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A Connectionist Model for Corner Detection in
Binary and Gray Images
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Abstract—A connectionist model along with its state dynamics
is developed for detecting corner points in binary and gray images.
For a given binary/gray image, each pixel in the image is assigned
with some initial cornerity (our measurable quantity) which is a
vector representing the direction and strength of the corner. These
cornerities are then mapped onto a neural-network model which
is essentially designed as a cooperative computational framework.
The cornerity at each pixel is updated depending on the neigh-
borhood information. After the network dynamics settles to stable
state, the dominant points are obtained by finding out the local
maxima in the cornerities. Theoretical investigations are made to
ensure the stability and convergence of the network. It is found that
the network is able to detect corner points even in the noisy images
and for open object boundaries. The dynamics of the network is ex-
tended to accept the edge information from gray images also. The
effectiveness of the model is experimentally demonstrated in syn-
thetic and real-life binary and gray images.

Index Terms—Corner detection, cornerity vector, gray-level
corner detection, neural network.

I. INTRODUCTION

CORNER is considered to be one of the important image
features, and the detection of corner points plays a sig-

nificant role in many vision problems including shape analysis,
object recognition, scene analysis, motion detection, and stereo
matching [1], [2]. In digital images, the points with high curva-
ture values are considered as the corner points.

Early attempts to find the corners or high curvature points or
the dominant points include the methods developed by Rosen-
feld and Johnston [3], Rosenfeld and Weszka [4], Freeman and
Davis [5] and many others including [6]. The basic approach in
these attempts is to detect the dominant points directly through
the measurement of angle at the prospective corner points,
resulting in computationally expensive algorithms. Piecewise
linear approximation to digital arcs has been used in [7], [8],
and the points of intersections of the adjacent linear segments
are detected as corner points. In a different approach by Wang
et al. [9], a bending value for every point on a digital arc is
computed. The bending value at a point, in turn, provides
a measure of curvature and thereby the cornerness at the
corresponding point. In this method, direct computation of
angle between adjacent segments is replaced by the estimation
of bending value which involves only addition and subtraction
operations, leading to faster computation. Several algorithms
have been developed based on the curvature estimates of the
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object boundaries. Mokhtarian and Soumela [10] presented a
corner detection algorithm through curvature scale space where
corners were first detected at higher scale (coarser level) and
then tracked through multiple lower scales for better localiza-
tion. A nice description of the state-of-the-art corner detection
algorithms has also been presented in [10]. Sohnet al. [11]
presented a mean field annealing-based boundary smoothing
for estimation and subsequent robust corner detection tech-
nique. Arrebolaet al. [12] used local histograms of contour
chain code for computing curvature followed by the detection
of dominant points. These algorithms generally accept closed
object boundaries only. In [10], special linking is performed
to obtain closed boundaries. Moreover, the algorithms are not
directly extendible for accepting gray images.

Corner detection algorithms have also been developed for ac-
cepting gray level images directly. Zhenget al. [13] provided
a good literature survey of the existing gray level corner detec-
tion algorithms. They proposed an improvement over the Plessy
corner detector (see [13]) which provides a cornerness measure
based on the intensity changes along horizontal and vertical di-
rections. Stammbergeret al. [14] provided a faster corner de-
tection scheme by introducing a set of orthogonal second-order
Gaussian derivative kernels. Trajkovioca [15] computed the in-
tensity change in different directions and subsequently defined
a corner response function. The graylevel corner detectors, in
general, perform second-order differential geometric analysis of
the image intensity surface and define certain cornerness mea-
sures. The performance of the algorithms is dependent on the
cornerness measure itself.

Apart from the algorithms mentioned above, various other
corner detectors have been developed including those based on
morphological operators [16], fuzzy set theoretic tools [17] and
neural networks [18], [19]. In [18], a multilayered perceptron
(MLP) is trained for detecting the corners. The MLP-based ap-
proach [18] accepts closed object boundaries and applicable for
binary images only. Diaset al. [19] also employed a multilay-
ered neural architecture which learns (supervised mode) certain
generic corner images of different angles. In a test image, the
pixels are classified either as corner or noncorner points. Al-
though for noiseless images the algorithm exhibits good perfor-
mance, for noisy images the performance deteriorates rapidly.

Here we developed a method for detecting corner points in
binary and gray images using neural network. In the network
model, a pair of nodes corresponds to a pixel in the image. The
output of the pair of nodes together represent the corner vector
of the corresponding pixel. Each pair of neurons is laterally con-
nected over a neighborhood, and the node activations are up-
dated by the neighborhood information. Initial cornerity infor-
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Fig. 1. Suppression of corners in a jagged edge.

mation of each pixel is assigned to the corresponding pair of
nodes, and the final corner points are obtained after the network
converges to a stable state. Here no explicit information about
the entire object boundary is required, and only the local infor-
mation can update the output of each node. As a result, the net-
work is able to find out corner points from open object bound-
aries also. The network exhibit robust performance against the
presence of noise. The dynamics of the network is then extended
to accept the cornerity information from gray images by embed-
ding the edge strength information. A graceful performance by
the network is observed for the gray images.

II. CORNERDETECTION IN BINARY IMAGES

A. Overall Methodology

Here we assume that the given image consists of only the
boundary information, the boundary not necessarily being a
closed one. In the case of a gray level image (see Section IV),
edge/line segments are considered. The measurable parameter,
cornerity is a vector, the magnitude of which gives the strength
of corner and the direction gives the direction of the corner
at that point. The cornerity at every point on the boundary is
initialized considering only its 3 3 neighborhood. Note that,
in discrete domain, in a 3 3 neighborhood only 16 different
types of patterns [20] are possible. The updating process is
such that the cornerity vectors are enhanced at the true corner
points and get suppressed at other points. The corner points are
then identified by finding out the points of local maxima in the
magnitude of cornerity vectors.

Let us consider an example of an edge segment (line
boundary) as shown in Fig. 1. The initial corner vectors at
each point are shown in the Fig. 1. If we consider a larger
scale space, i.e., a coarse description of the edge/boundary
segment then it appears to be a smooth one. On the other hand,
a finer description of the same gives rise to jagged nature of
the segment. If we provide a coarse description thenshould
not be treated as a corner point. This can be obtained by adding
the cornerity vectors of the neighbors with that ofresulting
in a zero (or very close to zero) cornerity vector at. The
coarse or fine description can be related to the size of the
concerned neighborhood. As in Fig. 1, if we select a larger
neighborhood around then the vector sum of the cornerities
will be closed to zero, i.e., the segment appears to be a smooth
one. On the other hand, for a small neighborhood size (Fig. 2)
no oppositely directed corners in the neighborhood affect each
other. In Fig. 2, although does not have any initial cornerity,
it will get some induced cornerity value from. The induced
vector has the same direction as the corner vector at. The
induced cornerity value at , in turn, gives some induction to

, resulting in an enhancement of the cornerity at. Thus
in the updating process all points will have nonzero cornerity
vectors with the point having a local maxima.

Fig. 2. Finer detail of the jagged edge.

Fig. 3. Two typical case of initializing the cornerity vector.

The neural network model consists of neurons for
an image. A pair of neurons (nodes) corresponds to a
single pixel. The activation of the pair of neurons together repre-
sent the cornerity vector at the corresponding pixel. Each node
is connected to its surrounding neurons over a neighborhood.
The connections are only between neurons of same type. Each
node has a negative self-feedback which is essential for elimi-
nating noise. Initially, the state of the neurons are clamped by the
initialized cornerity vectors in the input image. The state of the
neurons are then updated according to the neighboring informa-
tion. After initialization, the external input is no more required.

B. Initialization of Cornerity Vectors

Initialization of the states of neurons in the network is very
important in the sense that the neurons in the network update
their states starting from the initial cornerity vectors only. For
example, a point lying on a straight line segment should have
zero initial vector, and a boundary point at a very high curva-
ture region should get high initial cornerity. The initial cornerity
vector at a pixel is determined over its 3 3 neighborhood.
The resultant vector of the relative position vectors of the neigh-
boring points with respect to the center point, gives the direction
of the cornerity at the center point. The magnitude of this resul-
tant vector is a measure of the strength of the cornerity. This is
illustrated in Fig. 3 which illustrates the two typical situations.
In Fig. 3 black blobs represent the boundary pixel positions. The
center pixel is denoted by, and the neighboring pixels are de-
noted by and respectively. The angle between two arms at

is small in the case shown in the right side of Fig. 3 than that in
the case shown in the left side of Fig. 3. This implies that the ini-
tial cornerity vector is larger in the case shown in the right side

of Fig. 3 than the other. In Fig. 3, represents the initialized

vector which is the resultant of and . The resultant cor-
nerity vector can then be represented by two components,
horizontal and vertical, respectively. Mathematically, let
be a boundary pixel and and be
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Fig. 4. Interaction between the nodes of two different pixels.

Fig. 5. Lattice structure of a given type of nodes.

the two neighboring boundary pixel positions in a 33 neigh-
borhood where . Then the hori-
zontal and vertical components of the initial cornerity vector at
the pixel position is given by

and

respectively. A point is assigned a nonzero initial cornerity only
if it is a boundary pixel and it has exactly two neighboring
boundary pixels. Thus the terminal points on an open boundary
or the nonboundary points are not assigned any cornerity (i.e.,
zero cornerity).

C. Network Model

Corresponding to each pixel, there are two different types of
neurons. Each neuron is connected with the other neurons of the
same type over a neighborhood (Figs. 4 and 5). The output of
two types of nodes are denoted byand and their internal
states are denoted byand , respectively. and , repre-
sent the horizontal and vertical components, respectively, of the
corner vector at theth pixel. Node is connected to its neigh-
boring nodes (denoted by index) of same type with weight

(for both types) if node is within a given neighborhood
of . The connection weights are symmetric in nature, i.e.,

. The state dynamics of the processing elementis
given by

(1)

and

(2)

The output of the node is given by

and (3)

respectively. is a ramp function given by

if
if
otherwise

(4)

where is the saturation level of the ramp function. The second
term in (1) and (2) are negative feedback terms used to elimi-
nate the noise points. is the weight of the negative feedback.
The neighborhood chosen here is a circular one. The ra-
dius of the neighborhood is decreased with time resulting in
higher interaction between the nearby nodes as compared to that
between the distant ones. Ifis decreased very fast then the
nodes will not interact properly and the desired smoothing of
the boundary segment may not be obtained. On the other hand,
a very slow decrease in may smooth out the true dominant
points on a boundary. Hereis decreased such that [21]

and

In this model the radius follows a schedule, given by

(5)

The parameters and are positive constants determining the
initial radius of the neighborhood and the rate of decrement of
the radius. The weights and are also proportional to the
radius of the neighborhood, i.e.,

and (6)

where and are the constants of proportionality.

D. Convergence of the Network

Evidently, if the network converges for a neighborhood of
fixed radius then it must converge for shrinking neighborhood
also. Consider a Lyapunov (or the energy function) of the net-
work for a given

(7)

Therefore, from (1) to (3), is given by

(8)
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where is the first derivative of the of the inverse of ,
which exists and is an increasing function, provided

and . The parameters are selected in such a way
that this condition is satisfied. The way of selecting the parame-
ters is described in the next section (i.e., in Section III). Since, in
the given range is an increasing function, i.e., is pos-
itive, and and are always nonnegative,

, . Since is bounded, as
and therefore and as

for all . As a result, the output values of all processing elements
converge.

III. SELECTION OFNETWORK PARAMETERS

The analysis in this section, is done considering(i.e., the
horizontal part) components only. The same arguments are valid
for component also. Let us use the notationinstead of
in the sequel. Let be the maximum initialized value of ,

be the threshold of the resultant cornerity value such that if
the magnitude of cornerity vector is less thanfor some node

after the convergence of the network then the corner atis
eliminated, and is the saturation level of the ramp function.

Theoretically, a noise point is one which initially have some
cornerity but does not get support from the neighborhood.
Therefore, for a noise point [from (1)]

(9)

Assuming that the value of is within the saturation limit of
the ramp function, we replace in (9) by , i.e., [from (6)]

(10)

It is required that after convergence of the network, the cornerity
at the noise points should less thanso that they can be elimi-
nated. Let us consider a noise point with maximum initialization

. From (5) and (10)

(11)

where is a constant given by

(12)

Since the network dynamics is stopped when (let at time
instant ), the value of in (11) should satisfy

(13)

From (5) implies that

(14)

From (11), (13), and (14)

(15)

Therefore

(16)

This equation gives a lower bound on, i.e., weight of the self-
feedback [from (12)].

Again, from (1) and (6)

(17)

In the updating process, a maximum level of activation can be
attained by an individual neuron if each neuron in the network
has got a maximum initial activation . Again, according to
(17), the network behavior is isotropic, i.e., the activation of
all nodes grow symmetrically. This means that each node gets
the same contribution from its neighborhood. Thus the internal
state is independent of index, i.e., . Therefore, the
dynamics of node can be written as

(18)

where

(19)

From (18)

i.e.,

(20)

Using the expression of from (19)

Since we assumed that all the nodes in the network grow in the
same way, and their initial activations are the same (i.e.,), we
can infer that at any time instant

(21)

For a boundary point the number of points in the neighborhood
is proportional to its radiusand say the constant of proportion-
ality is . Then

(22)

On an average, we can assume thatis equal to two. This is
due to the fact that the number of boundary points in a circular
neighborhood (radius) of a particular boundary point is equal
to if both the arms are straight line segments. If the arms are
curved segments then the concerned point may not be a sharp
corner.

From (5), (20), and (22), we get

(23)



1128 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 11, NO. 5, SEPTEMBER 2000

i.e.,

(24)

where

(25)

From (24), it can be shown that increases for small values
of , reaching maximum at some point of time (say )
and the decreases to zero. The value of can be found out
by setting

(26)

The maximum value of can be found out from (24) and (26),
which is

(27)

If is the saturation level of the ramp function then it is required
that , i.e.,

or

(28)

Again we need that network dynamics should stop before the
time when reaches its maximum. Since our algorithm stops
when

(29)

Equation (29) provides the lower limit of.
We should ensure that the for a given set of parameters (, ,
, ) there always exists at least one value ofsuch that (28)

and (29) satisfied. In the inequality in (28), the left-hand side
(LHS) increases with for a given value of . Therefore, from
(29), the minimum value of the LHS of (28) can be obtained by
considering , i.e.,

i.e.,

(30)

From (16) and (30) we get

(31)

As mentioned before, the parameteris a threshold such that
if the node activation decreases belowthen the corner at the

corresponding pixel is eliminated.can be chosen to be small
fraction of the initial activation . Let

(32)

where . Then from (31), we can write

(33)

In other words, for a given and , if the initial radius
of neighborhood, , increases then needs to be decreased.
Again from (16)

i.e.,

(34)

Since (12), we can write

(35)

Since is a constant (specified by the user) andcan be taken
as a constant, we can write .

For a given image first we select the initial radius of neigh-
borhood which is essentially driven by the requirements of the
higher level recognition system. The saturation levelis fixed
and it can be considered as the characteristics of the individual
nodes. The parameteris specified by the user (normally it is

). Then first is selected from (33). After selecting, is
chosen in the range given by (30) and (34). Thenis selected
such that (28) and (29) are satisfied. Then from (12) and (25) we
select and . For example, let and . Let
the parameter be 0.3. Then from (33) we can select .
From (30) and (34) we can choose . If we choose
as 5.0 then the conditions given in (28) and (29) are satisfied.
Therefore from (25) and (12), and for

.

IV. CORNERDETECTION IN GRAY IMAGES

In a gray image, object boundary may not be well defined
as in the case of binary images, where it has been assumed
that the boundary information (not necessarily a closed one)
is given. In other words, in the case of a gray image, at every
pixel an edge/line strength needs to be considered, which in the
case of binary images is either zero or one. Also the informa-
tion regarding the edge/line direction at every point is essen-
tial in finding out the initial cornerity vector, since we can no
more consider at most 16 possible configurations over a 33
window as in the case of a binary image. The initialization of
the cornerity vector at a point is performed considering the edge
strengths and edge directions at the points within a neighbor-
hood of the point concerned.
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A. Edge Detection

For detecting edge points, we used the Sobel operator [22]
which uses a mask as shown below

.

The horizontal and vertical components of the edge strength is
given as

(36)

The edge vector at a point is defined as where and
are the normalized and . The edge strength

is given as . Note that, normalization by the
maximum absolute value may suppress the weaker edges. In
such cases, normalization over a local window or a logarithmic
scaling function [22] may be adopted.

B. Initialization of the Cornerity Vectors

The cornerity vectors are initialized as

(37)

where
is the unit vector in the direction from pixelto pixel
;

is the edge strength vector;
is the angle between the edge vectorand .

Equation (37) is based on the fact that an edge gives maximum
induction along the direction perpendicular to its edge strength
vector direction [20]. Unlike the case of binary images, in gray
images, the neighborhood for initialization is not 33 neigh-
borhood, instead here we used a circular neighborhood of size

. The parameter has the same meaning as in the case of bi-
nary images.

C. Network Model

The corner detection algorithm for gray images is the same as
that of the binary images, the only difference is that the contribu-
tion from the node to the node is multiplied by a factor ,
where and are the edge strengths at the respective pixel lo-
cations. This is because of the fact that unlike binary images, in
a gray image we may not get well-defined boundaries and there
will be many pixels with low edge strength (noise points) along
with the actual boundary(high edge strength) points. Thus the
dynamics of a node is given by the equations

(38)

(39)

and the output of the nodeis , where
has the same meaning as in the binary case [see (3)].

D. Convergence of the Network

The Lyapunov of the network is again same as that of the
network for the binary images except for the factorsand .
The Lyapunov is chosen as

(40)

Since both and are nonnegative and have constant values,
they can be treated as constant multiplication factor of. The
rest of the proof is the same as that in Section II-D.

V. EXPERIMENTAL RESULTS

To simulate the methods described in Sections II–IV, we use
linear approximation of (1), (2), (38), and (39) with as the
increment in time. The parameter has to be small enough
in order to get good approximation of the original differential
equations. To perform the experiments we used the value of
as 0.06 for the binary images and 0.05 for the gray images. The
results for two-tone images are shown in Figs. 6–9 and those
for graytone images in Figs. 10–12. The detected corner points
are marked by black dots. The corners are detected for different
values of the initial radius and the way of transition from coarse
to finer resolution is illustrated in Figs. 6–9 and Figs. 10–12.
The parameter is a property of the neurons and it is selected
as six (note that, the performance of the network is practically
independent on the selection ofso long as the other parame-
ters are changed proportionately). The parameteris a constant
specified before initializing the network. The parameter indi-
cates the percentage decrease of the strength of a corner from
its initial value that can be allowed before eliminating it. From
the given values of , , and the values of , , , , and

are selected (as described in the Section III) and these pa-
rameters are shown in the respective figures.

The results in Figs. 6–9 and Figs. 10–12 indicate that the per-
formance of the network is dependent on the initial size of the
neighborhood. For a small initial neighborhood, the interaction
between the distant points is less, and it effectively leads to a
finer description of the object boundary. On the other hand, for
a large neighborhood size, the distant corner points interact with
each other leading to a coarse description. This provides a flex-
ibility to the network model in generating the descriptions of
the object boundaries (not necessarily a closed one) in different
levels of resolution depending on the initial selection of neigh-
borhood size. The level of resolution is, in turn, driven by the
requirement of the higher order visual information processing
tasks. This effect is analogous to finding out description at dif-
ferent scale space. In a noisy environment, if the noisy patterns
do not follow any structural form then the network behaves in a
robust manner. However, if the noisy patterns themselves form
structurally viable dominant points then those points are also de-
tected as corner points. This is due to the fact that the network
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(a)

(b)

(c)

Fig. 6. (a) Original binary image. (b) Detected corner points (k = 5, b = 1,
u = 0:25, � = 0:08, w = 0:100,w = 0:141). (c) Detected corner points
(k = 10, b = 1, u = 0:1, � = 0:035, w = 0:025,w = 0:045).

(a)

(b)

(c)

Fig. 7. (a) Original binary image. (b) Detected corner points (k = 8, b = 1,
u = 0:1, � = 0:05, w = 0:039, w = 0:042). (c) Detected corner points
(k = 12, b = 1, u = 0:09, � = 0:05, iw = 0:017, w = 0:020).

analyzes only the local information and no explicit boundary in-
formation is available to the network. The use of only local in-

(a)

(b)

(c)

Fig. 8. (a) Original binary image. (b) Detected corner points (k = 3, b = 0:5,
u = 0:25, � = 0:08,w = 0:139,w = 0:173). (c) Detected corner points
(k = 5, b = 1, u = 0:2, � = 0:05, w = 0:088,w = 0:172).

(a) (b)

(c)

Fig. 9. (a) Original binary image. (b) Detected corner points (k = 10, b =

0:2, u = 0:1, � = 0:05, w = 0:020, w = 0:030). (c) Detected corner
points (k = 12, b = 1, u = 0:006, � = 0:003,w = 0:012,w = 0:023).

formation provides the network a capability of detecting corner
points even from open or fragments of boundary segments. With
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(a) (b)

(c) (d)

Fig. 10. (a) Original gray level image. (b) Edge Image. (c) Detected corner
points (k = 5, b = 0:2, u = 0:5, � = 0:25,w = 0:015, w = 0:034). (d)
Detected corner points (k = 9, b = 1, u = 0:24, � = 0:1, iw = 0:022,
w = 0:088).

(a) (b)

(c) (d)

Fig. 11. (a) Original gray level image. (b) Edge image. (c) Detected corner
points (k = 5, b = 0:2, u = 0:5, � = 0:25, w = 0:015, w = 0:034).
(d) Detected corner points (k = 9, b = 1, u = 0:1, � = 0:04, w = 0:021,
w = 0:093).

the extended dynamics, the network is able to detect corner
points from gray images using only the local edge information.

VI. CONCLUSIONS ANDSCOPE OFFUTURE WORK

A corner detection algorithm in a connectionist framework
based on local cooperative computation has been developed.
The convergence of the network has been proved with some re-
strictions on the link weights, maximum initialization value for

(a) (b)

(c) (d)

Fig. 12. (a) Original gray level image. (b) Edge image. (c) Detected corner
points (k = 5, b = 1, u = 0:5, � = 0:25, w = 0:077, w = 0:034). (d)
Detected corner points (k = 9, b = 1, u = 0:24, � = 0:1, w = 0:022,
w = 0:088).

the neurons, noise threshold, and initial size of the neighbor-
hood. These restrictions are helpful for a suitable design of the
network. The performance of the proposed algorithm is depen-
dent on the selection of initial radius of neighborhood which
corresponds to the desired level of description (coarse or fine
scale). The network provides a flexibility to obtain different res-
olution depending on the subsequent higher level visual task to
be performed. It may be mentioned here that several algorithms
including [10] take into account of the curvature scale space di-
rectly. Here an implicit correspondence between the curvature
scale and the neighborhood size is achieved. Several graylevel
corner detection algorithms are developed (see [13]) based on
certain second-order differential geometric operations and cer-
tain cornerness measures are defined for mapping the image
intensity surface to corner features. The proposed algorithm,
on the other hand, provides a direct generalization to graylevel
images from two-tone images. In graylevel images, the effec-
tive bell-shaped kernels (e.g., Gaussian kernel) for smoothing is
achieved by the effect of shrinking neighborhood.

In the multilayered neural-network-based algorithm [19],
only certain generic corner types are learned. In the presence
of noise, the performance of this algorithm [19] deteriorates
quickly. The present algorithm, on the other hand, performs
gracefully in a noisy environment and in the presence of
fragmented edge segments. However, unlike the existing
neural-network-based algorithms [19], [18], the present net-
work does not employ any learning procedure, rather the corner
points are enhanced through cooperative computation of the
neurons. In gray images, the performance of the algorithm
depends on the edge detection scheme. The performance can
further be enhanced with more sophisticated edge detection
techniques [22]. Also the algorithm is not suitable for junction
detection where more than one edge/line segment meet (e.g.,
in a chess board).
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In this network, the effect of edge strength vectors on the cor-
nerity vectors is taken into account, however, the effect of cor-
nerity vectors on the edge strength vectors is not considered. The
effect of corner points on the edge points and the reverse can be
coupled together to obtain a better edge detection scheme along
with the detection of corner points. The capability of the net-
work can further be improved by incorporating certain learning
mechanism along with the cooperative computational ability for
the detection of certain different types of junctions in gray im-
ages.

ACKNOWLEDGMENT

The authors are thankful to the anonymous reviewers for ex-
tending helpful comments and useful pointers to other refer-
ences.

REFERENCES

[1] D. H. Ballard and C. M. Brown,Computer Vision. Englewood Cliffs,
NJ: Prentice-Hall, 1982.

[2] J. Basak and S. K. Pal, “PsyCOP: A psychologically motivated connec-
tionist system for object perception,”IEEE Trans. Neural Networks, vol.
6, pp. 1337–1354, 1995.

[3] A. Rosenfeld and E. Johnston, “Angle detection on digital curves,”IEEE
Trans. Comput., vol. C-22, pp. 875–878, 1973.

[4] A. Rosenfeld and J. S. Weszka, “An improved method of angle detection
on digital curves,”IEEE Trans. Comput., vol. C-24, pp. 940–941, 1975.

[5] H. Freeman and L. S. Davis, “A corner finding algorithm for chain coded
curves,”IEEE Trans. Comput., vol. C-26, pp. 297–303, 1977.

[6] P. V. Sankar and C. V. Sharma, “A parallel procedure for the detection
of dominant points on a digital curve,”Comput. Graphics Image Pro-
cessing, vol. 7, pp. 403–412, 1978.

[7] T. Pavlidis, “Algorithms for shape analysis and waveforms,”IEEE
Trans. Pattern Anal. Machine Intell., vol. PAMI-2, pp. 301–312, 1980.

[8] J. G. Dunham, “Optimum uniform piecewise linear approximation of
planar curves,”IEEE Trans. Pattern Anal. Machine Intell., vol. PAMI-8,
pp. 67–75, 1986.

[9] J. Wang, X. Wu, X. Huang, and X. Wang, “Corner detection using
bending value,”Pattern Recognition Lett., vol. 16, pp. 575–583, 1995.

[10] F. Mokhtarian and R. Suomela, “Robust image corner detection through
curvature scale space,”IEEE Trans. Pattern Anal. Machine Intell., vol.
20, pp. 1376–1381, 1998.

[11] K. Sohn, J. H. Kim, and W. E. Alexander, “A mean field annealing ap-
proach to robust corner detection,”IEEE Trans. Syst., Man, Cybern. B,
vol. 28, pp. 82–90, 1998.

[12] F. Arrebola, A. Bandera, P. Camacho, and F. Sandoval, “Corner detection
by local histograms of contour chain code,”Electron. Lett., vol. 33, pp.
1769–1771, 1997.

[13] Z. Zheng, H. Wang, and E. K. Teoh, “Analysis of gray level corner de-
tection,”Pattern Recognition Lett., vol. 20, pp. 149–162, 1999.

[14] T. Stammberger, M. Michaelis, M. Reiser, and K. Englmeier, “A hierar-
chical filter scheme for efficient corner detection,”Pattern Recognition
Lett., vol. 19, pp. 687–700, 1998.

[15] M. Trajkovica, “Fast corner detection,”Image Vis. Comput., vol. 16, pp.
75–87, 1998.

[16] R. Laganiere, “A morphological operator for corner detection,”Pattern
Recognition, vol. 31, pp. 1643–1652, 1998.

[17] K. Lee and Z. Bien, “Grey-level corner detector using fuzzy logic,”Pat-
tern Recognition Lett., vol. 17, pp. 939–950, 1996.

[18] D. M. Tsai, “Boundary based corner detection using neural networks,”
Pattern Recognition, vol. 30, pp. 85–97, 1997.

[19] P. G. T. Dias, A. A. Kassim, and V. Srinivasan, “A neural-network-based
corner detection method,” inIEEE Int. Conf. Neural Networks, 1995, pp.
2116–2120.

[20] J. Basak, B. Chanda, and D. D. Majumder, “On edge and line linking
with connectionist model,”IEEE Trans. Syst. Man. Cybern., vol. 24, pp.
413–428, 1994.

[21] T. Kohonen,Self-Organization and Associative Memory. Berlin, Ger-
many: Springer-Verlag, 1988.

[22] R. C. Gonzalez and R. E. Woods,Digital Image Processing. Reading,
MA: Addison-Wesley, 1993.

Jayanta Basak(M’95–SM’99) received the Bach-
elor’s degree in electronics and telecommunication
engineering from Jadavpur University, Calcutta,
India, in 1987, the Master’s degree in computer
science and engineering from the Indian Institute of
Science (IISc), Bangalore, in 1989, and the Ph.D.
degree from the Indian Statistical Institute (ISI),
Calcutta, in 1995.

He served as a Computer Engineer in the Knowl-
edge —Based Computer Systems Project of ISI from
1989 to 1992. In 1992, he joined the Electronics and

Communication Sciences Unit of ISI. Since 1996, he is has been an Associate
Professor in the Machine Intelligence Unit of ISI. He was a Researcher in the
RIKEN Brain Science Institute, Saitama, Japan from 1997 to 1998, and a Vis-
iting Scientist in the Robotics Institute of Carnegie Mellon University, Pitts-
burgh, PA, from 1991 to 1992 under a UNDP fellowship. His research interests
include neural networks, pattern recognition, image analysis, and fuzzy sets.

He is recipient of the gold medal from Jadavpur University in 1987, the Ju-
nior Scientist Award in computer science from Indian Science Congress Asso-
ciation in 1994, the Young Scientist Award in engineering sciences from Indian
National Science Academy (INSA) in 1996, and the Young Investigator Award
from the International Neural Network Society (INNS) in 2000.

Debashis Mahatawas born in West-Bengal, India,
on December 31, 1973. He received the B.Sc. degree
in physics from Burdwan Raj College, Burdwan,
India, in 1994 and the M.Sc. in physics with
electronics specialization from Burdwan University,
India, in 1996. He received the M.Tech degree
in computer science from the Indian Statistical
Institute, Calcutta, in 1999.

He is currently a Senior Software Engineer with
Wipro Technologies, India. His interests include the
application of neural networks in real life, Unix in-

ternals, theoretical physics, and quantum mechanics.


