10

Short Papers

[EEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 19, NO. 9, SEPTEMBER XNi)

Synthesis of Symmetric Functions for Path-Delay Fault
Testability

Susanta Chakrabarti, Sandip Das, Debesh K. Das, and
Bhargab B. Bhattacharya

Abstract—A new technigue of synthesizing totally symmetric Boolean
functions is presented that schieves complete robust path-delay Fault testa-
bility. We show that every consecutive symmetric function can be expressed
as a logical composition (e, AND, NOR) of two unate symmetric func-
tions, and the resulting com posite circuit can be made robustly path-dday
fault testable, if the constituent unate functions are synthesized as two-level
irredundant circuits, Nonconsecutive symmetric functions can also be syn-
thesized by decomposing them into a set of consecutive symmetric func-
tions, The circuit cost of the proposed design can further be reduced by a
novel alpebraic factorztion technigue based on some combinatorial clues,
The overall synthesis guarantees complete obust path-delay Bault testa-
bility, and can be completed inlinear time. The results shows that the pro-
posed method ensures a significant reduction in hardware, as well o in the
number of paths, which in turn, reduces testing time, as compared to those
of the best-known earlier methods,

Index Terms—Delay faults, symmetric Boolean functions, synthesis-for-
testability.

I INTRODUCTION

Failures that canse logic circuits to malfunction at the desired clock
rate and violate timing specifications are modeled as delay faults. A cir-
cuit is said to have a path-delay fault, if the total delay along some path
of the circuit exceeds the system clock interval [1], [2]. For each phys-
ical path, connecting a primary input to a primary output of the circuit,
two logical paths (rising and falling) are usually considered. Detection
of a path-delay fault requires a two-pattern test, and this test is said to be
et if it cannot be invalidated by the presence of other delay faults
in the circuit. A circuit is robustly delay festable if and only if every
path-delay fault has a robust test. For some Boolean functions, there
may not exist any two-level realization which is robustly delay testable.
To synthesize for delay fault testability, several approaches [3|-[10]
were proposed, such as constrained two-level minimization procedure
3], [4]. and use of control variables [5]—[7]. It has been shown that,
two-level realizations of most of the symmetric functions are not fully
robust testable even if they are prime and irredundant [9]. Transforma-
tion techniques are needed to make them delay testable using three-
or four-level circuits [7]. Symmetric Boolean functions often appear in
logic design [11], and are widely used in cryptology [ 13], [14].
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In this paper, we address the synthesis problem of totally symmetric
functions for rofust path-delay fault testability using unate decompo-
sition followed by a factorization technique. The proposed synthesis
method guarantees 100% path-delay fault testability, and can be com-
pleted in linear time. It leads to a significant reduction of circuit cost
in terms of amount of logic and path count as compared to earlier tech-
niques [4], [9].

Il. PRELIMINARIES

Let Flay, e, oon ) denote a switching function of n Boolean
variables. A vertex {minterm)is a product of literals in which every vari-
able appears once. The weight v of a vertex v is defined as the number
of uncomplemented literals that appear in «. Let . be a set of prime
implicants that covers all 1-vertices (true minterms) of f. The cover
i5 said to be minimal, if no subset of 7 is also a cover of §. The logical
sum of the elements in ¢ is a sum-of- products (s-o-p) ex pression of [
The cover (7 is said to be minimum, if there exists no other cover of f
with fewer prime implicants than €, Let £7 be an implicant in a cover
7, and v, avertex in F. A vertex v is said to be a relatively essential
vertex of F,if there exists no other implicant in (7 that also covers «.
A switching function [(rp. e, .. 1 is said to be totally syimmetric

with respect to the literals Do, s, .o 3 i it s invariant under any
permutation of the literals [11]. Total synunetry can be expressed in
terms of aset of integers (called a-numbers) A — (.00, 8,000,
where A C {1.1,2,.... o by all the vertices with weight w0 £ 4 will
appear as true minterms in the function. Ane-variable symmetric func-
tion is denoted a8 5™ [a;. .. .. ..., 9p ) For o variables, we can con-
struct 271 — 2 totally symmetric functions (excluding constant fune-
tions 0 and 1). A symmetric function is said to be consecutive, if the
set -4 consists of only consecutive integers fip, oy oo .- - a1, and is
denoted by 5" (-0,

Each prime implicant of a consecutive symmetric function
S g ) consists of exactly (v o, | w0y literals, out of which .,
literals are in the true form, and v — i) literals are in the comple-
mented form. Further, the mininum cover of 5" {a-u,} consists of m
prime implicants, where rr — x| ( :’r T Li 2.

A totally symmetric function 570 4% can always be expressed
uniquely s a union of maximum consecutive symmmetric functions,

such that 8™ (4) — 8" (A 14+ 8" (414 - -+ 574, 1, such that
ne is minimum, and 9,001 < S0 < e 12 = 8 whenever
i %5 [12]

Example I: The symmetric function 51,2, 5. 6. 7. 9. 1) can be

expl'essedus.ii”[l,:z_] + 55,6, 71— 509, 100, where 57701, 2],
S0a06,7, and FY00, 100 are maximum consecutive symmetric
functions.

M. SYNTHESIS OF CONSECUTIVE SYMMETRIC FUNCTIONS TO
ACHIEVE ROBUST TESTABILITY

It has been shown [9] that a two-level irredundant circuit realizing
a minimum cover of a consecutive symmetric function 5% (ai-2.1, is
robustly testable for all path-delay faults if and only if 1) 22 — 0,
ora, = noor 2y i3 = (7 ) If the above condition is not sat-
isfied, the number of untestable paths in the circuit becomes at least
[0y~ 07004 1] - mindag, v — o Complete robust testability
can be achieved by designing a three- or four-level circuit obtained via
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Fig. 1. Robustly testable circuit for Case 1) and Case 2).

factorization. We here propose a new and cost-effective technique for
synthesis.

The proposed method of synthesizing 57 {we-n, ), for full (100%)
robust path-delay fault testability is based on the following three key
observations:

I} 3™ (ag-n-1 is unate if o; = b, 00 0. = 3
2b a two-level irredundant AND-OR realization of a unate sym-
metric function is fully robust delay testable. If «; — «,, then
each minterm will be a prime implicant by itself, and a min-
imum two-level realization will be 100% robust testable since
e
every consecutive symmetric function 5" (w2 o,
where ny 2 (o, & e, can be expressed as a logical composi-
tion {e.g., AND, NOR} of two consecutive symmetric functions
which are unate, and the resulting composite circuit realizing
% (ag-2,1 is 100% robustly delay fault testable.

3

e

AL Svnihesis Teclnig e

The following theorem captures the proposed composition tech-
nique.

Theorem £: 57 (e Lo 22 0,0 <0 v, can be expressed as a com-
position of two unate and consecutive symimetric functions as follows:

1) &% e = 55 (irpeng, o

) e = B 0oy 1+ S gy

3 e ) — F et S )

4y S p-re) = 500 - 8T (o-a )

S, -y

Proof: For Case 1), clearly, the functions 5" [ap-r.) and
S"la. y-0, 0 are unate. Now, the a-numbers of these two functions
are (0,0 =1, . ..ojand (¢ 4 L.... 0} respectively. Therefore for the

right-hand side, the a-numbers of the composite function

= qp-numbers of 57, 1

For cases 2)-4), similar arguments will apply. [ ]

The schemes of the circuit for cases 1) and 2) are shown in Fig. 1a)
and (b} respectively.

Evample 2: An iredundant two-level realization of 554, 5;
is not robustly delay testable. In our proposed technigue of
synthesis-for-testability, it is  implemented as per Case 1),

17

Twa-level iredundant
——— ANDHOR realization of
| &(4, 3 4

—| using eapression - {1a)

Eal P U R

L

54,5

el

il

Fig. 2. Robustly testuble circuit for 5901, 5.

Fhyn = S""-;-l..';.[j‘.ﬁ}"‘-.'[j:. The minimum s-0-p expression
of §%d. 5t and 5507 are given by

SG |"']..= :.'i.. 6] — L L + At a3
e R TR P o S O N A S S Pe VI P Y
B UL T o T S L T P R S L B L O LN
+ POt B T o Ry o o O o T P + T L S
| wararsre | orprergra |orergess (la)
and

FU6) = e s,

The testable circuit for (-, 5] is shown in Fig. 2.

Theorem 2: Any consecutive symmetric function 5™ 20, 0, Loy 7
i, |, implemented as above, is robustly path-delay fault testable.

Prooft Case I): Let o»{ay) represent a vertex with weight ;.
Consider the circuit of 5" {ap-a. 0 as in Fig. 1 {a; £ a-) The
functions &% {ar-2,. 7 and §% (0, -a.) are unate. Both have only
uncomplemented variables in their minimum covers. Therefore,
each wertex wio¢) [elee—pi} I8 a relatively essential vertex in
Sy VLS (g -y 0 Comversely, in each prime implicant of
S¥ e {8V 0 -d, 1), there exists a vertex via i uiae; 1}
which is essential.

Therefore, the subcircuit 1 (subcircuit 2) is robustly path-delay fault
testable for all paths enumerating from the inputs up to the line I7{17}.
For rising [respectively, falling] transitions in the subcircuit 1, the
test set consists of all ordered pairs, [+(~:=p ), va) ) [respectively,
Vetigd, elig=_0 4] that lie at unit Hamming distance. Similarly, for
subgeircuit 2, the test pairs are of the form {viac ) efa, 3} for rising
transitions, and {via, 32 (e, 1} for falling transitions.

We can now prove that the overall circuit is robustly testable. Since,
iri += 0, forallthe vectors of weighto, | and vy, the logic value at V7 is
zeroand, hence, the line 17 is setto 1 which is the noncontrolling value
forthe AND gate. Hence, all paths through the subcircuit 1 are robustly
testable at the circuit output #. On the other hand, for all vectors of
weight o, or a4, the responses of subcircuit 1 ot line £ will be 1,
which is again the noncontrolling value for the following AND gate.
Thus, all paths passing through T7 are also robustly testable at the output

Case 2): Consider implementation of 5% [a-2-1 using two unate
functions 5™ D0 and 5", - -2.) as in Fig. 1(b). The former
(latter) is unate with respect to all complemented (uncomplemented)
literals, and by similar argument, each prime implicant has a relatively
essential vertex of weight @; w3 Thus, the subcircuit 1 (subcir-
cuit 2} is robustly delay fault testable for all paths from the inputs up
to the line I7017). Since ! < r, the response of &7 ae q-ng ot Vs
0 for all the vectors with weight n,—; or «;. In other words, for all test
pairs, fviomy doefod band {edag, edee i) the logic value at Vs O,
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TABLE 1
SYNTHESIS COST

Case Cleeitit Test Useful

cost Cigh when
i} (o Hawsr + 14 (of Jarerbt [ o= (03]
{Fm vy +2 = Ja e > |n/2)
ii] I[,,J'“_,'J'["—mﬂ +1} I:,,L,'I{ﬂ—m-ﬂ ar < [n/2]
H 0 e #1042 | (" Jars | a2 [0f2)
iii) o Nim—a+1) [“"_J][ﬂ—m_ﬂ ap < |nf2)
+H{lm—a-+1)+2 | +[Min—a) | & <infY

=== =

T

ST
::::::::::ﬁsws-n
| [
| | §%%9-10)

Fig. 3. Testhle circuit realizing 501,02, 5, 4. 7.9, 100

Therefore, all transitions along any path through the subcircuit 1, will
regchatthe circuitoutput 2, without any interference from subcircuit2,
a8 the line 1 is set to the non controlling value of the NOR gate during
testing of subcircuit 1. Similarly, all paths through the subcircuit 2 can
be robustly tested by applyving suitable test pairvs {eda, b, via, | 1} and
Lo s Jow e}, as for all such vertices, the line T7 is set to (.
dCase 3} andd Case 4): Similar to Case 1), [ ]
Remark: The complete set of two-pattern tests for testing
path-delay faults in the proposed design can be determined immedi-
ately, without running an automatic test pattern generation (ATPG).

B, Circwir Cost

The suitability of the above synthesis methods based on cases 1)-3)
as mentioned in Theorem 1, and the corresponding circuit cost (the
number of gate inputs) and test cost (the number of paths) of the com-
posite circuit realizing 57 (-0, 1, are summarized in Table 1. Case 4)
does not yield any cost-effective solution.

To  synthesize  5"{w-n,)  with minimum  cost, we thus
need an appropriste pair of unate symmetric functions among
BNy 0 ST 1 8 e ), and 57 e -ny ), depending on
the relative values of @;. o, and ». The resulting circuit has at most
3 logic levels.

IV. SYNTHESIS OF NONCONSECUTIVE SYMMETRIC FUNCTIONS

To synthesize a nonconsecutive symmetric function for 100% ro-
bust path-delay fault testability, it is first expressed as a union of sev-
eral maximum consecutive symmetric functions, and then testable re-
alization for each of the constituent consecutive symmetric functions is
derived via unate decomposition, and finally they are OR-ed together.
Thus, the overall circuit requires at most four logic levels. It is now
easy to prove that the overall circuit becomes robustly testable.

Example 3: The testable circuit realizing the nonconsecutive
symmetric function 5-201.2, 5.6, 7.5L 105 of Example 1, is shown
in Fig. 3, where each of the unate components within the boxes is
synthesized as a two-level iredundant circuit.

X %-l 7o
x! ﬁ_—/ X
San it =
x_ /)
X,
e
e T
X Xi ___//'
X, 5 $(4, 5, 6)
X, S
X, x —
e X’ :_)J
4{\ :‘ij

Fig. 4. Optimum factonization of 554, 3, 6],

Theorem 3: Every nonconsecutive symmetric function 5 {47 syn-
thesized as above, is robustly testable for all path-delay faults.

Proof: Since A is partitioned into maximal consecutive sets of
integers, for every pair consecutive symmetric functions 5.4, % and
U =) = e, corresponding to the partition of .. the in-
tegers in A, L) 4, cannot be consecutive, There must a discontinuity
between the sequences of A; and A, . Therefore, for each test pair of
S (A theoutput of 57041 — 0, for all § # . Hence, each consec-
utive component can be tested independently at the primary output of
the nonconsecutive symmetric function. Hence the proof. [ ]

Y. REDUCTION OF LOGIC BY ALGEBRAIC FACTORIZATION

The circuit cost of the proposed design can further be reduced by
factoring out common literals from the product terms at the cost of
increasing the number of logic levels by one or more. However, we
will restrict to only one extra level, otherwise the circuit delay may in-
crease significantly. Optimal factorization for minimum circuit cost, is
a difficult combinatorial problem for an arbitrary symmetric function,
although a simple technique can be used for consecutive symmetric
functions that are unate.

For example, the expression-( la) of 594,541, can be factored al-
gebraically as

570, 5.6)
= rprars ey — ey e D e lea — a4
| rprgr 1I:Jt':; T BTSN [ B o L ) I:Jt]_ ra

+ oy raas s — Ea) 4 Terpwn o 4ol i1hb)
Realization of the above factored expression by AND-OR gates re-
quires 45 gate inputs and 3 levels of logic (Fig. 4).
Optimal algebraic factorization that leads to minimum number of
gate inputs in three-level synthesis can be achieved by minimizing the
number of factors.
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AL Formilation

A nonconstant unate consecutive symmetric function is always of the
form: i) 5™ h-nd, 0 < & < n, which consists of all uncomplemented
literals in its s-o-p form: i) 50,00 <7 p <0 e, which consists of all
complemented literals in its s-o-p form.

The case for which b — O or i — n, leads toa constant function and,
hence, can be ignored.

Tor illustrate the technigue, we consider Case 1) only.

It may be noted that 5 {k-n) = Se0-(0 — 11} Therefore,
the same function can be synthesized by complementing the
output of 5*{0-7h — 10k ie. by using an AND-NOR structure.
For % Lie/ 2], it can be shown that clreunit-cosi]| St hen)] =
cironil-cost ST 0 117] Thus, we need to consider factorization
of 57 h-n’ only for the case where /2| < & 0w,

Our goal is to determine a suitable factorization that leads an
optimal three-level logic synthesis for unate and consecutive sym-
metric functions. Thus, each factored term should be of the form:
Eipdin oo Aty bl oo+ ag, hor = L where a s and a5 s
are distinct and belong to the set of variables & — Ja,wven oo |

The function 5" fr-w ] is unate and consecutive, having (7 | prime
implicants, and & literals in each prime implicant. Therefore, the above
factorization problem is equivalent to the following combinatorial
cover problem: select a minimum set of (& — 1} -out-of-# combina-
tions that cover all [} fe-out-of-n combinations. A (b — Li-out-of-p
combination is said to cover a h-out-of-ve combination, if the (! 1}
set of literals in the former is a subset of the f-set of literals of
the latter. Since the general cover problem is NP-hard, we present
a heuristic technigue of solving this problem using combinatorial
grouping techniques. Empirical evidence shows that the proposed
heuristic works well for all 11 <2 & < v, but produces solutions very
close to the optimum, when [w/2] < 0 = u.

B, Algorithm

Inipeust: S-0-p expression E of a unate consecutive symmetric
function 5" {f-e0:0" Given the set 1 of prime implicants,
and the variable set X = ). wq. ..., mp 1 ¥

it it : Algebraically factored expression & in which each term

is of the form: x; xo o w {2y —an +-- |
such that E' = E/* E can be directly synthesized using
a three-level OR-AND-OR logic. ™/

{
Initialization:
repeat
Select w,, w41 & X;
Partition the sel of prime implicants into three groups;
Group 1: colleet prime implicants that contain
either i@p, w4 but not both;
factor suitable pairs of them as
U SR
and form a logical sum ¥} of all such factors;
Group 2: collect prime implicants that contain
neither @ nor oy ;
logically add each of them o 1}, factoring
it with & matching term, and set &7 — £' —713;
Group 3: P — Py [ GGrowpl L Graup ]
e i+ 2
X +— X\ ol
until # is emply or contains a single term;
if £ contains a single term, logically add it to £,

}

1L E « W

iy s
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Example 4: Considerthe s-o-pof 57 {4, 5, i s inexp. (1a). Choose
two variables (say ;. ra). Partition the set of prime implicants into
three disjoint groups as fol lows:

G £2 0 i, 0 Wi e, L T N Ly, T,
dEre Ty,

Crronip 2

I.";m::p 3.' L[S L S P R A L R [P A A o [0 S L S R R BT R Y
ok T a3 R R TIN

The terms in Group 1 can be factored as: sgeaealosn + aw.
RN I:Jt]_ Ry B P I:Jt]_

EER TR M R

L EE N B T N

s d, rgrgrgieg

Each term in Group 2 must have a common factor with at least
one term in Group 1, with which it can be factored. For example, the
term ey belonging to Group 2, can be merged with Group |

| My | _.l:.:_;:_

ral

AR s N RN Y I i, .r.'y..rs,'r:.lirl [Ty
Fpkue (i 4 mad

Thus, the remaining prime implicants of Group 3 are devoid for =
and iz, The same process is now repeated by choosing another pair of
literals from X% ], we ), till all prime implicants are factored, or at
most a single prime implicant is left.

In the second pass, choosing =5 and &, we get: »yrar;lry —
v 4 ash aparsaxgirs 4+ 20 Combining  them, we get:
Fararsien o 4 oaal, darsaalen 4 oecls waenealer 4ol
T o A N T o DV [ o S R S IR T e BT R

At this stage, we are left with only one prime implicant which is
Tz, and the process stops.

The final factored form can be obtained as

.‘?I: N ﬁ_:l = ra:r4ls I::r1 — a4 :-'.'f._:l + rarars I::r1 — .l

F wakyrsiag — ral A ayaniela . 4 gl

+ mvaesiny —ay+ ity + e iay — 2y :'
(lc)

| mprsryry.

The number of factors in (1c)is seven, and the number of gate inputs
inits corresponding three-level realization is 49,

Theorem 4: The above algorithm generates algebraically factored
expression £ such that 1) & = ', 2) ' can be directly realized
using a three-level OR-AND-OR logic, and 3) the number of factors in
E s

|
[ —
T
ol
[
N
R
}
ATy
-
I
S R
—

Prooft Parts 1) and 2) follow immediately from the theme of
the algorithm. To prove the counting result, we proceed as follows: In
Group 1, the number of terms containing either =, or =4, but not
both = 2. ¢ ::1’; So, the number of factors after the first iteration =
% ¥iInGroup2, thereare (" ") terms, and each of them must have
a common factor with some of those in Group 1. The same process
is now repeated by choosing another pair from X [, e}, till all
prime implicants are factored. Counting this way, we get, the number
of factors — {5 514+ (0 214+

However, depending on whether % is odd or even, the terminating
terms become different, and the theorem follows. |

Corollary 1@ The number of gate inputs and paths in a three-level
synthesis of +' are given by



1 CRRY

i} the number of gate inputs
_- no—an n—4"
il h—IJ+ h—:!J
w— i '.'.'.—.".'.+1)
ad +1
i) f )
R if & is odd:
= [ + .U—-l =G0 'm—.".-.)_l
B a_l h—.": F—JJ I
.U.
RIS B ( 1,
I.l h .

i} the number of paths
e i =0
| .=.-._|J h—i’iJ
wo w— e 'I)
1
os) (2T ]
-.;h_l':+(;); if 1 is odd:

[ T o T ) I o RS

-

/I (” | =1, if#iseven
b ¢

if i is even

C. Complexity Analysis

The proposed synthesis technique consists of three steps: 1)
expressing the given symmetric function as a logical sum of maximum
consecutive symmetric functions, 2) synthesizing each of them via
unate decomposition, and 3) factoring algebraically each of the unate
components by the above heuristic. The minimum covers of unate
symmetric functions can be determined readily. Thus, the overall
synthesis process including the heuristic factorization algorithm
terminates in time linear in the size of the cover. Since the factorization
is algebraic, it preserves robust testability |3].

D Experimental Resulis

Corollary 1 can be used to calculate the number of gate inputs and
paths in the synthesized circuits according to the proposed method.

We also compute the circnitand test cost for synthesizing 5% (-],
following the method of Ke and Menon |9]. It can be shown [15] that:

the number of gate inputs — {5 — v+ Li4 (G4 108 - 114~ 4+ 2;
and the number of paths = o ¥ — =% + J18 — L + =, where, o
ST 'I} +Lid=0n—u.+ o),y = minla.n — a8 =
1T|111{ i |I i

I.lhle | pue-.eut-i acomparative study of circuit cost (the number of
gate inputs) and test cost (the number of paths) for various examples
of consecutive symmetric functions. It can be readily seen that our ap-
proach produces a significant amount of savings compared tothe earlier
method of Ke and Menon [9).

W1 CONCLUSION

This paper introduces anew concept of unate decomposition which
is shown to be useful for synthesis of symmetric functions targeted to
achieve path-delay fault testability. Synthesis of symmetric functions
is an important issue, as most of these functions do not have delay
testable two-level implementations. The proposed method guarantees
complete robust path-delay fault testability, and the design can be com-
pleted in linear time. A novel factorization technigue is also suggested
that preserves testability, and vields very low circuit cost compared to
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TABLE 11
CoMpaRISON OF CIRCUIT AND TEST CoST FoR CONSECUTIVE
SYMMETRIC FUNCTIONS.

Functivos | Number of gate inpuis | Futaber of pacha
S {p-ae) | Asin Ot Savings Vo Asin ' Chr Havings
[9] Method %) [ Methaord %]

Y] a7 33 a0 . 23

21,10 47 33 a0 35 23 #
E%(4,B) &3 57 # i 41 ¥
5,2 L 57 #1 il 41 T
53,4} 112 76 k| i 5% 41
52, 3) 112 76 1 a0 5 41
ST4,5 | 219 140 a8 152 1012 e
S8 T 43 40 42 33 B2
81,2 | 18 f4 A 1z B4 4
T34 243 152 Bt 210 114 15
o 1 g 140 3 152 16 4%
95,6 a9 23 2 336 176 47
FHa.6) 140 a2 41 112 fid 42
502, 8) 94 230 42 336 176 47
S48 S0 205 4l 448 236 47
a4 | s Y 41 448 236 47
Ss8 | w0 BGR 14 RR2 442 48
&%[2-6} 410 4 47 324 17h 15
LGN 862 1A 4% 576 Hn 17
54 8 | 1134 655 47 L0& 516 a8
£3,4) | w10 BES ¥ 882 42 45
ST | 1saz 1011 46 1620 BB 5i}
SY3-7y | 840 465 4 720 352 46
Sen4) | 1832 11 45 1620 BS 0
SR 6) | 2354 1296 45 #1400 1034 a0
%4 5] | 2334 1298 45 2100 1034 a0
FYET) [ 4538 2435 46 LTI 1957 a
alan | 2t | L 48 | LELE B1A 49
S'Ms,4) | s1ar 1677 4G 2E0E 1365 il
£''5,6) | G0eE 2742 46 4620 1230 51
&4 B) | 454t 7445 46, Aoz 1057 52
ST E) | sa | a8 a5 o34 | ands A2
5204 6] | #2318 Eh ] 45 TH2d BLEL L
g2re 7 | L0430 | 5486 43 YE04 EET 52
5956y | 1nazo | 5466 43 OE04 | 4469 5
ST, 8y | 20165 | 10263 13 13447 | 5461 B
W (ad) | 10584 5336 49 0205 4404 5l
54,5} | 14445 TAEE 48 1356 | G184 52
S8, 7y | 22a08 | 11530 44 HoseE | G530 53
S5 6 | 20165 | 10263 19 18447 | 5451 54
F%(a,9) | 37039 | 13508 i) 034 | 15340 B4
SUE-g) | o2a022 | 11364 49 BO020 | G5TE B2
S™(5,6) § ST030 [ 14508 5k 3034 | 15540 B
EM™T,8) | 43476 | T 5y 12042 | 19081 54
S“[ﬁ T | 43478 | HEET 5 42042 | 190641 o
&H1%(E, 00 | 57047 | 43M00 51 BIGI0 | S6d4 - 65
S%5-0) | 50052 | B46TH il 45045 | 2085 |, 58
S16(5, ) | GAOGT | F2M14 50 BOOGD | 27356 54
57 8) | 96525 | 47652 50 DO0D0 | 40362 55

earlier approaches, at the cost of increasing the number of logic levels
by at most one. As the number of paths decreases significantly, the total
testing time is drastically reduced. Further, all the test pairs can be de-
termined readily from the corresponding factored forms without any
need of running an ATPG.
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New Multivalued Functional Decomposition Algorithms
Based on MDDs

Craig M. Files and Marek A. Perkowski

Abstract—This paper presents two new functional decomposi tion parti-
tioni ng alporithms that vse multivaloed decision diagrams (M DDs). MDDs
are an exceptonally good representation for peneralized decomposition
because they are canonical and they can represent very large functions,
Algorithms developed in this paper are for Boolean/multivalued input and
output, completelyfincompletely specified functions with applicaion to
logic synthesis, machine learning, data mining and knowled ge discovery
in databases. We compare the ron-times and decision disgram sizes of
our alporithms to existing decomposition partitioning alporithms based
on decision disgrams. The comparisons show that our alporithms are
faster and do not result in exponential diagram sizes when decomposing
functions with small bound sets.

Index Terms—Algornthms, logic design, unsupervised learning.

I INTRODUCTION

Functional decomposition is known as expressing a function as a
composition of two or more functions. While many papers were written
about the topic of functional decomposition there was no comprehen-
sive approachuntil Ashenhurst presented a unified theory of functional
decomposition, and for the first time defined its basic properties in 1],
[2]. Curtis used the theorems of Ashenhurst to develop a generalized

form of decomposition in | 3] and [4]. There have been many other pro-
posed types of functional decompositions since the advent of Curtis
decomposition. But, the fundamentals of Ashenhurst and Curtis de-
composition provide essential insight into a wide range of functional
decomposition types.

Two new functional decomposition partitioning al gorithms that are
based on multivalued decision diagrams (MDDs) [5] are presented in
this paper: PARTITION and EVAL. Both algorithms are compared to
the existing cut_fevel and LPY (Lai, Pedram, and Vrudhula) binary de-
cision diagram (B DD)-based functional decomposition partitioning al-
porithmsdeveloped by Lai, Pedram, and Vrudhula| 6]-[8 . The cur_level
algorithm is very well known, but is based on reordering the variables in
the decision diagram. Thiscan bea problem because variable reordering
may lead to decision diagrams of exponential size [9]. This is the advan-
tageof the PARTITION algorithm over the cut_fevel al gorithm because
the PARTITION al gorithim does not reorder variables inthe decision di-
agram. The LPV algorithm is much faster than the cus_leve! algorithm
and can quickly evaluate many partitions, but the LPY algorithm can
only be used to determine colimin mudtipliciies, to decompose a func-
tion the cuf_fevel algorithm must be used.

The advantage of the EVAL algorithm over the LPY algorithm is
based on the way the two algorithms construct partition tables and
determine column equalities. The LPV algorithm constructs a parti-
tion table by constructing each column in the table. After the partition
table is created each pair of columns is checked for equality. For com-
pletely and incompletely specified functions, two columns are equal if
their encoded integer values are equal. An extension to the LPV algo-
rithm for incompletely specified functions is presented in this paper to
find columns that are compatible (by setting output don’t cares in the
columns, the two columns can be made equal).

The EVAL algorithm constructs the partition table by rows and
checks if two columns are equal while constructing the partition table.
This makes it possible to determine that two columns are not equal
or not compatible before completing their construction. OF course,
if the two columns are equal then the two columns must be fully
constructed. The advantage of the EVAL algorithm is that after the
construction of the partition table no extra computation is needed. The
LPY algorithm must construct the partition table and then determine
column equalities and column compatibilities.

Section Il gives the general notations for functional decomposition.
Section I presents the Lai, Pedram, and Vrudhula algorithms and our
new MDD-based algorithms. Section IV shows the experimental re-
sults of the algorithms and the paper is concluded in Section V.

Il. GENERAL DECOMPOSITION

The decomposition of a function can be an expression of the
function in terms of a composition of other functions. For example,
if flrn, v, gy = FUEOrn, o) 2, ws ), then the term on the
right is a decomposed function that is equivalent in behavior to the
original function .

In general, an w-input, single output Boolean function, f:
{0,117 — {0 1}, has the set of input variables X —
tn, wy oo ra—r b The number of variables in set X is de-
noted by | A .

Definition 1: Let 4 & X and 17 N, where 4 £ @ and /1 £ 1.
A partition, denoted as 4| T, exists if AN D =Pand 4 0 = X,

Definition 2: A function f{en. o, 0000 2. - ) has an Ashenhurst

aple disjunctive decomposition 1], it " can be represented by [ =
PR A This is known as partitioning the input variables into the
hound set £} and the free set 4. The variables in £* and 4 are known
as bound variables and free variables, respectively.
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