Parallel Sorting Algorithm Using Multiway Merge
and Its Implementation on a Multi-Mesh Network

Bhabani P. Sinha' and Amar Mukherjee

Schoal af Computer Science, Universitv of Central Florida, Orlando, Florida 32816

Received December B 1998 revised November 9, 1999 accepted February 24, 2000

Im this paper, we present a parallel sorting algorithm wsing the technigue
of multi-way merge. This algorithm, when implemented on a ¢ dimensional
mesh having #' nodes (> 2), sorts n' elements in Of(¢* — 3¢+ 2) 1) time, thus
offering a better order of time complexity than the [((1* — 1) n log my2 + O(ni)]-
time algorithm of P. F. Corbett and L D. Scherson (1992, [EEE Trans.
Farallel Diserib. Sysiems 3, 626-632). Further, the proposed algorithm can
also be implemented on a Multi-Mesh petwork (1999, I3 Das, M. De, and
B. P. Sinha, IEEE Trans. Comput. 48, 536-331) to sort & elements in
S4NYE 4 ol NY¥) steps, which shows an improvement over 38N'% 4+ o V1)
steps needed by the algorithm in (1997, M. De, D. Das, M. Ghosh, and

Key Words: multi-way merge; shear-sort; odd-even merge sort; 2D mesh;
Multi-Mesh: multidimensional mesh; SIMD; MIMD; PRAM; EREW,
CREW.

L INTRODUCTION

Parallel algorithms for sorting are usually developed on either the network model
or the PRAM model The network model is the more restrictive one. Several inter-
esting results on the complexity of parallel sorting algorithms can be found in [1,
2.4, 6,17, 25, 28, 31]. Performance analysis of different parallel sorting algorithms
from actual implementation results was reported by Dusseau ef af in [13]. Parallel
merging on an EREW PRAM model was done by Cole [6] in Oflog N) time for
merging a total of N elements using N processors. Akl and Santoro [4] developed
a self-reconfiguring optimal algorithm for parallel merge sort on the EREW PRAM
model without memory conflicts. This algorithm requires O[{N/P +log” P) x log N)
time for sorting N elements using P processors. Wen proposed a parallel algorithm
[34] for multiway merging of & sorted lists (k =2) using P processors on a CREW
PRAM model which requires Oflog N + %ﬁ time, N being the total size of the
input lists,

' Om leave from Indizn Statstical Institute, Caleutta, India.

891

Bo2 SINHA AND MUKHERIEE

Sorting N elements in (N} time using a linear array of N processors was
proposed in [22] by Mukhopadhyay and Ichikawa and in [21] by Mukherjee.
Ajtai et al, proposed a sorting network [3] that sorts in O(log V) time, but the
constant in the running time of this algorithm was very large. Batcher's odd-even
merge sort [5] can sort N numbers in O(log® N) steps on an N-node hypercube,
as well as on bounded-degree derivative networks of the hypercube, commonly
known as hypercubic networks [18]. An algorithm for sorting N items on a hyper-
cubic network having P nodes in G[‘?f;;.?f;f) steps was proposed by Preparata
[26] for an architecture-independent setting and was implemented by MNassimi and
Sahni [23]. An algorithm [or sorting & packets on a P-node hypercubic network,
when N =P, has been described in [1. 9], An O(log N log log N) step algorithm
for sorting N elements on hypercubic networks has been proposed by Cypher and
Plaxton [8] which is based on merging ﬁ lists of /N items each. Randomized
Oilog V) step algorithms for sorting on hypercubic neiworks have been described
in [18 20, 27].

Many interesting resulis also exist in the literature for parallel sorting on mesh-
like architectures, which are popular due to their structural simplicity. Thompson
and Kung [32] developed an G[ﬁi time sorting algorithm on a mesh connected
SIMD computer without any wrap-around connections. Schnorr and Shamir [30]
proposed a Eﬁ time algorithm on an MIMD mesh model. Scherson and Sen
[29] developed an optimal algorithm on an SIMD mesh model, called shear-sort
algorithm, that needs 4 \/rN +u[,f: ') steps and also a 3 JJ " step algorithm on the
more powerful MIMD model. Leighton's column-sors algorithm [17] uses seven
phases to sort N items on an rxs mesh into column-major order, where r = 52
Algorithms for optimal sorting on a multidimensional mesh using the MIMD
model were proposed by Kunde [15, 16]. Nigam and Sahn [24] have shown that
it is possible to sort N numbers on an N x N mesh using a number of routes that
is very close to the distance lower bound for both bidirectional and unidirectional
meshes, Leighton has given an algorithm [18] that sorts N elements in O(N ')
steps on a k-dimensional N V%sided array. Corbett and Scherson [7] extended the
idea of the shear-sort algorithm given in [29] for both SIMD and MIMD models
to sort N=n" elements on a k-dimensional mesh (without wrap-around connec-
tions) having »* nodes in ((K*—&)nlog n)2 + Olnk). On the mulidimensional
mesh architecture, this appears to be so far the best result which would require
6n log n + O(n) steps to sort n* elements. The presence of wrap-around connections
would not, however, improve the order of the time complexity. The algorithm due
to Tsai ef al. [33] takes log N +2(log* N/logm)— 3 log* N+ log Nlogm) time
to sort N elements on a mesh-connected computer with multiple broadcasting
(MCCMB) using Nm processors, where m is the number of processors in each
dimension of the MCCMB. A sorting algorithm on the Multi-Mesh (MM) network
has been proposed by De ef ol [12] which sorts N data elements on a MM
[10, 11] SIMD model in 58NY*+ o{ N'™) time.

In this paper, we first propose an algorithm f{or parallel multi-way merge which
is implementable on a suitable sorting network. When implemented on a ~dimen-
sional mesh having n' nodes (¢ = 2), it requires O((+*— 3t +2)n) time to sort n'
elements, offering an improved order of time complexity compared to that in [7].

MULTIWAY MERGE ON A MULTI-MESH NETWORK 8O3

We then show an implementation of this algorithm on a MM network having
N=rn* nodes (n=>2) to sort N elements in 34N +0({N'*) steps, which is an
improvement over that of the algorithm in [12] due to a smaller constant factor.
This implementation is essentially an amalgamation of two things—the SIMD algo-
rithm in [29] to sort individual # x 1 2D blocks of the MM network and the n-way

parallel merging technique, as developed in the first part of this paper, for merging
these blocks.

2. PARALLEL MULTI-WAY MERGE SORT

In this section, we {irst describe an algorithm for parallel n-way merging to merge
n given sorted sequences on a network. Next we use this merging algorithm to sort
any given set of elements.

2.1, Algorithm for Parallel n-Way Merging

fnput. n sorted sequences S, 8a, .., 8, each of length p such that

Si{snSspSans 8y,

LR I N ---:rJF}

‘Sal: l{‘1'..lrl = R = R = . ':'.Jr_p}'

Cutput. A sorted sequence V of length np.

ProOCEDURE n-MERGE(S, . 85, ... 5, V)

Step 1. If p< n, then arrange the elements of the given sequences in the form
of an n x p matrix; sort this matrix using a suitable algorithm (see Section 2.5) to
form the sequence V and stop.

Step 2. From the sequence S, (Vi 1 =i <n), construct n sorted subsequences
S0 8i2- 8530 w0 S such that Sp(k#£n) consists of elements {s;|s,€8, and
Imodn=14k} and S, = {sy|sy € S; and Imod n=0}. That is,

Sn={80 € tns 1S5 20m415)

Sfﬂ={:'-fl‘“{h:'.t.n+ﬂ‘“{hﬁflﬂrtﬂ“{- }
'S'.I'JI |={1II.JI]ﬂﬁffﬂl Iﬂ }

b’r:{‘lhﬂ.‘l’;m,ﬂ }

Note. If p=L+ n+ j, where 0 < j=<n (L being an integer), then &, will contain
L+ elements if k< jf and L elements if k= f; Wk, 1=k <n

50 SINHA AND MUKHERIEE

Step 3 Fori=1 to ndo in parallel
n-Merge(8, Sa. o Sa. Ui

Note. The sorted sequence U, contains (L+ 1)n elements f k< and Ln
elements if k> j. Thus, if j=10, then U, contains Ln elements Vk; otherwise all /s
will not have the same length.

Step 4

Step 4.1, Ifj 0, then increase the length of all the smaller sequences U's
to the maximum length (L + 1) n by inserting (the necessary number of) a very
large number, say W. For the sake of notational simplicity, we denoie these
modified sequences also by Up, 1=k =n,

Step 42, Arrange the sequences U, U,, .., U, in the form of an nx¢
matrix U, where e=(L+1)n ifj£0 and Ln otherwise. Thus, for j=0,

Ly Wy W Wy v M L+ 1)m
r
U= U, _|¥n Haz Hx ccr Haggnye
L'I.ll iy Hya Ny e u.ll,“'.-r'l].u
={4d, A; Ay - Ap.h

where each A,, 1=is(L+1), is a submatrix of size nxn, and for j=10,
U=(Ad; Aa A5 -+ Ag).

Step 5.

Step 5.1, Sort the following pairs of matrices separately in parallel in a
column-major order, replacing the original matrices by the sorted ones:

[A AL [AzAs] [AsAg]s .

Step 5.2, Sort the following pairs of matrices separately in parallel in a
column-major order, replacing the original matrices by the sorted ones:

[A:A:] [AgAs]s [AgA7]s -
The resulting matrix
V={d, A, A; -}
when read in column-major order, gives the required merged output.
Note. We refer to Step 5 (Steps 5.1 and 32 taken together) as the odd-even

mairix-merge operation (this has a sort of conceptual resemblance with the
Weavesort in [21]).

MULTIWAY MERGE ON A MULTI-MESH NETWORK 895

22, Correctness of the Algorithm

We prove the correciness of the procedure n-Merge by applying the 0-1 principle
[14] We assume that the given n sorted sequences 5. 5., .. 8, are sequences
consisting of only (s and 1's,

Clearly, for p<n, n-Merge terminates successfully. Because of its recursive
nature, we assume that merging of subsequences S, | =isn topet Uy, 1=k =n,
is done properly at Step 3.

Let us now assume that the sequence S, contains /, number of s, 1 <i=n,
so that

Li=g,+n+r; Osr=n—1,

where ¢, 18 an integer,

Hence. the subsequences 8,,.5,. ... §; , will contain g,+ 1 number of 0's, while
the subsequences 5, . 1. 8,, .2, ... 8, will contain ¢, number of O's, Wi, 1<i<n.

Further, since the input elements are taken from the set {0, 1}, the equivalent
action for Step 4.1 is to pad every sequence U7, 1 <7 <n, which will be of length less
than (L + 1) n, with the required number of 1's only.

In view of the above arguments, the number of (s present in L/, will be less than
or equal to that in U, ,, 1 =i=n—1 That is, U, will contain the maximum
number of 0°s and U, will contain the minimum number of (s,

Let Q=g+ g2+ -+ + g, Hence, we have the following observations:

i1y All the sequences U, Ua, ... U, will contain at least {0 number of (s,

(2} The sequence U, will contain the maximum number of (s among all
these sequences and that number 1s at most O +n.

(3} The sequence U, will contain the minimum number of s and that
number is at least Q.

According to our assumption, merging will be done successfully in Step 3. As a
result, each of U, U,, .., U, 15 a sorted sequence of 's followed by 1's.

Hence, we pet that the first @ columns of the matrix U consist of Fs only. The
next n columns (that is, starting from column number 0+ 1 to column number
¢+ n) may contain both s and 1"s and the remaining columns contain 1%s only,
The columns containing either only Fs or only 1's will be referred to as clean
columny and those containing both (°s and 1"s will be called divey columns. That is,
the matrix U contains at most # dirty columns and all these dirty columns appear
consecutively.

We are now required to prove that the matrix U can be sorted successfully in
Steps 5.1 and 5.2

Let D be the submairix of U containing only dirty columns. D can contain at
most # columns: Le. the dimension of D can be at most n xn. If we can sort D
properly, the matrix U will also be sorted. We now consider the following two
Cases:

596 SINHA AND MUKHERIEE

Case 1. D 5 contained completely within one of the submatrices [4,4.].
[A;A45]. [A:4:]. ... Then after Step 5.1, the matrix U will be sorted,

Case 2. D is contained partly in [4+ 4>] and partly in [Aa, A2 2] That
is, I is actually contained partly in both 4., and 4., . After Step 5.1, each of the
submatrices [4., 45,] and [A,,, 44, 5] will contain at most one dirty column
and these dirty columns will he within the last »n columns of the submatrix
[As ,A,] and within the first # columns of [4., 4., .]. That is, afier Step 5.1,
the two dirty columns are contained in [4,4, ,]. These dirty columns will be
cleaned afier the execution of Step 3.2. Hence the prool

2.3, Implementation of n-Way Merge on a Network

A network implementation of the procedure n-Merge is shown in Fig. 1, for n=13
and p=9 The odd-even mairiv-merge modules can be designed in any suitable
manner, eg., using a 3-dimensional nxnx2 mesh network or a hypercubic
network. The overall time complexity and also the number of comparators required
for merging would depend on the actual implementation of this module. In a latter

et | T I EHA Crc o it S S
% '||| | I
i .. —
B [|
2 g —L -
1 = (1] | i
o P |
i I wram Ml W0 !
Fg— e || %‘ | sl add-even !— _
5 — [l S RUEITEE e i funad -
i ;L— module —
S) T b R
; —- I :
B TR] |] g — -
I 5 1 |z ;
; i E [=
s?l. 'I:I] E — i C:I
i i,y | e L] 1
L. T : iy] = -
8., H [1 |§ 3 Tt N 1
: Vil g | m =
Ay HINEE — Ly | L
LA 19 B] w,, |
5 ; I | ;_ -
Hj Hls c ! M
l} -_: u..
L L-ofe I w., | — 1 b
n]
5,y i - . Coed g "
: :
—= i
5a ! | i |
! | = |
; | : _— =
5, f e | g
1 "1 I
L " u —L._qu' ﬁ SR -
5,0 : - A I |
L & g |u,l —
N Il i n = 7] —
8, T _:I-:d T'L-II
5, 3 .
3 5 i
i re 1 o —
S e 2 S
£ - }
¥ — 1 o™
£ iR
B 1l
I |
ML E——r b~ |

FIGURE 1

MULTIWAY MERGE ON A MULTI-MESH NETWORK 897

section, we compuie the time complexity in terms of the time needed by this module
and also an n x n matrix sorter.

24, Sorting by n-Way Merging

Input. A set X={x,,x,,...x,} of N elements. (We assume that N =n' for
some ¢ = 1; otherwise we append to X the required number of elements all of which
are greater than any element present in X').

Cutput, A sorted sequence,

PrOCEDURE MULTIWAY - MERGE-SORT

Step 1. If N =n, then sort the elements and stop; otherwise if N =»7 then
arrange the elements in the form an mxn matriy, sort this matrix by a suitable
algorithm (see Section 2.3}, and then stop.

Step 2. Divide the set X into n subsets of equal length N/n.

Step 3. Sort each of the subsets in parallel by a recursive call to procedure
Multiway- Merge-Sort.

= i

X e 1 1
1 n
E, - iz
X, — . 52 AL
5
. £ [-
X = Ale
K 5 3
X, 5 [
¥ E o
o 11
] — = 3 - =
Ey - i T
- : [L
i, - : B
)
13,1 |
B [-.. Eg- -
'\;_'.'. 1 By
all | — -
Mz - = L.
Y 3 | Meraing Metwark
o = Ba of Fig. :
i ElEN i
i £ —
e | g =
&, i %
x _' ™ - PR R
1 5 o -
'\'I:i T A mE | R | e
5 _
Xy i =
L —_—
e T
X By -
u = = =
ok
= L —
K £ M5, l— s
k- —_ =
W E [Fa I
M b
g |, =
e |
% 2 L
g e L %
i
T L

FIGLURE 2

508 SINHA AND MUKHERIEE

Step 4. Merge n sorted sequences obtained in Step 3 applying the procedure
n-Merge to get the final sorted sequence.

The correciness of the procedure Multivay-Merge-Sort is quite apparent. An
example of its network implementation is shown in Fig. 2 for n=3 and N=27.

2.5 Timing Analysiy

Let p=n" and M{p x n) denote the time taken to merge n sorted sequences, each
of length p by the procedure n-Merge. Moreover, let us assume that Sin xn) and
Sin = 2n) denote the time taken to sort a matrix of size n x n and a matrix of size
nx 2n, respectively. We then have the following relations from the steps of the
procedure n-Merge:

M[pxnl=M(Exn)-é-25[nx?ni
n

=M(£1xn)+43[nx2m
i

=Mntxn)+2r—2)8nx2n)

=8Sn=n)+2r—1) 8n=2n)

Let MMSIN) denote the time taken to sort a sequence of length N by the proce-
dure Multivay-Merge-Sort. Hence, we can write

MMS(H') =MMS(n" ')+ Mn" ' xn)
=MMSn')+ Sinxn)+2(t—2) 8(n x 2n)
= MMS(n" ")+ 28(nxn)+ {20t —2) +2(t—3)} S(nx2n)

= MMS(r*)+(t—=2)Sinxn)+2{(t=2) +(t=3)+ - +1} S(nx2n)

=(t—1)Snxn)+{F=3+2)8nx2n)

If & hypercubic network is used to sort the nxn and » x 2n matrices in steps 1 and
4 of the procedure Multivay-Merge-Sore, then MMS(n*) will be equal to
(1* log* n). On the other hand, a f-dimensional mesh with »n* nodes can be used
to store the data elements, and then the n = n and »n =% 2n matrices can be sorted in
O(n) time using the algorithm in [29]. As an example. consider the case of n’
elements in a 3D n % nxn mesh, with nodes organized along x, p, and = directions,
respectively. Initially, the »* data elements in every plane parallel to the xy plane
will be sorted in x-major order in fn) time. This will form the sets 8's
i=1,2 .. n, each set being constituted by the elements residing in a plane parallel
to the xy plane. At this point, the set of all elements appearing in a plane parallel

MULTIWAY MERGE ON A MULTI-MESH NETWORK 894

to the yz plane will be only those which can form the set U for some value of i,
1= i<n So, the elements in each plane parallel to the yz plane are now sorted to
form the sets U's, i= 1,2, .. n, each U, being stored in a separate plane in y-major
order, say. It then follows that each of the matrices 4, 4,. ... will be formed with
the elements residing in a plane parallel to the xy plane. Hence, the odd-even
matrix-merge operation can be very well performed in O{n) time afier this step.

A generalization of the above idea can be made so that if we were initially given
n sorted lists, each residing in an (/ — | j-dimensional hyperplane of an i-dimensional
mesh having nxn % ... xn=n' nodes (i 3), then the sets Us, i=1.2, .. n, and
alko the matrices 4,, 4., ... 4, can easily be formed with the elements of the
i-dimensional mesh.

It thus follows from the above discussions that the procedure Multiwvay-
Merge-Sort can be implemented on a ~dimensional mesh having n' nodes (1 = 2},
to sort #° eements in O — 3 + 2) n) compare-exchange steps, and thus providing
a better order of time complexity than the [(((¢* —¢)nlogn)/2)+ O(nt)]-step
algorithm of Corbett and Scherson [7].

3. IMPLEMENTATION OF MULTIWAY-MERGE-SORT
ON A MULTI-MESH

In this section, we would show how the Multiway-Merge-Sort algorithm can also
be efficiently implemented on a Multi-Mesh [10, 11]. The MM network consists of
n® meshes of size n % n each, which themselves are also arranged in the form of an
nxn matrix. Each of these constituent meshes is called a Alock, which is uniquely
identified by two coordinates, say, = and f as B{a f). There are n* nodes
(processors) in the network each of which is designated using a four-tuple of
coordinates. Thus, let Pla, f, x, ¥) denote a processor at the xth row and yth
column of the block B{x, f). Each of o, §, x, and y can assume values in the range
1 to n (both inclusive).

The processor Pia, §, x, v) is connected to its four neighbors Pia, f.x £ 1, p £ 1),
if they exist, using the intrablock links. Additonal connections called interblock links
between the boundary and corner processors of different blocks are also used as
described in [10]. An example of a Multi-Mesh network for n=3 is shown in
Fig 3, where all the interblock links are not shown.

We assume that there are N =n* data elements on the n* nodes (processors) of
the Multi-Mesh. Sorting will be done by applying the n-way merge on these data
elements in different stages. We first give the following notations and definitions.

We refer to the directions corresponding to the coordinate values y, x, f and «
as row, column, third, and fourth dimensions, respectively. Let Dix, §, x. y) denote
the data element residing in the processor Pla, f, x,). Based on the dimension of
sorting, we define the following:

DeFmmion 1. By an R-operation, we mean independent row sorts for all the
blocks in parallel, where the direction of row sorts of two consecutive rows are
opposite within a block and also the same row of two consecutive blocks along the
third or fourth dimensions are sorted in opposite directions. I, however, all rows

900 SINHA AND MUKHERIEE

f
--
& .
i
sl 45?
L -
—

1
HI-I—- — I!—

_.1s_r | —-1—:7'..

U

' 4

—4 . 5
#| ——— *

bt L i

FIGURE 3

i a block are sorted m the same direction, but rows of consecutive blocks are
sorted in opposite directions, then we call this an R*-operation.

DeFmmion 2. By a C-operation, we mean independent column sorts for all the
blocks in parallel, where the direction of column sort for all the columns within a
block will be the same, but it will be reversed in the next consecutive block along
the third or fourth dimensions.

DeFmvmion 3. A T-operation sorts each set of n data elements D{a, =, x, y) in
parallel over the third dimension [(“*" implies all possible values (from 1 to n) of
the respective coordinate) so that

Dio, LLx, y)£D(o, 2, x,)£ oo £ Do, n, x, p).

DeFmmion 4. An F-operation sorts each set of n data elements in parallel over
the fourth dimension, so that

DL x, vi=D2 fx, vi= .- =D(n, 8. x, ¥, if # 15 odd, and
DL x,vizD2 fx.v)z... 2D(n B.x, y), if ff is even,
DeFmmion 5. By an even block we mean an ordered block Bia,) such that
x+ [is an even number. Such a block is sorted in snake-like row-major order [12]

in which the sorted sequence starts from the lefimost end of the first row and ends
at the nth row.

MULTIWAY MERGE ON A MULTI-MESH NETWORK 901

DeFmmion 6. By an odd Bock we mean an ordered block Bia,) such that
x+ f 15 an odd number, Such a block is sorted in snake-like row-major order in
which the sorted sequence starts from the nth row and ends at the lefimost end of
the first row.

DeFmvmion 7. A 3D block is a sequence of alternate odd and even blocks for
a gven value of x such that all the elements of the sorted block B(x, f) are less than
or equal to all the elements of the sorted block Bla, f+ 1), 95 1 =f<n

We note that there is no direct link among the respective nodes in the MM
network to effect the T-operation. Hence, the T-operation is performed in three
stages. In the first stage, all data elements are given n horizontal circular shifis
(along the horizontal cycles of length n and 2n in the MM network [10, 11]). so
that the ith rows of the blocks Bia, *) are all brought to the same block Bia,).
The second stage of the T-operation consists of sorting the elements in each of these
columns individually. The third stage of the T-operation is just the reverse of the
first stage, in which the sorted elements in the jth row of the block B{a, i) are trans-
ferred back to the dh row of the block B(a, j) through n horizontal shifis. In
general, the first and third stages of the T-operation require a total of n+n="2n
routing steps. The second stage can be completed in n steps of odd-even transposi-
tion sort.

As in the T-operation, the F-operation also requires three stages. The first stage
involves n shifts of all data elements along the vertical cycles present in the MM
network so that elements to be sorted appear in a single row of an appropriate
block, the second stage consists of sorting each row of the blocks individually, and
the third stage would be another n vertical shifis of the data elements.

Since the correctness of the proposed implementation will be proved using the
O-1 principle [14], we assume that all input data elements are taken from the set
{0, 1}. Following the notation in [12], a row of a block will be denoted by ¢, .
and 4 if it consists of only (s, only 1%, and a mixture of ("s and s, respectively,
With these notations, if we consider two consecutive sorted blocks (one 1s an odd
block and the other is an even one) for a given value of o, then these blocks will
look like that in Fig. 4a. Hence, by similar arguments as given in [12], we can get
the following result.

Lemma 1. If there are only n matrices, A, A5, ... A, generated in Stepd of the
n-Merge algorithm and they arve stored in blocks Bla, 1), Bla, 20 . Bla, 1), respec-
tively, for some value of x, then the odd-even mairic-merge operation required for the
n-Merge algorithm can be done by fivst sorting each individual block to generate con-
secutive odd and even Mocks and then applying the T— C— R —C — R operations.
Each block will be sorted in snake-lice row-major order after this. The operations T
and the latter C would cach involee only two compare-exchange steps, ie., the total
number of steps required for the T— C— R —C— R operations is (2n+2)+n+n+
24+ n=35n+4

Remarks. To get each block sorted in row-major order, we need to change the
T'—C—R—C— R operations in Lemma l to T'—C— R—C—R*

92 SINHA AND MUKHERIEE

=13
/e
I|l ;
[e
F | 5 |
| i
T I“ :
o v
Ty A A, LA T
ol Tw | S : = 7
o g
: il o : m
ar | f A, A Ay EE
i | k i ill'
“ ¢ — ¢
. - ! A :
Lo o] il Sl Kl \1
[l T:-'*":":-'-'i‘_rﬁf_ff“lﬁ‘f'l-‘_ﬁ“"'-‘ll |1 Crder of Malmees (21 Twollonsscutve Sorled
Biccks in she Herizonoe! in the Blocks Blacks in the Yertical
Dirzction Direction
FIGURE 4

On the other hand, if there are n” matrices A, 4., ... A, (arising during the
process of merging n sorted sequences each of length n¥). then we can store them
in the blocks of the Multi-Mesh in the manner shown in Fig. 4b for n=3. If the
individual blocks are now sorted to generate consecutive odd and even blocks for
a given value of « as well as for a given value of £, then all but two blocks will con-
tain only ¢'s or only efs. The two other blocks may contain at most two &'s, and
ket us call them dirty blocks, If these two dirty blocks appear in the same column
of blocks (having the same value of the f coordinate), then by a similar argument
as for Lemmal, we can sort these two blocks applying a sequence of
F—C—R—C— R operations (Fig. 4c). However, these two consecutive dirty
blocks may also appear in two consecutive columns of blocks. In that case, the
sequence of operations T'— C— R —C — R would have cleaned the two blocks. Both
these cases can be satisfactorily taken into account by a combined #— T —C — R —
C'— R operation. Note that the elements of the blocks may be exchanged due to
either the F-operation or the T-operation, but not both. This is due to the fact that
there are only two dirty blocks, and considering that the blocks form a snake-like
chain as in Fig 4b, on one side of these dirty blocks along the chain, there are
blocks containing ¢'s only and on the other side there are blocks containing s
only. We now have the following result

Lesma 2. [f there are n® matrices A, Aa. .. A,z generated during the execution
of the n-Merge algorithm and these matrices are stored in the blocks of the Mulii-
Mesh i the order shown in Fig 4b, then the odd-even matvix-merge operation for
these maitrices can be completed by first sorting the individual blocks and then applying
a sequence of F—T— C— R —C— R operations. The operations F, T, and the laier
C would each involve only two compare-exchange sieps, giving rive to a total of Th+ 6
compare-exchange routing steps for the combined F—T— C— R — C— R operations.

MULTIWAY MERGE ON A MULTI-MESH NETWORK 903

We now describe the algorithm for sorting, on Multi-Mesh in the [ollowing steps:
AvcoriTHM M M-SorT
/* Construct the initial n” sorted lists each containing n” elements */

Step 1. Sort each of the n? blocks in snake-like column-major order using the
shear-sort algorithm in [28]. Rearrange the elements in the columns so that each
block is sorted now in column-major order (refer o Fig. 3a for an example with
n=13).

/* Merging of elements in a row of processor blocks, ie, in Bla,), 1€Sa<n,
starts here */

Step 2. Data elements are shifted horizontally through s places. (The
situation after this step is explained by Fig. 5b for n=3).

Step 3 Apply the shear-sort algorithm to sort each block in snake-like
row-major order, such that for a given o, the sorted sequence in a block Bia, f)
starts from the lefimost end of the first row for odd values of § and from the
rightmost end of the first row for even values of .

1A 15 8, i85,
S,08, &, S8 B isy 5, 8, Sy0 8, 5, S
bl b Fn o B By bL.. 5y Be By '5.'.1 LA T
S8, §, 5 Tt Ry By by CIVER T
rl}l:l s'll 14 i'|- 5|= 5 sl.“ s'!:l- sll !r,
:;.'r I‘M‘ I‘“ \35 I‘L ‘zz 5.', I"H I‘H
5‘J"l s:'l sl-l 'i.'i s.l, sﬂ s.'l" S“ sﬂ
Ll Uy W, Uy u, U, uy Uy Wy Uy
i."l I‘lj ul-l .Ll“ 113 IJ." u.'fl ”.'5 ﬂ]+
Uy Wy U Uy Uy Uy Uy Uy Uy

(L, after bicck sarting) (U after Block somingy (U, affer bieek soetings

iy O, Uy Uy Wy U W, Uy U, W,
by Wy Yy Uy My Uy U, U, U
u, n. u, u, WM, w, oW, w,
(Elzments of &) (Elemnznts of A {Elements of &)
oW uow oW, u, Uy
gy ugoup Wy W W wy wou
u, u, u w, u, v, uw, u, u,
(Scried Eloments of A} (Boved Elomenta of Ay (Socted Elemcntz of &)

FIGLURE 5

G SINHA AND MUKHERIEE

Note. After Step 3, we get the sorted sequences U, Us, ... U, for merging the n”
elements in a row of processor blocks (e, for a given value of «). Each ol these
sequences now appears in a single block. An example for n =3 is shown in Fig. 5c.

Step 4. All data elements are again shified horzontally through n steps. (This
will bring all elements of a matrix 4,, 1 =i=n, into a single block of the MM
network, as shown in Fig. 5d).

/* odd-even matrix merge for the matrices 4,'s in a row of processor blocks staris
here */

Step 5. Sort individual blocks again by using the shear-sort algorithm so that
each ordered block is now an odd block or an even Bock, as shown by the example
of Fig. 5e.

Step 6. Apply the T—C— R— O — R* operations on the data elements using
only two comparecxchange steps during the second stage of T-operation. { Fig 6
shows the sequences V', V., and V, for n = 3 after this step).

/¥ merging of 3D blocks starts here with the given sorted sequences V., Vs, ... V),
"/

Step 7. Apply n vertical shifis to all data elements. | Afier this step, the blocks

Bia, +) will contain all the elements of the subsequences V l=i<n.

Step 8 Apply Steps1 to 6 above, with the only change in Step 6 as
T'-C—R—C— R, on the data elements to merge V, .’s, Vi 1 <i<n, for a piven
a to obtain the new sorted sequences WY, W, .., W) in the 3D blocks. | This siep
completes Step 3 of the n-Merge algorithm,

Step 9. Shift the data elements in individual blocks using only the infrablock
finks, as if the elements in blocks with odd values of o are rotated in the counter-
clockwise directions and those in blocks with even values of o are rotated in the
clockwise direction with the following structures: original ith row of every block
now becomes the dh column for odd o and (n—i+ 1th column for even a.
l=i=Zn.

Step 10, Apply n vertical shifis to all data elements along the vertical cycles
in MM. {The individual blocks now store the matrices 4,’s required for the final
step of merging).

TR Rt Yoo Yuo Yu Yuo Y Ya
I ¥

¥orovy e Yy w Y Yw [B T
AT U] I i:] [t ¥ro Yig Yu

Yoo Yu ¥y Yoo Y Yx Yo Vi Vi
¥ooovu Ya Yy Yao Yue Y Yar Voo Y
Yoo ¥ ¥y Yo Ym Y Yo Yo Vi

"'—.n ¥ 1 v.u 1'..*.'. \Ijil i a "'.w ¥ I

‘I:‘ FJJ ‘-J_ vﬂ Jr.l “I"L ‘Ill x5 }J" v!_l
Yoo Yy Yu Yoo Yen Vi Yo Y i

FIGLURE &

MULTIWAY MERGE ON A MULTI-MESH NETWORK 905

i LR T RS o 33 M 5T
hoo5 1 49 50 51 a0 3% 3

g4 48 47 46 al 63 463
5 I T o2 a0 271070
I S 42 41 &t a7 E 4%
2 11 10 43 44 a5 ah o 63 6d
9 20 =z 23 34 T 74 T3
P S R S 5 A AT T6
25 M4 27 e ™ Te B0 E)

FIGURE 7

/¥ Odd-even matrix-merge for the final step staris here */

Step 11, Sort the individual blocks by using shear-sort algorithm.

Step 12, Apply F—T—-C—R—C — R operations with only two compare-
exchange steps in each of the £, T, and the last C-operations to sort all the elements
in the final order as illustrated in Fig. 7.

The correctness of the algorithm MM-Sort follows directly [rom the correciness

of the algorithm s-Merge, that of the algorithm Multi-Merge-Sore, and Lemmas 1
and 2.

3.1, Timing Analysiv for MM-Sort

Step | of the algorithm M M-Sort requires {(dn + o{n))+ n)= 3n + oin) steps. Each
of the Steps 2, 4, 7, and 10 requires n steps. Sorting in each of the Steps 3, 5, and
11 requires 4n+ oin) steps. Step 6 requires 5n + 4 sieps. Step 9 requires n— 1 steps.
Step 12 requires Tn + 6 steps.

Hence, Steps 1 through 6 requires a total of 20n + oin) steps. The overall time
required for the algorithm MM-Sortis 20n +a+20n +(n—1)+n+dn+ (Tn+ 3) +
oln) =54n +o(n) steps. We now have the following result.

TueoreM 1. N=n? elements can be sorted on the Multi-Mesh network using
n-way merging, in a total of 54N + ol n) compare-exchange frouting steps.

4. CONCLUSIONS

We have described an algorithm for sorting by using parallel multi-way merge.
When implemented on a f~dimensional mesh having »n' nodes, this algorithm takes
O —3t+2)n) time to sort n' elements, and thus offers a better order of time
complexity than the [{((+ —¢)nlogn)2)+ O(nt)]-time algorithm of Corbett and
Scherson [7]. Then we have given an implementation of the algorithm on a Muli-
Mesh network to sort N elements in 54N '™ + o{ N4 compare-exchange/routing
steps. which is an improvement over the previously known result [12] of 588" +
o(N"?) steps on the Multi-Mesh.

Y06 SINHA AND MUKHERIEE

ACKNOWLEDGMENTS

This work was supported by a grant received under the Academic Excellence Plan of the School of

Computer Science of the University of Central Florida, Orlando, Florida, The authors thank Robert
Franceschini for a careful reading of the manuscript and many comments and sugeestions Lo improve

the quality of the paper.

L.

REFERENCES

A. Aggarwal and M.-D. Huang, Metwork complexity of sorting and graph problems and simulatng
CROW PEAMs by interconnection networks, in “Lecture Motes in Computer Saence,” Vol 3219,
pp. 330350, Springer-Verlapg, Berlin™ew York, 1988,

. ML Adgner, Paralld complexity of sorting problems, J. Algorithms 3| March [982), 79-8E
LML Ajiai,). Komlos, and E Seemeredi, An @nlog n) sorting network, Combinatorica 3 | 1983,

1-19; also in “Proc 15th ACM STOC” pp. 1-9, 1983,

-5 Gl AKL and ML Santore, Optimal parallel merging and sorting without memory conflicts, [EEE

Trans. Comput. 36, 11 {November 1987), 1 367-1369.

. K. Batcher, Sorting networks and their applications, AFIPS Spring Jaint Computing Conf. 32 { 1968],

MT-314.

. R. Cole, Parallel merge sort, in *“Proc. 27th IEEE Symp. FOCS,” pp. 511-516, 1986
. PLF. Corbett and L v Scherson, Sorting in mesh connected multiprocessors, FEEE Trans, Paralle!

Distrih. Systems 3, 5 (Sept. 1992), 626-632

. B Cypher and G. Plaxton, Deterministic sorting in nearly logarithmic time on the hypercube and

related computers, in “Proc. 22nd Ann. ACM Sympe Theory of Computing,” pp. [93-203, 1990,

. R Cypher and 1. L. C Sanz, Optimal sorting in reduced architectures, in “Proc. Int. Conl. Parallel

Processing, Pennsylvania State Univ, August 1998 Vol 3, pp. 30B-311, 1988,

D Das, M. De, and B, P Sinha, A new network wpology with multiple meshes, JTEEE Trans

Comput. 48 {May 1999), 516-551.

o Das and B, P Sinha, Multi-Mesh—An effident topology for parallel processing, in “Proc. Ninth

Int. Parallel Processing Symposiom, Santa Barbara, April 25-28 195" pp. 17-21, 1995,

ML D, D Das, M. Ghosh, and B, P. Sinha, An ellicient sorting algorithm on the Multi-Mesh

network, FTEEE Trans. Comput. 36, 10 (October 19971, 11321137,

AL CL Dusseau, D0 E Culler, K. E Schauser, and B, P. Martin, Fast parallel sorting under log P:

Experience with the CM-5, TEEE Trans. Parallel Distrib. Comput. 7, 8§ {Aug. 19961, 791805

. v Knuth, *The Art of Computer Programming, Sorting and Searching™ Vol 3, Addison-Wesley,

Reading, MaA, 1973

. M. Kunde, Optimal sorting on multidimensionally mesh-connected arrays, in “Proc. Fourth Ann.

STACSET” Lecture Notes in Computer Science, Vol 247, pp 408419, Springer-Verlag, Berlin/™ew
York, 1987,

.M. Kunde, Routing and sorting in mesh-connected arravs, in “Proc. Third Aegean Workshop Com-

puting,” Lecture Notes in Computer Scence, Vol 319, pp. 423433 Springer-Verlag, BerlingMew
York, 1988,

. F. T. Leighton, Tight bounds on the complexity of paralle sorting, JEEE Trans, Compui. 34, 4

{April 1985), 344354,

. F. T. Leighton, “Introduction to Parallel Algorithms and Architectures: Arrays, Trees, Hypercubes”

Morgan Kaulmann, San Mateo, CA, 992

. T. Leighton, B. Mages, A. Ranade, and 5. Rao, Randomized routing and sorting in fixed-connection

networks, J. Alporithms 17, 1 1994), 157-205

al.

O D Thompson and H. T, Kung, Sorting on a mesh-connected parallel computer, Comm. Assoc.

33

MULTIWAY MERGE ON A MULTI-MESH NETWORK 907

. T. Leighton and G, Plaxton, A {fairly) simple circuit that {usually) serts, ie *“Proc. st Ann. Symp.
FOOS” pp. 264-274, Oct. 1990

AL Mukherjee, “Weavesort—A Mew Sorting Algorithm for VLSL” Tech. Report TR-53, 81, UCT,

1981 ; also in “Introducton o n-MOS and CMOS VLSI Systems Design,” Prentice-Hall, New York,
1986,

. AL Mukhopadhyay and T. Ichikawa, “An n-Step Parallel Sorting Machine,” Tech. Report 72-03,

Dept of Computer Science, Univ. of lowa, 1972,

23 D Massimi oand 5. Sahni, Parallel permutation and sorting algorithms and a new generalized

connection network, J. Assoc Comput. Mach, 29,3 (1982, 642-667.

24, M. Nigam and 5. Sahni, Sorting »* numbers on nx n meshes, IEEE Trans. Parallel Disirib. Comput.

6, 12 (Dec. 1995), 12211225,

25, G Plaxton, On the network complexity of selection, in = Proc. 30th Ann. Svmp. FOCS,” pp. 396401,

Mow. 1989,

. F. Preparata, New parallel sorting schemes, JEEE Trans. Comput. 27, 7 (July 1978), 669673

L Reil and L. Valiant, A logarithmic tme sort for linear size networks, J. dssoc. Comput. Mach. M,

I { 1987), 60-T6.

. R Reischuk, A fast probabilistc parallel sorting algorithm, in ~Proc. 2Ind IEEE Symp. FOCS”

pp. 212-219, 1981

LD Scherson and 5. Sen, Parallel sorting in two-dimensional VLS models of computation, JEEE

Trans. Comput. 38, 2 (Feb. 1989), 238-249.

. C. P Schnorr and A Shamir, An optimal sorting algorithm for mesh connected computers, in ~Proc.

I8th ACM STOC” pp. 255-263, May 1986,
C. D Thompson, The VLSI complexity of sorting, IEEE Trans. Compur. 32 (Dec. [983).

Comput. Mach, N {Apr. 1977), 203-271.
S 8 Tsai, 5) Horng, & % Lee, Ho R Tsan and T-W. Kao, An efficent sorting algorithm on

mesh connected computers with multiple broadeasting, in “Proc. Int Conll High Performance

Computing,” pp. 437442 Dec, 27-30, 1995

& Wen, Multiway merging in parallel, JEEE Trans, Parallel! Distrib. Comput. 7, | (January 1996),

1-17

Prinfed in Selyivm

	parallel sorting-1.jpg
	parallel sorting-2.jpg
	parallel sorting-3.jpg
	parallel sorting-4.jpg
	parallel sorting-5.jpg
	parallel sorting-6.jpg
	parallel sorting-7.jpg
	parallel sorting-8.jpg
	parallel sorting-9.jpg
	parallel sorting-10.jpg
	parallel sorting-11.jpg
	parallel sorting-12.jpg
	parallel sorting-13.jpg
	parallel sorting-14.jpg
	parallel sorting-15.jpg
	parallel sorting-16.jpg
	parallel sorting-17.jpg

