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Im this paper, we present a parallel sorting algorithm wsing the technigue
of multi-way merge. This algorithm, when implemented on a ¢ dimensional
mesh having #' nodes (> 2), sorts n' elements in Of(¢* — 3¢+ 2) 1) time, thus
offering a better order of time complexity than the [((1* — 1) n log my2 + O(ni)]-
time algorithm of P. F. Corbett and L D. Scherson (1992, [EEE Trans.
Farallel Diserib. Sysiems 3, 626-632). Further, the proposed algorithm can
also be implemented on a Multi-Mesh petwork (1999, I3 Das, M. De, and
B. P. Sinha, IEEE Trans. Comput. 48, 536-331) to sort & elements in
S4NYE 4 ol NY¥) steps, which shows an improvement over 38N'% 4+ o V1)
steps needed by the algorithm in (1997, M. De, D. Das, M. Ghosh, and

Key Words: multi-way merge; shear-sort; odd-even merge sort; 2D mesh;
Multi-Mesh: multidimensional mesh; SIMD; MIMD; PRAM; EREW,
CREW.

L INTRODUCTION

Parallel algorithms for sorting are usually developed on either the network model
or the PRAM model The network model is the more restrictive one. Several inter-
esting results on the complexity of parallel sorting algorithms can be found in [1,
2.4, 6,17, 25, 28, 31]. Performance analysis of different parallel sorting algorithms
from actual implementation results was reported by Dusseau ef af in [ 13]. Parallel
merging on an EREW PRAM model was done by Cole [6] in Oflog N) time for
merging a total of N elements using N processors. Akl and Santoro [4] developed
a self-reconfiguring optimal algorithm for parallel merge sort on the EREW PRAM
model without memory conflicts. This algorithm requires O[{N/P +log” P) x log N)
time for sorting N elements using P processors. Wen proposed a parallel algorithm
[34] for multiway merging of & sorted lists (k =2) using P processors on a CREW
PRAM model which requires Oflog N + %ﬁ time, N being the total size of the
input lists,
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Sorting N elements in (N} time using a linear array of N processors was
proposed in [22] by Mukhopadhyay and Ichikawa and in [21] by Mukherjee.
Ajtai et al, proposed a sorting network [3] that sorts in O(log V) time, but the
constant in the running time of this algorithm was very large. Batcher's odd-even
merge sort [5] can sort N numbers in O(log® N) steps on an N-node hypercube,
as well as on bounded-degree derivative networks of the hypercube, commonly
known as hypercubic networks [18]. An algorithm for sorting N items on a hyper-
cubic network having P nodes in G[‘?f;;.?f;f ) steps was proposed by Preparata
[26] for an architecture-independent setting and was implemented by MNassimi and
Sahni [23]. An algorithm [or sorting & packets on a P-node hypercubic network,
when N =P, has been described in [1. 9], An O(log N log log N) step algorithm
for sorting N elements on hypercubic networks has been proposed by Cypher and
Plaxton [ 8] which is based on merging ﬁ lists of /N items each. Randomized
Oilog V) step algorithms for sorting on hypercubic neiworks have been described
in [ 18 20, 27].

Many interesting resulis also exist in the literature for parallel sorting on mesh-
like architectures, which are popular due to their structural simplicity. Thompson
and Kung [ 32] developed an G[ﬁi time sorting algorithm on a mesh connected
SIMD computer without any wrap-around connections. Schnorr and Shamir [30]
proposed a Eﬁ time algorithm on an MIMD mesh model. Scherson and Sen
[29] developed an optimal algorithm on an SIMD mesh model, called shear-sort
algorithm, that needs 4 \/rN +u[,f: ') steps and also a 3 JJ " step algorithm on the
more powerful MIMD model. Leighton's column-sors algorithm [ 17] uses seven
phases to sort N items on an rxs mesh into column-major order, where r = 52
Algorithms for optimal sorting on a multidimensional mesh using the MIMD
model were proposed by Kunde [15, 16]. Nigam and Sahn [24] have shown that
it is possible to sort N numbers on an N x N mesh using a number of routes that
is very close to the distance lower bound for both bidirectional and unidirectional
meshes, Leighton has given an algorithm [ 18] that sorts N elements in O(N ')
steps on a k-dimensional N V%sided array. Corbett and Scherson [7] extended the
idea of the shear-sort algorithm given in [29] for both SIMD and MIMD models
to sort N=n" elements on a k-dimensional mesh (without wrap-around connec-
tions) having »* nodes in ((K*—&)nlog n)2 + Olnk). On the mulidimensional
mesh architecture, this appears to be so far the best result which would require
6n log n + O(n) steps to sort n* elements. The presence of wrap-around connections
would not, however, improve the order of the time complexity. The algorithm due
to Tsai ef al. [33] takes log N +2(log* N/logm)— 3 log* N+ log Nlogm) time
to sort N elements on a mesh-connected computer with multiple broadcasting
(MCCMB) using Nm processors, where m is the number of processors in each
dimension of the MCCMB. A sorting algorithm on the Multi-Mesh ( MM ) network
has been proposed by De ef ol [12] which sorts N data elements on a MM
[10, 11] SIMD model in 58NY*+ o{ N'™) time.

In this paper, we first propose an algorithm f{or parallel multi-way merge which
is implementable on a suitable sorting network. When implemented on a ~dimen-
sional mesh having n' nodes (¢ = 2), it requires O((+*— 3t +2)n) time to sort n'
elements, offering an improved order of time complexity compared to that in [7].
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We then show an implementation of this algorithm on a MM network having
N=rn* nodes (n=>2) to sort N elements in 34N +0({N'*) steps, which is an
improvement over that of the algorithm in [12] due to a smaller constant factor.
This implementation is essentially an amalgamation of two things—the SIMD algo-
rithm in [29] to sort individual # x 1 2D blocks of the MM network and the n-way

parallel merging technique, as developed in the first part of this paper, for merging
these blocks.

2. PARALLEL MULTI-WAY MERGE SORT

In this section, we {irst describe an algorithm for parallel n-way merging to merge
n given sorted sequences on a network. Next we use this merging algorithm to sort
any given set of elements.

2.1, Algorithm for Parallel n-Way Merging

fnput.  n sorted sequences S, 8a, .., 8, each of length p such that

Si{snSspSans 8y,

LR I N ---:rJF}

‘Sal: l{‘1'..lrl = R = R = . ':'.Jr_p}'

Cutput. A sorted sequence V of length np.

ProOCEDURE n-MERGE(S, . 85, ... 5, V)

Step 1. If p< n, then arrange the elements of the given sequences in the form
of an n x p matrix; sort this matrix using a suitable algorithm (see Section 2.5) to
form the sequence V and stop.

Step 2. From the sequence S, (Vi 1 =i <n), construct n sorted subsequences
S0 8i2- 8530 w0 S such that Sp(k#£n) consists of elements {s;|s,€8, and
Imodn=14k} and S, = {sy|sy € S; and Imod n=0}. That is,

Sn={80 € tns 1S5 20m415 )

Sfﬂ={:'-fl‘“{h:'.t.n+ﬂ‘“{hﬁflﬂrtﬂ“{- }
'S'.I'JI |={1II.JI ]ﬂﬁffﬂl Iﬂ }

b’r:{‘lhﬂ.‘l’;m,ﬂ }

Note. If p=L+ n+ j, where 0 < j=<n (L being an integer), then &, will contain
L+ elements if k< jf and L elements if k= f; Wk, 1=k <n
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Step 3 Fori=1 to ndo in parallel
n-Merge( 8, Sa. o Sa. Ui

Note. The sorted sequence U, contains (L+ 1)n elements f k< and Ln
elements if k> j. Thus, if j=10, then U, contains Ln elements Vk; otherwise all /s
will not have the same length.

Step 4

Step 4.1, Ifj 0, then increase the length of all the smaller sequences U's
to the maximum length (L + 1) n by inserting (the necessary number of) a very
large number, say W. For the sake of notational simplicity, we denoie these
modified sequences also by Up, 1=k =n,

Step 42, Arrange the sequences U, U,, .., U, in the form of an nx¢
matrix U, where e=(L+1)n ifj£0 and Ln otherwise. Thus, for j=0,

Ly Wy W Wy v M L+ 1)m
r
U= U, _|¥n Haz Hx  ccr Haggnye
L'I.ll iy Hya Ny e u.ll,“'.-r'l].u
={4d, A; Ay - Ap.h

where each A,, 1=is(L+1), is a submatrix of size nxn, and for j=10,
U=(Ad; Aa A5 -+ Ag).

Step 5.

Step 5.1, Sort the following pairs of matrices separately in parallel in a
column-major order, replacing the original matrices by the sorted ones:

[A AL [AzAs] [AsAg]s .

Step 5.2, Sort the following pairs of matrices separately in parallel in a
column-major order, replacing the original matrices by the sorted ones:

[A:A:] [AgAs]s [AgA7]s -
The resulting matrix
V={d, A, A; -}
when read in column-major order, gives the required merged output.
Note. We refer to Step 5 (Steps 5.1 and 32 taken together) as the odd-even

mairix-merge operation (this has a sort of conceptual resemblance with the
Weavesort in [ 21 ]).
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22, Correctness of the Algorithm

We prove the correciness of the procedure n-Merge by applying the 0-1 principle
[14] We assume that the given n sorted sequences 5. 5., .. 8, are sequences
consisting of only (s and 1's,

Clearly, for p<n, n-Merge terminates successfully. Because of its recursive
nature, we assume that merging of subsequences S, | =isn topet Uy, 1=k =n,
is done properly at Step 3.

Let us now assume that the sequence S, contains /, number of s, 1 <i=n,
so that

Li=g,+n+r; Osr=n—1,

where ¢, 18 an integer,

Hence. the subsequences 8,,.5,. ... §; , will contain g,+ 1 number of 0's, while
the subsequences 5, . 1. 8,, .2, ... 8, will contain ¢, number of O's, Wi, 1<i<n.

Further, since the input elements are taken from the set {0, 1}, the equivalent
action for Step 4.1 is to pad every sequence U7, 1 <7 <n, which will be of length less
than (L + 1) n, with the required number of 1's only.

In view of the above arguments, the number of (s present in L/, will be less than
or equal to that in U, ,, 1 =i=n—1 That is, U, will contain the maximum
number of 0°s and U, will contain the minimum number of (s,

Let Q=g+ g2+ -+ + g, Hence, we have the following observations:

i1y  All the sequences U, Ua, ... U, will contain at least {0 number of (s,

(2} The sequence U, will contain the maximum number of (s among all
these sequences and that number 1s at most O +n.

(3} The sequence U, will contain the minimum number of s and that
number is at least Q.

According to our assumption, merging will be done successfully in Step 3. As a
result, each of U, U,, .., U, 15 a sorted sequence of 's followed by 1's.

Hence, we pet that the first @ columns of the matrix U consist of Fs only. The
next n columns (that is, starting from column number 0+ 1 to column number
¢+ n) may contain both s and 1"s and the remaining columns contain 1%s only,
The columns containing either only Fs or only 1's will be referred to as clean
columny and those containing both (°s and 1"s will be called divey columns. That is,
the matrix U contains at most # dirty columns and all these dirty columns appear
consecutively.

We are now required to prove that the matrix U can be sorted successfully in
Steps 5.1 and 5.2

Let D be the submairix of U containing only dirty columns. D can contain at
most # columns: Le. the dimension of D can be at most n xn. If we can sort D
properly, the matrix U will also be sorted. We now consider the following two
Cases:
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Case 1. D 5 contained completely within one of the submatrices [4,4.].
[A;A45]. [A:4:]. ... Then after Step 5.1, the matrix U will be sorted,

Case 2. D is contained partly in [ 4+ 4>] and partly in [ Aa, A2 2] That
is, I is actually contained partly in both 4., and 4., . After Step 5.1, each of the
submatrices [ 4., 45,] and [A,,, 44, 5] will contain at most one dirty column
and these dirty columns will he within the last »n columns of the submatrix
[As ,A,] and within the first # columns of [ 4., 4., .]. That is, afier Step 5.1,
the two dirty columns are contained in [ 4,4, ,]. These dirty columns will be
cleaned afier the execution of Step 3.2. Hence the prool

2.3, Implementation of n-Way Merge on a Network

A network implementation of the procedure n-Merge is shown in Fig. 1, for n=13
and p=9 The odd-even mairiv-merge modules can be designed in any suitable
manner, eg., using a 3-dimensional nxnx2 mesh network or a hypercubic
network. The overall time complexity and also the number of comparators required
for merging would depend on the actual implementation of this module. In a latter
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section, we compuie the time complexity in terms of the time needed by this module
and also an n x n matrix sorter.

24, Sorting by n-Way Merging

Input. A set X={x,,x,,...x,} of N elements. (We assume that N =n' for
some ¢ = 1; otherwise we append to X the required number of elements all of which
are greater than any element present in X').

Cutput, A sorted sequence,

PrOCEDURE MULTIWAY - MERGE-SORT

Step 1. If N =n, then sort the elements and stop; otherwise if N =»7 then
arrange the elements in the form an mxn matriy, sort this matrix by a suitable
algorithm (see Section 2.3}, and then stop.

Step 2. Divide the set X into n subsets of equal length N/n.

Step 3. Sort each of the subsets in parallel by a recursive call to procedure
Multiway- Merge-Sort.

= i
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Step 4. Merge n sorted sequences obtained in Step 3 applying the procedure
n-Merge to get the final sorted sequence.

The correciness of the procedure Multivay-Merge-Sort is quite apparent. An
example of its network implementation is shown in Fig. 2 for n=3 and N=27.

2.5 Timing Analysiy

Let p=n" and M{p x n) denote the time taken to merge n sorted sequences, each
of length p by the procedure n-Merge. Moreover, let us assume that Sin xn) and
Sin = 2n) denote the time taken to sort a matrix of size n x n and a matrix of size
nx 2n, respectively. We then have the following relations from the steps of the
procedure n-Merge:

M[pxnl=M(Exn)-é-25[nx?ni
n

=M(£1xn)+43[nx2m
i

=Mntxn)+2r—2)8nx2n)

=8Sn=n)+2r—1) 8n=2n)

Let MMSIN) denote the time taken to sort a sequence of length N by the proce-
dure Multivay-Merge-Sort. Hence, we can write

MMS(H' ) =MMS(n" ')+ Mn" ' xn)
=MMSn' )+ Sinxn)+2(t—2) 8(n x 2n)
= MMS(n" ")+ 28(nxn)+ {20t —2) +2(t—3)} S(nx2n)

= MMS(r*)+(t—=2)Sinxn)+2{(t=2) +(t=3)+ - +1} S(nx2n)

=(t—1)Snxn)+{F=3+2)8nx2n)

If & hypercubic network is used to sort the nxn and » x 2n matrices in steps 1 and
4 of the procedure Multivay-Merge-Sore, then MMS(n*) will be equal to
(1* log* n). On the other hand, a f-dimensional mesh with »n* nodes can be used
to store the data elements, and then the n = n and »n =% 2n matrices can be sorted in
O(n) time using the algorithm in [29]. As an example. consider the case of n’
elements in a 3D n % nxn mesh, with nodes organized along x, p, and = directions,
respectively. Initially, the »* data elements in every plane parallel to the xy plane
will be sorted in x-major order in fn) time. This will form the sets 8's
i=1,2 .. n, each set being constituted by the elements residing in a plane parallel
to the xy plane. At this point, the set of all elements appearing in a plane parallel
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to the yz plane will be only those which can form the set U for some value of i,
1= i<n So, the elements in each plane parallel to the yz plane are now sorted to
form the sets U's, i= 1,2, .. n, each U, being stored in a separate plane in y-major
order, say. It then follows that each of the matrices 4, 4,. ... will be formed with
the elements residing in a plane parallel to the xy plane. Hence, the odd-even
matrix-merge operation can be very well performed in O{n) time afier this step.

A generalization of the above idea can be made so that if we were initially given
n sorted lists, each residing in an (/ — | j-dimensional hyperplane of an i-dimensional
mesh having nxn % ... xn=n' nodes (i 3), then the sets Us, i=1.2, .. n, and
alko the matrices 4,, 4., ... 4, can easily be formed with the elements of the
i-dimensional mesh.

It thus follows from the above discussions that the procedure Multiwvay-
Merge-Sort can be implemented on a ~dimensional mesh having n' nodes (1 = 2},
to sort #° eements in O — 3 + 2) n) compare-exchange steps, and thus providing
a better order of time complexity than the [(((¢* —¢)nlogn)/2)+ O(nt)]-step
algorithm of Corbett and Scherson [7].

3. IMPLEMENTATION OF MULTIWAY-MERGE-SORT
ON A MULTI-MESH

In this section, we would show how the Multiway-Merge-Sort algorithm can also
be efficiently implemented on a Multi-Mesh [10, 11]. The MM network consists of
n® meshes of size n % n each, which themselves are also arranged in the form of an
nxn matrix. Each of these constituent meshes is called a Alock, which is uniquely
identified by two coordinates, say, = and f as B{a f). There are n* nodes
(processors) in the network each of which is designated using a four-tuple of
coordinates. Thus, let Pla, f, x, ¥) denote a processor at the xth row and yth
column of the block B{x, f). Each of o, §, x, and y can assume values in the range
1 to n (both inclusive).

The processor Pia, §, x, v) is connected to its four neighbors Pia, f.x £ 1, p £ 1),
if they exist, using the intrablock links. Additonal connections called interblock links
between the boundary and corner processors of different blocks are also used as
described in [10]. An example of a Multi-Mesh network for n=3 is shown in
Fig 3, where all the interblock links are not shown.

We assume that there are N =n* data elements on the n* nodes (processors) of
the Multi-Mesh. Sorting will be done by applying the n-way merge on these data
elements in different stages. We first give the following notations and definitions.

We refer to the directions corresponding to the coordinate values y, x, f and «
as row, column, third, and fourth dimensions, respectively. Let Dix, §, x. y) denote
the data element residing in the processor Pla, f, x, ). Based on the dimension of
sorting, we define the following:

DeFmmion 1. By an R-operation, we mean independent row sorts for all the
blocks in parallel, where the direction of row sorts of two consecutive rows are
opposite within a block and also the same row of two consecutive blocks along the
third or fourth dimensions are sorted in opposite directions. I, however, all rows
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i a block are sorted m the same direction, but rows of consecutive blocks are
sorted in opposite directions, then we call this an R*-operation.

DeFmmion 2. By a C-operation, we mean independent column sorts for all the
blocks in parallel, where the direction of column sort for all the columns within a
block will be the same, but it will be reversed in the next consecutive block along
the third or fourth dimensions.

DeFmvmion 3. A T-operation sorts each set of n data elements D{a, =, x, y) in
parallel over the third dimension [(“*" implies all possible values (from 1 to n) of
the respective coordinate) so that

Dio, LLx, y)£D(o, 2, x, )£ oo £ Do, n, x, p).

DeFmmion 4. An F-operation sorts each set of n data elements in parallel over
the fourth dimension, so that

DL x, vi=D2 fx, vi= .- =D(n, 8. x, ¥, if # 15 odd, and
DL x,vizD2 fx.v)z... 2D(n B.x, y), if ff is even,
DeFmmion 5. By an even block we mean an ordered block Bia, ) such that
x+ [ is an even number. Such a block is sorted in snake-like row-major order [12]

in which the sorted sequence starts from the lefimost end of the first row and ends
at the nth row.



MULTIWAY MERGE ON A MULTI-MESH NETWORK 901

DeFmmion 6. By an odd Bock we mean an ordered block Bia, ) such that
x+ f 15 an odd number, Such a block is sorted in snake-like row-major order in
which the sorted sequence starts from the nth row and ends at the lefimost end of
the first row.

DeFmvmion 7. A 3D block is a sequence of alternate odd and even blocks for
a gven value of x such that all the elements of the sorted block B(x, f) are less than
or equal to all the elements of the sorted block Bla, f+ 1), 95 1 =f<n

We note that there is no direct link among the respective nodes in the MM
network to effect the T-operation. Hence, the T-operation is performed in three
stages. In the first stage, all data elements are given n horizontal circular shifis
(along the horizontal cycles of length n and 2n in the MM network [10, 11]). so
that the ith rows of the blocks Bia, * ) are all brought to the same block Bia, ).
The second stage of the T-operation consists of sorting the elements in each of these
columns individually. The third stage of the T-operation is just the reverse of the
first stage, in which the sorted elements in the jth row of the block B{a, i) are trans-
ferred back to the dh row of the block B(a, j) through n horizontal shifis. In
general, the first and third stages of the T-operation require a total of n+n="2n
routing steps. The second stage can be completed in n steps of odd-even transposi-
tion sort.

As in the T-operation, the F-operation also requires three stages. The first stage
involves n shifts of all data elements along the vertical cycles present in the MM
network so that elements to be sorted appear in a single row of an appropriate
block, the second stage consists of sorting each row of the blocks individually, and
the third stage would be another n vertical shifis of the data elements.

Since the correctness of the proposed implementation will be proved using the
O-1 principle [14 ], we assume that all input data elements are taken from the set
{0, 1}. Following the notation in [12], a row of a block will be denoted by ¢, .
and 4 if it consists of only (s, only 1%, and a mixture of ("s and s, respectively,
With these notations, if we consider two consecutive sorted blocks (one 1s an odd
block and the other is an even one) for a given value of o, then these blocks will
look like that in Fig. 4a. Hence, by similar arguments as given in [ 12], we can get
the following result.

Lemma 1. If there are only n matrices, A, A5, ... A, generated in Stepd of the
n-Merge algorithm and they arve stored in blocks Bla, 1), Bla, 20 . Bla, 1), respec-
tively, for some value of x, then the odd-even mairic-merge operation required for the
n-Merge algorithm can be done by fivst sorting each individual block to generate con-
secutive odd and even Mocks and then applying the T— C— R —C — R operations.
Each block will be sorted in snake-lice row-major order after this. The operations T
and the latter C would cach involee only two compare-exchange steps, ie., the total
number of steps required for the T— C— R —C— R operations is (2n+2)+n+n+
24+ n=35n+4

Remarks.  To get each block sorted in row-major order, we need to change the
T'—C—R—C— R operations in Lemma l to T'—C— R—C—R*
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On the other hand, if there are n” matrices A, 4., ... A, (arising during the
process of merging n sorted sequences each of length n¥). then we can store them
in the blocks of the Multi-Mesh in the manner shown in Fig. 4b for n=3. If the
individual blocks are now sorted to generate consecutive odd and even blocks for
a given value of « as well as for a given value of £, then all but two blocks will con-
tain only ¢'s or only efs. The two other blocks may contain at most two &'s, and
ket us call them dirty blocks, If these two dirty blocks appear in the same column
of blocks (having the same value of the f coordinate), then by a similar argument
as for Lemmal, we can sort these two blocks applying a sequence of
F—C—R—C— R operations (Fig. 4c). However, these two consecutive dirty
blocks may also appear in two consecutive columns of blocks. In that case, the
sequence of operations T'— C— R —C — R would have cleaned the two blocks. Both
these cases can be satisfactorily taken into account by a combined #— T —C — R —
C'— R operation. Note that the elements of the blocks may be exchanged due to
either the F-operation or the T-operation, but not both. This is due to the fact that
there are only two dirty blocks, and considering that the blocks form a snake-like
chain as in Fig 4b, on one side of these dirty blocks along the chain, there are
blocks containing ¢'s only and on the other side there are blocks containing s
only. We now have the following result

Lesma 2. [f there are n® matrices A, Aa. .. A,z generated during the execution
of the n-Merge algorithm and these matrices are stored in the blocks of the Mulii-
Mesh i the order shown in Fig 4b, then the odd-even matvix-merge operation for
these maitrices can be completed by first sorting the individual blocks and then applying
a sequence of F—T— C— R —C— R operations. The operations F, T, and the laier
C would each involve only two compare-exchange sieps, giving rive to a total of Th+ 6
compare-exchange routing steps for the combined F—T— C— R — C— R operations.
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We now describe the algorithm for sorting, on Multi-Mesh in the [ollowing steps:
AvcoriTHM M M-SorT
/* Construct the initial n” sorted lists each containing n” elements */

Step 1. Sort each of the n? blocks in snake-like column-major order using the
shear-sort algorithm in [28]. Rearrange the elements in the columns so that each
block is sorted now in column-major order (refer o Fig. 3a for an example with
n=13).

/* Merging of elements in a row of processor blocks, ie, in Bla, ), 1€Sa<n,
starts here */

Step 2. Data elements are shifted horizontally through s places. (The
situation after this step is explained by Fig. 5b for n=3).

Step 3 Apply the shear-sort algorithm to sort each block in snake-like
row-major order, such that for a given o, the sorted sequence in a block Bia, f)
starts from the lefimost end of the first row for odd values of § and from the
rightmost end of the first row for even values of .

1A 15 8, i85,
S,08, &, S8 B isy 5, 8, Sy0 8, 5, S
bl b Fn o B By bL.. 5y Be By '5.'.1 LA T
S8, §, 5 Tt Ry By by CIVER T
rl}l:l s'll 14 i'|- 5|= 5 sl.“ s'!:l- sll !r,
:;.'r I‘M‘ I‘“ \35 I‘L ‘zz 5.', I"H I‘H
5‘J"l s:'l sl-l 'i.'i s.l, sﬂ s.'l" S“ sﬂ
Ll Uy W, Uy u, U, uy Uy Wy Uy
i."l I‘lj ul-l .Ll“ 113 IJ." u.'fl ”.'5 ﬂ]+
Uy Wy U Uy Uy Uy Uy Uy Uy

(L, after bicck sarting) (U after Block somingy (U, affer bieek soetings

iy O, Uy Uy Wy U W, Uy U, W,
by Wy Yy Uy My Uy U, U, U
u, n. u, u, WM, w, oW, w,
(Elzments of &) (Elemnznts of A {Elements of &)
oW uow oW, u, Uy
gy ugoup Wy W W wy wou
u, u, u w, u, v, uw, u, u,
(Scried Eloments of A} (Boved Elomenta of Ay (Socted Elemcntz of & )

FIGLURE 5
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Note. After Step 3, we get the sorted sequences U, Us, ... U, for merging the n”
elements in a row of processor blocks (e, for a given value of «). Each ol these
sequences now appears in a single block. An example for n =3 is shown in Fig. 5c.

Step 4. All data elements are again shified horzontally through n steps. (This
will bring all elements of a matrix 4,, 1 =i=n, into a single block of the MM
network, as shown in Fig. 5d).

/* odd-even matrix merge for the matrices 4,'s in a row of processor blocks staris
here */

Step 5. Sort individual blocks again by using the shear-sort algorithm so that
each ordered block is now an odd block or an even Bock, as shown by the example
of Fig. 5e.

Step 6. Apply the T—C— R— O — R* operations on the data elements using
only two comparecxchange steps during the second stage of T-operation. { Fig 6
shows the sequences V', V., and V, for n = 3 after this step).

/¥ merging of 3D blocks starts here with the given sorted sequences V., Vs, ... V),
"/

Step 7. Apply n vertical shifis to all data elements. | Afier this step, the blocks

Bia, + ) will contain all the elements of the subsequences V l=i<n.

Step 8 Apply Steps1 to 6 above, with the only change in Step 6 as
T'-C—R—C— R, on the data elements to merge V, .’s, Vi 1 <i<n, for a piven
a to obtain the new sorted sequences WY, W, .., W) in the 3D blocks. | This siep
completes Step 3 of the n-Merge algorithm,

Step 9. Shift the data elements in individual blocks using only the infrablock
finks, as if the elements in blocks with odd values of o are rotated in the counter-
clockwise directions and those in blocks with even values of o are rotated in the
clockwise direction with the following structures: original ith row of every block
now becomes the dh column for odd o and (n—i+ 1th column for even a.
l=i=Zn.

Step 10, Apply n vertical shifis to all data elements along the vertical cycles
in MM. {The individual blocks now store the matrices 4,’s required for the final
step of merging ).

TR Rt Yoo Yuo Yu Yuo Y Ya
I ¥

¥orovy e Yy w Y Yw [ B T
AT U] I i:] [t ¥ro Yig Yu

Yoo Yu ¥y Yoo Y Yx Yo Vi Vi
¥ooovu Ya Yy Yao Yue Y Yar Voo Y
Yoo ¥ ¥y Yo Ym Y Yo Yo Vi

"'—.n ¥ 1 v.u 1'..*.'. \Ijil i a "'.w ¥ I

‘I:‘ FJJ ‘-J_ vﬂ Jr.l “I"L ‘Ill x5 }J" v!_l
Yoo Yy Yu Yoo Yen Vi Yo Y i

FIGLURE &
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FIGURE 7

/¥ Odd-even matrix-merge for the final step staris here */

Step 11, Sort the individual blocks by using shear-sort algorithm.

Step 12, Apply F—T—-C—R—C — R operations with only two compare-
exchange steps in each of the £, T, and the last C-operations to sort all the elements
in the final order as illustrated in Fig. 7.

The correctness of the algorithm MM-Sort follows directly [rom the correciness

of the algorithm s-Merge, that of the algorithm Multi-Merge-Sore, and Lemmas 1
and 2.

3.1, Timing Analysiv for MM-Sort

Step | of the algorithm M M-Sort requires {(dn + o{n) )+ n)= 3n + oin) steps. Each
of the Steps 2, 4, 7, and 10 requires n steps. Sorting in each of the Steps 3, 5, and
11 requires 4n+ oin) steps. Step 6 requires 5n + 4 sieps. Step 9 requires n— 1 steps.
Step 12 requires Tn + 6 steps.

Hence, Steps 1 through 6 requires a total of 20n + oin) steps. The overall time
required for the algorithm MM-Sortis 20n +a+20n +(n—1)+n+dn+ (Tn+ 3) +
oln) =54n +o(n) steps. We now have the following result.

TueoreM 1. N=n? elements can be sorted on the Multi-Mesh network using
n-way merging, in a total of 54N + ol n) compare-exchange frouting steps.

4. CONCLUSIONS

We have described an algorithm for sorting by using parallel multi-way merge.
When implemented on a f~dimensional mesh having »n' nodes, this algorithm takes
O —3t+2)n) time to sort n' elements, and thus offers a better order of time
complexity than the [{((+ —¢)nlogn)2)+ O(nt)]-time algorithm of Corbett and
Scherson [ 7]. Then we have given an implementation of the algorithm on a Muli-
Mesh network to sort N elements in 54N '™ + o{ N4 compare-exchange/routing
steps. which is an improvement over the previously known result [12] of 588" +
o(N"?) steps on the Multi-Mesh.
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