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A POISSON PROCESS APPROACH FOR RECURRENT

EVENT DATA WITH ENVIRONMENTAL COVARIATES

Abstract. We present a Poisson process formulation for studying the associ-
ation between environmental covariates and recurrent events. The standard
methods, which compare the covariate values (at event times) of the indi-
viduals having the event with those of the individuals at risk at that time,
cannot accommodate environmental covariates, because they are identical
for all individuals at risk. We suggest a 
exible parametric model and a con-
ditional likelihood analysis. We illustrate our method through an analysis of
data on multiple hospital admissions for chronic respiratory disease in King
County in relation to air pollution indices.

Keywords. Recurrent event data, Environmental covariates, Conditional
likelihood analysis, Chronic respiratory disease, Case-crossover design.

2



1 Introduction

Recurrent events (or failures) occur frequently in studies in which the failures
are not necessarily fatal (Kalb
eisch and Prentice, 1980, p179-182). Exam-
ples include asthmatic attacks, epileptic seizures, hospital admissions, etc..
A point process formulation is commonly used to describe and analyse such
data. Regression analysis in this framework, in which the intensity rate of the
point process under consideration is modeled as a function of covariates or
covariate processes (time dependent covariates), has attracted a lot of atten-
tion since the �rst paper by Prentice et al. (1981), who considered a partial
likelihood approach with arbitrary baseline intensity rates. There has been
work on robust regression analyses of recurrent event data using the point
process formulation, which, instead of modeling the intensity rates, models
some other \marginal" quantities thus avoiding strong assumptions on the
recurrent event process. See Wei et al. (1989), Pepe and Cai (1993) and
Lawless and Nadeau (1995) for such work. These approaches focus on sub-
ject speci�c covariates requiring multiple subjects and fail for environmental
covariates as they are the same for all the subjects at any event time.

Recent work on environmental covariates has focused on the use of gen-
eralized additive models for investigating associations between indices of air
pollution measured at central monitoring locations and daily counts of events
such as death or hospital admissions (Schwartz, 1993, 1994; Moolgavkar et
al., 1999a). This approach fails to incorporate between subjects variation in
the baseline parameters and subject speci�c covariates, if any.

Our work here focuses on a model that views the data on each subject
as the realization of a point process, the intensity rate of which depends on
the environmental covariates. This point process formulation allows us to
incorporate subject speci�c covariates and also the previous history of the
process. Speci�cally, we make a Poisson process assumption in section 2 and
derive relevant likelihood functions for estimating the regression parameters
under di�erent assumptions on the baseline Poisson intensity. In section 3, we
illustrate our method by means of an example of air pollution and hospital
admissions for chronic respiratory disease as primary diagnosis. Section 4
ends with discussion.
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2 Maximum Likelihood Estimation

First we describe a general development of the point process approach for
analysing recurrent event data. For this development, let the covariate pro-
cess consist of all the subject and environment speci�c covariates, some of
which may be time dependent and random as well. We denote this, in gen-
eral, by Xt, the vector of values of the covariates at time t, with xt being
the corresponding observed values. Let the point process be denoted by
fN(t); 0 � t � �g, where the process is assumed to be observed over the
period (0; � ], and de�ne Ht = fN(s); s � tg as the \history" of the process
up to time t including information on the covariate process. The intensity of
the process �(t; Ht) is de�ned by

�(t; Ht) = lim
dt#0

"
PrfdN(t) = 1jHtg

dt

#
; (1)

where dN(t) denotes the number of events over the small interval [t; t+ dt).
The probability distribution of the point process can be given in terms of
�(t; Ht). In particular, the likelihood contribution from each subject (pro-
cess) having d events at times t1 < � � � < td over the period (0; � ] is2

4 dY
j=1

�(tj; Htj )

3
5� exp

�
�
Z �

0
�(t; Ht)dt

�
: (2)

The central aspect of analyzing recurrent event data by point process
approach is to model the intensity �(t; Ht) judiciously to be able to make
inference on the e�ect of Xt on the occurrence of recurrent events without
losing much 
exibility in the baseline intensity. Let us �rst consider a simple
model, that of a non-homogeneous Poisson process, for which the intensity
for the ith process (subject) with Xt = xit is

�(t; Ht) = �(t; xit) = �iexp[x
T
it�] ; (3)

so that the baseline intensity �i varies from subject to subject but is indepen-
dent of time and the relative risk parameter �, which is of primary interest,
remains the same over all subjects. Using (2), this leads to the likelihood
function

nY
i=1

8<
:�dii

0
@ diY
j=1

exp
h
xTitij�

i1A exp

�
��i

Z �i

0
exp[xTit�]dt

�9=
; ; (4)
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where n is the number of subjects under study, with the ith subject being
observed over the period (0; �i], di is the number of events on the ith subject
at times ti1 < � � � < tidi , for i = 1; � � � ; n. This results in the estimate of �i
for a given � as

�̂i(�) =
diR �i

0 exp[xTit�]dt
;

for i = 1; � � � ; n. Putting this back in (4), we get the score equation for � by
di�erentiating

nY
i=1

8<
:
Qdi

j=1 exp
h
xTitij�

i
(
R �i
0 exp[xTit�]dt)

di

9=
; : (5)

Thus, maximization of (5) gives the maximum likelihood estimate of �,
namely �̂. In the presence of large number of nuisance parameters (�i's),
large sample properties of �̂ may be in question. However, one can view (5)
as a conditional or partial likelihood of the data given (d1; � � � ; dn) in which
case the large sample properties are similar to those from the full likelihood
(Kalb
eisch and Sprott, 1970; Cox, 1975). Note that individual subjects can
enter the study at di�erent times and the likelihood (5) remains the same
except the range of integration in the denominator changing accordingly.

Note that the likelihood (5) incorporates environmental covariates sucess-
fully, but it depends on the model (3) which assumes time independent base-
line intensity �i although allowing for heterogeneity between subjects. In-
terestingly, the Poisson process formulation allows one to incorporate some
limited amount of time dependence in the �i's. Assume the �i's, as function
of time t, to be piecewise constant over the period (0; �i] as in the following:

�i(t) = �il for t 2 Iil = (�i;l�1; �il]; for l = 1; � � � ; Ki; (6)

with 0 = �i0 < �i1 < � � � < �iKi
= �i being prespeci�ed. Let dil denote the

number of events for the ith subject in Iil. We shall call these intervals Iil's
`strata' from now on as they describe a partition of the observation period in
such a way that the baseline intensity for an individual is di�erent in di�erent
strata, but the same within a stratum. Since the events in disjoint strata
Iil's are independent (because of the Poisson process assumption), one can
form a conditional liklihood, given dil, of the form given inside the braces in
(5) corresponding to each of the strata Iil's, and then take product over all
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the (i; l)'s. This results in the likelihood given by

nY
i=1

KiY
l=1

8><
>:
Qdil

j=1 exp
h
xTitilj�

i
�R

Iil
exp[xTit�]dt

�dil
9>=
>; ; (7)

where tilj is the occurrence time for the jth event in Iil for the ith subject.
Note that, although this kind of limited time dependence of the baseline in-
tensity may not be satisfactory in light of their total arbitrary nature in the
work of Prentice et al. (1981) and others dealing with subject speci�c covari-
ates, this approach is 
exible enough to allow between subject heterogeneity.

It is interesting to note that the likelihood (7) can also be derived, as
for (5), by �rst �nding estimates of �il's from the full likelihood (see (2)
and (4)), for a given �, and then putting them back in the full likelihood.
This approach is reminiscent of that of Breslow (1974) for Cox's propor-
tional hazards model, which coincides with Cox's likelihood for regression
analysis with simple survival data (Kalb
eisch and Prentice, 1980, p76-79).
In this approach, the strati�cation is done based on the observed failure
times. With environmental covariates, this approach leads to a reasnable
likelihood to base inference on, whereas Cox's partial likelihood fails, and
this can be easily applied to recurrent event data, as seen in the derivation
of (5). This approach also extends easily to some non-Poisson processes as
will be discussed in section 4.

In special case when �i is same for all the subjects and the strata Iil's are
also the same (the �il's need not be same), the likelihood (7) takes a simpler
form given by

KY
l=1

8<
:

Q
i2Dl

exp
h
xTitil�

i
Q

i2Dl

�R
Il
exp[xTit�]dt

�
9=
; ; (8)

where K is the number of strata, Dl denotes the set of subjects having events
(one subject may have more than one event) in the lth common stratum Il at
times til's. More speci�cally, if there are no subject speci�c covariates (only
environmental covariates), then, writing xit as xt for the covariates at time
t, (8) reduces to

KY
l=1

8><
>:
Q

i2Dl
exp

h
xTtil�

i
�R

Il
exp[xTt �]dt

�dl
9>=
>; ; (9)

where dl = jDlj, for l = 1; � � � ; K.
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The independence of events in disjoint strata can also be used to deal
with missing data in the covariates. The idea is to form a collection of
disjoint intervals in such a way that the data is available in this collection
and missing outside it. One can decide on a partition with a certain number of
strata beforehand, and then, within each stratum, a collection of intervals, as
above, is considered. The Poisson process assumption allows one to consider
the conditional probability of observed data in a collection like this in each
stratum, given the total number of events in the collection. In the example in
section 3, we considered di�erent types of partitioning or strati�cation and,
in each stratum, formed the collection of intervals in this way (as described
above) to deal with missing data, and used the likelihood (9) with Il denoting
the collection in the lth stratum.

Although the above modeling of time dependent baseline intensity seems
simple and natural, it is diÆcult in practice to decide on the partitions,
Il's. There is clearly a trade-o� between model 
exibility in going to a large
number of strata and loss of information. From the numerical work in section
3, the regression parameter estimates seem to be sensitive to the choices of
partitions. Clearly, optimal partitioning will depend on temporal and cyclical
trends in the covariates.

3 Example: Air Pollution and Hospital Ad-

missions in King County

We illustrate the method by applying it to the analysis of hospital admissions
for chronic respiratory disease in King County over the period 1990-1995. We
considered the cohort of individuals admitted in 1990 to a King County hos-
pital with a primary diagnosis of chronic respiratory disease (ICD-9 codes
490-496). For this cohort of individuals, we constructed a history of hos-
pitalizations over the entire period 1990-1995. Our data then consisted of
5362 admissions for 1867 individuals. We obtained air pollution and weather
information on a daily basis over this period of time from central monitoring
locations. Details of this data can be found in recent publications (Sheppard
et al., 1999; Moolgavkar et al., 1999a,b). Among the air pollution variables,
we were particularly interested in carbon monoxide, PM10 (particulate mat-
ter less than 10 microns in diameter) and an index of light scattering (LS)
measured by nephelometry, which is a surrogate measure of �ne particles.

7



We chose these indices of air pollution for our analyses because they had
been shown in previous analyses (Sheppard et al., 1999; Moolgavkar et al.,
1999a,b) to be associated with respiratory admissions.

We analyzed the data by maximizing the likelihood (9) using �ve distinct
strati�cations of the time period: a single stratum over the entire period
(same as Navidi, 1998), 6 strata corresponding to each of the years 1990-
1995, 25 strata representing distinct seasons as de�ned below, 72 strata cor-
responding to each month in the six-year period of interest, and 144 strata,
two for each month. The seasonal strata were de�ned as follows. Winter was
December together with January and February of the next year. Spring was
de�ned as March, April and May. Summer was June, July and August. Fall
was September, October and November. In addition to the pollution covari-
ates with various lag times, we also included temperature and day of week
in our analyses. Day of week has been shown in previous analyses to be an
important predictor of hospital admissions. We used six indicator variables
for day of week. We controlled temperature in one of two ways: either by a
linear model, with a distinct slope for each season, or as a cubic polynomial.

We tried various lags for the covariates. Temperature with a three day
lag appeared to be the strongest predictor of hospital admissions and all
our subsequent analyses were done with this lag for temperature. Previous
analyses of these data had indicated that the strongest e�ects were seen with
lags of 3, 1 and 0 days for PM10, LS and CO, respectively. We present our
results in tables 1 and 2 with these lags for the pollutants. We found both
day of week e�ects and temperature e�ects in these data. Table 1 presents
the results of models with temperature controlled linearly. Table 2 presents
the results of analyses with temperature controlled using a cubic polynomial.

In single pollutant analyses, it is clear from tables 1 and 2 that both
measures of particulate matter (PM10 and LS) and CO are associated with
hospital admissions. Although the results are somewhat sensitive to the
method used for controlling temperature, in general the e�ect of particulate
matter is stronger than that of CO in the multipollutant models. This re-
sult is inconsistent with other recent analyses of the same data (Moolgavkar
et al., 1999a,b), which �nd that the e�ect of particulate matter becomes
insigni�cant when CO is simultaneously considered in the analyses. This
inconsistency is troubling because it precludes any conclusions regarding the
speci�c component of air pollution that may be responsible for the association
with hospital admissions. The only conclusion that can be drawn collectively
from these various analyses is that air pollution is associated with hospital
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admissions for chronic respiratory disease.

Table 1. Parameter estimates with temperature controlled linearly

Covariates Strati�cation Type
One 6 25 72 144

stratum strata strata strata strata
LS .3134* .1033* .1166* .1009* .1075*

(Light scattering) (.0318) (.0322) (.0344) (.0356) (.0398)
PM10 .0085* .0029* .0021* .0025* .0027*

(.0009) (.0009) (.0009) (.0010) (.0011)
CO .2657* .0620* .0528* .0543* .0513

(.0219) (.0230) (.0238) (.0247) (.0264)
LS .1797* .0842* .1053* .0891* .0983*

(.0371) (.0360) (.0378) (.0387) (.0417)
CO .2016* .0335 .0210 .0232 .0232

(.0271) (.0279) (.0289) (.0296) (.0309)
PM10 .0069* .0027* .0019* .0024* .0027*

(.0009) (.0009) (.0010) (.0010) (.0011)
CO .2070* .0337 .0321 .0363 .0322

(.0250) (.0260) (.0270) (.0277) (.0298)
Note: The �gures in parentheses are standard errors and * indicates signi�cance

at 5% level.

The results are sensitive to the particular strati�cation used. It is clear
that temporal trends and seasonal variations in the covariates, which the
strati�cation attempts to control, will a�ect the results of analyses. It is
not clear what the optimal strati�cation scheme should be. The baseline
intensity, which includes the e�ects of covariates not considered in an anal-
ysis, should remain constant within strata. Thus, it is likely that di�erent
schemes will be optimal for di�erent pollutants and for di�erent geographic
locations.
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Table 2. Parameter estimates with temperature controlled by a cubic poly-
nomial

Covariates Strati�cation Type
One 6 25 72 144

stratum strata strata strata strata
LS .3007* .1349* .1229* .1153* .0998*

(Light scattering) (.0320) (.0325) (.0343) (.0359) (.0399)
PM10 .0077* .0035* .0025* .0023* .0021

(.0009) (.0009) (.0009) (.0010) (.0011)
CO .2303* .0708* .0632* .0564* .0532*

(.0205) (.0218) (.0234) (.0247) (.0264)
LS .1699* .1076* .0999* .0946* .0862*

(.0377) (.0363) (.0374) (.0387) (.0416)
CO .1715* .0435 .0423 .0416 .0351

(.0247) (.0253) (.0268) (.0285) (.0297)
PM10 .0058* .0032* .0022* .0021* .0022*

(.0009) (.0009) (.0009) (.0010) (.0011)
CO .1965* .0504* .0582* .0435 .0373

(.0225) (.0234) (.0250) (.0262) (.0282)
Note: The �gures in parentheses are standard errors and * indicates signi�cance

at 5% level.

4 Discussion

The likelihood (5) compares the covariate values at failure times of an indi-
vidual with those at other times, as is intuitively required for environmental
covariates. In practice, the covariate data is not collected continuously in
time and, therefore, the integrals in (5), (7) and (9) need to be approximated
by an appropriate sum. With only one failure for each subject and no time
dependence in baseline intensity, the approximate form of the likelihood (5)
coincides with the likelihood for the case-crossover design (Navidi, 1998).
However, for multiple failures per subject, Navidi's likelihood is numerically
more diÆcult than (5).

Because of the Poisson process assumption, the events in successive strata
are independent and, therefore, e�ectively treated as independent processes
or individuals with di�erent baseline intensities. In practice, it may be rea-
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sonable to allow for some dependence between events in successive strata
corresponding to a particular process or individual. For example, the events
in a particular stratum, given the events in earlier strata, may be assumed to
follow a Poisson process with intensity depending on the events (e.g., total
number) in earlier strata. If this dependence can be modeled through only
the baseline intensity, then we still have the likelihoods (7)-(9) with terms
corresponding to successive strata being interpreted as conditional probabil-
ities.

However, Breslow's approach, referred to in section 2, can be applied for
some non-Poisson processes. For example, if the baseline intensity �0(t) is
modeled as a linear birth rate, �0(t) = (n+1)�i, for the ith individual, where
n = Ni(t�), the number of events before time t in ith individual and �i > 0.
Then, following the same derivation as (5), one can obtain the likelihood for
the regression parameters as proportional to

nY
i=1

8><
>:

Qdi
j=1 exp

h
xTitij�

i
�Pdi+1

j=1 j
R tij
ti;j�1

exp[xTit�]dt
�di

9>=
>; ;

where the notation is as in (5) with ti;di+1 = �i. If �i can be assumed to be
equal for all i, then this likelihood takes the form

Qn
i=1

Qdi
j=1 exp

h
xTitij�

i
�Pn

i=1

Pdi+1
j=1 j

R tij
ti;j�1 exp[x

T
it�]dt

�Pn

i=1
di

:

One can also deal with some semi-Markov models using the above approach.
Suppose �0(t) is modeled as

�0(t) = �(t� tNi(t�)) = �il; if t� tNi(t�) 2 Il;

for l = 1; � � � ; K, and for the ith individual, where the Il's represent a parti-
tion of the range of interoccurrence times and tNi(t�) denotes the last event
time before t in ith individual. Then the likelihood for the regression param-
eters is

KY
l=1

nY
i=1

8><
>:
Q

j2Dil
exp

h
xTitijl�

i
�R

Sil
exp[xTit�]dt

�dil
9>=
>; ;

where Dil denotes the set of dil events for the ith individual having time since
last event in Il with the event times tijl; j 2 Dil, and Sil = f0 < t � �i :
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t � tNi(t�) 2 Ilg, the subset of (0; �i] where the time since last event for the
ith individual lies in Il. As before, if �il can be assumed to be equal for all
i, then this likelihood takes the form

KY
l=1

Qn
i=1

Q
j2Dil

exp
h
xTitij�

i
�Pn

i=1

R
Sil

exp[xTit�]dt
�Pn

i=1
dil

:

In the above semi-Markov model, we need to assume that an event occurs at
time 0, or the time since last event is known at time 0. Since events in non-
overlapping intervals are generally not independent (as in Poisson process),
dealing with missing data is diÆcult with non-Poisson models as above. Also,
the above likelihoods for non-Poisson models cannot be viewed as conditional
likelihood as those in section 2.
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