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In this paper we present an approach to characterize textures at multiple scales using
wavelet transforms and propose a texture classification algorithm that is invariant to rotation
and translation. The nonseparable discrete wavelet frame is used as the wavelet transform that
decompose the texture images into a set of frequency channels. In each channel we take the
variance as feature. Classification experiments using twenty Brodazt textures indicate that texture
signatures based on wavelet frame analysis are beneficial for accomplishing subtle discrimination
of textures and robust classification against rotation and translation.
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EXTURE analysis plays an important role 1n pattern
T recognition and computer vision and is widely applied
to areas like image analysis, remote sensing, robot vision,
query by content in large image data bases and many

others.

A number of texture descriptors have been developed
for texture analysis and discrimination, descriptors based
on structural model [1] and statistical model [2]. In the last
decade there has been an extensive study on model based
approaches like Markov random fields [3].

Psychovisual studies reveal that the human visual
system processes images by decomposing them into
filtered images of various frequencies and orientation {4],
that is capable of preserving both local and global
information. It has been observed that the response
corresponds to Gabor-like function. This multiscale
processing, which humans apply to texture perception, 18 a
strong motivation for texture anaslysis methods based on
these concepts. There has been an extensive study
providing a clear demonstration of the superiority of the
these multiscale processing over the more traditional ones
mentioned above. Wavelet theory provides a more formal,
precise and unified approach to multiresolution
representations [5,0].

Carter [7] first reported texture classification results
using Mexican hat wavelets. He achieved 938 per cent
classification accuracy on 6 types of natural textures. The
standard wavelet transform gives a frequency sphtting in
octave bands and is too coarse for textures consisting of
high frequencies. The work by Chang and Kuo [8],
however, indicate that texture features are most prevalent
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in intermediate frequency bands. This proposal has been
studied with a particular attention to the use of wavelet
packets [9]. Unser [10] has also introduced wavelet frames
for texture feature extraction.

Many texture identification methods presented in the
literature approach the problem by assuming that samples
of a texture all possess the same orientation. When this
assumption is not valid, most of these methods performs
poorly. In this paper we address the problem of rotation
invariant texture identification 1.e. the classification system
should be able to identify textures with any arbitrary
orientation. Previous works on rotation invariant
classification were done by Kashyap et al [11] and Cohen
et al [12]. More recent works on rotational invariance of
textures involves incorporation of rotated examples in the
training data [13], or spiral resampling of the data, to
obtain a I-dimensional signal, where rotation invariance 1S
simulated as translation invariance [14]. They achieved
93.33% and 95.14% correct classification respectively.
Most recently Fountain et al [15] have worked on rotation
invariant texture classification by taking the Founer
transform (FT) of the gradient direction histograms of the
textures. The direction histograms being a period function
of 27, a rotation is reflected as a translation in the founer
domain. Therefore, fourier coefficients give the rotational
invariant features.

In this paper we propose extracting features from the
texture itself and incorporating rotation-invariance in the
features. In the present work, texture properties are
characterized by wavelet frame analysis. While discrete
wavelet transform gives a non redundant representation of
the textures, the discrete wavelet frame (DWF) gives an
overcomplete representation. This technique is employed
to study the performance of a texture classifier with respect
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to rotational and translational 1nvariance.

A discretization of the transform parameters of the
Continuous Wavelet Transform (CWT) gives the Discrete
Wavelet Transform (DWT). The one dimensional
implementation of the DWT using a filterbank is given 1n
[6,16]. The orthogonal 2-D DWT is expressed in separable
forms so as to exploit the advantage of separahility
property. The two-dimensional extension 1S obtained 1n
two steps by successive application of the 1-D filtering
along rows and columns of an image. Due to the separable
nature of implementation of the two dimensional discrete
wavelet transform, 1t is strongly oriented in the horizontal
and vertical directions. Such a decomposition cannot
efficiently characterize directions other than 0 and 90 .
This 1s particularly inadequate while dealing with oriented
textures. So what we need 1s a non-separable nature of
implemcntation of the wavelet transtform 1n 2-D.

Another important drawback of the DWT 1s that, a
simple integer shift of the input signal will yield a
completely different wavelet transtorm. A feature extrac-
tion scheme has to be independent of any translational
shift, for texture has translation invariance (or stationary)
property. An obvious way to overcome this limitation 1s to
compute the discrete wavelet transform for all possible
integer shifts of the input signal [10]. This approach leads
to the redundant DWF in which the output of the filterbank
is not subsampled. This should yield a better estimation of
texture statistics and a more detailed texture character-

ization at region boundaries.

WAVELET TRANSFORMS AND WAVELET
FRAMES

In this section the wavelet transform and wavelet frame
transform are described briefly. An exhaustive
mathematical treatment is given in [9]. The Continuous
Wavelet Transform (CWT) of a 1-D signal fix) i1s defined

as,
Wi, (0) = [f() w*,, @ dx (1)

where y is the mother wavelet and a and b are-dilation and
translation parameters.

Discrete Wavelet Transform

DWT is obtained by discretizing the parameters a and
b, a popular choice being a = 2™ and b = n2™ with m,
ne 7.

The wavelet decomposition can be interpreted as signal
decomposition in a set of independent, spatially oriented
frequency channels. Under these constraints an etficient
real space 1mplementation of the transform using
quadrature mirror filter exists [6]. The full discrete wavelet

expanston of a signal x € [/, (I, 1s the space of square

summable functions) 1s given as,

|
k)= T 55D o+ T Tdyy (D) wy (2)

le z i=1 lez

where ¢ and y are the scaling and wavelet functions
respectively and are associated with the analyzing /
synthesizing filters h; and g, d;’s are the wavelet
coefficients and s ’s are the expansion coefficients of the
coarser signal approximation x ;. It also follows from this
construction that the tamily of sequences {¢;;, ¥, ¥y,
-yt I € Z constitute an orthonormal basis. The
discrete normalized basis functions are defined as,

0 (k)=2"2h, 2k - 1) (3)
v, (k) =22, k- 1) (4)

where [/ and [ are the scale and translation indices
respectively, the factor 2‘/? is  an inner product
normalization. The s;’s and d;’s can be interpreted in terms
of simple filtering and downsampling operations.

S (D

dp) =

21/2 [th * x] L 2[([)

2172 [gi" % x] 1qi ()

where the symbol 7 denotes the transpose operation (i.e.
hT (k) = h (- k)) and where [-] | m is the downsampling by
factor m. Let h; and g, be a perfect lowpass and perfect
bandpass filter respectively. The extension of the Discrete
Wavelet Transform (DWT) to the 2-D case i1s usually
performed by using a product of 1-D filters. In practice the
2-D DWT is computed by applying a separable filter bank

to the image.

S; (x, ¥) [Ay * [hy *S; 1] 1211012 (% Y) (6)
D' (x, y)= [h*x[gy*S; 11211112 Y) (7)
D;i*(x, y)= [g* [y *S;i 1) 421 )e12 (6 Y) (8)
D, = lgAlgy*Sialialiiaey) 9

+ denotes the convolution operator, 4 2,1 (4 1, 2) denote
subsampling along the rows (columns) and Sy =1 (x, y) the
original 2-D signal. §; (x, y) corresponds to the lowest
frequencies, the D;* are obtained by bandpass filtering 1n
a specific direction and thus contain the detail information
at scale i. D/(x,y) corresponds to the vertical high
frequencies (horizontal edges), D,—2 (x, y) the horizontal
high frequencies (vertical edges) and D/ (x, y) the high
frequencies in both direction (the corners). I (x, y) 1s
represented at several scales by, { S, D*|n=1,2,3,i=
I, ..., d}.

Wavelet Frames

As already pointed out in the introduction that the
standard subsampled wavelet transform is inadequate for
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translational and rotational invariance. A natural way to
overcome this limitation is to perform an analysis of the
input signal in terms of the overcomplete family of frames.
Wavelet frame leads to an overcomplete decomposition of

the signal

(gl(k_[)x (k)>[2

{deWF(k) —
(hytk=1)..x (k)),

sPWF (k) = (10)

which is a non-sampled version of (5). Because of the
special structure of the analysis filter bank, this
decomposition has a number of remarkable properties that
are associated with the mathematical concept of frame [5].
The frame is a spanning set, that requires finite limits on an
inequality bound of inner products. It we want the
coefficient in an expansion of a signal to represent the
signal well, these coefficients should have certain
properties, that are stated best in terms of energy and

energy bounds.

The family of sequences S constitutes a frame of /,, of
the Hilbert space /, if there exists two constants A and B

such that

2 {xk), hytk=0)2+
le Z

A llxll 2

|

2. 2 {(x(k),gk-n)*<B.lxll; (11)
i=1 lel
We start by using Parseval’s formula to compute the
energies in the different channels

) 1
Ndill, = J, 1GieP™) 121X (1% df

2 ! o
sy = Jo 1H ) 121X (f)12df

where X(f) denotes the Fourier transform of the input
signal. We sum the individual terms and 1t 1s easy to show
that the energy conservation property 1s preserved

2 1 5 2 I 2
lxlly, = [ IX(HI12df =l Iy, +2 U,

1= 1

(12)

By definition, s; () = (x (k), h; (k- 1) ) and d; (I) = { x (k),
g: (k-1)) where (., .) is the corresponding inner product,
the fundamental difference with an orthogonal system 1s
that the representation may be redundant. In the present
context where H = [, , this property together with the
definition of wavelet coefficients in (10), leads to the
simple reconstruction formula
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/
xy=2s;(Ohyk-D+2, 2. d (D)gik=D

le Z i=1 leZ
(13)
A fast iterative decomposition algorithm 1s ,
Sip 1 (k) = [B] g0 * si(k)
<
div1 (&) = gl 12i*s4k), (¢ =0,...,1) (14)

W

with the initial condition sy = x. Each step involves a
convolution with the basic filters A and g, which are
expanded by inserting an appropriate number of zeros
between taps.

PROPOSED METHOD FOR FEATURE
EXTRACTION

We discuss 1n this section the choice of the filter bank,
and the computation of the wavelet parameters used as
texture features.

What we need is a nonorthogonal basis set. This
facilitates the decomposition of a signal in 2-dimensional
space by applying one dimensional non separable filters
along rows and columns independently.

The wavelet function in 2 dimensions is defined by
W, (b) = - y (£=L) . The directional information, can be

\a

incorporated in the wavelet function, by including a
rotational parameter in it [5].

X—b

(15)

- ]
Wa.ﬁ(b) = a 'Y R®

where RY is the rotation operator denoted by the matrix.

[ cos O—sin 8

. sin @ cos 0

Now if the wavelet is circularly symmetric i.e. RY has
no influence in (15), such an wavelet would generate
rotation invariant features. Therefore the wavelet function
has to satisfy two conditions one is y (0) = 0, which implies
that the wavelet function has to be a zero mean functton and
w(7,08)=w(,0), this ensures that the rotation operator
has no effect in (15).

We have chosen the wavelet used by Mallat in [17],
which is the second derivative of a smoothing function.
This choice have been made due to the following reasons.
Firstly, this closely approximates the second derivative of
Gaussian, which has circular symmetry. Secondly, the basis
functions are symmetrical, which means that there i1s no
phase distortion, and that the spatial localization of the
wavelet coefficients 1s well preserved, moreover these
filters are also useful in alleviating boundary effects by
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simple methods of mirror extension. The filter
corresponding to the second derivative of a smoothing
function can be written as F (w) = w? L (w), where L (w)
1s the frequency response of the smoothing low pass filter
and should have a non zero value at w = 0. For the filter
used F (w) has an order 2 zero at w = 0, and exhibits
sharper outband attenuation and thus better frequency

separation.
Wavelet Frame Representation of an Image

In the present work we have employed the transform
based on Mallat’s non-orthogonal (redundant) discrete
wavelet frames [18]. Let 6 (x, y) be a 2-D smoothing
function. We call the smoothing function the impulse
response of a lowpass filter. The convolution of a function
I (x, y) with a smoothing function attenuates part of its high
frequency without modifying the lowest frequency and
hence smooths 7 (x, y). Supposing 8 (x, y) is differentiable,
we define two wavelet functions, ¥ ! (x, y) and y? (x, y)
such that,

526 (x,y) , 00 (x,y)

] (.1.', )!) — 52x and W= 62);

(16)

14

be the dilations of the functions ' by a factor s and
6, (x, y)=-- 6(-) the dilation of 6 (x, y) by .

Let I (x, y) be an image in2-Dand I (x, y)e L, (R%).
The wavelet transform of 7 at scale s has two components
defined by,

W' oyy =1y (x,y) and W2 (x, y) = 1 * y 2 (x, y)

(18)
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s is the scale parameter which commonly is set equal to 2!
with i = 1, ... , n. This yields the so called dyadic wavelet
transform of depth n. W,! and W ? are referred to as the
detatl images, since they contain the horizontal and vertical
details of [ at scale s.

This transform is computed by iterative filtering by a
set of low and high pass filters h; and g,, associated with the
smoothing function 6 and the wavelet functions v ' and y °
respectively. These filters have finite impulse responses,
which makes the transform fast and easy to implement

(Fig 1).

Ssie1(6y) = [hy % [hy o Syl 10x, ) (19)
1d d

W2!'+] ('x! y) = [Df,x* [gf,y* SZE] ](x! y) (20)
2d 7]

Woiv1(x,y) = [8;1 x ¥ [Df’ y 59 ] 1(x, ) (21)

§4,I is the original image and D is the Dirac filter
whose 1mpulse response equals 1 at 0 and O otherwise.
* denotes the convolution operator. A * (B * C) denotes

separate convolution of the rows and columns respectively
of the image A with 1-D filters B and C.

Then the wavelet representation of depth n of the
digitized 1mage I consists of the low resolution images
{Sdzf} and detail images {sz‘ff} for {j =1, 2} and
{t=1, ..., n}.

Texture Features Computation

We now discuss the computation of the rotation and
translation invariant parameters from wavelet transformed

image.

Substitution of (16) and (18) in (17) yields the
following interesting property.

ALONG + | ALONG
ROWS COLUMNS

NS

1 ALONG {4 ALONG
ROWS COLUMNS

S

ALONG
ROWS

+| ALONG

NS

COLUMNS S |

D:

Fig 1 Fast iterative implementation of the algorithm used for extracting texture features
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2
W0,y [ 0) @y
= 2| =2V 2(1%6)) (x, )
W ()| 2s (1 8) (x, y)
\ J \ 61’ /

(22)

where V 2 denotes the Laplacian and gives zero value at the
location of the signal sharper variation points. It defines
edge magnitudes of the image and since it has the same
property in all directions is invariant to rotations in the
image. That is the wavelet transform of an image consists
of the components which give a measure of the edge
magnitudes of the image, smoothed by the dilated
smoothing function 6,. The edge magnitude of the image
1S given as,

wr 06 3) = NG (6 32 + (2 (5, )2 (23)

The w,” (x, y) contain a measure of the edge magnitude
which is proportional to the magnitude of the local gray
level variation of the image and clearly yields a rotation
invariant multiscale representation {(w,"), =1 . 2 Cy}-
The nonsampled DWF representation gives translation
Invariance.

The energies of the detailed images decomposed into
different frequency channels at different resolutions are

given by

1 9 .
Ed; = > (winy) s i=l..n
MN xv (24)
Energies of the low resolution 1mages are
B 1 o e 1
ESE—MN Z ((321. x,y))"> =L..,n
e (25)

M and N are the number of rows and columns of the
digitized image I (x, y). In this approach we arrange the
output of the filterbank into n component subbands

fFCx,y)=0f; (6 Y Di=15 o
=[c;(xy).,c,(x,y)d(xy) ...,
dn(xﬂy)]T (26)

We can get a more compact representation in terms of
the channel variances Var{y;}. In practice the channel
variances are estimated from the average sum of squares
over a region Reg of the given texture. Each channel
extracts a particular aspect of the textures at different
frequencies and resolutions.

== Y (y (kD) -Tik D)) (27)

Reg (k, I) € Reg
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where Reg denotes the number of pixels in its region and
y; ( k, 1) is the mean value of energy of each channel.

TEXTURE CLASSIFICATION

In texture classification task, the generated features
span a high dimensional feature space, which 1s subdivided
into a set of classes. A feature vector is assigned a class
label according to its position 1n feature space.

Discrimination using k_nn Classifier

Here each image is represented by a single feature
vector. A training set contains several labeled images. By
applying classification on this set, texture classes are
defined according to the labels of the textures in the
training set. We use a non-parametric classifier (k_nn) n
our experiment. Here an unknown datapoint is given the
same class label as the majority of its k nearest neighbors
from the training set [19]. Classification of feature vector
x is performed by searching its k nearest training vectors
according to some metric d (%, y ). The vector X 1s assigned
to that class to which the majority of these k nearest
neighbors belong. The metric d( % y ) express the
Euclidean distance between two points x and y 1n feature

space.
d
d(%3)= 2 1(x=-y)I?.
| =

Training such a classifier requires a set of reasonable
size which reflects all properties of the complete set of
possible images. This is achieved by the leave k out
method. That is out of N data sets each time k distinct
samples were taken as test data without repetition and the
rest were used for training. By this a large design set and
also independent test set 1s available.

Experimental Data Set

We performed classification experiments using 20
Brodazt textures [24]. The original photographs were
digitized and converted into 128 X 128 1mage arrays.

So far in texture classification problems researchers
have usually divided each 1mages into overlapping (or non
overlapping) subregions and evaluated the feature vectors
for each subregion in each class. This was adopted to
increase the number of data sets. But here 1n this paper we
have adopted a different method for extracting
experimental data sets. Each class were subjected to five
different translations in all directions (left, right, up and
down), and oriented by five different rotaions. There were
25 different samples of size 128 x 128 for each class which
were all different from each other either in translation or
rotation. The wavelet frame decomposition of (23) was
performed by processing individual images without
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subsampling. Each image was subjected to three levels
(scale) of decomposition, and each level was represented
by 6 features as shown in Fig 1. The channel variances for

all the 6 subbands were computed. We chose the log ot

variance as the information measure.

Figures 2 and 3 shows some of the translated and
rotated textures used in our work.

RESULTS AND CRITICAL COMMENTS

In the first series of experiments the data sets
were cvaluated using the five set of parameters shown 1n

IETE JOURNAL OF RESEARCH, Vol 46, No 5, 2000

Table 1. We get an excellent classification result while
considering the redundant DWF decomposition which 1s
consistent with our expectation. We simulated rotation of
the 1image about an axis through the centre merely by
transporting the gray level of the pixels from their original
position to their approximate modified positions after
transformation of the axes due to a rotation 6. So no
appreciable distortion 1s introduced in these rotated images
due to this approximation (truncation). The texture features
that we have extracted are proportional to the gray level
values of the images, which 1n turn are not changed due to
rotation. The observation from Table 1 1s that, a 45°

Fig 2 Rotated samples (0°, 30°, 457, 60°, and 90°) of some of
the textured images used in our experiment

Fig 3 Translated samples of some of the textured images
downshift — 64, 48 and rightshift —-64, 48

TABLE 1 Classification performance considering the discrete wavelet frame transform

Type of No. of Test Training %of
Decomp features data set data set classifn.
Transl. Rotn Transl. Rotn
16 20
8 5 8 30 39 .99
16 60
8 45
8 5
16 20 8 30 99,92
16 60
8 45
DWF 6 8 5
o 30 16 20 99 .99
16 60
8 45
o 5
16 60 8 30 96 .99
16 20
8 45
8 5
8 45 8 30 95.92
16 60
16 20
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rotation affects classification results. This 1s because some
of the textures that we have used are highly anisotropic and
this anisotropy is more pronounced in the diagonal

direction.

We performed another experiment in which we used
features for O rotation to design a classifier and tested its
performance in classifying features from rotated samples
ranging from 20" to 90 . The results given in Table 2 clearly
gives us an idea as how the classifier responds to the rotated
samples of the textures. The 45" rotation classification is
comparatively poor than the others.

TABLE 2 Percent of correct classification considering
rotation only

Training data Test data Information  Percent

set rotation set rotation measure classifn.
in deg in deg.

0 20 08.82

0 30 08.82

0 45 L.og variance 95.29

0 60 07.64

0 75 07.64

0 90 97.64

So we can summarize our results as, for classification
of rotated textures, multiresolution representation of the
images is clearly preferable. Although texture features are
prevalent in the intermediate frequency bands, which
suggests that wavelet packet signatures can classify
textures very efficiently, they perform very poorly when
rotation is taken into account. So an overcomplete wavelet
decomposition, which leads to wavelet frames happens to
be a preferred solution. We also find that number ot
features used is only six which 1s really very smali
compared to the number of features used for classification
purpose found in the literature. We do not need the best

features selection algorithm.

For this whole series of experiments classification error
usually occurred between texture pairs that were almost
difficult to discriminate visually and also from textures
which were highly anisotropic.

We can conclude that texture signatures based on
multiresolution wavelet frames analysis holds great
potential for accomplishing subtle discrimination and
robust classification against rotation, translation and 1s
computationally simple and efficient.
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