 1 shows that
1

L7314, (w’l)  LP(C") - L¥ (")

. 1 . .
for e = 2n| 5 — %I - % Howeover, this result can be improved.

Theorem 2. .
The onarators LT (047 L) satisfy the estimates

||L_%~'Iw (EVT) f||p = Gl ftlp o F € LP(C7)

provvided o = (2o — l}lf; - %I - I§ and | = p = o
Corollary 1. )
The solutior u(z, 1) = L‘i;a-lfiftz] of the Cauchy problem (1.2} safizfies

e )l = il Fllp
1

Iu—1"

provided I% -1 =

Theorem 2 will be proved hy studying an analytic family of operalars. Let

Ok + D fee + ”L”' (lz) sutal

QY "t
L I TR A &

be the Lagucrre functions of type o detmed for all Rex = — % Consider the family

aa
T f(R) = Q2ry™" Y Wi F x gl -
k=l

We will use the facts that 7 1 L' — L' iiRc e = n—land 7% : 2 — LI ifRe w = —).
Analytic mterpolation will prove that T 1 L7 — L ifo = (2n— |}|% ~ 5| — %. Using a Hiib type
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asymprotic formula for the Laguerre funclions (¢}, we will compare the operators L "1 D)
and T, which will prove Theorem 2.

The abave resulrs have analogires for the Hermite operator ¥ = —A + !.lr.l2 on K", We remark
that H and the sublaplacian £ oo the Heisenberz groep arc related via the group Fourier trunsform.
Recgll that fir gach & € B there is an irredocible unitary sopresentation = of £ realized on £L2(F")
which iz explicitly given by

7 (2, OB(E) = MM N g 4 5y

¢ € L*(R*). The group Fourier transtorm of a function f & LY H™) is defined to be the operator
valued Munction

-

Fia) = f Mz 1y f{z.rydzde .
HJ.I
Then it 13 known that (see | 223
(L£FIAYy = FOHIA
where H(Ah} = —A 4+ A7z |2 In particulur, (£ 71 = fILH.
The spectral decomposition of & is given by the Hermite expansions. Let & (x), & & H" be

the normalized Hermite functions which are eigentunctions of Ff with eigenvalucs (2|e| 4 r) where
let| = a1 + - - - + oy, Let B f be the projections defined by

Pefie)= 3 (f Ba) @aln) .

o|=k

Then the spectral decomposition of A is given by

L]
Hf =Y (2k+n) Bf .

k=0}

Far various properties of the Ilermite expansions we refer to the monagraph of Thangavelu [21].
Inorderto study the boundedness praperties of # - J, (14 H ) we look at the following analytic
farnily of operators, Let

STF(xy=3 Wi PS(x).
k=l

The operators 57 and T2 are refated to each other via the Weyl transform, The representation xry of
H" defimes a projective representation 7 o’ £ by the prescription 7(z) = my (2. 0). The integrated
reproserlalion

Wif) =L x(2) 12 dz

is then called the Wev] transform, which takes foncticas £ on C inte bounded operators acting on
LA(R™. For £ £ L'{T") we hava the relation

WTE ) = SEW ().

Lsing this commection we will prove the following,

Theorem 3.
Let 57 be defined wi above, Then 57 LEV(R") — LP(R%) is bounded for | = p < o0

whenever o = r:|‘iEr —% n- %
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Ashefore comparing # =7 4, (54 H) with S wo nihtain eomespooding results for the uperators
% Jult+"Hy and by 1aking o = % we get the following estumate for the solution #(c, #) of the
Cauchy problem:

(3 + H)utx, 1) = 0,506, 0y = 0, Ha(x.0) = F(v)

Corollary 2.
Ler u be the solufion of the above problem given by nix, 1) = g'm" Flah Then,
I 1 1
[etdo £3]1p = Eell Fllp o ‘;—E {H

Unlike the case of L or the standard Laplacian — A, the above is the best one can pet. That
is the abwove estunare for the solution #(x, £} to the wave equation cannot be extended to the bigger
ranze |[£ — 11 = I This has alrcady hoen obsorved in |6 where such cstimates for the operators
A+ q-’fx} h:wL bﬁtn obtained, However il we consider only radial functions it is possible to
improve the above result, ' We have the following result,

Thevrem 4.
Axsume that F 2 LP(E™ és redial, Then the extimate
sintv'H :
Fl = Gllflp
~H "

Rolde provided |]3 - %l = 1T1

R

The aperators 5 have been stadied in | 13| where among other things il was proved that

lim S lfxy= ftx), aexel®,

for f ¢ LF(B®Y, p = .,:*' 7. This result cun be improved and as a comscquence we can get an

almost everywhere convergence result for the Riese means

4. I

| RS
vix, 1 :f (] - —7) vix, shes
o £

of the solution v{x, t) to the Cauchy problem
(af + H) u(x,1) =0, v(x,0) = F(x), Bvix, 0) =

Corollury 3.
The maximal operdtor SUPg ., |57 i & bounded on LPR"). 1 = p = scfore =
Consequently, for ¥ € LF{R"),

alm

lim S FGx) = Fx)
t—l]
for almost cvery x £ RS,
Asin [13] we can compare 57 #(x) wilh 1—2?—’3 and prowe that m onc and 1wo dimensions

; L':'I'{x, £]
[im
1=l !

= fix}

for almosl every x when f € L' M £7(RT). We remark that Riesz means [ur the solutions of
the Schetidinger equation tor the standard Euplacian has been studied by Sjostrand [16] . See also
Miyachi [10].



Oscillzting Multipliers for some Cigenfinction Expawsions kYL
2. A General Muliiplier Theorem

W now priceed to prove Theorem 1. We start with a simple proposition. Throughout this
seelion we assiune that the spectral measure of # has no mass at the origin.

Proposition I.

Let m be a smooth compactly supported function on Rand 1 = p = o0, Ifthe Bockrer-Ricsz
kernel .vi tx, ¥} associoted to £ satisfies the estivuates (1.1} then m( Py LF{RE) — LP(E"} ir
buounded.

Proof.  Let K{x. v} be the kernel of the operator s P). Thus,

T

)
Kix,y) = f m(h}dEpx, v) = f me (i) 3 (x, ¥) -
L] o
Inteprating by parts and making use of the identity

d
o (}LE.Ti{.E, }-j) = I}LI_I.!.'i_] (£, ¥)

we el

Kix,¥)=10} f mt ey A .'ri{x, ¥ida .
0

Now vsing the estimate (f.]) we have
. n —at4-$
Ko< [ me) s (1 ahs - )
[H]

From the abowe exprossion it is clear that, if £ i large enongh then we have

supf | Kz, ¥)|dx = oC
[

yeRn

which proves the proposition. L]
In view of the abive proposition, to prove Theorem | it is enough to prove the following.

Theorem 3.
Letm e 5 %(R), 0= p <1 besuch that m{d) =0 for |4] = land | = p = oo ffthe
Bochner—Rigst kernel si (x, ¥) dsraciated to P sagisfies the estimores (1,1) thenm(P) ) LF(R"} —

LM TRy ix bowmded witenever o > M f}% — %|

Proof. Letyp c Cg‘;{% < { =< 2 be such that E"}c:_,x @{2748) = 1 far every ¢ = 0. Let
wiltl=m (244} and m #1073 be the comesponding multplier transform. that 18

[ m)
APy = f m ML S |
1l

We then have (P = Eﬁu w5 P) since m{2) vanishes for ‘x| = 1. Under the hypothesis of
Theorem 5 we will show that there exists a § = 0 such that

lmsPyf], = €2 Tt a1

for all £ = LP(B*). Theorem 5 will then follow by summing a genmettic serics.
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[t order (o gat the estimate (2.1} we look at the kemnel & ;{x, ¥) of s ; {P) which is given by
R
kifx. v = f m(AdE(x, ¥) .
i

Lel 1= pro= 2, Since &« = ”'[lu—-‘ﬂ(}—l? - ,l,} we can choose € = O such that o = n{l‘T” -I—E,'I{% — %}.

Lety =122 +e - sothate > n(y + 233 — §). We write

a
kpix, ¥y =k ((x. y) A kjalx, v
where &£ 1k, )=kl y) it |2 — ¥ = 2¥F and 0 elsewhere, We first consider the operator given
by
K327 0= | koo D7y .

Praposition 2.
{incler fhe hypothesis of the Theorem 5 the following holds. For yome § = 0

Lﬂ [Kj2f(x)|" s < C270P L P dx

foralt Fe LP(R My and f = 1.2, ...,

In order o prove the above proposition we will make use of the following estimate an the
kemel & j(x, ).

Proposition 3.

Let m be av in Theorem 5. Then we have
&2, )| = € Q==+ |l b

for any itteger L

We will assume this fur 3 moment and complete the proof of Proposition 2. We only need to
showy that

sup f ka6, 3y dx = €275
¥ JR2 :

for some & = 0. In view of the above estimate on the keenel & ;(z, ¥} we bave

o]

| at ] dn = 0 M e [ maspiasactyy
En ¥

< ) - p-al+ ) g intatady 43y

Since L — o —a{y -+ %j = 0 choosing ? large enough we can get the required decay.
To prove Proposilion 3 we naed o gse the estimate (1.1}, Since

(5 n)
kils.¥) = [] m (A E, (x, ¥
and Ej(x, y) = s2(x, ¥), integrating by puarts and making use of the idertity
i 3m L m—1_r -] .
= (A", ) = ma™ T T e, p)

We pet
Lo
kj-{x._y}zqfﬂ A=,y (m () da
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Asm; < S;'” and is supported in 277! < ¢ < 2540 we have

24l

- uf-ku—3
) .

ey ::cff

2i1
< Iy — y| R il 0-p- Gy 1Rt .

n |
iyt g (1 +Ad|x — 3|

"This completes the proal of the Proposition 3, O

Thus we have taken care of k;2(%, ¥). To deal with k; |, we proceed as follows. Tirst we
prove the Tollwing analogue of the Hardy-Littlewood—Sobolev theorem for the operator £ which
has been proved in |23]. However for (he sake of completeness we stale and prove it here.

Theorem 6.

Le’i‘[}{{x{n,lﬁp-c:q-c:tﬂ:md%:%—%. Then we have

Efl + Py IS |q = Flla

K

Proof. By spectral theorem
[ i m
(L+ By af =f {1+ i) 9dE f
t
and so the kemnel of (1 + )77 is given by
m 1L
For (X, ¥ =f (1+A)"adE, (%, ¥}.
&)

As before let g be a smooth function supported in (3. 2) such that 52, (2" f4) = | for every
A > 0. Letky ;{x, v} be the kemel of (27 PY(1 + PY~3. Then

2

kg jlx.¥) = j;__1 Mg (A dEa(x, 1)

whete my {30 = @27 A1 + AV
Integraling by parts wo get
2j+l
B (XL ¥ = oy f i at (g i} {P,}}."‘lsi'l(x, v)elA .
2I
It is easy o see that tai(mu, JHAY = C 17" with € depending anly on o and {. We use the
estimate (1.1} to get

a1l N

sl =c [ 2 F 1eadn—) T

2L
which i bounded by
2=l e —y? :
~ b |8 —al-bai-f
Clx—yl“_“f el i (1+:ur) i
2j—”z_fw
Since for any ¢ = 0 at most two of the intervals of the Lype (2/-¢, 27411 can intersect we have,

- S s il batf
katx. 9 5C 3 |ka~ifx1}')|5f3lx—y|“_”f aTEracl (1+A.31) o
0

p—
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The [ast integral comverges if £ 15 large enough since (0 = @ < # and we have
(., ¥ = Clx — 3[77.

Now i 15 a rontne matter o prove the proposilion. See, for example, the proof of the Tardy—
Littlewond-Sobelev theorers in Stein [13]. C
Usinu the above theorem,we prive the following tesult. Let B be any ball of radius 277,

Proposition 4.
Yhere i g § = O snch fhat
L

( f |, (PYFE0|F ffx) Yo [ f |f+:x}|f’fu)'” :
B R*

Jorall f e LP(E™, 1 < p =2

Proof. By [blder's inequality,

1
( f g (PYF ()| cfx)" < B[+ ( | Imerwp au:)2 .
i3 7

Naow by spectral theorem

THES )

: .
imitPyf| = f T o)
2}—.

Since m; € 5,7, the above is bounded by

a5+l

f T+ 0THLE S, )
2=
3 i, P rl_'l __J.'.:l:-I_L:I
Ef A ETE R T AT TR
-1

< /"2 | 4 oyt fi|' .
: Tz
with i = n(% - %}. Using the resul of Theorem & we obtain

1
(L i P Fi P fl‘x)p

which completes the proof by the choice of p. E:

R FEE =31l -:rl-ﬁ[%—%]]”“lp

([

— 2":'.[“'f}"':'l]l‘?(:?_.iﬂllfllp

We are nuw in a position to complete the proof of Thearem 5. Let &5 3 be the operator defined
by
K filx) = [P kjlx, ¥} Flvddy -

Tir deal with this operator we decompnse £ in three parts. Let £ € B and define
Hilxy= fixix (lx == i'z""")

% 5.
Fala) = Flxy (52” < e —f| = 32”’)
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and f3 = f — fi — fo. Let B() be the ball |z — & < 1277, We will show that

j; . [Kia s dx < c2mr f _IfePax

a—§| =3
for some e = 0. Integration with respect o £ will prove
fr«: K50 Fix)|" dx = €275 Fitf
When |¥ — £ = %21? and y belonging to the support of f5 it follows that fx — ¥| = 2% and

conseqaently K163 = 0. When (x — 5| = %2»"? and y belonging to the suppont of f2 ome bas
£ — ¥| = %2-”’ and we can repeat the proof of the Praposition 2 1o conclude that

f [0 fax)|” dx =< cz—‘fﬂf i fa{x)|¥ dx
Bt "
Finally, applying Proposition 4 we obtain the estimate
f |K 1 fLixd® ds = cz"*ﬂ*f VAdxey® dx .
#E)

Ll

Putting together all the above estimates we prove Theorem 5.

3. Special Hermile Expansions

I thix section we take up the special Hormite operator L on T" and prove Theorem 2. IF
.5'% {z) 1s the kerne! uf the Bochner- Riesz operator then

X 2% +n°
shizy=(2m)y~™" Z(l = ”) iz .
k=Tl +

Before we proceed some remarks are in order. Buchner—Riesz kernel .S'fq () assaxciated to L satishes
the estimate,

L : —b—n-]
sh@ = cr (14 REEE)

see Froposition 2.5.1 in [21]. Therefore Theorem 1 will imply that operators m{EL}, » coming from
§* (1) are bounded on L#{ ") provided & = 2afl — p)| 2 — 5|. 1 < p < oo, We remark that
above can be improved to inclnde the case p = 1 as well. To prove this we proceed as follows. A
close examination of the proot of Thearem 1 reveals that we need only (o prove the following.

Let A be any ball of radius 2/ where y is as in the proof of Theorem 1 and let &; be the kernel
wl (5

Praposition 5.
There is a & = O suek Mot

( f | £ kst dz) =C27H f | F(2)ldz
g ; Le

forall F e Ll C™,
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Proof. By Holder's imequality

l[uthﬂmgcwﬁ(f Hxh&fda”.
i) o

By the Planchere theorern fur the special Hermite expansion. we have
5 -
f ki@t dz = amy 3 m @k mlT i F < el
L k=

which is dominated by

S @kmEIf <@l
-1zt pn=2i|
Sinoe L
1F = eellz = Mgl 11£1 = CEZ 14

{see [211) the sbove is dominated by €2/72%| £1)7. Now the proof can be completed as in the
previous secticn. [=

Mext we mun our attention towards 3 prood of Theorern 2. As we stated 1n the intraduction we
consider the analvtic lamily of operators defined for Re o = —% by,

TEf@) = 2y Y b 2 @iz

k=0

Here ¢ ate the Laguerre functions

it o L
Fiitatt) EL2 /¢
We require the fullowing estimates
; L
sup (e} =C for @z -2 {3.1}
Der=l 2

fur which we refer to Szegt |20], We also make use of the following proposition.

Propositinn 6.
Let o, be the normalized surface measure on the sphiere & = {|z| =t} r I° Then
a0
i Elin— 1"
)= {2mr)" " _—_ ! ;
Fxu(z) = @) Ea TRy wilt) f = ol2)

Proof. Spe Theorem 2.4.4 m [22]. )
Using analytic interpolation theorem we establish the following resnlt.

Theorem 7. -

Fei ] fpf_:mandcr}{2?1—1}:F—i|—§ﬂ!r3ﬂ

|7 ), =€lift, for D<t=d,

Proof. In view of Proposition 6 we know that I, ! is bounded on L7{ ©"), [ = p < oc. lFom

-1 2 ;i :
the estimate (3, 1) it follows that 7, * is baunded on L4 0%} For the analyic interpelation we aeed
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to comsider T when o (s complex. We make use of the Jollowing formmula connecting Laguerre
polynomials of different type:

oy - T&tar gt

1
T 5
Tr@TktatrD (1= 5)" " Lilst) ds

which js valid for Be & = —l and Re ff = 0.
Givene =nm — 1 + 8 4 i, & = 0 we can wiite

U'(n+ 68+ i)

1
o LS BEPRL L s W LT L IR G
Fid+ieTindy fy s ¢ Vi (8s) ds

RO

so that T2 is expressible in terms of 77! as

Din+ 3 +io)

1
1= sdbim—1 =3 |

e . 1— d T a5 .

Fariom fy, © 0¥ i e

o __
TI‘ T P8

From this it follows that T is bounded on £ £%)1 = p = oo for Re @ = »# — 1. Similarly, when
w = —3 + 8 +io it can be shown that T is bounded on L*{ €. Using estimales for the gamma
tunctions, we can easily check that the family T}" is admissitle in the sense of Stein [17]. Applyiag
Stein’s analytic interpolation theotem we obtain Theorem 7. |

We will now ocmsmer operators of the furm £-7 Ju (¢ /L), with the corresponding multiplier
{2k +n) 7 Ju{t/2k + 1), We first remark that it is enough to consider the multiplier {24 + o +
1y % itk +a + 1). To see this let us assume t = 1 and look at their dilference
iy = 2k +m~1J, (VIEFn ) ka1, (Jzk Fat 1) .

Writing F{t} = ¢/ {r} we have

miky = F (Vﬁ:;) — (vlk—'ru: + 1)
B fﬂ F {1+ 2k) -
oy ek
since F"{r) = —# "% Jet1 (1) we have the expression
W)= fﬂ u+1{w-'f+?.H
' {Jr—'— zk}ﬂﬂ-l

v ]

which clearly showars that m £ S_—P (R). Therefore mik) will define an LP mulaplier provided

R g n(— - —‘.l whlchuclearly satisfied when o« = (Pn -~ l}l: ----- ’} — %

Thas it Is enovgh o comsider the muliiplier {2k - o + i}_" witsd 2k + o 4 I Recall that
we are agsuming 0 < ¢ < |, We compare this multiplier with ) (¢) using a Hilb type asymplotic
formula for the Laguerre polynomials, see Szegt [20]. More precisely formula (8.64.3) on p. 217
of |20] gives,

Jo {12k + o + 1)

YN =2"T{x+ 1) —————
" [t e 1)

+ welk, o, ) (3.2
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where
T} !

SIT T

[ {2 (VM) 1ot (VW) = g (/) da (1R | 547 sras

peik, o, b =

where W = 2 +w 4 1 and C(a) a constant which depends only on . [n the abowe formula, i @ s
an integer, "FT."' rst be replaced by the modified Bessel function 15 and sinam by —1. Now define
(A} = A7 % Ju(+/) and

Galh.t,5) = (Jur (fﬁ) - (-f-’i'ﬁ) - (r\.-"'I) . (r.wﬁ)) PLabPA

For the symbols g, we prove the tollowing estimates,
Lemma 1.
ForQ <y .5 = 1 we bave the estintgies

|3f g (A, o8} = Cp (] +;Lj_‘f'—$

velid for all & = 0,k = 0 Meore precisely,

\i}fﬂu{l‘mﬂ < Ol 4 ay i
(o™ (et (e )’ (e

Proof. Let B, = }»_;”’Ju{ﬁ} and when o Is a negative integer replace J, by ¥,. Then B,
satishes the eqoation
d

) 1
Hﬂr:('*-} = _E a | 1(}"] -

The asymptotic properties of the Bessel fonction give us the estimatss

k
(i) B (i)
dr

Consider the first term in &, (%, ¢, 5) which ix equal to Bu{r2h)B_o(r2s20)57r%, The k™
denivalive of this termt is a inear combination of terms of the form

. R . _
p 20 But) (rz;,_) (rz 33) s (ru 2 }L) &
which s bounded by A constant times
Tegd Th2iid 5 Al il 4 3y - Meedk—jdh
r g (l + ¥ Jx) ) (l+r".'r 3.) ;

AsQ < r . x =1, the ahove is bounded by o constant times

< C(l4 a2+

Plel (L4 HRID (I+r3:a,)_E (1+r3ﬂ)z

which ix bounded by O [1+ 337 21}, Similatly. the &** derivative of the second term is bounded
by
Cpdg2atd g py-i-d (1 +r21-,)z (L | rzsz}j}_z
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which in turn is bounded by € (1 + 1)~ ¥+ This proves the lemma. 1
Iterating in the formula (3.2} we have

o (f 2+ + 1}
(ev2ZE+a+1)"

W =27 (e + 1) +m.(m,:)+e(m,;)

where

my (VI @+ L1) = €y fﬂl aalN. 1, 5 {253N) ds

_e_3
From the above expression it is easy 10 check that s {4, ¢) € §; 7 ¥ and so when e =
3

(2w — l}l{}T - %J = % M6 2k + @ + 1. 1) defines an L7 multiplier. Further iteration produces better
and better terms. We can wrile

N (N N | ! e
u{; +urlti]+Zm_|f(vﬁk-l-a!-}-i,t)+€;(».-"2k+w-{-l.r)
({2 +a LT} =

where the ermor lerm {28 + & + 1, ) can be wrilten as

£y (m, :)

W) =2 Ta + 1)

1 1
= C;{cr}jt; .- j[; Gy (N E A1) ay (N RS, 820 .. 8 DNtz 511 91)

1','5’: sy sy day L ds

IMere W =2k + e + L.
All the sequences mj(~/ 2k +a+ 1.0, j = L,2...¢ will define bounded multipliers on
L¥C Ty when @ = (2n — |)|% -1 — 1 Now it follows from Lemma | that the multi-

_! ,
plier ag (A, s1daalh, 25, 52} . ap(h. s, .o 1. &) belongs o §) I fith catimates uniform

in 51, 82, ...5. Hence using Theorem 1 and Theorem 7 we get that the operator defined by the

sequence e{~'2k + & - 1, £} is also bounded on the same 2.7 if T+ % = % Thus the difference

W) -2 T+ D zk+a+|)"',rﬂ (vZEFa 1)

defines 4 bounded L¥ multiplier for o = (2n — 1}(% - %} - % Ax yr7i7) defines an LF maltiplier
this implies that (2k + = + 1}"% o {E"2k + o + 1} also defines a bounded L¥ multiplier which
complotes the proot of Theoram 2.

) |t ST 3
By taking o = ,lf in Lhe theorem und noting that |/ XU R Sl we infer that w{z. 1} =

Yrov T ot
*_i“\:%“f Fz) satisfies the estimate
: o1 1
[l Dllp < CAlIFNp - for 2 =5 <50

This praves Corcdlary 1.
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4. Hermite Expansions

En thix seetion we proceed to prove analogous resolis for the Hermite uperator H = —A 4+ x|
o B*. Bochner-TRiesz kornels associated o & are given by the expression

(g

.ﬁ'i.{x, o= Z (l —

k=)

2k+n

#
) Dr(x, ¥)

where

Frir ¥ = 3 B ()b ().
o=k

They xatisly the following estimate (sex |21, Section 3k

b —f+fin{2
IFR(x. ¥)| S CRI (1~I-R%Ix—y') _

So Theorem 1 implies that m(H} is bounded on LA{E") for m coming rom $79(R) provided
o > afl — p}ﬁll; —4i, 1 = p = oo, We remark that as in the previous sectinm,using the estimate
£ fllz = Cki_%”f”j, the above can be improved to include the case p = 1 as well. We now
procesd 1 prove Theorem 3

We start by comsidening the apalytic family of operaturs defined for Re o = —% by

STFGxY =3 YO f (%)

k=l
whore

e LELDT@ D (1Y oo

Tk+at+1) *

Whena = n— 1, S is precisely the Weyl transform of the surface measure g, on the sphere

AT

{z:]z] =¢]in <ZF. Thatis,

.= m2) f elpes -

|z =z
First we express 57 forRe e = n — | as the Wevl transform of a function, Let

a—1

Matn 4 _a, el -liE—a)
- O (Y
FE S Ty Tiny 21 2

12

where wa,_ [ i the measuare of {z : fz] = ¢} Thenfor Be o = 0, 27 i3 an intcgrable function.
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Proposition 7.
Let 8* and g¥ be defined as above. Then for Re & = ( we have the relation 5 kn L e
Wigt)f, £ e L3R

Proof. W use the following formula which connects Taguerre polynamials of different types:
T DM@+ v+ 1)y (2 2
Cik+p+ugl) % 2

Fl:k + J-:}].—‘{.u- + v "l' 1} ! i ._ 1 _I'J ﬂ.— (5;2) _i
o PRy e S A M S S LY ]_ i A p 4 1] L'u' £E__# = d.i'
TOTE Sad Iy gy | e KNz )"t

which s valid for Be =~ —1, Ee v 0. Inthe above take p = n — 1 und v = &. Then after a
change of variables we have

ik + 130 (e + 1) [l (13) ﬁ_r;_

Tik+a+n ¢
Tik+ DN+ 1o we=l 2l (;3 ) _s2i
T o kol Yt ol o 2 7 =y — le 1 s
el AR (el B vz )

oot Te+m k!{ﬂ—i}ff e S !
=W TTm Gign ol J (L), T 0 d:

£ = 1y
= gk—f;—_m fr g (zy wnlz) dz.

Thus we have the relation

o=l kl (n — 1)
vy {”_f

k—n—1) _,; & (@) wlz) dz

Since gff () is a radial function it can be expanded in terms al e(2) and we have the expansion
=]
. Klin— I 5
g;' )y =[dm) i E Ek—_i_'-n o ]}—l (-/';n &t (w} ?’k{w} i @k.{ﬂ

k=0

which Teads to the formula

g =23 3 ¥ ez

k=0

Taking Wey| transform of bath sides and noting that Wiy = (2a)"F we pet owr proposition.

M noted above gt is integrable and hence Wigy') is a bounded uperator on L*{RE™) whengver
Re ¢ = 0. We will cxpreas Wigh) as an ntegral operator with an explicit kernel K7 which has an
analytic continuation for Re o = —3 — % Using this we will analytically cominue W (gl agreeing
with 5 on a bipper range of .

Recalling the definition of the Weyt wansform given in the intrduction. we have the explicit
formula

W@y = [ T gin,y) 06 < y)drdy

where g{x, y} stands for gix + iy}, Thus Wig) is an integral operator with kernel

Kplfovi= f gl y—E) ei"(E'i‘}".'.x T
E°



£ i) E.K. Nardueoer e ¥ Tlangriei
Ln vicw of Lhis Formula, the kernel K7 of Wig") is given by
Kt yy = f e r,y — ) eI gy
EH

In order to evaluate this integral we cxpand the exponential factor in the definition of gi* into
an infimitc series petting

w0 rerg k2 i (1)
=0

T MWy
[ie) Cind

We now define £ o be the kernel

=
= F =P e
kf'(.f, ¥i= m » (1 - {—1 - P . gl* I: |.1.'|._1rx

so that £7 is expressed as

(-3

T Te+d K.

Klg vy =

Tie+r) | —
Tl@) [y 21 ;

T
s

—=— and making 2

Note that £¥ (£, y) vanishes for |y — £| = ¢. Therefore, by putting 5% = 1
change of variables in the definidon of £ we get

—1

K& = £ ¥ - pTEEN gy
2t Tla) Sz g
o I 5 A=l i :
el +“—-f (1—ixl") et g
e " +

The fast integral ie a constant maltiple of the Bessel function (see Theoram 4. 15 in Stein-Weiss [ 173}
FALAR I, Aokl 1 T
(l—lxl) e dr =28 27 E L) Jpgoy () kI E
€1 +

Therefore we bave the formula

A
L by — 12372 l
kf{%‘i?}:xir”(l— 3 ) Goya Ersly+§|

where we have set G, {r) = 2°r 7% J, (r}. Putting this back in the exprcssion for K} we obban

KrE = lo4+nu™

o {2 : 1 atg—i-l '
Z( 4) Flee -+ 7 (1_@) Gu+§+i—1 (%I.ﬂy—&l) .

= :
Har L Via} ¢ +

Mot that for fixed y and £ each term in the sum s holomorphic in o as long as Re o = ~—|{’-’§l).

We also note that :
e+ 1)
— =

I'{ee)
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Is an entire Tonction of o,
For the kernel K we now prove the following esnmate.

Proposition 8.
Asyumie it Re o = —(%J. Then
s
2 o =
|K# 5.y = Cae® 7™ (1 = '—}—ﬂ)
= I+
wiere Oy i3 of admissible growth as o function of Im o
Proof.  We only need to check that
Iiee + a3 Tl + 43
G al-i- = Crz
v Tia) algi-17)| =

for all values of ¥ = @, when Be = = —(%j. The Bessel function J, (¢, or Re o = —% is
defined by the integral

— e i L = Ty
dplrl = -'“-z—r— f g (1 ek )a L
r (r;e + %) Sl
Thetelore, [Fair)] =< Al (= + %}I 1 where A depends only on Re &. So we Rave to show that

Dier + ) Tler + )
M) Tl + j + 2L

= Oy .

When it = Zim-+1, the loft hand side reduces lo 7ot tett =l which is certainly bounded

by a comstant O of admmissible growih, When # 3s even we can use Stirling’s formala to arrive at
the same conclosion.
We can now complete the proof of Theorern 3. Consider the family of operators

ﬁﬂn=LJWmﬂfmm.

Nate that in view of Proposicdon 8 this is an admissible analvtic family of operators for Re o =
—{”—l_;i} which wre bounded vm L7(R%), T = p < oo uniformly in 0 = + = 1. By the result of

Proposition 7 we know that $¥ agrees with £ ~#-1 for Re & = 1 — |. But &) 1s analytic in the
bigger range Re o > —% and so we can think of §% as an analytic continuation of Kif’_("_ e

As inthe proof of Theorem 2 we now have the estimate |15 |2 = C||fliz forBe o = —%,
_ }Cr—(liij-é-‘rf}’

€ being independentof ¢, for 0 <t = 1. Fora = 250 + 6 4 iy, 5 is bounded
on LP{E"), | = p = oo. By apalytic interpolation we get
: 1 1 3
ISt £1, = ClAl ann;—ﬂ—i
where C is independent of 7, 0 < ¢ < 1. This complates the proed of Theorem 3. O

Neat we proceed to show that,we can improve the above resuit in the case of radial functions.
We need the following facts about the Hennite expansions. We refer to the monograph |21 for
details, When f s a radial function Hermite expansion reduces to a Laguerre expansion. More
preciscly we have the following.
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Theorem 8.
If f iz a radial furction then Py = Dand

Puf =R UL (A et

where

R,?_t(f)—-zlfi{::*i}f f(JL’ ] 52) e= 45 =gy

Proof. See |21, (Theoremn 3.4.13).
We also necd the following facts about the Laguerte translations. The Lagnetre translations
TZ f{y)of a function § on By = [0, o0) for . > 0 is defined by

el B 1 .
T fiy) = f‘“+ jf (x +}=2+1xymsr.‘?)§)_fa__i(z}'sinﬁj sin® 0 0 .

where we have written fo{t) = +7¥ . (t). The following results are proved in [21] {sce po 139 and

141} &

T 2& Tikr| et 1) oy 2, ,—dut e @ oyl
‘{ft;"k (x) = RN L {x°) &7 then T Wi (¥ = 'j"k ':x}":l!:",:_- (¥
femma 3.

Fore = 0and 1 = p = oc we have [T fllpn = | fllpp where ||_,|f'||£:'LL = fam | fxnF
el gy

We refer the reader to the monograph [21]) for more properties of Laguerre translations. Nuw
define the analvtic family of operators

]
REF =2 v PRf
k=0

Here we are assuming f is a radial fuoction. For this family we have the following resulis,

Proposition 9.
IR Sy = Clud| £y, for Re & = § — 1
i |REFllz = Cla)|| 1l forRe @ = —5.

Proof. Since F is a radial function we have by Theorem &
o Lifkn, fusses, 1, 1
REFI) =D win wI (L] (|x |a) o P
k=0

Hence by Lemma 2
1 ;1 _
flay="0" fllx
and by Lemma 3 we have

-: 1"

— &2 =0 fi1.=0C :
|| CLARA) uRr f|||_r.r_(-‘”f Lu —(”r”L@;n',

I
Now ag in the carlicr sections we can prove (1), Similarly we can prove (ii) as the sequence ¢, LAty

_1
form a bounded sequence and so the operator £, * is hounded on L2(E"). Tt can be checked that X'
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torms an adrissible analytical family of operators in the sense of Stcin. By anatytic interpodation
theorem we get the following resale _

Theorem 9.
Assnme that € LP(RE"Y is radial. Then we have the estimete ||RY Sl = Cll Fllp  for

o (n— 14— 31— 4,
Apgain as before comparing J,(r) t7% with ¥ (+) we et the same result for the multiphier
T[f%_‘;’" that is
5 (w’ﬁ) .
~-W-—f =i fllp
P

for all radial functions whene = {n—1)| ;} = % | — 3,: Tuking i = ’lz we have the fallowing corollary,

Corellary 4.
Asstme £ LETRYY iy reefiorl, Then
sin s+ H 1 1 |
Tf;_ {:C”f”p for ‘E_E‘{H—I'

Wi conclude this section by proving the almeast everywhere convergence result stated as Corol-
lary 3 in the introduction. When o > ”"2" . 8% is piven by the kerael X =11 Proceeding as in
the proof of Proposition § it is eagy to show thae

sup
Ouixl

S,"fj‘[xj|5|£.' sup f_"f I FESIE T
|z —v|=e

1t

The right-hand side is just the Hardy—Lietfewnod maximal funetion and bence

[ sup sff(xj| dx-:r:f | FL)|P dx

Dyl !

for | < p = co. {lence §7 f(x} converges to f(x) almost everywhere asr — 0.
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