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A Connectionist Model for Corner Detection In
Binary and Gray Images

Jayanta BasalSenior Member, IEEEand Debashis Mahata

Abstract—A connectionist model along with its state dynamics object boundaries. Mokhtarian and Soumela [10] presented a
is developed for detecting corner points in binary and gray images. corner detection algorithm through curvature scale space where
For a given binary/gray image, each pixel in the image is assigned ¢,rpers were first detected at higher scale (coarser level) and
with some initial cornerity (our measurable quantity) which is a . .
vector representing the direction and strength of the corner. These then tra(?ked thm‘ﬂgh multiple lower scales for better Iocah;a-
cornerities are then mapped onto a neural-network model which tion. A nice descrlptlon Of the State-Of-the-art corner detec“on
is essentially designed as a cooperative computational framework. algorithms has also been presented in [10]. Sehal. [11]

The cornerity at each pixel is updated depending on the neigh- presented a mean field annealing-based boundary smoothing
borhood information. After the network dynamics settles to stable for estimation and subsequent robust corner detection tech-

state, the dominant points are obtained by finding out the local . Arrebolaet al. [12 dl | hist f t
maxima in the cornerities. Theoretical investigations are made to nique. Arrebolaet al. [12] used local histograms of contour

ensure the stability and convergence of the network. Itis found that Chain code for computing curvature followed by the detection
the network is able to detect corner points even in the noisy images of dominant points. These algorithms generally accept closed
and for open object boundaries. The dynamics of the networkis ex- object boundaries only. In [10], special linking is performed
tended to accept the edge information from gray images also. The v, ohtain closed boundaries. Moreover, the algorithms are not
effeptlveness of the.model is expe(lmentally demonstrated in syn- directl tendible f ti -
thetic and real-life binary and gray images. irectly extend 8 etor aCFGP Ing gray Images.

Corner detection algorithms have also been developed for ac-
cepting gray level images directly. Zhergal. [13] provided
a good literature survey of the existing gray level corner detec-
tion algorithms. They proposed an improvement over the Plessy
|. INTRODUCTION corner detector (see [13]) which provides a cornerness measure

ORNER is considered to be one of the important imag:éased on the intensity changes along horizontal and vertical di-

features, and the detection of corner points plays a si >ctions. Stammberget al. [14] provided a faster corner de-

nificant role in many vision problems including shape analysi ction scheme by introducing a set of orthogonal second-order

object recognition, scene analysis, motion detection, and ste gussian derivative kernels. Trajkovioca [15] computed the in-

matching [1], [2]. In digital images, the points with high Curva;ensity change in different directions and subsequently defined

ture values are considered as the corner points. a corneir resfponse fun(;tlon(.j ThdgﬁgrayI?vFl cornetr_deteclt Ors, '?
Early attempts to find the corners or high curvature points pheral, pertorm second-order dilierential geometric analysis o

the dominant points include the methods developed by Rosdhe image intensity surface and define certain cornerness mea-

feld and Johnston [3], Rosenfeld and Weszka [4], Freeman ayes: The performaqce of the algorithms is dependent on the
rnerness measure itself.

Davis [5] and many others including [6]. The basic approach fiP

these attempts is to detect the dominant points directly throu HApart from the algorithms mentmnec_;l abO\_/e, various other
the measurement of angle at the prospective corner poirﬁ rner detectors have been developed including those based on

resulting in computationally expensive algorithms. Piecewiggdrphological operators [16], fuzzy set theoretic tools [17] and

linear approximation to digital arcs has been used in [7], [ eural _netw_orks [18], [19].' In [18], a multilayered perceptron
and the points of intersections of the adjacent linear segme P) is trained for detecting Fhe COTNETS. The MLP-bgsed ap-
are detected as corner points. In a different approach by W ach_[18] accepts clpsed object boundaries and appllc_:able for
et al. [9], a bending value for every point on a digital arc i flary images OF"V- Diast a_l. [19] also employed a multilay- :
computed. The bending value at a point, in turn provid(§§ed neural architecture which learns (supervised mode) certain

a measure of curvature and thereby the cornerness at ¥ eric corner ‘.”.‘ages_ of different angles. In a test im_age, the
corresponding point. In this method, direct computation (erls are clq55|f|ed 'elther as corner or noncorner points. Al-
angle between adjacent segments is replaced by the estima%?‘ljgh for noiseless images the algorithm exhibits good perfor-

of bending value which involves only addition and subtractiof'ance. for noisy images the performance deteriorates rapidly.

operations, leading to faster computation. Several aIgorithm_sHere we developed a method for detecting corner points in

have been developed based on the curvature estimates ofq'lqgry and gray Images using neural netyvork. In the network
model, a pair of nodes corresponds to a pixel in the image. The

output of the pair of nodes together represent the corner vector

Index Terms—Corner detection, cornerity vector, gray-level
corner detection, neural network.
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Fig. 1. Suppression of corners in a jagged edge.

mation of each pixel is assigned to the corresponding pair of

nodes, and the final corner points are obtained after the network

converges to a stable state. Here no explicit information about

the entire object boundary is required, and only the local infor-

mation can update the output of each node. As a result, the ngd-2. Finer detail of the jagged edge.
work is able to find out corner points from open object bound-

aries also. The network exhibit robust performance against the

presence of noise. The dynamics of the network is then extended

to accept the cornerity information from gray images by embed- 0 P@ 0
ding the edge strength information. A graceful performance by P

the network is observed for the gray images. B

B

Il. CORNERDETECTION IN BINARY IMAGES ] ) o )
Fig. 3. Two typical case of initializing the cornerity vector.

A. Overall Methodology

Here we assume that the given image consists of only theThe neural network model consists f: x 2n neurons for
boundary information, the boundary not necessarily beingad  x » image. A pair of neurons (nodes) corresponds to a
closed one. In the case of a gray level image (see Section I¥ihgle pixel. The activation of the pair of neurons together repre-
edge/line segments are considered. The measurable parameéi the cornerity vector at the corresponding pixel. Each node
cornerity is a vector, the magnitude of which gives the strengé connected to its surrounding neurons over a neighborhood.
of corner and the direction gives the direction of the corngthe connections are only between neurons of same type. Each
at that point. The cornerity at every point on the boundary iode has a negative self-feedback which is essential for elimi-
initialized considering only its X 3 neighborhood. Note that, nating noise. Initially, the state of the neurons are clamped by the
in discrete domain, in a & 3 neighborhood only 16 different initialized cornerity vectors in the input image. The state of the
types of patterns [20] are possible. The updating processnisurons are then updated according to the neighboring informa-
such that the cornerity vectors are enhanced at the true cor@f. After initialization, the external input is no more required.
points and get suppressed at other points. The corner points are
then identified by finding out the points of local maxima in thes |njtialization of Cornerity Vectors

magnitude of cornerity vectors. e . .
. .__Initialization of the states of neurons in the network is very
Let us consider an example of an edge segment (line

important in the sense that the neurons in the network update

boundary) as shown in Fig. 1. The initial corner vectors MNeir states starting from the initial cornerity vectors only. For

each point are shown in the Fig. 1. If we consider a larger . . : .

; - Gexample, a point lying on a straight line segment should have
scale space, I.e., a coarse description of the edge/boun &0 initial vector, and a boundary point at a very high curva-
segment then it appears to be a smooth one. On the other hand f yp y g

a finer description of the same gives rise to jagged nature (L)J][é region should get high initial cornerity. The initial cornerity

the seament. If we provide a coarse descrintion tReshould vector at a pixel is determined over itsx3 3 neighborhood.
g ) P i ) P . The resultant vector of the relative position vectors of the neigh-
not be treated as a corner point. This can be obtained by addlljn

the cornerity vectors of the neighbors with thatidfresulting ogmg p0|nts_W|th respect to the_ center point, gives the d_|rect|on
. : of the cornerity at the center point. The magnitude of this resul-
in a zero (or very close to zero) cornerity vector/at The

. S . hant vector is a measure of the strength of the cornerity. This is
coarse or fine description can be related to the size of t € I Lo . L7
lllustrated in Fig. 3 which illustrates the two typical situations.

concerned neighborhood. As in Fig. 1, if we select a larger —. 4 .
neighborhood around then the vector sum of the corneritiesin Egrig;ﬁz zs:it;%pg;s?;tdtr;ﬁebggirg](:]atl)ré/ripr:zerl)i;))(zlsslt;)rrésaZ_he

will be closed to zero, i.e., the segment appears to be a smod 4
. . : ted byA and B respectively. The angle between two arms at
one. On the other hand, for a small neighborhood size (Fig. ? . : . . . .
: . . . is small in the case shown in the right side of Fig. 3 than thatin
no oppositely directed corners in the neighborhood affect eg h : . . oS -
. L . e case shown in the left side of Fig. 3. This implies that the ini-
other. In Fig. 2, althougly does not have any initial cornerity, . . . ) . . .
o X . ) tial cornerity vector is larger in the case shown in the right side
it will get some induced cornerity value frofi. The induced i L Y
vector has the same direction as the corner vectdr.athe ©f Fig. 3 than the other. In Fig. 37 represents the initialized
induced cornerity value a®, in turn, gives some induction to vector which is the resultant @A and PB. The resultant cor-
P, resulting in an enhancement of the cornerityfat Thus nerity vectorP¢} can then be represented by two components,
in the updating process all points will have nonzero cornerityorizontal and vertical, respectively. Mathematically, (let;)

vectors with the poinf having a local maxima. be a boundary pixeland + {1, 7+ k1) and(é+ 13, j + k=) be
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and
o Wy o dv;
Type 1 Type 1 d—tj = Z WiiCy, — WsCy, - (2)
IEN(H)
d W d o
Type2 Y Type2 The output of the nodg is given by
Nodes for pixel i Nodes for pixel j Co; = g(u’j) andcyj = g(vj) 3)

respectivelyg(.) is a ramp function given by
Fig. 4. Interaction between the nodes of two different pixels.

m if x>m
glz) = { —-m fz<—-m (4)
e & & o o o o z  otherwise
Py P wherem is the saturation level of the ramp function. The second
term in (1) and (2) are negative feedback terms used to elimi-
° ) nate the noise pointas, is the weight of the negative feedback.
The neighborhoodV () chosen here is a circular one. The ra-
L] L diusr of the neighborhood is decreased with time resulting in
higher interaction between the nearby nodes as compared to that
® & o & o o o between the distant ones.lfis decreased very fast then the

nodes will not interact properly and the desired smoothing of
the boundary segment may not be obtained. On the other hand,
a very slow decrease in may smooth out the true dominant
the two neighboring boundary pixel positions in & 3 neigh- points on a boundary. Hereis decreased such that [21]

borhood wherd!;, ls, k1, k2} € {—1, 0, +1}. Then the hori- _

zontal and vertical components of the initial cornerity vector at tll{go r(t)=0 and Z r(t) = .

the pixel position(, j) is given by ¢

Fig. 5. Lattice structure of a given type of nodes.

In this model the radius follows a schedule, given by

I l2 k
Cp = + = (5)
VE+R VBT L
and The parameters andb are positive constants determining the
cy = ks + ka initial radius of the neighborhood and the rate of decrement of
VE+E R+ the radius. The weights;; andw, are also proportional to the

radius of the neighborhood, i.e.,
respectively. A point is assigned a nonzero initial cornerity only

if it is a boundary pixel and it has exactly two neighboring Wiy = Wi =wir  and ws = wor (6)
boundary pixels. Thus the terminal points on an open boundar?; ) )
or the nonboundary points are not assigned any cornerity (i\¥herew. andw, are the constants of proportionality.
zero cornerity).
) D. Convergence of the Network
C. Network Model Evidently, if the network converges for a neighborhood of

fixed radius then it must converge for shrinking neighborhood

Corresponding to each pixel, there are two different types gfso. Consider a Lyapunov (or the energy function) of the net-
neurons. Each neuron is connected with the other neurons of figk for a givenr

same type over a neighborhood (Figs. 4 and 5). The output of
two types of nodes are denoted dyandc, and their internal po_1 S Y wiewes, + lws S e
states are denoted hyandv, respectivelyc,, andc,;, repre- 2 ) 2 —
sent the horizontal and vertical components, respectively, of the
. - ; g 1 1 5
corner vector at thgth pixel. Nodej is connected to its neigh- - = Z Z WijCy, Cy; + = Ws Z ¢, (7N
. S . . 2 = ) 2 - ’
boring nodes (denoted by indéx of same type with weight i JEN() i
wy; (for both types) if node is within a given neighborhood L
N(j) of 5. The connection weights are symmetric in nature, i. 'I_',herefore, from (1) to (3)¢£/dt is given by
wj; = wgj. The state dynamics of the processing elemeist

_ dE Y des \
given by E——zi:g (uxi)< 7 )

dU,j _ § (1) -1/ dcyi :
% = Z w]zcmi - wscrnj - Z g (uy7) T (8)

iCNG) dt

i JEN(:
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whereg—?" is the first derivative of the of the inverse of1(.), Thisequation gives a lower bound é&h i.e., weight of the self-
which exists and is an increasing function, provided < « < feedback [from (12)].

mand—m < v < m. The parameters are selected in such awayAgain, from (1) and (6)

that this condition is satisfied. The way of selecting the parame- i

ters is described in the next section (i.e., in Section [II). Since, in o Z WU — WaT ;. 17)

the given rangg ! is an increasing function, i.eg;* is pos- dt ENG)

itive, and (dc,, /dt)? and (de,, /dt)* are always nonnegative, _ _ o

dE/dt < 0,Yt > 0. SinceE(t) is boundeddE/dt — 0 as In the updatlng_pr(_)gess, a maximum level of acfuvanon can be
t — oo and thereforelc,, /dt — 0 andde,, /dt — 0 ast — oo attained by an .|nd|V|d.u§1I. neuron |f each neuron in thg network
for all i. As a result, the output values of all processing elemert&S 90t @ maximum initial activatiom,. Again, according to
converge. (17), the network behavior is isotropic, i.e., the activation of
all nodes grow symmetrically. This means that each node gets
the same contribution from its neighborhood. Thus the internal

o o o stateu; is independent of indey, i.e.,u; = u;. Therefore, the
The analysis in this section, is done consideripdi.e., the dynamics of node can be written as

horizontal part) components only. The same arguments are valid
for ¢, component also. Let us use the notatiginstead ofc,, duj _ G, (t) (18)
in the sequel. Let,y be the maximum initialized value af;, dt !
¢ be the threshold of the resultant cornerity value such thatjhere
the magnitude of cornerity vector is less thtafor some node
4 after the convergence of the network then the corneriat G,(t) = Z WLTU; — WaT . (19)
eliminated, andnr is the saturation level of the ramp function. iEN())
Theoretically, a noise point is one which initially have some

I1l. SELECTION OF NETWORK PARAMETERS

cornerity but does not get support from the neighborhoo'a.rom (18)
Therefore, for a noise point [from (1)] t du, xe?
— = —Ldt
du 0 U /0 u;
— = —weC,. (9)
dt ! ie.,
Assuming that the value of; is within the saturation limit of ter
the ramp function, we replaeg in (9) by w;, i.e., [from (6)] log u; — log ug = / =7 dt. (20)
o Uy
dU,j . .
o T W (10)  Using the expression a¥; from (19)
Itis required that after convergence of the network, the cornerity G _ 1 Z (wirt;) — war.
at the noise points should less tharo that they can be elimi- U; Uy (NG
nated. Let us consider a noise point with maximum initialization
uo. From (5) and (10) Since we assumed that all the nodes in the network grow in the

same way, and their initial activations are the same (i), ,we
(11) can infer that at any time instant
. . G
whereB is a constant given by =L = 3" (wrr) —wor. (21)
u; =
1EN(J)

= T amp

B = (unk)/b. (12)
For a boundary point the number of points in the neighborhood
Since the network dynamics is stopped wheq 1 (let attime is proportional to its radius and say the constant of proportion-
instantt = t,,,), the value ofw;(¢) in (11) should satisfy ality is p. Then

wj(t,) < 6. (13) G = pwrr? — wor. (22)
Uy
From (5)r = 1 implies that . o
On an average, we can assume thad equal to two. This is

1+ bt,, = k. (14) due to the fact that the number of boundary points in a circular
neighborhood (radius) of a particular boundary point is equal
From (11), (13), and (14) to 2r if both the arms are straight line segments. If the arms are
w o, curved segments then the concerned point may not be a sharp
B =" (15)  corner.

From (5), (20), and (22), we get
Therefore

¢ 2w1k2 U)Qk
B > log, % (16) log u;(t) :/0 <(1+bt)2 - 1+bt> dt +log ug  (23)
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i.e.,

1

log u;(t) = A<1 - m) — B log(1l+ bt) +1log uo (24)

where

A = (2w k?)/b. (25)

From (24), it can be shown thaf; increases for small values

of ¢, reaching maximum at some point of time (Ya¥ tmax)
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corresponding pixel is eliminated.can be chosen to be small
fraction of the initial activationg. Let

0 = auyg (32)
where« < 1. Then from (31), we can write
up < ma(k—l—log k/ log k) (33)

In other words, for a givem: anda(<1), if the initial radius

and the decreases to zero. The value,gf. can be found out Of neighborhoodf, increases then, needs to be decreased.

by setting(du; /dt) = 0

A

1 =, 2
+ btmax B ( 6)

The maximum value of;; can be found out from (24) and (26),

which is

B B
(uj)140t=(a/B) = €xp <A<1 - Z) — B log — +log uO> :
(27)

If m is the saturation level of the ramp function thenitis required

that (u;)14pe=(a/8) < m, i€,

A<1 - g) — B log(A/B) + log u < log m

or

A—BlogAgB—BlogBHog(ﬂ). (28)
Ug

Again from (16)

Uo
log =
oge

~ logk
ie.,

log(1/c)
Bz = 0 (34)

SinceB = wqk/b (12), we can write

w
h> 2

~ log(1/)

Sincec is a constant (specified by the user) angdcan be taken
as a constant, we can wribex & log k.

For a given image first we select the initial radius of neigh-
borhoodk which is essentially driven by the requirements of the
higher level recognition system. The saturation leuds fixed
and it can be considered as the characteristics of the individual
nodes. The parameteris specified by the user (normally it is

klog k. (35)

Again we need that network dynamics should stop before thd). Then firstug is selected from (33). After selecting, B is
time whenw; reaches its maximum. Since our algorithm stopshosen in the range given by (30) and (34). Theis selected

whenl + bt = k

A
1 btmax = 5 2 k 29
+ 3 (29)
Equation (29) provides the lower limit of.

We should ensure that the for a given set of parameters (

ug, 8) there always exists at least one valuedo$uch that (28)

such that (28) and (29) are satisfied. Then from (12) and (25) we
selectw, andw;. For example, letn = 6.0 andk = 5.0. Let

the parameter be 0.3. Then from (33) we can selegt= 0.25.
From (30) and (34) we can chooge= 0.708. If we chooseA

as 5.0 then the conditions given in (28) and (29) are satisfied.
Therefore from (25) and (12)y; = 0.05 andw, = 0.071 for

b = 0.5.

and (29) satisfied. In the inequality in (28), the left-hand side

(LHS) increases withi for a given value of3. Therefore, from

(29), the minimum value of the LHS of (28) can be obtained by

consideringd = kB, i.e.,Bk— B log(Bk) < B— B log(B)+
log(m/ue) i.e.,

log(m,/uo)
< — 7
B—k—l—logk (30)
From (16) and (30) we get
los(uo/6) __log(m/uy) a1
log k& k—1—-logk

IV. CORNERDETECTION IN GRAY IMAGES

In a gray image, object boundary may not be well defined
as in the case of binary images, where it has been assumed
that the boundary information (not necessarily a closed one)
is given. In other words, in the case of a gray image, at every
pixel an edge/line strength needs to be considered, which in the
case of binary images is either zero or one. Also the informa-
tion regarding the edge/line direction at every point is essen-
tial in finding out the initial cornerity vector, since we can no
more consider at most 16 possible configurations overxa3
window as in the case of a binary image. The initialization of
the cornerity vector at a point is performed considering the edge

As mentioned before, the parameteis a threshold such that strengths and edge directions at the points within a neighbor-
if the node activation decreases bel6when the corner at the hood of the point concerned.
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A. Edge Detection and the output of the nodgis ¢.; = g(u;), ¢,;, = g(v;) where

For detecting edge points, we used the Sobel operator [#%)) has the same meaning as in the binary case [see (3)].

which uses a mask as shown below
D. Convergence of the Network

The Lyapunov of the network is again same as that of the

L] 2 network for the binary images except for the factersnde;.

n 25 The Lyapunov is chosen as

2 2 Z 1 1

6 7 8 F=— 5 zz: zj\;) Wij€iCjCx, Cy + §w5 zz: 69207'
The horizontal and vertical components of the edge strength is 1 s 1
given as ~3 Z Z WijCiCiCy, Cy, + 5 Ws Z ci. (40)
i JCN() i

Lstrength = (Zl + 2% 24 + ZG) - (Z3 + 2 Zs + ZS)

Ustrongth = (21 + 2% 25 + 23) — (26 + 2% 27 + 23). (36) Since bothe; ande; are nonnegative and have constant values,

they can be treated as constant multiplication factar,gf The
ey are the normalized i ength aNdYstrength- The edge strength
is given ase = ,/¢2 +¢2. Note that, normalization by the

maximum absolute value may suppress the weaker edges. 1o simulate the methods described in Sections II-1V, we use
such cases, normalization over a local window or a logarithrigear approximation of (1), (2), (38), and (39) witk¢ as the

V. EXPERIMENTAL RESULTS

scaling function [22] may be adopted. increment in time. The parametét has to be small enough
in order to get good approximation of the original differential
B. Initialization of the Cornerity Vectors equations. To perform the experiments we used the valuie of

as 0.06 for the binary images and 0.05 for the gray images. The
results for two-tone images are shown in Figs. 6-9 and those
C, = Z 11| sin 6;;1p;; 37) forgraytone images in Figs. 10-12. The detected corner points

are marked by black dots. The corners are detected for different

The cornerity vectors are initialized as

7D values of the initial radius and the way of transition from coarse
where to finer resolution is illustrated in Figs. 6-9 and Figs. 10-12.
P;; is the unit vector in the direction from pixélto pixel The parameten is a property of the neurons and it is selected
5 as six (note that, the performance of the network is practically
¢; is the edge strength vector; independent on the selectionsafso long as the other parame-
t;;  isthe angle between the edge vedpandp;;. ters are changed proportionately). The parametsta constant

Equation (37) is based on the fact that an edge gives maximsgpecified before initializing the network. The parameter indi-
induction along the direction perpendicular to its edge strengthtes the percentage decrease of the strength of a corner from
vector direction [20]. Unlike the case of binary images, in graiys initial value that can be allowed before eliminating it. From
images, the neighborhood for initialization is nok33 neigh- the given values ok, m, and« the values ob, u, 8, wi, and
borhood, instead here we used a circular neighborhood of sizg are selected (as described in the Section Ill) and these pa-
k. The parametek has the same meaning as in the case of biameters are shown in the respective figures.

nary images. The results in Figs. 6-9 and Figs. 10-12 indicate that the per-
formance of the network is dependent on the initial size of the
C. Network Model neighborhood. For a small initial neighborhood, the interaction

The corner detection algorithm for gray images is the sameRgfween the distant points is less, and it effectively leads to a
that of the binary images, the only difference is that the contribfioer description of the object boundary. On the other hand, for
tion from the node to the nodej is multiplied by a factorc;, & large neighborhood size, the distanj[ corner p_oints in_teract with
wheree; ande, are the edge strengths at the respective pixel I§2ch other leading to a coarse description. This provides a flex-
cations. This is because of the fact that unlike binary images,iflity to the network model in generating the descriptions of
a gray image we may not get well-defined boundaries and théRg object boundaries (not necessarily a closed one) in different
will be many pixels with low edge strength (noise points) alon§Vels of resolution depending on the initial selection of neigh-
with the actual boundary(high edge strength) points. Thus tR@rhood size. The level of resolution is, in turn, driven by the

dynamics of a nodg is given by the equations requirement of the higher order visual information processing
tasks. This effect is analogous to finding out description at dif-
du; ferent scale space. In a noisy environment, if the noisy patterns

dt Z giCai GiC) T WaCa; (38) do not follow any structural form then the network behaves in a

1EN(y . .
N robust manner. However, if the noisy patterns themselves form

= Z Wi Cy, €i€) — WsCy, (39) structurally viable dominant points then those points are also de-
iCN () tected as corner points. This is due to the fact that the network

vy
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Fig. 8. (a) Original binary image. (b) Detected corner poikts{3,b = 0.5,
ug = 0.25,6 = 0.08, w; = 0.139, we = 0.173). (c) Detected corner points
k=5b=1,u9=0.2,06 =0.05, w, =0.088, w, = 0.172).
(©

Fig. 6. (a) Original binary image. (b) Detected corner poikts<(5,b = 1,
ug = 0.25,6 = 0.08, w; = 0.100, we = 0.141). (c) Detected corner points
(k=10,b=1,u9 =0.1,6 = 0.035, wy = 0.025, ws = 0.045).

I

@ (@) (b)

(b)

L

(©
Fig. 7. (a) Original binary image. (b) Detected corner poikts{(8,b = 1, Fig. 9. (a) Original binary image. (b) Detected corner poifts<{ 10, b =
=0.1,6 = 0.05, w; = 0.039, ws = 0.042). (c) Detected corner points 0.2, uo = 0.1,6 = 0.05, w1 = 0.020, wz = 0.030). (c) Detected corner

Ug = .
(k=12,b=1,us = 0.09,8 = 0.05, 727 = 0.017, ws = 0.020). points ¢ = 12,b =1, uo = 0.006, 6 = 0.003, w; = 0.012, w, = 0.023).

analyzes only the local information and no explicit boundary iffiermation provides the network a capability of detecting corner
formation is available to the network. The use of only local insoints even from open or fragments of boundary segments. With



BASAK AND MAHATA: CONNECTIONIST MODEL FOR CORNER DETECTION IN BINARY AND GRAY IMAGES 1131

(c) (d) (© (d)
Fig. 10. (a) Original gray level image. (b) Edge Image. (c) Detected cormld: 12. (@) Original gray level image. (b) Edge image. (c) Detected corner

points ¢ = 5,b = 0.2, 10 = 0.5,6 = 0.25, w; = 0.015, wy = 0.034). (d) POINS & =5,0=1,u =0.5,0 = 0.25,w, = 0.077, we = 0.034). (d)
Detected comer pointd:(= 9,b = 1, up = 0.24,6 = 0.1, iw, = 0.022, Detected comer points:(= 9, b = 1, uo = 0.24,8 = 0.1, wy = 0.022,
ws = 0.088). wy = 0.088).

the neurons, noise threshold, and initial size of the neighbor-
hood. These restrictions are helpful for a suitable design of the
f network. The performance of the proposed algorithm is depen-
1 E dent on the selection of initial radius of neighborhood which
i corresponds to the desired level of description (coarse or fine
! scale). The network provides a flexibility to obtain different res-
olution depending on the subsequent higher level visual task to
be performed. It may be mentioned here that several algorithms
including [10] take into account of the curvature scale space di-
rectly. Here an implicit correspondence between the curvature
scale and the neighborhood size is achieved. Several graylevel
corner detection algorithms are developed (see [13]) based on
certain second-order differential geometric operations and cer-
tain cornerness measures are defined for mapping the image
intensity surface to corner features. The proposed algorithm,
on the other hand, provides a direct generalization to graylevel
images from two-tone images. In graylevel images, the effec-
tive bell-shaped kernels (e.g., Gaussian kernel) for smoothing is
achieved by the effect of shrinking neighborhood.
(©) (d) In the multilayered neural-network-based algorithm [19],
Fig. 11. (a) Original gray level image. (b) Edge image. (c) Detected corngply (_:ertam generic corner type_s are le_amed' In the p_resence
points & = 5,b = 0.2, uo = 0.5,6 = 0.25, w; = 0.015,w, = 0.034). Of noise, the performance of this algorithm [19] deteriorates
(d) Detected corner point& (= 9,b = 1, ug = 0.1,6 = 0.04,w; = 0.021, quickly. The present algorithm, on the other hand, performs
wz = 0.093). gracefully in a noisy environment and in the presence of
fragmented edge segments. However, unlike the existing
the extended dynamics, the network is able to detect corm@ural-network-based algorithms [19], [18], the present net-
points from gray images using only the local edge informatiomork does not employ any learning procedure, rather the corner
points are enhanced through cooperative computation of the
neurons. In gray images, the performance of the algorithm
depends on the edge detection scheme. The performance can
A corner detection algorithm in a connectionist frameworturther be enhanced with more sophisticated edge detection
based on local cooperative computation has been developgedhniques [22]. Also the algorithm is not suitable for junction
The convergence of the network has been proved with somedetection where more than one edge/line segment meet (e.g.,
strictions on the link weights, maximum initialization value foin a chess board).

VI. CONCLUSIONS AND SCOPE OFFUTURE WORK
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In this network, the effect of edge strength vectors on the corfi5] M. Trajkovica, “Fast corner detectionfhage Vis. Computvol. 16, pp.
nerity vectors is taken into account, however, the effect of cor- _ 75-87,1998.

R. Laganiere, “A morphological operator for corner detectidattern

: ; . 16

nerity vectors on the edge strength vectors is not considered. The” Recognitionvol. 31, pp. 1643-1652, 1998.

effect of corner points on the edge points and the reverse can lpg] K. Lee and Z. Bien, “Grey-level corner detector using fuzzy logRat-
coupled together to obtain a better edge detection scheme alopl%] tern Recognition Lettvol. 17, pp. 939-950, 1996.

with the detection of corner points. The capability of the net-

D. M. Tsai, “Boundary based corner detection using neural networks,”
Pattern Recognitionvol. 30, pp. 85-97, 1997.

work can further be improved by incorporating certain learning19] P.G.T. Dias, A. A. Kassim, and V. Srinivasan, “A neural-network-based
mechanism along with the cooperative computational ability for ~ comer detection method,” iEEE Int. Conf. Neural Network4.995, pp.

the detection of certain different types of junctions in gray im—[zo]

2116-2120.
J. Basak, B. Chanda, and D. D. Majumder, “On edge and line linking

ages. with connectionist model JEEE Trans. Syst. Man. Cyberwol. 24, pp.

413-428, 1994.

[21] T. KohonenSelf-Organization and Associative MemonyBerlin, Ger-
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