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models [19], [27]. Specifically, we consider the model presented in the
text: it is easy to see that, for this model, an L0 policy is suboptimal.
We provide a counterexample to show this; this counterexample may
be adapted to show that Lo policies are suboptimal for other popular
Markov state models { gene ralized-L5 model and Young’s model [23]).
We assume that p) = pe = p3 = g = | and p, = (0.

We assume that there are two mssociations to be learned. 4, and
2, that currently reside in states T7 and 7, respectively, and that three
trials are remaining for instruction to complete. An L0 policy would
prescribe that - be presented on the next trial since this would vield
the maximum ex pected average retention (0. 5). Independently of which
associations are selected for presentation in the two remaining trials, it
is easy to see that the expected average long-term retention of imple-
menting an L6} policy equals 0.5 (at the end of instruction, A will
have a probability of unity of residing in state f., and 4. will have a
zero probability of residing in state L), This value is suboptimal since
a policy that presents first Ay then e, and finally A, vields an ex-
pected average retention of 1.0; the (certain) joint-state trajectory for
the two associations isthen £ » 50 0+ L4 In general, the
instructor may maximize retention by taking advantage of these state
transitions occurring during nonpresentation trials that do not lead to a
state denoting less durable representations in memory transitions (here,
from state 5 to state . and from state (7 to itself). Such transitions
occur in all Markov state models that can account for effects of lag on
accuracy[25].
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Some Classification Algorithms Integrating
Dempster=Shaler Theory of Evidence with the
Rank Nearest Neighbor Rules

Mikhil B. Pal and Swati Ghosh

Abstract—We propose five different ways of integrating Demp-
ster—Shafer theory of evidence and the rank nearest neighbor classification
rules with a view to exploiting the benefits of both, These algorthms
have been tested on both real and synthetic dats sets and compared
with the k-NN, m-MRNN, and k-NNDST, which is an alporithm that
also combines Dempster—Shafer theory with the &-NN role. I different
features have widely different variances then the distance-based clasifier,
alporithms like f-NN and B-NNDST may not perform well, but in this case
the proposed algorithms are expected to perform better. Our simulation
results indeed reveal this, Momover, the proposed alporithms are found to
exhibit significant improvement over the m-MRENN rule.

Index Terms—MNearest neighbor classifier, rank nearest neighbor, theory
of evidence,

. INTRODUCTION

Patternclassification by distance functions is one of the earliest con-
cept in automatic pattern recognition. The & -Nearest Neighbor (k-NN)
rule is one of the most widely used pattern classification techniques pro-
posed by Fix and Hodges [1]. This method usually leads to satisfactory
results when the pattern classes exhibitclustering tendencies. Cover and
Hart | 2] showed that under certain conditions &-NN method ap proaches
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the optimal Bayes ervor rate. Given a sample point Dudani |3 ] proposed
a method to assign a weight wite? o the ith nearest neighbor a5 g
wh! = (@5 — g0 Fe — g, 8 o2 @7 and wt = 1 when
A4 = 300 Here ™, - - | 4™ arethe distances of the & nearest neigh-
bors from the point v arranged in increasing order. The unknown pat-
tern - is assigned to the class in which the sum of weights, among the
E-nearest neighbors, is the maximum . However, some authors claim that
under certain conditionsunweig hted k-MNN rule performs betterthan any
weighted f-NN rule [4]. Instead of using Evclidean distance in classi-
fication Anderson 3] proposed a nonparametric classification rule for
two univariate populations by ranking the training samples. Bagui |6],
[ 7] extended the idea of Andersontos > 2 populations. This univariate
rank nearest neighbor (URNN) rule is then further extended by Bagui
and Pal [8] tomultivariate data resulting in the multivariate rank nearest
neighbor { MENN) rule. Denoeux [4] proposed a new classification pro-
cedureusing the &-nearest neighbors and Dempster—Shafer(D-5) theory
of evidence to get the B-NNDST rule [9].

In this paper we propose several algorithms for pattern ¢lassification
that combine the underlying philosophy of RNN rule with D-5 theory.
We have tested our algorithms on several real and synthetic data sets and
compared their performances with the ordinary &-NN, r-MRNN and
the L-NNDST algorithms, and we have obtained encouraging results.

Il. MEAREST MEIGHBOR RULES

W begin with a description of the 1-stage univariate rank nearest
neighbor (1-URNN) rule.

The 1-URNN Algorithm [6], [7]

1y Let {o,} (7 = T+vsntj = Teeon;) be the training data, » be the
number of classes, v; be the number of training data from class «, and
7 be an incoming sample to be classified.

2) Sort {ri;} in ascending order to {F., & =
M= wm).

3 If - £ [, %] then goto 5.

4) If = is either the smallest (< &) or the largest (& > 2+ ) obser-
vation then classify © into the population of its immediate rank nearest
neighbor and exit.

5) If immediate left-hand (LH) and right-hand (RH) neighbors of =
both belong to the same population then classify = to that population
and exit.

6} If the immediate left-hand (LH} and right-hand (RH) rank nearest
neighbors of = belong to different populations, classify : into either
population arbitrarily.

1.2--. 2%

The asymptotic error rate of the 1-URNN rule for s populations is
the same as that of 1-Nearest Neighbor (1-NN} of Cover and Hart [2]
for s populations. Next we present the ni -URNMN, a multi-stage gener-
alization of the 1-URNN rule with s populations.

The m-URNN Algorithm [8]
1} Sort training data {7, | in ascending order to [, 1 = 1.2,--+ . ¥
X =0 ]
2} Fix rn & N a positive integer given = £ [f¢,
3p0f = & [&), ], classify = with its rank nearest neig hbor, exit.
4y If = = i for some 1, classify - with the label of 3, exit.
5y ¢« 1.
6) While (7 < )
If left-hand and right-hand neighbors of ;. belong to the same
population then classify & to that population, exit.
If i = o, classify - into either population arbitrarily, exit.
FIC
Wend (end of while).

Bagui and Pal [8] extended this vo-URNN to the re-stage Multi-
variate Rank Nearest Neighbor (rie-MRNN) rule which classifies mul-
tivariate observations using the ra-URMNMN rule first oneach feature and
then combines these feature-wise results to get the final decision for
each multivariate observation. The schematic description of the Algo-
rithm for v-MRENN is presented next.

The m-MRNN Algorithm

1} Let there be s p variate (p = 1) populations (.- -y ) and let
Leit oo edi L = HE bethe training data from population ..

2y Let = & NF be the unknown observation to be classified.

3) Classify =0 .k — |2, - 1 by applying w -URNN rule.

4y Letus define ¢, (§ — 1,---, 51 {k — L.---.pitobe lor /2ord)
when z, is classified to the [th population or randomized between the
tthand jth il £ {1 populations and not classified to I, respectively.
3) Define )y = 37, \-b:;”". riey is the sum over all features of class [
Ga) Ifni; = ', where nc” is the unique maximum of oz [0 <
), then classify = to population ;.

6h) If m* = m, = g = -~ = m;;, then classify : to w, with
probability 1/ for i = i.4a.--- 4.

We conclude this section with a description of the well known f:-NMN
rule.

The kNN Algorithm

Let us consider a set of patterns ¥ — {wy, --.xv} L F" of
known classification where each pattern belongs to one of the classes
W = g, e, oo b The nearest neighbor (NN} classification rule
assigns a pattern = of unknown classification to the class of its nearest
neighbor, where a; € X is the nearest neighbor to @ if

D, 21— wind Diag, =)
. L

N e 1

1 is the Euclidean distance between two patterns in 57, This scheme
is called the 1-NN rule since it classifies a pattern based on only one
neighbor of 2. The &-NN rule considers the &-nearest neighbors of :
and uses the majority rule. Let &, [ — L.2,---, 5 be the number of
neighbors from class ! in the fr-nearest neighbors of z, 377 & = &
Then = is assigned to class j if ¢, = \1_;";:‘-{ .

:

1. DEMPSTER-SHAFER THEORY OF EVIDENCE

Let X be the universal set and PUX) be its power set. Any function
g U — 0.1 is a fuzzy measure if it satisfies the following three
axioms [9]:

ol:

[P

al

el = Nand gl A ) = 1.
Forevery 4, 88 & I IS & (1 then y{ A) < gl f71
For every sequence [4; € PiX[i = L 2,---] of subsets
of X, ifeither 24, C A C ---orzlh 2 Ae 2 -, then
e g0 = pilin,— L3
i is applicable only for infinite universe and in the present context
since X is finite, g3 can be disregarded. Two important and well de-
veloped special types of fuzzy measures are belief and plausibility.
Acbelief measureis a function Bl @ PO — (1), 1] that satisfies the
axioms o1 through gt of fuzzy measures and the following additional
axiom:

”r'i'l:_.-h Ll e L) -'J||':_:I
= Z Delid:) — Z Delid: 145
Y T O P PO B

for every 1 and for every collection of subsets of X
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There is a plausibility measure with each belief measure defined by
PIAY = | — Heli 4% d £ 10X

Every belief measure and its dual plausibility measure can be ex-
pressed in terms of a Basic Probability Assignment (BPA) function
X o 0] is called a BPA whenever s = O and
oa-ywiAl = | Here w41 is interpreted as the degree of evi-
dence supporting the claim that the “truth™ is in 4 and in absence of
further evidence no more specific statement can be made. A belief mea-
sure and a plausibility measure are uniquely determined by re through
the formulas

L

Belil) = E ml B (1)
B
Pu!‘:___.-]_:l — Z L |_‘B‘; YA X, {-1}
AR ST

From (1} and (2) we see that, F{A0 = sl vl © MUY Every
set A & SN for which nef A3 = 0 is called a focal element of i,
Evidence obtained in the same context from two distinet sources and
expressed by two BPAS re- and re: on some power set P can be
combined by Dempster’s rule of combination to obtain a joint basic
assignment vy - as

E s L B (0
O L fdge O

M. if 4= i

Here

L= E b B e (0T

Errl=g

Dempster’s rule of combination is commutative and associative,
Suppose re- and e are two BPAs, If i is vacuous, then wre and
ey oare combinable and sy 00 ries = ree. I nep s Bavesian (ie.,
(AT = 0% A such that |4 5= 1yand vey and s are combinable,
then e <y is Bayesian. A special type of BPA, {41 — 5 and
miX s — 1 — = is called simple support function which we shall use
extensively in our study, There are some criticism about how belief
is weated in Dempster’s framework and in this regard a transferable
belief model [13], [14] is proposed which does not assume any
probability measure on . However, we do not pursue this model in
this paper.

MNow we shall present the f-NNDST [4] rule which integrates the
voting feature of NN rule and evidence aggregation characteristic of
D-5 theory of evidence.

The %:-NNDST Algorithm

Let X be ap dimensional training set (i.e., V-data points in It¥),
= 7o 0 | be the set of classes and - be an incoming sample
1o be classified based on ¥ . Let € be the set of k-nearest neighbors
of = in X according to the Euclidean distance measure. Any &, € 07
which has a class label 4 can be viewed as a piece of evidence sug-
gesting that = could be a member of class y—it increases our belief
that : could be a member of £, but does not provide a 100% confi-
dence. This thing can be modeled under the D-5 framework by a BPA,
m’ s

i — ey w0 — L=y and
A= Yde PO — {100
where (b < o, < 1.
The choice of . is an important issue to be resolved. Denoeux [4]

.y oo gl .
suggested ro, = ap b, (0 where i = o 7 with = 0 and
dE 2]

Let vl Z <" be the set of elements of <" from class ;. Then for
each.r; & D7 we get a BPA w7, Denoeux [4] combined all such BPAs
to get

my{Ce}) — 1 — H [l —ei] and

SLZa &
Lt
a

w0 = H (1 el

o 4
i

In this way, we can get at most » BPAs, e, g = 1.2+~ % These
BPAs are then combined to get the global BPA w\n = 30y, as

negt [055]) Hm;-{ff:l
e .
W ;

.
]__I e

a0, —

g—1.2---.3

- 51
{9y = .
re L) A

Here the normalizing factor K is

= i e 0 H w0 1:[ LTS

a1 TRy =1

The point - is then classified to class ¢~ such that m(]C,-}) =
Mezedra (107, 11]. Such a method is likely to produce a better
R

}m"!hl'mulu:e than the ordinary &-NN rule. A better decision making
strategy may be to use the pignistic probability distribution [13]-[15].
The class label can be assigned based on the maximum pignistic
probability, which in the present context is the same as the maximum
BPA decision. In the above method there are a few user defined
parameters whose choice has significant impact on the performance of
the classifier. Recently, Zouhal and Denoeux [16] suggested a method
for estimation of these parameters minimizing an error function
defined using the pignistic probability distribution and the actual label
vector of the training data points,

IV, PROPOSED ALGORITHMS

We propose five algorithims which integrate Dempster—Shafer theory
with the concept of Rank Nearest Neighbor for multivariate s class
problem (s = 1) There are two motivations behind this. First, each
feature value of an unknown observation z (to be classified) as well as
each of its k-nearest neighbors together provide some evidence about
the class label of z. Hence, the aggregation of such evidences using
Dempster’s framework is expected to result in a good performance of
the classifier. Second. it enables us to extend the me-URNN algorithm
fordealing with high dimensional data. For the first four algorithms for
each feature we find vo. rank nearest neighbors using the rie-URNN rule
and then for each feature we define a BPA. Thus we will have p BPAs
for i features. These p BPAs are then combined by Dempster’s rule of
aggregation. The four algorithms maintain this basic architecture but
differ in the definition of the feature-wise BPAs. In the fifth algorithm
foreach of the i features we first find the +t rank nearest neighbors and
define BPAs for all classes which have representatives in the v rank
nearest neighbors. For each feature these class-wise BPAs are com-
bined to get a single feature-wise BPA. The i such feature-wise BPAs
are again combined using Dempster’s rule of combination.

Our first algorithm, MRENNDST-1 classifies multivariate observa-
tions using the i -URNN rule first on each feature. Let X =15 X
B where X, is the set of training data from the jth class and x, =
TR x.'a:,,,‘."" Z A We sort the list of kth feature values .,
for all data points (£ = 1,2,.--. %1, Let us denote the list of ¥
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values of the hth feature by A} and its sorted version be ¥§. Now
we insert zy, the kth feature value of the incoming observation = =
(310 2T =o', tothe list X7 in its appropriate place, so that
the augmented list remains sorted. Let o be the number of points from
fth class out of the w left and right neighbors of =, If ; is high then
our confidence that = isinclass ! is high, but we cannot assume a 100%
certainty. Thus, we can define a BPA for feature & as

= [ S T i
e |{”-:| — " LR E :_fl Teg s 2arl e |_ H-ill'g.l']
i—=1

=12 n

Here I is a user defined constant.

Mote, 377 gl {i} = | and wgied = 0L That is oy, is a valid
BPA. Next we combine these feature-wise BPAs using Dempster’s rule
to find the class label for the observations. Since it combines MRNN
with DST, we name it MENNDST-1, one indicates our first algorithm.
A schematic description of the algorithm is given next.

Algorithm MRNNDST-1

Store:
X - U X: X: — setof data from class
=1
= [ ]oewp = [ X5 XF|---|X7)
where ¥ — Z T R T
=
&) is the list of values for
feature ¢ for the v data points
Unknown observation = = { 57,---. 7,00 & B*
Pick: ne © X and 12 ¢ ut
Process:

Fori — ltos
e — 00/ counter for each class */
Fork = Lo p
Sort A} in ascending ordertoget AF = Ji 0= 100 %)
If 2 & [¥4.#0k] and L is the class label of the rank nearest
neighbor of =,
ORIF 0 = dp, and L is the class label of 3.
Then gy = ¢ tand dyy = " 0= 100 0r L al = I
Else
vo— 1
while (» = m)
Find labels L, and L of the rth LH and B H neighbors of

If by, =sand f.p: = j, add 1to e and ¢,
re— v+ L
wend (end of while).
M Assignment of class label BPA %/
Forli = 1tos
Dup — f:il"'l_.::..z-.-;_l.l. 25_1 goh |
Next J; /*
Combination of BPAs using D-5 rule %/
Fort = 11to s

]:_[c.-‘rr, . .
iy = T where N = Z (_L[,I-Jh.) j
=1

M Computation of class forz %/
M= Avg Mo dy )
e — ——

Assign = to class 3.

MNaote that here when z; is to the leftof ), or to the right of 5+ or
zp = g for some ¥, then we use only one RINN, as these are the cases
which are less ambiguous.

Our second algorithm, MRENNDST-2 has more or less the same
structure as MRNNDST-1. In this algorithm, we consider n:-RNMN
instead of taking w-URNN. In n-URNN, when z, < Fj, or
Dk dws 0r 1 — $p the decision is made without considering all of
me nearest neighbors of 5y because these are cases of less ambiguity.
But in wri-RNMN, we use all w nearest neighbors of = in every case.
In other words, when =z < &, we consider the ne right-hand side
BMMN: when 2y > wae, we use the m lefi-hand side RMNN and in all
other cases we use the m neighbors from each side, if available. The
other major difference with MENMNDST-1 is that here the feature-wise
BPAs are defined using distances of z, from the v neighbors in X
MRENNDST-1 is primarily based on the majority rules like the &-NN
but MENNDST-2 is based on the average distances, i.e., the similarity
of iy to the points in Tj. $F = set of i RNN of =y, In this case the
feature-wise BPAs are defined as

my T = e /Z"'_"('r"""" = diy  (say)
y
I=1,2,..8

where o ; = sum of the distances between zy, and the points of the fth
class out of v nearest neighbor of [y, Note that if :y = 2, the BY
contains only the i right-hand side RNN. Similarly, if = = d#any
the ¥ contains only the ae left-hand side RNN. In all other cases
left-hand side and ne right-hand side RNN are used.

Algorithm MRENNDST-2
Store:

x

U X.. X, = set of data from class
R |

= [malwxs = [XEIXT -] X9

where & = z-u,. |X: =,
a1

A 1 is the list of values for

feature ¢ for the 2V data points

Unknown observation 7 — {5 ,---, 5,0 € B°
Pick: in & &
Process:
Fori =1 tos
i — 00/ sum of distance of each class */
Fork — 1w
Sort X7 in ascending order to get X7 = ¢ t = 1,---, &}
Let ;' = set of &,y from class { Z .
ey = %3 and dy = 2oh pcmes |56 — Riel.
For! — ltos T
I Assignment of class label BPA */

G = o Ml - f ESERSY
Mext &

/* Combination of BPAs */
Fori = 1to s

i—l
M Computation of class for 2 %/
M — ArgMar{d, }
e

Assign = to class 4.
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Our next algorithm, MENNDST-3, is structurally the same as that
of MENNDST-2 but it uses a different & function.

Algorithm MRNNDST-3
Algorithm MRNNDST-2, with gy, = 59070 &
where suffix 7 and & stand for 'th class and &th variate,

Both of MENNDST-1 and MENNDST-2 produce BPAs on the set
of classes. MRNNDST-1 produces a BPA using the voting concept like
E-NN while MENNDST-2 produces the same based on distances of
the mi-rank nearest neighbors. Too many representatives (many votes)
from a particular class, say !, within the sy -rank nearest neighbors pro-
vide a strong support that the - is from class ! Similarly, if the sum of
distances (or the average distance) of points from, say, class 7, within
the tn-rank nearest neighbors is very low, then this also generates a
strong evidence that - is fromclass /. Therefore, combining the BPAs of
MRMNNDST-1 and MENNDST-2 is expected to produce a more mean-
ingful belief assignment. Our next algorithim MENNDST-4, essentially
does this. MENNDST-4 can be schematically represented as follows,

Algorithm MRNNDST-4

Store:
= U X X = setof data from class £
i—1
— [ee]vwe — (N7 XE| - |XT)
where v = Z tess | e = s
=
X} s the list of values for
feature ¢ for the v data points
Unknown observation & = i7y,---.:,1" € B
Pick: =« ¥t P e B
Process:
z, v and

Iwoke MENMDST- 1 with X,
:

IT“’MMMH.-E:(II )

Iwoke MENMDST-2 with X,
I3

resulting vy, =
»and i

[T
resulting o, — _5_ where & — E (H )

Combine I’.l:.”_ and o,-{ with Demlwm '4 rule as

1 'z
[ L

— where I — E (

=1

[

I* Computation of class for 2 %/
M= Avgtior [
S m—

1
Assign = to class M.

For algorithms MENNDST-1 to MRNNDST-4, we have first found
the wn-rank nearest neighbors for each feature of the data point . Then
for each feature we aggregated the information present in the wn-rank
nearest neighbors or inthe class-wise average distances orin both. And
then defined one BPA for each feature. Finally, these BPAs are com-
bined. Our next algorithm RNNDST uses a slightly different concept
which is more similar in spirit to the ;-NNDST rule. RNNDST like
the other algorithms for each feature &, first finds the ni-rank nearest
neighbors. So, depending on the position of z: in the sorted list X},
there would be m to 20 neighbors. Now for each neighbor we define
a BPA as follows:

3 Ll . . - —_!
v — o and wm i) — L — oy oy — oege

where the index ¢ indicates the /th point in the »n¢-rank nearest neigh-
bors which is from class ¢ and . is the distance of z; from the ‘th
neighbor. Hence, for each feature we can have m to 2m BPAs de-
fined on the set of classes (0 = {07,400, --- (L) Next for feature
k. we combine the BPAs which are defined fm p.n'tu:ul.u class, Thus
after this step for each feature we can get at most & BPAs. Without
loss of generality we assume that for each feature we have exactly 2
BPAs denoted by ey, T — 1.---05, 8 — 1, ---. 5. We now aggre-
gate g, 0= 1,- -5 to get a feature-wise combined BPA, ney using
Dempster’s rule. Finally the global BPA is obtained by combining niy .
k= 1.-v_p Inanutshell

M — e Sy

2 i
W — ey sl T -
TE, =) X

Here &5’ = setof &, from class ! that belong to the m -rank nearest
neighbor of zx

Algorithm RNNDST

Store:
A U AL X — set of data from class
= |l = [XLIXE X2,
where & — Z ne X —
a1
‘(r is the list of values for
feature 7 for the v data points
Unknown observation = — {2 ,--+, 2,10 £ #*
Pick: m £ &
Process:
Fork = 110y
Sort X} inascending orderto get X} = {ie .t = 1o ¥}
o— | W
Forg — ltos
Fori: = 1to:,
dy = |zp = gl g € B ;
i (4 — oo where 0y — e
Ml = 1 —as
Mext i
Mext q
Forg =1 tox

g L0 — L= [ il = w ey b
= L=, e, bl

Mext q

I* Assignment of class label BPA %/

Forf — | to o4
G o— g H[l — il
£l

L 1 - Z‘:"_—"-'H
Mext & -
/* Combination of BPAs #/
Forf{ — | to#

[Léo+Yon 1 ocr+ Yoore 1
g = g

I

where R — Ec‘u.—.
=1
M Computation of class for 2 #/
U — ArgMax{an
i

Assign = to class 7.
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TABLE 1
COMPARISON OF DIFFERENT ALGORITHMS FOR 5 |

Himulations 1 Fl 3 4
Alporithms I b A Py Fa A Py o A Py o A
MRENNDST-1 | 10.7 | 4.0 T.35 ] 0.3 5.3 120 | 107 | 1135 | 12.0 | 6.7 0.3
MRENNDST-2 | 133 | 10.7 | 120 10.7 | 2.7 3.7 10.7 | 134 | 144 L] LT | 945
MBENNDET-3 | 8.0 &0 5.0 133 | 2.7 A . 120 | H.66 5.7 4.0 545
MHENNDSTA | 4.0 R .60 0.7 [ 1.3 6.0 4.0 10.7 | 7.35 5.0 4.0 f.0
BENNDST 187 | 5.3 12.0 0.3 4, 6,65 | 6.7 8.0 7.35 1240 | 5.3 2.65
k-MN 9.3 4.0 6.6 5.3 2T 4.0 [ii] 2T 1.35 27 P 27
R-MMNLDST [} 4.0 B.00 8.3 27 4.0 [ii] AT 1.356 2T A0 20
m-BIHNN 173 | 28 Zebo | 160 | I60 | I6D [ 9.3 160 | 1265 | I7.3 | 120 [ 14.65
TABLE I
COMPARISON OF DNIFFERENT ALGORITHMS FOR X,
simulationg 1 ] K] A
Algorithms T Iy ) 131 5 A I s & Pl T A
BNMNDST-1 | B3 10,0 | 975 L LN BEE] 11.5 1.0 | 1125 | 116 | S 10,25
TRNNDL-T | 145 | 160 [ 1oas | 145 | 120 | 1500 § Ta.08 § 10 | 1208 | 180 | g | 140
MRNNDST-3 | 106 | 8.0 9.7h BA) 8.0} 8.1 105 B.% 8.0 11.0 | 10L00 | 10.5
MENNDSTAA | 100 | 135 | 11.25 | A6 .0 .45 145 1L.0 | 1175 | 160 | & 1L5
HNNDET .0 0.0 | 9.40 B.5 115 | 10,0 11.0 o0 10,3 15.0 | 10.0 | 12.5
k- 26.5 | 26.5 | 26.5 2.8 | 180 | 2305 | 19.0 FELE L 235 | 49.0 | 28,75
=P N ET 240 [ 250 | 24.5 204 |17 | 144 245 8.5 | 220 28.5 | 220 | M35
- HNBN TT0 | g | d0.ra | MR | onn | odTa | Se FEIEE IFPEEGE I RN EUEE]

It may appear to the reader that this algorithm is computation-
ally more expensive than the L-NNDST. This is usnally false. For
k-NMNDST for every unknown point all the .V distances are to be
computed and sorted where the sorting complexity could be at best
order & lug, V. On the other hand, for RNNDST, the feature values
are to be sorted only once and the ranks of the  components of z can
be computed in order ¢ log., AV where j is much much smaller than v
Of course RNNDST computes more number of BPAs than 2-NNDST,
but [:-NNDST requires some auxiliary computations for finding the
value of -, the parameter of the L-NNDST algorithm.

The performance of -NN rule is usually good when the pattern
classes have clustering tendency. There are some cases where the pro-
posed algorithims can perform better than B-NN. Suppose for a four-di-
mensional (4-D) data set, out of the four features, three features have
very low values while the fourth one takes very high values. In this case
the distance of = from a point in the training set may be highly influ-
enced by the fourth feature and the effect of the first three features may
not be adequately reflected on the distance. For example, suppose the
training set has two data points & and s from class 1 and 2, respec-
tively, ry = (0.1, 02, 0.15, 10.0) and r= = (0.5, 0.3, 0.25, 12.0). Letan
unknown data point - be z =(0.1, 0.2, 0.15, 13.0). The distance of =
from 2 is 3 and that from e is 1.086. Hence using the 1-NN rule -
will be classified to class 2, although out of the four features, the values
of the first three features of = exactly match with those of . It, there-
fore, shows more evidence for class 1. Unless feature four is the only
important feature {which is a very rare thing to assume) we would ex-
pect : from class 1. In the rank nearest neighbor based decision rules
since we are defining BPAs feature-wise and then aggregating them we
expect to get the desirable solution in such cases.

We now show some theoretical results to analyze the behavior of
some of the al gorithms

Theorem {: For univariate case MENNDST-1 is equivalent to the
majority rule.

Progf: Let - be the number of points coming from the ith class
in the m-rank nearest neighbors for all v £ 1. 2.---, 5.

For MRNNDST-1, we define o, — 75K
o, = ot SHE L where K is a constant,

Heg - .".:___-_,-;:-r\- o= I'.,_."IIH. <

Ife, =, =2¢ e,
"

since e = 1 =0 =

LTI L

Theorem 2: If 4, = o, ¥, where o, = sum of distances between =
and points coming from sth class in the rie-rank nearest neighbor then
the decision of MENNDST-1, MENNDST-2 and MRNNDST-3 in one
dimensional { 1-13) case is the same as the majority rule.

Proaf: Let e be the number of points coming from the ith class
in m-rank nearest neighbors for all 7 2 1,2,-+0 s

For MENNDST-1, we define ¢; — « /™ and o, — o778
MRENNDST-1 does not depend on 2. and the results follow from The-
orem 1.

For MRNNDST-2, we define ; = A and g, =

| N . ' o
i Wy '\'.l'llrl. o o .

Ifo; > oy o= 2 e7Gl n o7 o — o Bl o
dyfe =5 e, & Ve & = ooy sinced, =

. i o o . [ iy

For MRMNNDST-3, we define o; = e and
G = gFraihl)

e > o, < = efmflmdl o i) o o1 £

e o ST P = e o sinced, = o

Y. RESULTS

Before discussing the results we first present the sinulation scheme.
Let % be the data set. We partition ¥ randomly into two subsets 5
(training set) and Sr (test set), such that S N Sr =01 8 J 5y = 5.
For every data set 5, we first use 5 as the training set and 57 as the
test set (we call this case /) and then switch the data sets (call it £}
and repeat the experiment. For both 14 and 1%, we find the number of
mistakes. The entire process of randomly partitioning 5 into 5, and
S and computing the number of misclassification is called a simula-
tion experiment. For each data set we made four simulations. We also
report the average number of mistakes averaged over /4 and 7% as A
in the tables with results.

We have used four data sets Xy, -+, X4 Xy — IRIS [12] is a 4D
(p = 4) data set. It contains 150 data points. Since IRIS is obtained
from observations over three different physical classes of flowers, s =
1. But in their numerical representation, two of the classes have a large
overlap while the third one is well separated from the other two.

Table | summarizes the results for X . For X, performance of
kNN, L-NNDST, MENNDST-4 is comparable for some simulations.
In all cases nv-MRNN exhibited the worst performance.
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TABLE

COMPARISON OF DIFFERENT ALGORITHMS FOR A 5

Timmlations 1 2 3 4

Algorithms FL_[Ie [ & h e [ A e | & L 1 Is [ &

MENNDSE-1 | 310 | 304 | 307 | 360 | 34.1 | 355 | 221 | 36.6 | 3495 | #.5 | 378 | 9615

; 3 | GR.3 | 42.7 | 505 | 607 | 56.1 | 554 | 512 | 5.2 | 512 | 608 | o0.0 | B4.0%

MONNDST-3 | 42.0 | 30.0 | 4005 | 465 | 26.0 | 427 | ool | 900 | or08 | 440 | 341 | o058

MENNDST-4 | 420 | 34.1 | 255 | 476 | 43.0 | 45.05 | 4.5 | 40.0 | 36.75 | 42.0 | 36.6 | 4095

RNNDST 205 | 820 | 2135 | 36,0 | 275 | 785 | 99.9 | o564 | 44,05 | 304 | 205 | 919

E-NHN A0G | 478 | 9905 | 417 | 84.1 | 570 | 28.8 | ab4 | 526 | 5.2 | 990 | 9705

“ENNDAT | 360 | 354 | o615 | 293 | 975 | 3555 | 557 | 554 | 3555 | 36.0 | 25.0 | 3245

P X33 3 G085 | 366 | 35.2 | 6.0 | 37.8 | 3735 | 29.8 | 24.1 | ALO5 | 35.7 | 257 | 5.7

TABLE 1V
COMPARISON OF INFRERENT ALGORITHMS FOR 2.

Simulatlons 1 2 3 4
Algorithms 14 & kY IE) I A i I A i I+ A
MRENNDST-1 | LL2 | L1.3 | 1La | 1056 | Los | 1045 | 7.5 145 | 1115 [ 108 | 10.8 | 108
MANNDOT-2 | 13.3 | 0.5 114 | 343 | 1L0 | 1266 | 1856 | 200 | 1075 | 1449 | 108 | 1256
MOSNDaTF | 17.5 | 21.5 | 19.5 | 1540 § 1120 | 146 | 166 | 183 [ 15.8 | 12.0 | 120 | 120
WMASNDAT | 103 | 1.2 LR 7.3 3K I BE | 118 | 0.3 T3 w0 T.05
IRy PN 13,75 | 12.6 | 1312 | 10,95 | 11.0 | 1062 [ 1995 | 1175 | 12.0% | 12.75 | 12.0 | 1437
[N B X BU5 | 1.6 ] 476 | 1.6 B5 5.5 50 rK] 1.0
T NOoT B.0 o 50 18 17 455 | 4.5 7.3 ED 5.3 15 4.9
o= B ELN T TG | F5.05 | SR.AG | 9475 | 3925 | 480 | 2u.h | 495 | 30.03 | 990 | 99.75 | 40.58

Az = asynthetic data set. This bivariate data set contains 200 points
with each class having 100 points. It consists of two separated rectan-
gular boxes in the first quadrant. For X the domain of one feature is
much bigger than the other.

Table 11, represents the results for X2, For this data set all of the pro-
posed algorithms are found to show better performance than the three
existing algorithms, k-NN, o -MRNN, L-NNDST. As explained ear-
lier, for X since one feature has a much larger domain than the other
feature, the two distance-based classifiers. &-NN and A-NNDST ex-
hibit poor performance and all of the proposed algorithms outperform
them. All algorithms in the MENNDST family show a remarkable im-
provement over the &-NN and - NNDST.

Az = MANGO DATA. This is a 18-dimensional (p = 18} data
containing 166 points [10]. This data set is generated from three dif-
ferent kinds of mango leaves, so 5 — 3. Here we consider only three
features, one with a large domain and the remaining two with small
domains. Table 11 displays the recognition scores for the four simula-
tions of ¥a. Out of the four simulations in three cases MENNDST-1
and RNNDST outperform &-NN and =-NNDST, but in one case both
E-NN and 2-NNDST outperform MENNDST-1 and RNNDST. All al-
gorithms, MENNDST-2, MENNDST-3 and MENNDST-4 and £-NN,
which use distances, show very poor performance as expected.

X. — NORMAL. This is also a synthetically generated data set in
4-D (g = Lywith 800 points [11]. It has been generated by drawing 200
points each from four multivariate normal distributions with population
mean g, = e, and covariance ¥, = §,,7 = 1,2, 3, 4., isthe ith unit
vectorin /", Since each feature has more or less the same variance, and
the clusters are reasonably separated, pure distance-based classifiers
exhibit better performance than the proposed algorithms (Table I'V).
Here also all algorithms in the MENNDST family, although do not per-
form better than &-NN or &:-NNDST, exhibit significant improvement
over the i -MENN rule.

W1, CONCLUSION

We proposed five classification algorithms, which combine the
features of the rank nearest neighbor classification rules and Demp-
ster-Shafer theory of evidence in several interesting ways. These
algorithms, particularly, are very useful when some features have

very high values while others have low values. In such cases distance
based classification rules like %-NN and B-NNDST may not work
satisfactorily but the proposed schemes perform well. A-NNDST is
usually found to show better performance than &-NN. In the present
case, all algorithms that combine ne-MRNN with D-5 theory show a
remarkable improvement over the re-MRNN rule. In this investigation
we have used simple type BPAs. It will be more interesting to use
belief functions with disjunctive clauses as focal elements so that it
can deal with uncertainty about the class membership of the training
data. In such cases we can use the pignistic probability distribution for
final decision making. We leave it for future investigation.
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Existence and Construction of Weight-Set for Satislying
Preference Orders of Alternatives Based on Additive
Multi-Attribute Value Model

Jian Ma, Zhiping Fan, and Quanling Wei

Abstract—Based on the sdditive multi-attribute value model for mul-
tiple attribute decision making ( MADM) problems, this paper investigates
how the set of attribute weights (or weight-set thereafter) is determined -
cording to the preference orders of alternatives given by decision makers,
The weightset is a bounded comvex polyhedron and can be written as a
convex combination of the extreme points, We give the sufficient and nec-
essary conditions for the weight-set to be not empty and present the stroc-
tures of the weight-set for satisfying the preference orders of alternatives,
A method is also proposed to determine the weight-set. The structure of the
wieight-set is used todetermine the interval of weights for every attribute in
the decision analysis and to judge whether there exists a positive weight in
the weight-set. The research results areapplied to several MADM problems
such as the geometric additive multi-attrbate value model and the MADM
problem with cone structune,

Index Terms—Decision analysis, extreme point, preference, weight-set.

I INTRODUCTION

Multiple attribute decision making (MADM) refers to making pref-
erence decisions (e.g.. evaluation, prioritization, and selection) overthe
available alternatives that are characterized by multiple, usually con-
flicting, attributes. It is an important research topic with wide appli-
cations in management and engineering |1 ]-[5]. Current methods for
MADM problems first determine the weights assigned to the attributes
according to different preference information given by the decision
maker. The mathematical models based on the determined weights are
then used to rank the alternatives, where the most widely used model
is the additive multi-attribute value model 2], [4]. [5].

Sensitivity analysis is one of the hot research topics in MADM [4].
In sensitivity analysis, two or more alternatives being equal in overall
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utility and solution are found on the parameters (probabilities, pay-
offs, or weights) for which equality holds. Earlier work on sensitivity
analysis can be found in Issacs 6], Fishburn et al [7], Evans [#] and
Schneller and Sphicas [9]. The majority of these works address the
issue of sensitivity of decisions to probability estimation errors. Barron
and Schmidt [10], Soofi [11], and Ringuest [12] investigate sensitivity
analysis of additive multi-attribute value models. Given aninitial set of
weights and an outcome with maximum overall additive multi-attribute
value, the proposed procedures generate new weights which equate or
reverse by a prescribed amount of the overall additive multi-attribute
value of the initially preferred outcome and any other nondominated
outcome. Earlier work on sensitivity analysis in MADM [13]-[15] fo-
cused on probability estimates and estimates of attribute weights in an
additive multi-attribute value model. However, little research has in-
vestigated the existence and structure of the weight-set while keeping
the ranking orders on alternatives.

Based on the additive multi-attribute value model, this paper ana-
Iyzes the structure of the weight-set and proposes a new method to de-
termine the weight-set while keeping the ranking orders on alternatives
according to linear programming theory. Given a set of ordering on al-
ternatives, the proposed method can also tell if the attribute weights are
feasible or not. Thus it provides the necessary and sufficient conditions
for decision makers to adjust weights while still keeping the ranking
orders. This paperalso lists the type of MADM decision models where
the proposed conditions are applicable. Examples are used to illustrate
the application of the proposed method.

Section 11 of this paper introduces the additive multi-attribute value
model. Section 111 defines the weight-set for satisfying one preference
order of alternatives in a MADM problem. It also gives the sufficient
and necessary conditions for the weight-set to be not empty and pro-
poses a method to determine the structure of the weight-set. Section
IV presents the weight-set for satisfying many preference orders of al-
ternatives simultaneously. Section ¥V investigates the application of the
proposed method in MADM problems. Section V1 provides remarks
and Section Y11 summarizes the research outcomes and discusses the
future waork.

1. ADDITIVE MULTI- ATTRIBUTE Y ALUE MODEL

The following notations are frequently used in this paper:

5 =15 .58, -, 5.} adiscrete setof m possible alternatives.

F={RK.F.,---_F.} asetof v additively inde pendent attributes.

o= [ ,fr:,,j"' ¢ the vector of the relative importance
or weights on the attributes, where 370 wp = | owy = 0,
b= Lh-

The additive multi-attribute value model is probably the simplest and
still the most widely used MADM model [2], [15]. It can be expressed
as

s

AR

=1

o=l e

where 205 is the value function of alternative 5., and o and
wry (aen ) are weight and value functions of attribute I, respectively.
Through the normalization process, each incommensurable attribute
becomes a pseudovalue function, which allows direct addition among
attributes. The overall value of alternative 3, can be rewritten as

W — Y Wi, L B L,
O
where 2.5 is the comparable scale of v+, which can be obtained
through normalization.
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