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SOME REMARKS ON BOCHNER–RIESZ MEANS

BY

S. THANGAVELU (BANGALORE)

Abstract. We study Lp norm convergence of Bochner–Riesz means SδRf associated
with certain non-negative differential operators. When the kernel SmR (x, y) satisfies a weak

estimate for large values of m we prove Lp norm convergence of SδRf for δ > n|1/p−1/2|,
1 < p <∞, where n is the dimension of the underlying manifold.

1. Introduction and main results. The aim of this note is to make
some remarks concerning the Lp mapping properties of the Bochner–Riesz
means associated with certain differential operators. To set up the notation,
let Ω be a Riemannian manifold and P a differential operator of order d on
Ω which is self-adjoint and formally non-negative. Let

Pf =

∞\
0

λdEλf

be the spectral resolution of P. The Bochner–Riesz mean of order δ ≥ 0 of
a function f is defined by

Sδ
Rf =

R\
0

(
1−

λ

R

)δ

dEλf.

Our aim is to study the convergence of Sδ
Rf to f in Lp(Ω) as R tends to

infinity.

It is clear that Sδ
Rf converges to f in the L2 norm if f ∈ L2(Ω). How-

ever, if 1 ≤ p < 2 we can expect the convergence in the Lp norm only
for large values of δ. In fact, there is a necessary condition: let δ(p) =
max{n|1/p − 1/2| − 1/2, 0} be the critical index for the Lp summability.
Then by a transplantation theorem of Mityagin [16] (see Kenig, Stanton
and Tomas [13]) it is known that δ > δ(p) is a necessary condition for the
convergence of Sδ

Rf to f in the Lp norm.
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It is therefore natural to conjecture that δ > δ(p) is also sufficient for
the Lp convergence of Sδ

Rf. Let us call this the Bochner–Riesz conjecture.
In some special cases the conjecture has been proved for a certain range
of p. For example, when Ω = Tn is the n-torus and P is the standard
Laplacian on Tn then Sδ

Rf converges to f in Lp(Tn) for δ > δ(p) provided
|1/p − 1/2| ≥ 1/(n + 1) for n ≥ 3 and all p if n = 2. The same is true for
the standard Laplacian on R

n. For these results see Carleson–Sjölin [2] and
Fefferman [4].

In the general situation the best known results are due to Hörmander
[8] and Peetre [19]. Their results are that we have Lp convergence when
δ > 2(n−1)|1/p−1/2| provided Ω is compact. In 1987, Hörmander’s result
was greatly improved by Sogge [21]; he showed that the Bochner–Riesz
conjecture holds for compact Riemannian manifolds when P is of degree 2
and |1/p − 1/2| ≥ 1/(n + 1). When n = 2 the conjecture has been proved
for all p.

Once we leave the premises of compact manifolds and consider non-
compact situations, not much is known. In the special cases of Hermite
and special Hermite expansions which are associated with the operators
H = −∆+ |x|2 on R

n and

L = −∆+
1

4
|z|2 − i

n∑

j=1

(
xj

∂

∂yj
− yj

∂

∂xj

)

on C
n respectively, the conjecture has been settled for a certain range of

p. See the works of the author [24, 25], Karadzhov [12] and Stempak–
Zienkiewicz [23]. When P is the sublaplacian on a stratified nilpotent Lie
group a weaker form of the conjecture is known to be true (see Mauceri [14],
Mauceri–Meda [15], Müller–Stein [17] and the references there).

Returning to the general situation we recall the following estimate, due
to Hörmander [8] and Peetre [19], on the kernel of the Riesz mean associated
with a dth order elliptic differential operator. If Sδ

R(x, y) is the kernel of S
δ
Rf ,

that is, if

Sδ
Rf(x) =

\
Sδ
R(x, y)f(y) dy

then for x, y belonging to a compact subset B of Ω,

|Sδ
R(x, y)| ≤ CBR

n/d(1 +R1/d|x− y|)−δ−1

where CB is independent of R. From this estimate it follows that the op-
erators χBS

δ
RχB , where χBf(x) = χB(x)f(x) is the operator of multiplica-

tion by the indicator function of B, are uniformly bounded on Lp(Ω) when
δ > 2(n − 1)|1/p − 1/2|. This is the best one can get from the above kernel
estimates which is local in nature.
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Even in the case of compact manifolds where the above estimate is
“global” it cannot be improved further and, therefore, it is not good enough
to prove the Bochner–Riesz conjecture. In order to get around this difficulty,
in [21] Sogge used a Fourier transform side argument to prove certain Lp-L2

estimates for the projections associated with the spectral resolution. To be
more specific, when P is a second order operator, let

Pkf =

k2\
(k−1)2

dEλf.

Then Sogge used the following estimates, known as the restriction theorem:

‖Pkf‖2 ≤ Ckδ(p)‖f‖p,

∣∣∣∣
1

p
−

1

2

∣∣∣∣ ≥
1

n+ 1
.

The above estimates were proved by Sogge in [20] for second order elliptic
differential operators on compact Riemannian manifolds. By adapting an
argument of Fefferman–Stein [4] and Bonami–Clerc [1], he was able to show
that the weak kernel estimates and restriction theorems are sufficient to
prove summation results.

Unfortunately, we do not have good restriction theorems even on R
n

for general elliptic differential operators. Since it is difficult to establish
restriction theorems, we look for an alternative which can be used in the
study of Bochner–Riesz means. Consider fractional powers of the operator
P given by the spectral theorem as

(1 + P )−α/2f =

∞\
0

(1 + λ)−α/2 dEλf.

Once we have the restriction theorem it then follows that

‖(1 + P )−α/2f‖22 ≤

∞∑

k=1

k−2α‖Pkf‖
2
2,

which is dominated by

C
( ∞∑

k=1

k−2α+2n(1/p−1/2)−1
)
‖f‖2p

and therefore

‖(1 + P )−α/2f‖2 ≤ C‖f‖p

provided α > n(1/p− 1/2).
In many situations, the Lp-L2 estimate for the operator (1 + P )−α/2 is

easy to establish. We propose to use this in place of the restriction theorem.
As we show below, the Lp-L2 estimate for (1 + P )−α/2 will follow from a
weak estimate for the Riesz kernel. Then by using the method of Sogge we
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can establish a positive result for the Bochner–Riesz means which improves
the known results, though falling short of being optimal.

Now we state our main results. Let P = P (x,D) be a (not necessarily
elliptic) differential operator of degree d on R

n with smooth coefficients. We
assume that the Riesz kernel associated with P satisfies the estimate

(1.1) |Sδ
R(x, y)| ≤ CRn/d(1 +R1/d|x− y|)−δ+β

for all x, y ∈ R
n where β is a fixed constant. Without loss of generality,

we assume that the spectral projection P0 onto the kernel of P is trivial on
Lp(Ω).

Theorem 1.1. Let P be as above with Riesz kernel satisfying (1.1).
Then the Bochner–Riesz means Sδ

R are uniformly bounded on Lp(Rn) for

1 < p < ∞ whenever δ > δ(p) + 1/2.

As we have remarked earlier, for an arbitrary differential operator on a
non-compact manifold the estimate (1.1) is available only locally. However,
the local estimate is good enough to prove a local estimate for the Bochner–
Riesz means.

Theorem 1.2. Let P (x,D) be an elliptic differential operator of degree

d with smooth coefficients on R
n and let B be any compact subset of R

n.
Then χBS

δ
RχB are uniformly bounded on Lp(Rn), 1 < p < ∞, whenever

δ > δ(p) + 1/2.

By using the transplantation theorem of Mityagin [16], we can deduce
global estimates for constant coefficient differential operators.

Corollary 1.3. Let P (D) be a homogeneous elliptic differential opera-

tor on R
n and let Sδ

R be the associated Bochner–Riesz means. Then Sδ
R are

uniformly bounded on Lp(Rn) for 1 < p < ∞ whenever δ > δ(p) + 1/2.

Apart from the realm of constant coefficient differential opeartors there is
at least one more class of differential operators, namely, Rockland operators
on stratified nilpotent groups, for which global estimates for the Bochner–
Riesz kernel can be proved. So, for such operators we obtain the following
result.

Corollary 1.4. Let L be a non-negative Rockland operator of homo-

geneous degree d on a stratified nilpotent Lie group G and let Sδ
R be the

associated Bochner–Riesz means. Let Q be the homogeneous dimension of

the group and define the critical index by δ(p) = max{Q|1/p−1/2|−1/2, 0}.
Then Sδ

R are uniformly bounded on Lp(G), 1 < p < ∞, provided δ >
δ(p) + 1/2.

Suppose H is a connected normal subgroup of G and π a unitary rep-
resentation of G induced from a unitary character of H. Then following an
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idea of Hulanicki and Jenkins [11] we can get summability results for oper-
ators of the form π(L) where L is a Rockland operator. This covers some
Schrödinger operators with polynomial potential (see Corollaries 3.3 and
3.4).

We would like to thank the referee for his careful reading of the manu-
script and for some useful suggestions.

2.Elliptic operators on R
n. In this section we will prove Theorems 1.1,

1.2 and Corollary 1.3. We start with the following estimate for (1+P )−α/d.

Proposition 2.1. Let P (x,D) be a differential operator of degree d
whose Riesz kernel satisfies the estimate (1.1). Then for 0 < α < n,
1 < p < q < ∞ and 1/q = 1/p − α/n we have

‖(1 + P )−α/df‖q ≤ C‖f‖p.

P r o o f. By the spectral theorem

(1 + P )−α/df =

∞\
0

(1 + λ)−α/d dEλf

and so the kernel of (1 + P )−α/d is given by

Kα(x, y) =

∞\
0

(1 + λ)−α/d dEλ(x, y).

We want to make use of the estimate (1.1) for large values of δ. As Eλ(x, y) =
S0
λ(x, y), integrating by parts and making use of the identity

d

dλ
(λmSm

λ (x, y)) = mλm−1Sm−1
λ (x, y)

we obtain the expression

Kα(x, y) = Cα,m

∞\
0

(1 + λ)−α/d−mλm−1Sm−1
λ (x, y) dλ.

If we use the estimate (1.1) we get

|Kα(x, y)| ≤ C

∞\
0

λ−α/d+n/d−1(1 + λ1/d|x− y|)−m+β+1 dλ,

which is easily seen to be bounded by

C|x− y|α−n
∞\
0

λ−α/d+n/d−1(1 + λ1/d)−m+β+1 dλ.

The last integral converges if m is large since 0 < α < n and we obtain the
estimate

|Kα(x, y)| ≤ C|x− y|α−n
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for the kernel of the operator (1 + P )−α/d. Now it is a routine matter to
show that this operator has the required mapping properties. See, e.g., the
proof of Theorem 1, Chapter V of Stein [22]. This completes the proof of
the proposition.

We now proceed to the proof of Theorem 1.1. Since we closely fol-
low Sogge [21] we will not give details. Choose ϕ ∈ C∞

0 (1/2, 2) so that∑∞
j=−∞ ϕ(2jt) = 1 for t 6= 0. Let

ϕδ
R,j(t) = ϕ(2j(1− t/R))(1 − t/R)δ

and for j = 1, 2, . . . define

Sδ
R,jf =

∞\
0

ϕδ
R,j(λ) dEλf.

For j = 0 we define

Sδ
R,0f =

∞\
0

ϕ0

(
1−

λ

R

)(
1−

λ

R

)δ

dEλf

where ϕ0(t) = 1−
∑∞

j=1 ϕ(2
jt).

We can easily handle Sδ
R,0 in the following way.

Proposition 2.2. ‖Sδ
R,0f‖p ≤ C‖f‖p, 1 ≤ p ≤ ∞.

P r o o f. As in the proof of Proposition 2.1 we can get

Sδ
R,0(x, y) =

∞\
0

λm−1Sm−1
λ (x, y)∂m

λ ϕδ
R,0(λ) dλ.

Note that ϕδ
R,0 is supported in (−∞, R/2) and satisfies the estimate

|∂m
λ ϕδ

R,0(λ)| ≤ CR−m.

Therefore,

|Sδ
R,0(x, y)| ≤ CR−m

R/2\
0

λm−1|Sm−1
λ (x, y)| dλ.

Ifm is large enough, Sm−1
λ (x, y) is uniformly integrable and hence the propo-

sition follows.

Proceeding with the proof of Theorem 1.1 we will show that given δ >
δ(p) + 1/2 there exists an ε > 0 such that

‖Sδ
R,jf‖p ≤ C2−εj‖f‖p
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for j = 1, 2, . . . As in [21], using the kernel estimate we can show that for
each γ > 0 there is an ε > 0 such that\

R1/d|x−y|≥2(1+γ)j

|Sδ
R,j(x, y)| dy ≤ C2−εj .

This will take care of the global part of the Riesz kernel. Then we prove the
following.

Proposition 2.3. ‖Sδ
R,jf‖2 ≤ C2−jδ(R1/d)δ(p)+1/2‖f‖p.

P r o o f. By the spectral theorem

‖Sδ
R,jf‖

2
2 =

∞\
0

|ϕδ
R,j(λ)|

2 d(Eλf, f).

Since ϕδ
R,j is supported in

R(1− 2−j+1) ≤ λ ≤ R(1− 2−j−1)

and bounded by C2−jδ it follows that

‖Sδ
R,jf‖

2
2 ≤ C2−2jδ(R1/d)2δ(p)+1

∞\
0

(1 + λ)−(2δ(p)+1)/d d(Eλf, f),

which is dominated by

C2−2jδ(R1/d)2δ(p)+1‖(1 + P )−α/df‖22

with α = n|1/p− 1/2|. Using the result of Proposition 2.1 we obtain

‖Sδ
R,jf‖2 ≤ C2−jδ(R1/d)δ(p)+1/2‖f‖p,

which completes the proof of the proposition.

Finally, if V is any ball of radius 2(1+γ)jR−1/d, then

‖Sδ
R,jf‖Lp(V ) ≤ C(2(1+γ)jR−1/d)δ(p)+1/2‖Sδ

R,jf‖2,

which by the result of the previous proposition is dominated by

C2−jδ2j(1+γ)(δ(p)+1/2)‖f‖p.

Therefore, if δ > δ(p) + 1/2 we can choose γ > 0 so that δ > (1 + γ)(δ(p) +
1/2), which will then show that

‖Sδ
R,jf‖p ≤ C2−εj‖f‖p

for some ε > 0. The rest of the proof proceeds as in Sogge [21].

We will now indicate how Theorem 1.2 is proved. Suppose P = P (x,D)
is an elliptic differential operator of order d with smooth coefficients. The
following local estimate for the associated Riesz kernel has been proved in
Peetre [19] (see also Hörmander [8]).
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Proposition 2.4. Let P be as above. Then

|Sδ
R(x, y)| ≤ CRn/d(1 +R1/d|x− y|)−δ+β

where C is uniform on compact subsets of R
n × R

n and β is a universal

constant.

From this proposition it follows that the kernel of χBS
δ
RχB satisfies a

uniform estimate of the form (1.1) which can be used to take care of the
“part at infinity” of the operator. To deal with the local part we need a local
version of Proposition 2.1.

Proposition 2.5. Let P be as above. Then for 0<α<n, 1<p<q<∞,
and 1/q = 1/p − α/n we have

‖(1 + P )−α/df‖Lp(B) ≤ CB‖f‖Lp(B)

for any compact subset B of R
n.

P r o o f. We only have to show that the kernel of χB(1 + P )−α/dχB is
bounded by a constant times |x − y|α−n. But this follows from the local
estimate for the Riesz kernel given in Proposition 2.4.

To complete the proof Theorem 1.2 we only need to make the following
observation. If V is any ball, then as before

‖χBS
δ
R,jχBf‖Lp(V ) ≤ |V |1/p−1/22−jδ(R1/d)δ(p)+1/2‖(1 + P )−α/dχBf‖2

where α = n(1/p− 1/2). But now, by the spectral theorem,

‖(1 + P )−α/dχBf‖
2
2

= ((1 + P )−2α/dχBf, χBf)

≤
( \

B

|f(x)|p dx
)1/p( \

B

|(1 + P )−2α/dχBf(x)|
p′

dx
)1/p′

.

Using Proposition 2.5 we get the estimate

‖(1 + P )−α/dχBf‖2 ≤ CB‖f‖p.

This estimate can be used to complete the proof of Theorem 1.2.

To prove Corollary 1.3 we make use the following transplantation theo-
rem due to Mityagin [16] a proof of which can be found in [13].

Theorem 2.6. Let P (x,D) be a self-adjoint differential operator whose

principal symbol is p(x, ξ). Suppose for some p, 1 ≤ p ≤ ∞, and a set B of

positive measure the operators χBS
δ
RχB are uniformly bounded on Lp(Rn)

for a sequence of values of R tending to infinity. Let x0 be a point of density

of B. Then χ(−∞,λ)(p(x0, ξ)) is a Fourier multiplier on Lp(Rn).

Given a homogeneous differential operator P (D) we can apply the above
theorem to P (D) + |x|2 to obtain Corollary 1.3.
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We conclude this section with an example. Consider the operator P (D)
where

P (ξ) = ξm1 + . . .+ ξmn

with m an even integer. Then Peetre [18] has proved that the associated
Riesz kernel satisfies the estimate

|Sδ
R(x, y)| ≤ CRn/m(1 +R1/m|x− y|)−δ′−1

where δ′ = δ + (n− 1)/m. He has also shown that this estimate is optimal.
Using Peetre’s estimate we can prove that Sδ

R are uniformly bounded on
Lp(Rn) for δ > 2(n − 1)(1 − 1/m)|1/p − 1/2| whereas by Corollary 1.3 we
get the same for δ > n|1/p − 1/2|. This is still far from the optimal result
which is known only in the case when the “cospheres” {ξ : P (ξ) = 1} are
strictly convex.

3. Rockland operators on nilpotent groups. In this section we
study Bochner–Riesz means associated with positive Rockland operators on
a stratified group.We employ standard notations and terminology. A general
reference for this section is the monograph of Folland and Stein [5].

Let G be a stratified group with a dilation structure δt, t > 0. The
homogeneous dimension Q of G is defined by the requirement\

f(δtx) dx = t−Q
\
f(x) dx

where dx is the Haar measure on the group. By |x| we mean a homogeneous
norm on G. A left invariant differential operator L on G is called a Rockland

operator if it is homogeneous of some degree d > 0, that is,

L(f(δtx)) = tdLf(δtx), f ∈ C∞(G),

and for every non-trivial unitary representation π of G the operator π(L) is
injective on C∞ vectors.

A positive Rockland operator L satisfies the following subelliptic esti-
mate proved by Helffer and Nourrigat [7]: for every multi-index I there are
constants C and k such that

‖XIf‖2 ≤ C(‖Lkf‖2 + ‖f‖2), f ∈ C∞
0 (G).

Then L is essentially self-adjoint and its closure is the infinitesimal generator
of a semigroup of linear operators on L2(G) which is of the form Ttf = f ∗pt,
t > 0, where pt is a Schwartz class function (see Theorem 4.25 of [5]). The
homogeneity of L implies that

pt(x) = t−Q/dp1(δt−1/dx).

In our analysis the following estimate established by Dziubański, Hebisch
and Zienkiewicz [3] plays an important role.
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Theorem 3.1. Let L be a positive Rockland operator of homogeneous

degree d and pt the associated heat kernel. Then there are positive constants

a and C such that

|pt(x)| ≤ Ct−Q/de−a|x|d/(d−1)t−1/(d−1)

.

Consider the Bochner–Riesz means Sδ
R associated with the operator L.

In order to prove Corollary 1.4 we require the following estimate on the
Riesz kernel.

Theorem 3.2. Let L be homogeneous of degree d. There is a constant β
such that for large positive values of δ we have the estimate

|Sδ
R(x)| ≤ CRQ/d(1 +R1/d|x|)−δ+β

where the constant C is independent of R.

When L is the sublaplacian on a stratified group, the above estimate has
been proved in Hulanicki and Jenkins [10] by using the functional calculus
for the commutative Banach subalgebra A of L1(G) generated by linear
combinations of pt(x), t > 0. In a later paper [9] Hulanicki proved the
weaker estimate

|Sδ
R(x)| ≤ CRQ/d(1 +R1/d|x|)−δ/3+β

for any Rockland operator. At that time the sharp estimates on the heat
kernel given in [3] were not known for general Rockland operators. A close
examination of the proof in [10] reveals that once we have the estimates of
Theorem 3.2, the main result of [10] (Theorem 1.12) can be proved for any
Rockland operator of homogeneous degree d. We refer to [10] for the details.

Using estimates on the Bochner–Riesz kernel the authors in [10] and [11]
have obtained summability results for Rockland operators. Once we have
Theorem 3.2 the Riesz kernel estimate can be used to prove Corollary 1.4 as
in Section 1, which is a quantitative version of the corresponding theorems
in [10] and [11]. However, our results are still not optimal (see e.g. Mauceri
[14] for the case of the sublaplacian on the Heisenberg group).

Now let π be a representation of G induced from a unitary character of
a normal connected subgroup H of G. Then the operators π(x), x ∈ G, act
on functions on G/H according to the formula

π(x)f(yH) = a(x, yH)f(yH.xH)

where a is a scalar function of modulus one. In [11] Hulanicki and Jenkins
have shown that when L is a Rockland operator of the form

L =
k∑

j=1

(−1)njX
2nj

j



BOCHNER–RIESZ MEANS 227

where Xj , j = 1, . . . , k, generate the Lie algebra of G and π is as above,
then π(L) is a positive self-adjoint operator. They have further shown that
the kernel sδR of the Riesz means associated with π(L) can be expressed as
an integral of the kernel Sδ

R for L and hence proved summability results for
operators of the form π(L).

We can combine Corollary 1.4 with their idea to get more precise quanti-
tative versions of summability results for operators of the form π(L). This is
better explained in the case of Heisenberg group. Recall that the Heisenberg
group G = C

n × R is a two-step nilpotent Lie group with group law

(z, t)(w, s) =

(
w + z, t+ s+

1

2
Im(z.w)

)
.

The vector fields Xj , j = 1, . . . , 2n, and T defined by

Xj =
∂

∂xj
−

1

2
yj

∂

∂t
, Xj+n =

∂

∂yj
+

1

2
xj

∂

∂t

for j = 1, . . . , n and T = ∂/∂t form a basis for the Heisenberg Lie algebra.
The dilation structure is given by the automorphism δr(z, t) = (rz, r2t), and
|(z, t)|4 = |z|4 + t2 defines a homogeneous norm.

Let H = {(0, t) : t ∈ R
n} be the center of the Heisenberg group which is

a normal subgroup. The quotient G/H is then identified with C
n. Consider

the unitary representation π of G on L2(Cn) given by

π(z, t)f(w) = eite(i/2)Im(w.z)f(z + w).

Suppose

L =
∑

i,j

aijXiXj

is a positive Rockland operator on G. Then

π(L) =
∑

i,j

aijX̃iX̃j

where X̃i = π(Xi) which is obtained by replacing ∂/∂t in Xi by i. Note that
L and π(L) are related by

L(eitf(z)) = eitπ(L)f(z).

The Bochner–Riesz mean sδRf associated with π(L) can be expressed in
terms of the kernel of Sδ

R as

sδRf(w) =
\
G

Sδ
R(z, t)π(z, t)f(w) dz dt.

Thus, if sδR(w, z) denotes the kernel of sδR then it is given by

sδR(w, z) = e(i/2)Im(w.z)
\
G

Sδ
R(z − w, t)eit dt.
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Now we can use the estimate on Sδ
R(z, t) to get an estimate for sδR(w, z).

Indeed,

|sδR(w, z)| ≤ CRQ/2
∞\
−∞

(1 +R2|z −w|4 +R2t2)(−δ+β)/4 dt

where Q = 2n+ 2. By a change of variables, we get the estimate

|sδR(w, z)| ≤ CRn+1(1 +R2|z − w|4)(−δ+β+2)/4
∞\
−∞

(1 +R2t2)(−δ+β)/4 dt.

The last integral converges if δ is large and we get the estimate

|sδR(w, z)| ≤ CRn(1 +R1/2|z − w|)−δ+β+2

for such values of δ.

Thus we can get the following corollary to Corollary 1.4.

Corollary 3.3. Let π(L) be as above. Then sδR are uniformly bounded

on Lp(Cn), 1 < p < ∞, whenever δ > 2n|1/p − 1/2|.

A similar transference technique can be used to study Bochner–Riesz
means associated with certain Schrödinger operators on R

n. To do this we
consider the Schrödinger representation ̺ of the Heisenberg group on L2(Rn)
which is given by

̺(z, t)f(ξ) = eitei(x.ξ+(1/2)x.y)f(ξ + y).

Under this representation, the vector fields Xj transform as

̺(Xj) = −
∂

∂ξj
, ̺(Xj+n) = iξj

for j = 1, . . . , n. Thus, if L =
∑

i,j aijXiXj is a Rockland operator, then
̺(L) is an operator of the form

∑

i,j

bij
∂2

∂ξi∂ξj
+

∑

j

cj(ξ)
∂

∂ξj
+ p(ξ)

where cj(ξ) and p(ξ) are polynomials.

Let S̃δ
R be the Bochner–Riesz mean associated with the operator ̺(L).

Then it is given in terms of Sδ
R(z, t) by the equation

S̃δ
Rf(ξ) =

\
G

Sδ
R(z, t)̺(z, t)f(ξ) dz dt.

If we let z = x+ iy the kernel S̃δ
R(ξ, y) of S̃

δ
R is given by

S̃δ
R(ξ, y) =

\
R

\
Rn

Sδ
R(x+ i(y − ξ), t)eite(i/2)x.(y+ξ) dx dt.
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Since

|Sδ
R(x+ iy, t)| ≤ CRn+1(1 +R2|x|4 +R2|y|4 +R2t2)(−δ+β)/4

when δ is large enough we obtain the estimate

|S̃δ
R(ξ, y)| ≤ CRn/2(1 +R1/2|y − ξ|)−δ+β+n+2.

Once we have this estimate the next corollary follows.

Corollary 3.4. Let L and ̺(L) be as above. Then S̃δ
R are uniformly

bounded on Lp(Rn) for 1 < p < ∞ provided δ > n|1/p − 1/2|.

An important and more difficult problem is to prove the summability
theorems for δ > δ(p). In a subsequent paper we will show that the weak es-
timates on the Bochner–Riesz kernel can be used to prove certain multiplier
theorems.
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[3] J. Dziubań sk i, W. Hebisch and J. Z ienk iewicz, Note on semigroups generated
by positive Rockland operators on graded homogeneous groups, ibid. 110 (1994), 115–
126.

[4] C. Fef ferman, A note on spherical summation multipliers, Israel J. Math. 15
(1972), 44–52.

[5] G. Fol land and E. Ste in, Hardy Spaces on Homogeneous Groups, Princeton Univ.,
Princeton, 1982.

[6] W. Hebisch, Almost everywhere summability of eigenfunction expansions associ-
ated to elliptic operators, Studia Math. 96 (1990), 263–275.

[7] B. Hel f fer et J. Nourr igat, Caractérisation des opérateurs hypoelliptiques ho-
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dinger operators, Studia Math. 80 (1984), 235–244.

[12] G. Karadzhov, Riesz summability of multiple Hermite series in Lp spaces, C. R.
Acad. Bulgare Sci. 47 (1994), 5–8.

[13] C. E. Kenig, R. Stanton and P. Tomas, Divergence of eigenfunction expansions,
J. Funct. Anal. 46 (1982), 28–44.



230 S. THANGAVELU

[14] G. Maucer i, Riesz means for the eigenfunction expansions for a class of hypoelliptic
differential operators, Ann. Inst. Fourier (Grenoble) 31 (1981), no. 4, 115–140.

[15] G. Maucer i and S. Meda, Vector valued multipliers on stratified groups, Rev. Mat.
Iberoamericana 6 (1990), 141–154.

[16] B. S. Mit jag in [B. S. Mityagin], Divergenz von Spektralentwicklungen in Lp-Räu-
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