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Abstract

The randomized response techniques for collecting data on sensitive variables have been in
vogue for over three decades now. In this note we introduce a method of randomization that
hitherto has not been resorted to. We �rst develop a theory consequent to the new technique of
randomization and later contrast it with the traditional one. c© 2000 Elsevier Science B.V. All
rights reserved.
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1. Introduction

In survey methodology whenever the study variable is sensitive in nature either
because it pertains to something that is too personal or stigmatizing or illegal, ran-
domized response (RR) techniques are used to collect the data. A typical RR method
(see Chaudhuri and Mukerjee (1987), Hedayat and Sinha (1991)) may be described as
a procedure in which the respondent reports either the study variate value y or some
other innocuous variate value x with some prespeci�ed probabilities. The Statistician,
does not, however, know whether the reported value corresponds to the variable x or
the variable y. This may be viewed as the Statistician receiving either the signal y or
the noise x with some speci�ed probabilities. The Statistician’s objective is to estimate
some function of the signals.
Instead, we may think of a method by way of which the Statistician receives a

‘mixture of signal and noise’. In other words, the respondent reports a value which
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is obtained by adding a value of random variable to the true Study variate value say,
y + x. This may be viewed as signal plus noise. The Statistician has to ‘extract’ the
signals to be able to carry out the estimation or inference.
As the respondent does not ever have to reveal the true study variate value the proce-

dure allows complete anonymity to the respondent thereby ensuring absolute protection
of privacy. Consequently, the respondent would feel extremely reassured to adhere to
truthful reporting. For example, say the Statistician is interested in collecting data on y:
the number of induced abortions. The respondent adds her true y-value to the randomly
generated observation x from the normal distribution N(−10; 1), say, and reports the
value y + x to the Statistician. If the respondent has to report a value −8:712, say,
she would feel absolutely safe and extremely encouraged to report such a value as it
does not seem to have any relationship, whatsoever, with the true number of induced
abortions. Thus, the new method has a clear psychological edge over the traditional RR
methods. We would later establish that the new method also has a theoretical advantage
in the sense of being able to achieve reduction in the variability of the estimators.

2. Preliminaries

Let U={1; 2; : : : ; N} be a �nite population under consideration. Let y be the sensitive
study variate under consideration that takes value yi on unit i; 16 i6N . It is required
to estimate the population total T (y) =

∑N
i=1 yi based on sample s of size n drawn

using a given sampling design p.
Let X be a random variable with known distribution function F . In particular, let X

have mean � and variance �2.
Each of the selected individuals i∈ s would be asked to draw an observation Xi from

F . The respondent would then be asked to report the value

zi = yi + xi;

where yi is the true y-value of the ith respondent, i∈ s.
We assume that this reporting would be done truthfully and correctly.
The entire data set based on the sample s may now be represented as

data :{zi = yi + xi | i∈ s}: (2.1)

With reference to the data set (2.1) it must be borne in mind that there are two sources
of randomness. The �rst one is the design-based randomness generating di�erent sam-
ples s according to the given sampling design p. The second source of randomness is
the random observation from the distribution function F . The latter source of random-
ness is responsible for randomized response.
Assume for the time being that the true yi-values can be had through direct response.

Then a linear unbiased estimator for T (y) =
∑N

i=1 yi is of the type

e(s; y) =
N∑
i=1
b(s; i)yi; (2.2)
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where the coe�cients satisfy

b(s; i) = 0 if i =∈ s
and

Ep(b(s; i)) = 1 ∀i = 1; 2; : : : ; N: (2.3)

The purpose of the RR methods is to provide a means to obtain estimators for
e(s; y) =

∑N
i=1 b(s; i)yi, which itself is an estimator for T (y) =

∑N
i=1 yi, using the RR

data set (2.1). In particular, we may think of obtaining an estimator for the true value
of yi, using the RR variable zi attached to unit i. In what follows, we construct such
estimators and study their properties.

3. Constructing unbiased estimators

Let Ep; Vp; : : : , stand for the design-based operations and ER, VR ; : : : ; stand for the
operations based on the randomization method. Here it would mean the operations
based on the distribution function F .
Now

zi = yi + xi ⇒ ER(zi) = yi + �:

Therefore,

ŷi = zi − �; (3.1)

serves as an unbiased estimator for yi; i∈ s, in the sense that
ER(ŷi) = ER(yi + xi − �) = yi:

We are now in a position to prove the following theorem.

Theorem 3.1. The estimator

e(s; ŷ) =
N∑
i=1
b(s; i)ŷi (3.2)

is an unbiased estimator of the population T (y) in the sense that

EpER(e(s; ŷ)) = T (y);

where ŷi; i∈ s; are as in (3:1).

Proof. The proof is obvious.

We now move on to compute the expression for the variance of the estimator e(s; ŷ).
Using the symbolic formula

V = V1E2 + E1V2;
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we get

V (e(s; ŷ)) = Vp ER(e(s; ŷ)) + EpVR(e(s; ŷ))

= Vp(e(s; y)) + Ep
N∑
i=1
b2(s; i)VR(ŷi)

= Vp(e(s; y)) + �2
N∑
i=1
Ep(b2(s; i)) (as VR(ŷi) = �

2):

Thus,

V (e(s; ŷ)) = Vp(e(s; y)) + �2
N∑
i=1
Ep(b2(s; i)): (3.3)

The �rst term on the right-hand side is the design variance of the estimator e(s; y)
under direct response, the second term is the additional variability due to randomized
response. For instance, �2 = 0 corresponds to degenerate X , hence to direct response,
then as expected, V (e(s; ŷ)) coincides with Vp(e(s; y)).
We now obtain an estimator for V (e(s; ŷ)).
First of all, note that Vp(e(s; y); y), the expression for the variance of the estimator

e(s; y) at the vector y, is given by

Vp(e(s; y); y) =
N∑
i=1
aiiy2i +

N∑
i 6=j=1

aijyiyj; (3.4)

where

aii = Ep(b2(s; i))− 1; 16 i6N;

aij = Ep(b(s; i)b(s; j))− 1; 16 i 6= j6N:

Let

V̂p(e(s; y); y) =
N∑
i=1
aii(s)y2i +

N∑
i 6=j=1

aij(s)yiyj; (3.5)

where

aii(s) = 0 if i =∈ s;

aij(s) = 0 if i =∈ s or j =∈ s
and

Epaii(s) = aii; 16 i6N;

Epaij(s) = aij; 16 i 6= j6N:

Clearly, this is an unbiased estimator for Vp(e(s; y)) under design p.
Let

V̂p(e(s; y); ŷ) =
N∑
i=1
aii(s)ŷ

2
i +

N∑
i 6=j=1

aij(s)ŷiŷj: (3.6)

Note that (3.6) is the same as (3.5) with yi’s replaced by ŷi’s.
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Observe that

EpERV̂p(e(s; y); ŷ) = Ep

{
N∑
i=1
aii(s)(y2i + �

2) +
N∑

i 6=j=1
aij(s)yiyj

}

=
N∑
i=1
aiiy2i +

N∑
i 6=j=1

aijyiyj + �2
N∑
i=1
aii:

Hence,

EpERV̂p((e(s; y); ŷ)) = Vp(e(s; y)) + �2
N∑
i=1
Ep(b2(s; i))− N�2: (3.7)

We are now in a position to state the following theorem.

Theorem 3.2. The variance V (e(s; ŷ)) of (3:3) can be estimated unbiasedly by

V̂p(e(s; y); ŷ) + N�2; (3.8)

where V̂p(e(s; y); ŷ) is given by (3:6).

Proof. The proof is immediate using (3.7).

N�2 in (3.8) may be replaced by suitable unbiased estimators of N�2 to get di�erent
unbiased estimators for V (e(s; ŷ)).
There is yet another way of constructing an estimator for T (y). Let

e(s; z) =
N∑
i=1
b(s; i)zi: (3.9)

Now,

EpERe(s; z) = Ep
N∑
i=1
b(s; i)(yi + �)

=
N∑
i=1
Epb(s; i)(yi + �)

= T (y) + N�:

Hence, the estimator

e(s; z)− N� (3.10)

is unbiased for T (y).
To compute the variability of the above estimator it is enough to look at the

variability of e(s; z) as N� is a constant.
We again use the symbolic formula V = V1E2 + E1V2,

V (e(s; z)) = VpER
N∑
i=1
b(s; i)zi + EpVR

N∑
i=1
b(s; i)zi

= Vp
N∑
i=1
b(s; i)(yi + �) + �2Ep

N∑
i=1
b2(s; i):
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Thus,

V (e(s; z)) = Vp(e(s; y+ �)) + �2
N∑
i=1
Ep(b2(s; i)); (3.11)

where VP(e(s; y+�)) is the design variance of e(s; y) at the vector y+�, where �=�1
and 1′ = (1; 1; : : : ; 1).
To compare estimators (3.2) and (3.10) we compare expressions (3.3) and (3.11).

Theorem 3.3. Estimator (3:2) is better than estimator (3:10) if and only if

Vp(e(s; y))6Vp(e(s; y+ �)):

Remark 3.1. In practice, if we start with an estimator e(s; y) that is expected to perform
well at y in the direct response set-up then it may be reasonable to expect that estimator
(3.2) performs better than estimator (3.10) in the RR set-up.

The variance in (3.11) can be estimated as in the earlier case.
We have

V̂p(e(s; y); ŷ+ �)− N�2 (3.12)

as an unbiased estimator for the variance in (3.11), where V̂p(e(s; y), ŷ+�) is obtained
by replacing ŷi in (3.6) by ŷi + �.

Remark 3.2. In fact, we can think of a class of unbiased estimators for T (y) obtained
by using convex combinations of the two estimators (3.2) and (3.10).

Consider the following class of unbiased estimators indexed by a:{
ea = e(s; z)−

(
a+

1− a
N

N∑
i=1
b(s; i)

)
N�

∣∣∣∣ 06 a6 1
}
: (3.13)

We again use the symbolic formula V = V1E2 + E1V2 to compute the variability of the
estimator ea,

V (ea) = EpVR(e(s; z)) + Vp(e(s; y; y+ a�1)):

The second term on the right-hand side of the above expression depends on a. Let us
try to minimize that. Let

Q(a) = (y+ a�1)′A(y+ a�1);

where A is a nonnegative-de�nite matrix. Then,

@Q
@a
= 2�1′A(y+ a�1);

@2Q
@a2

= 2�21′A1:
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If 1 happens to be an eigenvector of the matrix A corresponding to the eigenvalue 0
then Q(a) is independent of a.
Otherwise 1′A1¿ 0, in which case, solving @Q=@a= 0 for optimal a∗ we get

a∗ =− 1′Ay
�1′A1

:

It remains to be checked whether 06 a∗6 1.
It should, however, be noted that the optimal a∗ depends on the unknown vector y.

Remark 3.3. The practical signi�cance of the above result is that if we start with a
‘good’ estimator e then a reasonable estimator of 1′Ay may be used so that � can
suitably be chosen to get 06 â∗6 1, and �nally use the estimator e ˆa∗ .

4. Admissibility and UMVLUE

In this section we �rst prove a result pertaining to the admissibility of the de-
rived estimator and then move on to prove the nonexistence of a best estimator.
Here we assume that �⊂RN , the parametric space for y, is such that if w∈� then
�w∈� ∀�¿ 0.

Theorem 4.1. For a given design p if e(s; y) is an admissible linear unbiased estimator
in the direct response set-up then so is the derived estimator e(s; ŷ) in the RR set-up.

Proof. Let the linear unbiased estimator e(s; y) =
∑N

i=1 b(s; i)yi be admissible in the
direct response set-up. Let further

B(p; e) = B(e) = B(e(s; y)) =
N∑
i=1
Ep(b2(s; i)): (4.1)

Note that the expression B(e) is independent of y.
Recall that from (3.3)

V (e(s; ŷ)) = Vp(e(s; y)) + �2B(e): (4.2)

If possible let there exist an estimator e1(s; y) =
∑N

i=1 b1(s; i)yi such that the derived
estimator e1(s; ŷ) is better than the derived estimator e(s; ŷ) in the randomized response
set-up.
Since the estimator e(s; y) is admissible in the direct response set-up it would be

better than the estimator e1(s; y) at some vector, say y0; i.e.,

Vp(e1(s; y0))¿Vp(e(s; y0)):
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Thus, choosing � suitably we can make

Vp(e1(s; �y0))− Vp(e(s; �y0))
arbitrarily large.
Further, as noted earlier, B(e) and B(e1) are independent of y.
Therefore, at �y0; for � suitably large, e(s; ŷ) can be made to perform better than

e1(s; ŷ).
In other words,

V (e(s; ŷ); �y0)¡V (e1(s; ŷ); �y0);

which is a contradiction. Hence, the result.

We now move on to prove a result pertaining to the nonexistence of uniformly
minimum variance linear unbiased estimator (UMVLUE).
Let p be a given sampling design with

�i =
∑
s3i
p(s)¿ 0 ∀i = 1; 2; : : : ; N:

Based on p the Horvitz–Thompson estimator for T (y) is given by

eHT(s; y) =
∑
i∈ s

yi
�i
:

Theorem 4.2. There does not exist a UMVLU estimator for the total T (y)=
∑N

i=1 yi
in the RR set-up.

Proof. A linear estimator is of the type e(s; y) =
∑N

i=1 b(s; i)yi.
We �rst show that for a given design p the term B(e) of (4.1) is minimized for the

Horvitz–Thompson estimator in the class of all linear unbiased estimators.
By Cauchy–Schwarz inequality

∑
s3i
b2(s; i)p(s)

∑
s3i
p(s)¿

{∑
s3i
b(s; i)p(s)

}2
∀i = 1; 2; : : : ; N

or equivalently invoking the condition of unbiasedness we have∑
s3i
b2(s; i)p(s)¿

1
�i
; 16 i6N;

and the equality is attained if and only if

b(s; i) =
1
�i

∀s 3 i; 16 i6N:

Thus, the Horvitz–Thompson estimator minimizes B(e) =
∑N

i=1 Ep(b
2(s; i)).

If possible let there exist an estimator e0 that is UMVLUE.
(a) e0 6= eHT: Since B(eHT)¡B(e0), in view of (4.2), we must have

Vp(eHT(s; y))¿Vp(e0(s; y)) ∀y:
But this would mean that eHT is inadmissible in the direct response set-up, which is a
contradiction.
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(b) e0=eHT: Consider any other admissible estimator e1 in the direct response set-up.
This estimator would be better than eHT at some vector, say y0; i.e.,

Vp(eHT(s; y0))¿Vp(e1(s; y0)):

Thus, choosing � suitably we can make

Vp(eHT(s; �y0))− Vp(e1(s; �y0))
arbitrarily large.
Further B(eHT) and B(e1) are free of y. Hence at �y0; for � suitably large, e1(s; ŷ)

can be made to perform better than eHT(s; ŷ).
In other words,

V (e1(s; ŷ); �y0)¡V (eHT(s; ŷ); �y0);

which again is a contradiction.
Hence, UMVLUE does not exist.

5. Superpopulation model

We now introduce the notion of superpopulation model.
Let y1; y2; : : : ; yN be a realization of the random variables Y1; Y2; : : : ; YN with joint

distribution speci�ed by the �rst- and second-order moments as

E�(Yi) = �i; 16 i6N;

V�(Yi) = �2i ; 16 i6N

and

Cov�(Yi; Yj) = 0; 16 i 6= j6N; (5.1)

where �2i ¿ 0 and �i; 16 i6N; are unknown parameters of model (5.1).
We know that

E�Vp(e(s; y)) = Vp(e(s; y); �) +
N∑
i=1
�2i (Epb

2(s; i)− 1):

Hence,

E�V (e(s; ŷ)) = Vp(e(s; y); �) +
N∑
i=1
(�2i + �

2)Ep(b2(s; i))−
N∑
i=1
�2i :

As the above expression is infested with too many unknown parameters there is no
possibility of optimizing it. We can, however, state the following theoretical result.

Theorem 5.1. If (p; e∗(s; y)) is the best linear unbiased strategy; in the direct response
set-up; in the sense of minimum E�Vp(e(s; y)) then (p; e∗(s; ŷ)) would be better than
(p1; e1(s; ŷ)) in the RR set-up; in the sense of smaller E�V (e(s; ŷ)) if

E�(Vp(p1; e1)− Vp(p; e∗))¿ �2{B(p; e∗)− B(p1; e1)}:
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Remark 5.1. It is well known that in certain situations under appropriate super-
population models optimal strategies to estimate T (y) exist in the direct response
set-up. Some of these results smoothly carry over to the traditional RR set-up (see,
e.g., Adhikary et al., 1984; Chaudhuri, 1987). The proposed RR set-up, however, does
not admit such a carry over.

6. Comparing the two types of randomization

We �nally move on to the comparison of two types of randomizations.
To make meaningful comparisons we assume that in the traditional RR set-up the ith

individual either reports the true value yi or generates and reports an observation on the
random variable X; that has the same support as that of y; with speci�ed probabilities.
To make things formal let us �rst de�ne

Zi =

{
yi with prob �

Xi with prob 1− �;
where 0¡�6 1 and X1; X2; : : : ; XN are i.i.d. with d.f. F; mean � and variance �2. We
assume that the support of the random variable X is the same as that of y.
Note that � = 1, in the above framework, corresponds to direct response set-up. To

compute the moments of Zi, as mentioned earlier there are two stages of randomiza-
tions, at the �rst stage it is decided whether to use the variable y or X; if it is X; at
the second stage we draw an observation from the distribution of X .
It is, therefore, easy to see that Zi has expectation

�yi + (1− �)�
and variance

�(1− �)(yi − �)2 + (1− �)�2 = � 2�2wi (say);

where

wi =
1− �
�

(
yi − �
�

)2
+
1− �
� 2

: (6.1)

For �= 1; e.g., wi = 0; ∀i = 1; 2; : : : ; N and that corresponds to direct response set-up.
Observe that yi can be estimated unbiasedly by

ˆ̂yi =
Zi − (1− �)�

�
: (6.2)

Hence, the estimator

e(s; ˆ̂y) =
N∑
i=1
b(s; i) ˆ̂yi (6.3)

would be unbiased for T (y).
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We again use the symbolic formula V = V1E2 + E1V2 to compute the variability of
estimator (6.3),

V (e(s; ˆ̂y)) = Vp(e(s; y)) + EpVR

(
N∑
i=1
b(s; i) ˆ̂yi

)

= Vp(e(s; y)) + Ep

(
N∑
i=1
b2(s; i)VR

(
Zi
�

))
:

Thus,

V (e(s; ˆ̂y)) = Vp(e(s; y)) + �2
N∑
i=1
wiEp

(
b2(s; i)

)
; (6.4)

where wi’s are given by (6.1).
To compare the proposed method of randomization with the traditional one we com-

pare the variabilities of estimators (3.2) and (6.3), i.e., we compare expressions (3.3)
and (6.4). This, in turn, reduces to comparing the expressions

�2
N∑
i=1
Ep(b2(s; i)) and �2

N∑
i=1
wiEp(b2(s; i));

where again wi’s are given by (6.1).
We now have the following theorem.

Theorem 6.1. If

�6 �0 =

√
5− 1
2

≈ 0:618; (6.5)

then the new randomization method is better than the traditional one.

Proof. �6 �0 ⇒ 16 (1 − �)=� 2. Hence, �26 [(1 − �)=� 2]�26 �2wi ∀i. Therefore,
�2

∑N
i=1 Ep(b

2(s; i))6 �2
∑N

i=1 wiEp(b
2(s; i)). Hence the result.

Remark 6.1. Though �0≈ 0:618, (6.5) is only a su�cient condition and it does not
take into account the term [(1− �)=�]((yi − �)=�)2 that could be quite arbitrary. Thus,
since wi’s depend on yi’s the new method is likely to be better than the traditional
one even when � is actually somewhat larger than �0.

Remark 6.2. There are natural restrictions on the choice of X in the traditional RR
set-up. For example, if the study variable y is nonnegative then X too has to be
nonnegative or if the study variable y is a binary variable then X too has to be a
binary variable. This is necessary so that the Statistician is unable to know whether
the reported value is respondent’s y-value or X -value. In the proposed RR set-up,
however, there is no need for such restrictions.

We, �nally, have the following theorem.
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Theorem 6.2. Consider the traditional RR set-up that uses random variable X1 with
mean �1 and variance �21. If we choose a random variable X with mean � and variance
�2 in the new RR set-up such that

�26
1− �
� 2

�21 ;

then the new RR set-up is better than the traditional one.

Proof. The proof is similar to that of Theorem 6.1.

In view of Remark 6.1 and as wi’s involve yi’s a similar statement cannot be made
in the reverse direction.

Remark 6.3. The �ndings of this section can easily be adapted to compare any esti-
mator belonging to the class of estimators (3.13) in the traditional RR set-up with its
counterpart in the proposed RR set-up.
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