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Summary: Suppose for a homogeneous linear unbiased function of the sam-
pled first stage unit (fsu)-values taken as an estimator of a survey population
total, the sampling variance is expressed as a homogeneous quadratic function
of the fsu-values. When the fsu-values are not ascertainable but unbiased es-
timators for them are separately available through sampling in later stages
and substituted into the estimator, Raj (1968) gave a simple variance estima-
tor formula for this multi-stage estimator of the population total. He requires
that the variances of the estimated fsu-values in sampling at later stages and
their unbiased estimators are available in certain ‘simple forms’. For the same
set-up Rao (1975) derived an alternative variance estimator when the later
stage sampling variances have more ‘complex forms’. Here we pursue with
Raj’s (1968) simple forms to derive a few alternative variance and mean
square error estimators when the condition of homogeneity or unbiasedness in
the original estimator of the total is relaxed and the variance of the original
estimator is not expressed as a quadratic form.

We illustrate a particular three-stage sampling strategy and present a
simulation-based numerical exercise showing the relative efficacies of two
alternative variance estimators.

Key words: Multi-stage sampling, Survey population, Variance estimation,
Varying probability sampling.
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1 Introduction

Suppose a finite survey population U = (1,...,i,..., N) has N first stage units
(fsu) with values y; (i = 1,...,N) of a variable y of interest. Based on a sam-
ple s of fsu’s suitably taken in the first stage of sampling with a probability
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p(s) from U let for the population total ¥ = y; = y; +--- + yy, an esti-
mator be taken in the from

t:ZbSilSiyi' (11)
Here I; =1 if i € s; 0 otherwise; later we shall also use Iy; = Iily; by’s are
constants free of ¥ = (y,..., ¥;, ..., yy). Writing E; as the operator for ex-

pectation over the first stage of sampling, let
Ei(byl;) =1 foreveryiin U. (1.2)

Then, E;(f) = Y i.e. ¢ is unbiased for Y.

Denoting by V; the operator for variance in the first stage of sampling and
by > > the sum over i,j=1,...,N (i # j), we may write, following Raj
(1968),

=D+ D vy, (1.3)

where
ci = Ei(bilq) — 1, ¢ = Ei(bsly — 1)(byly —1).

Let

1) = Z cxilsiyiz + Z Z Cxl'j'lsijyiyj (1.4)

be an unbiased estimator for V() so that
Ey (Csilsi) =c¢, E (Csijlsij) = Cjj. (1~5)

Later we shall use 3_' 3" to denote summing over i, j = 1,..., N, without the
restriction i # j.

In this ‘set-up’ treated by Raj (1968), let y,-values be unobservable but
sampling be carried out in one or more subsequent stages in such a way that
the following conditions hold with E£; and ¥V, as operators respectively for
expectation and variance in the ‘later’ stages of sampling:

(i) There exist estimators r; for y; such that E;(r;) = y;;
i) Vi) = Vi
i

)
) Vi
(iii) r;’s are ‘independently’ distributed;
(iv) there exist estimators v; for V; such that E; (v;) = V;.

Under these conditions Raj (1968) recommended for Y the multi-stage
estimator

e=Y_balgr;

which is ¢ evaluated at “Y equal to R = (r1,...,ry)”. Thus, if we write t =
(s, Y), then e = t(s, R). Let E = E| E, be the overall operator for expectation
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and V = N Ep + E| VL the over-all variance operator. It follows that
E(e) = E\[EL(e)] = Ey(1) = Y. (1.6)

Thus, e is an unbiased estimator for Y. Also

V(e) = KiEL(e) + EyVi(e) = Vi(t) + B (S B3LVi), (1.7)

e) = Z ar? + Z Z Tty (1.8)

which is Vj(¢) evaluated at ¥ = R, and

6) = Z Csils;ﬂ'}2 + Z Z CS,-]-IX,‘jr,-rj (19)
which is v (¢) evaluated at ¥ = R.

Then using (1.2), (1.3), and (1.7), for

- vl + stllslul (110)
we have Ev(e) = V(e) (1.11)

as observed by Raj (1968). This observation led Raj to recommend v(e) as an
unbiased estimator for V' (e).

We may remark that if we write V' = (vy,...,vn), then Y bgl;v; in (1.10)
may be expressed as #(s, V). Thus, Raj’s (1968) multi-stage variance estima-
tion rule for e is

v(e) = v1(t)|y_g + tly_y = v1(t)|y_g + 1(s, V). (1.12)

It may be remarked that Durbin (1953) earlier gave a version of this rule
with ¢ as the Horvitz and Thompson’s (1952) estimator, in particular.

Retaining the above set-up but with the modifications that (ii) and (iv)
above are respectively replaced by (i)’ and (iv)’ where (i)’ V(r;) = ¥V for i in

s; (iv)’ there exist estimators vy; for ¥; such that E; (v;) = V; when i € s.
Rao (1975) recommended for V(e) the estimator

71)1 +Z — GCsi vasl (113)
for which he proved the unbiasedness condition
Ev*(e) = V(e). (1.14)

For the results (1.10)—(1.12) of Raj (1968) and (1.13)—(1.14) of Rao (1975) the
relations (1.1)—(1.5) are all essential. If (1.1) is replaced by

t':t/(s,l’) :as+zb.rilriyi (115)

such that a; #0 but Ej(a;) =0 and (1.2) is retained, that is a ‘“‘non-
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homogeneous” linear unbiased estimator is tried, then (1.10), (1.12)—(1.14)
need not follow. If (1.1) is retained but (1.2) is relaxed, then the probelm of
variance estimation reduces to one of estimating the “Mean Square error”
(MSE) of e, namely,

M(e) = E\E (e — Y)*.
Then,
M(e) = E\Er((e — Ere) + (Ere — Y))*
=E\Vi(e)+ Ei(t— Y)* = E1Vi(e) + My (1),

where M, (1) = Ei(t — Y)?, the MSE of ¢ in the first stage of sampling. This
problem we intend next to address.

Again, if (1.1)—(1.2) are retained and following Rao (1979) the first stage
sampling variance of 7 is expressed as

QZ > dywo (__W_,») : (1.16)

where
Wi # 0 and dij = —E1 (bsjlsj — 1)(b5j15y' — 1)7

then following Rao (1979) again an unbiased estimator of this V;(¢) may be
taken as

71 / i Vi yj 2
752 > dyLwiw; (E_W,- , (1.17)

such that E; (dy;jly;) = dy, then also Raj’s (1968) and Rao’s (1975) methods of
estimating V' (e) shown earlier are not immediately applicable to derive esti-
mators for

V(e) = MEL(e) + E1VL(e)

with V] (¢) asin (1.16), ¢ as in (1.1)—(1.2) unless one tediously re-expresses v;(?)
in (1.17) as a quadratic form in y,’s.

Raj (1956) gave a well-known estimator for Y based on the method of
sampling with probabilities proportional to sizes (PPS) without replacement
(WOR) as briefly described below. Suppose there are numbers p; (0 < p; < 1,
> p;, = 1) called ‘normed size-measures’. Then in PPSWOR sampling distinct
units from U = (1,...,i,...N) in n(> 2) successive draws namely i, ..., i,
are respectively chosen with probabilities

Di, P,
I—Pn’ ,1—171'1—"‘—1"[,,,17

pi17

iyooip=1,...,N (ij # -+ #ip,2 <n<N).
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Then, Raj’s (1956) unbiased estimator for Y is
tp = lit where
D — n = ']

i Vi .
n="L G=yi+t+y = =py = =pp) J=2n

Pi ‘ Pj

For this 7 a simple unbiased variance estimator given by Raj (1956) is

Up = ﬁz(l‘j - lD)z.

J=1

Throwing ¢p and vp into the forms (1.1), (1.4) respectively would be a
tedious exercise needed to apply Raj’s (1968) and Rao’s (1975) variance esti-
mation formulae if this strategy of Raj (1956) is to be extended to cover the
multi-stage sampling situation.

Moreover, it is worthwhile to mention that in a given survey for certain
variables the fsu-values may be “‘ascertainable” but not for some others. For
example, villages may be fsu’s and one may know the number of households
in them classified by the occupations of their principal earners, the numbers of
schools, health care centres, business establishments etc. they respectively have
but one may not know the age and sex-wise distribution in the households of
the villages, the extent of indebtedness of the household members, the house-
hold expenses on their necessities etc. In that case further sampling of the
‘households” which are the ssu’s may be needed to gather village level infor-
mation. In such cases it is useful, for the sake of easy computerised processing
to use a standard uni-stage variance estimator like v,(¢) or vp above to cover
the ‘former set’ and consider its easy modification like (1.12) or (1.13) appli-
cable to cover the ‘latter set’ of variables. But the approaches of Raj (1968)
and Rao (1975) do not readily make it evident that it may really be always
possible to do so.

Bearing these in mind we develop and present some results in the next
section.

2 Developing ‘Variance and MSE-estimators’ in multi-stage sampling

Retaining the conditions (i)—(iv) in Raj’s (1968) set-up it is possible to claim
that “FE) commutes with E;” i.e. E = E|E; = E; E|. But with Rao’s (1975)
approach when (ii), (iv) are replaced by (ii)’, (iv)’ this cannot be the case as we
shall see.

We feel it is worthwhile to verify this commutativity property with one
illustration which we shall utilize in the sequel.

Let us consider a case of sampling in two stages for which a sample of n
fsu’s is drawn from the population of N fsu’s employing the scheme due to
Rao, Hartley and Cochran (RHC, 1962) using known positive normed size-
measures p; (0< p; < 1,i=1,...,N;> p,=1). The ith fsu is supposed to
consist of M; second stage units (ssu) bearing known normed positive size-
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measures ¢; (j=1,...,M;i=1,...,N). From each selected fsu, say, i, a
sample of m; ssu’s is then selected applying the RHC scheme again using these
gii’s — the selection is done independently across the selected fsu’s.

In applying the RHC scheme in the first stage n non-overlapping ‘groups’
are formed at random out of the N fsu’s, the ith group containing N; fsu’s

. N .
(i=1,...,n); N;’s are chosen as integers closest to — subject to >, N; = N;
n

here ), denotes summing over the n groups. From the ith group one fsu is
selected out of the N; fsu’s with a probability proportional to its p-value — this
is repeated independently over the groups.

Writing Q; = p;; + - -+ + p;y, and denoting for simplicity by (p;, y;), the p
—and y-values for the fsu selected from the ith group the unbiased estimator
for Y given by RHC for the single-stage sampling is

tx = zn%yi. (2.1)

Z:njvi2 -N
NN —1)

2 \ 2
it = a(S 2 ) < LA T (2 2). 22)
i ! J

When y; is not ascertainable, from each selected fsu, the ssu’s are independetly
selected by the RHC scheme again. Using somewhat obvious notations we
may write the RHC estimator r; for y; as

I (23)

mi g v

Writing A = , the variance of #g is

Here ), is the sum over the m; groups into which the M; ssu’s in the ith
fsu are to be split up to choose from them a sample of m; ssu’s by the RHC
scheme; (g, y;) — the known normed size-measure and the y-value for the
single ssu selected from the ijth group (j = 1,...,m;) corresponding to the ith
fsu, H; is the sum of the normed size-measure — values over the N ssu’s

. M; .
taken in the ijth group, each N;; taken close to {—} subject to Y, N; = M.
i m i

m;

1
By v;; we shall denote the V;-value corresponding to the jth (j =1,...,N;)
fsu falling in the ith group in choosing the sample of n fsu’s (i = 1,...,n) by
the RHC scheme. Further, we shall denote by E the operator of expectation
for a given grouping and by Ejg that over formation of these n groups.
With this background we have

QA
eR = Zn;;” = tRly-r

for which it follows that

Er(er) =g, Ei(er) = Zri = R, say,
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E(er) = E1Er(er) = Ei(tg) = Y and also,
E(er) = ELE\(er) = EL(R) = Y.

Then,

V(er) = E\Er(er — Y)? = E\ Vi (er) + VIEL(eR)
(5)
_ZnES[(Pi1+"'+Pi,V,)2

,N'l (,,) G (S )

N; N; Ul/ y; 5

-y ES<lepi,> (;}) +A<Z -7

S (VE) ] (25 )
=Z%+A(ZPK§—Z%>+A<Z;—§— Y2)
AZ;+(1—A)ZK+A<ZJ;§—Y2>. (2.4)

On the other hand reversing the order of the operators of expectation we
get

=E + 1 (tR)

V(ew) = ELErlex — Y)* = ELVi(ex) + ViEi(en)
s [A (Z;z_ R2>] L V(R)
) ()
AZPKZ+(1—A)ZK+A<Z%’T—Y2> 23)

From (2.5) and (2.4) our claim that “E}E; = E; E;” is verified in this case.
In some other examples also we checked this to be true. So, from now on we
presume that when (i)—(iv) hold good we have “E\E;, = ELE;”.
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We may however note that if (ii)’ and (iv)’ hold, that is if we intend to
cover Rao’s (1975) approach, then we cannot use this ‘commutativity’. This is
because ¥}, v; depend on s and as such without operating first by E; on terms
involving vy; the operator E| cannot be applied as one may check with any of
the examples treated by Rao (1975).

So, in what follows we shall throughout assume that (i)—(iv) hold and E;
commutes with Ey. Let us present below a few results of interest in the present
context.

Theorem 1. Let (i)—(iv) hold and E\ commute with Ep;

t=1(s,Y) satisfy E\(t) =7Y;

e=1(s,R) satisfy Er(e) =1t.

Then, (a) Ei(e)=R, (b) E(e)=7Y, (c) V(e)=ELVi(e)+ VLEi(e) =
E Vi(e)+> Vi, (d) If there exists any vi(t) = v(s, Y) satisfying E\vi(t) =
Vi(2), then writing v)(e) for vi(t) with Y in the latter equal to R and v for t with
Y in the latter replaced by V, it follows that

v(e) =wvi(e) +v (2.6)
satisfies Ev(e) = V(e).

Proof: Easy and hence omitted.

Remark 1. (2.6) is a generalization of (1.12). For example, ¢ in Theorem 1 may
be chosen as ¢’ of (1.15), 71(¢) may be as in (1.16), v;(e) may be taken in the
form vp in section 1 and in each such case the simple formula (2.6) applies.

To establish our next result let 1 = > b;I; y; for which E| () may not equal
Yie. ‘(1.2) is relaxed’, but let there exist w;( # 0) such that

tequals Y if y; ocw;.

Rao (1979) has illustrated many such situations and from this source we
know that we may write

Mi(t) = Ey(t— Y)2 = %ZI Z/d,-jw,-wj (i}}—’l — %)2
with dj as in (1.16). Then, for e = ) byI;r;, we have
M(e) = E(e — Y)* = E\EL[(e — EL(e)) + (EL(e) — Y)]
=EVi(e) + Mi(2)
and we have

Theorem 2. With dy; as in (1.17) and

1 ! / r; r; 2
mie) =5, Y dujlywiw; <W - W]> 7 (2.7)
i W
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an unbiased estimator for M (e) is

m(e) = ——Z Z dyiiLsiiwi w]< d Uj) —i-zb\,[nvl (2.8)

Proof: That Em(e) equals M (e) follows immediately.

To work out our next result, letting ¢ be as in (1.15) allowing a, = 0 or #0
and relaxing (1.2) suppose we commit negligible errors if we ignore the dis-
crepancies 4 = E|(t) — Y and d = Ej(e) — R, for ¢ and e = t|_; assuming
the sample-size to be large so that for Y, R respectively, t = #(s,Y), e = t(s, R)
may be regarded as ‘asymptotically design unbiased’ (ADU) and ‘asymptoti-
cally design consistent’” (ADC) estimators, in the sense of Brewer’s (1979)
asymptotic approach. Then we have the following proposition.

Proposition:
M(e) = ELEi[(e — Ei(e)) + Ei(e) = Y))
‘approximately equals’
ELEi(e— R+ EL(R-Y) = E Ei(e— R+ Vi
Then, if there exists a function my(¢) such that Eymy(¢f) ‘approximately

equals’ M (z), and my(e) = ma(t)|y_g, then an “approximately unbiased”
estimator for M (e) is T

v(e) = my(e) +as + stilsivi =my(e) + l‘|_y:l/ (2.9)
with a, equal to or not equal to zero. For an illustration let x be a variable
well-correlated with y having values x; and a total X. Let n; = E|(I;) > 0,
T = El (Is[/) > 0,

Aij = 7T — Tjj, Ri(> 0)

be freely assignable constants like

1 1 - T;
X TX;

)

1 1
xi x?

etc. Then, letting

XiRilsi
bR:Zylx : ) ei:yi_bina

S xRl

x: Rt
BR:m E =y,

— Brx;
E Xl-le'n',' ’ ’

the well-known ADU and ADC estimator for Y based on a single-stage sam-
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ple is Cassel, Sdarndal and Wretman’s (CSW, 1976) generalized regression
(GREG) estimator of the form ¢’ as in (1.15) with a; = 0 and is given by

Isi Isi

te = Sy (x— )b
o= (x- Ll

_ Isi Lo

= Z Yigsi— , writing

T
L XiRim;

g=1+[X— i = 35
9: ( ZX 7'C,‘> Z)Cl-zRiﬂ'j

From Sérndal (1982) we know that its approximate MSE is given by

M(t) = ;ZZ"” (g - %)

Sédrndal (1982) has also given 2 estimators for M(¢s) as

2
2ZZAU S’f<a,c,ef ay ) k=12

a;; =1, ay=gy.

Chaudhuri and Maiti (1994) considered the following versions of g,
M (1), mi(tg) when the sample is chosen employing the RHC scheme. They
respectively take the forms

lGr = Z%)ﬁ* <X Zn%x’)bR - Zn%y"h‘“

n 1

Zylxl Q

F; = Vi CRXH Cr = > Di : 5
X;Ri—
> Qi
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_ 2NN
— a formula due to RHC (1962), B =N s N2’ and

2
(1GRr) CZ Z Q’Q/ bkiﬁ_bkjﬁ , k=12,
Pi Pj
— a formula due to Ohlsson (1989),

2 _
C:EﬂNi .
NN —1)

Here ", 5", denotes summing over the distinct pairs of » groups with no
overlap. Corresponding to tg, tgr, mi(tg), m; (tgr), the multi-stage estimators,
applying (2.8) are respectively

I i
eg = Zrigsi;a eGR = Zn%rihsi (2.10)

I
ve(eq) = mi(eq) + Y vigu >, k=12 (2.11)
I

writing my (eg) for my (tg) with Y replaced by R,

vi(eGr) = my(egr) + Zn%vihsi, k=1,2 (2.12)

vi(egr) = my(egr) + Zn%vihsh k=1,2 (2.13)

writing my(egr) for my(tgr) with ¥ replaced by R, and my (egr) for m(tgr)
with Y replaced by R.

In the next section we report certain results that we developed along the
above lines as we needed them to apply in implementing two surveys in Indian
Statistical Institute, Calcutta. There we actually adopted a three-stage sam-
pling scheme in which the RHC scheme was adopted in the first two stages
and a simple random sample (SRS) was taken without replacement (WOR) in
the third stage.

3 Variance Estimation in a three stage sampling scheme

Suppose a sample is to be chosen in three stages. In the first two stages the
selection is by adopting the RHC scheme as described in Section 2; let the ijth
ssu in the ith fsu consist of Tj; third stage units (tsu) and a sample of #; tsu’s be
selected out of these 77 tsu’s by the SRSWOR method.

Using N;’s introduced in Section 2 and also g;;, Hj; etc, let

Zm,» Nyz - M; B — Zm,

A= B
M;(M; 1) Zm, N2
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further let
xl':Z —7)/,]7 e:anxh
1
Hjy
D= gy e X=2 e Z=) 5

writing y;; as the y-value for the kth tsu in the jjth ssu and )", as sum over
the 7; tsu’s in the sample, let

M
wy = 1 I
= Vi Wi = wij.
i j=1

Then, writing E;, V;,i = 1,2, 3, as operators for expectation and variance
respectively for the ith stage of sampling we have,

Ex(xi) = y;, EiExe)=Y, Es(wy) =y, E(z)=x:.
Also, we shall write
Ei = E\(E2E3) = E\Ex(E3) = E\EQEs = E,

the over-all operator of expectation over the three stages of sampling and V'
for the overall variance operator.
Next, let us write

0 2(1 1> 1 ( w,~,~>2

u= =z, n3(wy)=T5|——=]|—= ik — 7 | s
ani o) =T i Ty (fif—l)z" ik

Uz(xi)Bi<E igy?jx12>7 UZ(Zi)Bi<E migéng'zle'z>~

Then, we may observe the following.

M )2
Exvy(x;) = Va(x;) = A; (Zl - )’i2>7

T Yii

- Wizi 2
Vz(Z,‘) = A[ Z— — Wi s

T Ji

M,
Eyvy(zi) = Va(zi), Ex(zi) =wi, V3Ex(zi) = <Z V3(W4‘/))

H,
E3U3(W,-j) = V3(Wjj), E2E3 [Zm
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E\E>E5 (Z |:U2 Z, + Zm, g W,] :|> = V23(Z) = E23(Z - Y)Z.

Eu) =Y,

V(u) = Ens(u—Y)* = ExlE\(u—Y)? = ExlE\(u—2)* + (Z-Y)%.

2
Now, Ej(u—Z)* =4 (Z ;—’ - Zz) and it follows that for

5 Y Q:Q,(%——>2:B<Zn % )

Di ]

and

2
QlQ] Zj Zj
-C It
Z Z Pi Dj
E\(d)) = E\(dy) = E\(u— Z)*.
Then, we have

Theorem 3. Given

:B(Zn%_”z)+z (1;2 (z:) +Z ’g—lvg W,])

and

g gij

2
an Q[Qj <_l %) +Z (Uz Zj +Z _U3 Wl] )
Di J

it follows that Evi(u) = Evy(u) = V(u).

Proof. Easy and hence omitted.

In hitting upon Theorem 3 we applied the approach of our Theorem 1. An
alternative estimator for V'(u) is available following the approach of Raj
(1968) as follows:

Let us express the RHC estimator of the variance of the RHC estimator

for Y namely tg = Zn%yi in the form
pA

1

R) = stilsiyiz + Z Z dsijlsijyi){, so that

Ei(dily) = E: (Zn <§)> 1
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Let v, lR Z dstlstx + Z Z dS!IISlex/
- Z dsilsiz,'z + Z Z dYUIVyZiZj

v5(z;) = va(zi) — By <ZMMU3(WU)>_

9ij
Then we have

Theorem 4. Given

Zdwlwv3 Z gvé Zl +Z <Q1> U3

it follows that Ev(u) = V(u).

Proof:

Esvs(tr) = va(tr) + Z dyil,i V3(z;)

Es<zn%vé<z»>zn%l&<z =)

mi
g[/

So E3U IR —|—Z —Uz x, +Z <Ql)

E>Esv(u) = v (tR) +ZdewV2 X; +Z *Vz (x:)

+Z (1Q7l> ErV3(z:)

1

So, Ev(u) = E\[E;E3v(u)] = Ervi(tr)
LB [Z dilaVals) + 30,2 Vz(xf)}
TEY ( > EVi(z
a8
£ (3) et

+ E}
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This is because

E; [Z dyli Va(x;) + Zn <%> Vs x,.)]
(Z(g) Va(xi) - Z Va(x) ) +5 ( )Vz x)
(@] o[i(.2)

V(u) = E\EsEs(u— Y)? = Ey[E>Es(u — Exsu)? + (Essu — Y)?

:El

:El

So, finally,

= Ei(tr — Y)* + E1[Va3(u)]
A(5,24) + 5(.(2) )

Remark II. There seems to be no guarantee that v;(u), va(u), v(x) must be
non-negative for every sample of observations.

In the Section 4 below we shall numerically examine the relative efficacies
of two alternative estimators v () and v(u) for the variance V' (u) through a
simulation exercise.

= Vl(lR)—l-El :Ev(u).

4 Relative efficacies of two variance estimators in a three stage sampling

In two different surveys carried out at the Indian Statistical Institute, Calcutta
the above-mentioned three stage sampling was implemented. In one of them
the variance estimator vy () and in the other v(u) was applied as is reported
for the two surveys. To compare the relative efficacies of v; (1) and v(u) we
consider it useful to apply certain performance criteria which may be eval-
uated only if certain details are used for numerical calculations. So, we con-
sider it appropriate to undertake a simulation study.

Let us consider certain fictitious data relating to a district composed of 10
administrative blocks. The blocks are taken as the fsu’s and they are supposed
to be composed of a number of villages which are the ssu’s. The households
(hh) in the villages are the tsu’s. Some details are given in Table 1.

The number of villages in a ‘block’ is taken as its size-measure; using this
applying RHC scheme 4 blocks are sampled. Using the number of people in a
‘village’ as its size-measure, from each selected block, 22 percent of the vil-
lages, rounded up to the nearest integer, is sampled applying the RHC scheme
again. A 4 percent, rounded up to the higher integer, sample of households is
taken by SRSWOR method from each village.

The purpose is to estimate the total population in the district. Note that
though the size-measures are chosen in the manners described, the total pop-
ulation Y = 271986 will not be estimated free of error because the households
are chosen by SRSWOR method. To compare v|(u) with v(u) we repeat the
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Table 1. Composition of 10 blocks in a district

A. Chaudhuri et al.

Serial Number of Total Serial Number of Total

number villages in population number villages in population

of block blocks in blocks of blocks blocks in blocks

1 39 23239 6 59 33624

2 30 22253 7 56 31373

3 55 32756 8 41 21435

4 51 29074 9 33 19219

5 60 35079 10 42 23934

Total 271986

Table 2. A summary of efficacy of v (u) vs v(u)

Serial Number of ACP ACV Percent of RE =100 x bl—(u)

number replicated using using replicates for the last 101’(u)

of ‘s.et’ of samplesin v (1) o(u) vi(u)  o(u) giving vy (u) replicates in the

replicated  the ‘set’ less than v(u)  geg

samples

1) @ G @ ©6 © O ®)

1 300 94.34 92,67 555 553 54.67 107.67, 98.49
104.06, 100.43
111.82, 98.57
86.50, 111.00
90.53, 89.89

2 300 9533 95.00 557 554 58.00 81.10, 92.10
93.48, 103.89
106.98, 76.06
88.88, 115.21
84.48, 94.84

3 400 97.00 96.75 559 558 54.50 102.22, 100.12
96.44, 81.83
02.83, 100.05
75.58, 97.89
123.26, 97.57

Total 1000 9570 95.00 557 555 55.60

drawing of the sample a total of F = 1000 times divided into 3 disjoint sets of
300, 300 and 400 replicates. Writing w for v; (1) and v(u) in turn we calculate
the percentage of replicates for which the intervals (# — 1.96y/w, u + 1.96,/w)
cover the value of Y. Each interval has a nominal confidence coefficient of 95
per cent assuming normality. This realized per cent is called the ACP — the
actual coverage percent. Also, we calculate the ACV, the average coefficient
of variation. This is the average, over the F = 1000 replicates of the value of

N

x 100. This reflects the length of the confidence interval. Between v; (u)

and v(u) that one is preferable for which the ACP is closer to 95 per cent and
the ACYV is smaller. The actual simulated findings are shown below in Table 2.
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vi(u)
v(u)
out of each of the 3 sets of replicates of samples numbering 300, 300 and 400
mentioned above to illustrate the efficiency of v(u) relative to vy(u) — the
smaller it is the better the one proposed by us relative to the one given by Raj
(1968).

Here we also indicate the values of RE = 100 x

for the last 10 replicates

Remark III. Each replicate gave us positive values for vi(«) and v(u).

Conclusion: The two variance estimators tried turn out quite competitive and
adequately effective. In an actual survey both should be calculated and a
confidence interval may be reported in terms of the one for which its length
happens to be shorter. Our method at least provides a serviceable competitor
against Raj’s (1968).

Acknowledgment: The authors gratefully acknowledge the helpful comments on an earlier draft
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