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Abstract—The present article is a novel attempt in providing an  eralization does not necessarily imply involvement of hidden
exhaustive survey of neuro—fuzzy rule generation algorithms. Rule ynits with distinctmeaning Hence any individual unit cannot
generation from artificial neural networks is gaining in popularity essentially be associated with a single concept or feature of the
in recent times due to its capability of providing some insight to - o . T
the user about the symbolic knowledge embedded within the net- problem dpmam. Th's_ IS typlcgl of CpnneCt'on'St approaches,
work. Fuzzy sets are an aid in providing this informationin amore  Where all information is stored in a distributed manner among
human comprehensible or natural form, and can handle uncer- the neurons and their associated connectivity.
tainties at various levels. The neuro—fuzzy approach, symbiotically Generally, ANN’s consider a fixed topology of neurons
combining the merits of connectionist and fuzzy approaches, con- connected by links in a predefined manner. These connec-

stitutes a key component of soft computing at this stage. To date, Hi ight Il initialized b I d |
there has been no detailed and integrated categorization of the var- lon weights are usually niualized by small random values.

ious neuro—fuzzy models used for rule generation. We propose to Knowledge-based networki0], [11] constitute a special class
bring these together under a unified soft computing framework. of ANN'’s that consider crude domain knowledge to generate

Moreover, we include both rule extraction and rule refinementin  the initial network architecture, which is later refined in the
the broader perspective of rule generation. Rules learned and gen- presence of training data. Recently, there have been some

erated for fuzzy reasoning and fuzzy control are also considered tt ts in i ina the effici f | tati
from this wider viewpoint. Models are grouped on the basis of their attempts In 1mproving the efliciency of neural computation

level of neuro—fuzzy synthesis. Use of other soft computing tools By using knowledge-based nets. This helps in reducing the
like genetic algorithms and rough sets are emphasized. Rule gen-searching space and time while the network traces the optimal
eration from fuzzy knowledge-based networks, which initially en-  solution. In such situations, one can extract causal factors
code some crude domain knowledge, are found to result in more 54 fynctional dependencies from the data domain for initial
refined rules. Finally, real-life application to medical diagnosis is . .
provided. encoding of the ANN [5], [12] and later extract refined rules
from the trained network.

Andrewset al.[6] have provided a classification scheme for

connectionist rule extraction algorithms. They take into consid-

Index Terms—Knowledge-based networks, neuro—fuzzy com-
puting, rule extraction, rule generation, soft computing.

eration
. INTRODUCTION « expressive power of the rules: 1) propositional or Boolean
RTIFICIAL neural networks (ANN's) attempt to replicate logic, i.e., crisp or nonfuzzy, and 2) nonconventional logic,
thecomputationapower (low-level arithmetic processing i.e., probabilistic or fuzzy;
ability) of biological neural networks and, thereby, hopefully * translucencyof view taken in the algorithm about the
endow machines with some of the (higher-lexaynitive abil- underlying ANN units: 1) decompositional approach

ities that biological organizms possess (due in part, perhaps, to  (more analytical), where each internal element of the
their low-level computational prowess). However, an impedi- ~ transparentnetwork is examined and 2) pedagogical
ment to a more widespread acceptance of ANN's is the absence O blackbox approach, where one observes only the
of a capability to explain to the user, in a human-comprehensible ~ input-output behavior of thepaquenetwork;

form, how the network arrives at a particular decision. Neither * €xtentto which the underlying ANN incorporates special-
can one say something about tr@wledgeencoded within the ized training regimes, i.eportability;

blackbox Recently, there has been widespread activity aimed at * guality of the rules: 1) accuracy, i.e., generalization to test
redressing this situation by extracting the embedded knowledge ~Cases; 2) fidelity, i.e., whether they can mimic the behavior
in trained ANN’s in the form of symbolic rules [1]-[9]. This of the ANN from which they were generated; 3) consis-
serves to identify the attributes that, either individually orina  tency, i.e., whether they produce the same classification
combination, are the most significant determinants of the deci-  Of test instances over different training instances; and 4)

sion or classification. Often an ANN solution with good gen-  comprehensibility, in terms of the size of the rule set and
the number of antecedents per rule;

« algorithmic complexity of the technique.
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Unfortunately, most of the available literature on rule genemain knowledge, or providing justification/explanation in the
ation do not provide such rigorous assessment on their pros aade of an inferred decision. This automates and also speeds up
cons. There is also a preponderancespécific purposg¢ech- the knowledge acquisition process. Such models help in min-
nigues, that are designed to work with a particular ANN archimizing human interaction and associated inherent bias during
tecture. This limits the scope of comparing the various tecthe phase of knowledge base formation and also reduce the pos-
nigues in a single framework. Unless specified otherwise, albility of generating contradictory rules. Fuzzy neural networks
methods surveyed in this article will deal with the analytical d#] can be used for the same purpose, and can also handle un-
decompositional approach. certainty at various stages.

Both fuzzy systems and ANN’s are soft computing ap- The present article is the first of its kind to provide a detailed
proaches to modeling expert behavior. The goal is to mimd@tegorization of neuro—fuzzy rule generation algorithms based
the actions of an expert who solves complex problems. @m their level of synthesis. Section Il provides an overview of
other words, instead of investigating the problem in detaiteuro—fuzzy hybridization, which is the oldest and most well-
one observes how an expert successfully tackles the problknown methodology in soft computing. An exhaustive survey
and obtains knowledge by instruction and/or learning [14]. Af rule generation in the fuzzy, neural, and neuro—fuzzy frame-
learning process can be part of knowledge acquisition. In tiork is presented in Section |11, along with some hybridization
absence of an expert or sufficient time or data, one can resomolving genetic algorithms. This is followed in Section IV by
to reinforcement learning instead of supervised learning. If oassurvey of rule generation in knowledge-based networks using
has knowledge expressed as linguistic rules, one can buildeuro—fuzzy hybridization, rough sets and genetic algorithms.
fuzzy system. On the other hand, if one has data or can le&®ction V provides a case study of a neuro—fuzzy rule genera-
from a simulation or the real task, ANN’s are more appropriatéion algorithm with application to medical diagnosis. Section VI
The merits of both neural and fuzzy systems can be integrathcludes the article.
in a neuro—fuzzy approach [4]. The focus of this article will be
on neuro—fuzzy rule generation. II. NEURO-FUZZY AND SOFT COMPUTING

The termrule generationencompasses both rule extraction
and rule refinement. Note thaule extraction here refers
to extracting knowledge from the ANN, using the networ
parameters in the proced’ule refinementon the other hand,
pertains to extracting refined knowledge from the ANN thal& Need for Ne
was initialized using crude domain knowledge. Rules learned uro-
and interpolated for fuzzy reasoning and fuzzy control can Both neural networks and fuzzy systems are dynamic, parallel
also be considered under rule generation. It covers, in a widépcessing systems that estimate input—output functions. They
sense, the extraction of domain knowledge (say, for the initi@ptimate a function without any mathematical model kaain
encoding of an ANN) using nonconnectionist tools like fuzz§fom experienceith sample data. A fuzzy system adaptively in-
sets and rough sets. Unlike Ticlké¢ al. [5], [6] who deal with ~fers and modifies its fuzzy associations from representative nu-
rule extraction for nonfuzzy connectionist models (using prop82€rical samples. Neural networks, on the other handhitadly
sitional logic) only, we provide here a broader and exhaustigenerate andrefine fuzzy rules fromtraining data [15]. Fuzzy sets
survey of neuro—fuzzy rule generation. Both feedforward ar@de considered to be advantageous in the logical field, and in han-
recurrent neural networks are considered. Although the focu$li§g higher order processing easily. The higher flexibility is a
on neuro—fuzzy models, we also briefly deal with other fuzzgharacteristic feature of neural nets produced by learning and,
neural, genetic algorithms, and rough set-based approacheB&sce, this suits data-driven processing better [16]. Hayashi and
rule generation. We concentrate on categorizing the differdptickley [17] proved that 1) any rule-based fuzzy system may
neuro—fuzzy approaches, based on their level of integration,ifi approximated by a neural net and 2) any neural net (feedfor-
a unifiedsoft computingramework. ward, multilayered) may be approximated by a rule-based fuzzy

In general, the primary input to a connectionist rule gener@ystem. This kind of equivalence between fuzzy rule-based sys-
tion algorithm is a representation of the trained ANN, in ternf€mMs and neural networks is also studied in [18]-[21]. Jang and
of its nodes and links, and sometimes the data set. One intek" [22] have shown that fuzzy systems are functionally equiva-
prets one or more hidden and output units into rules, which migpt to a class of radial basis function (RBF) networks, based on
|ater be Combined and S|mp||f|ed to arrive at a more Comprgle S|m||ar|ty between the local I’eceptive fields of the network
hensible rule set. These rules can also provide new insights iAffl the membership functions of the fuzzy system.
the application domain. The use of ANN helps in 1) incorpo- Fuzzy systems can be broadly categorized into two fami-
rating parallelism and 2) tackling optimization problems in thies. The firstincludes linguistic models based on collections of
data domain. The models are usually suitable in data-rich enlfi=THEN rules, whose antecedents and consequents utilize fuzzy
ronments and seem to be capable of overcoming the probleny@iues. It uses fuzzy reasoning and the system behavior can be
the knowledge acquisition botﬂene&ced by knowledge en- described imatural terms. Thel\/lamdanimodel [23] fa||S in
gineers while designing the knowledge base of traditional efis group. The knowledge is represented as
pert systems. The trained link weights and node activation of 4 o Ny
the ANN are used to automatically generate the rules, either for R If 1 is A7 andwzz is A5 - -
later use in a traditional expert system, refining the initial do- andz, is A’ . theny'’ is B’ (1)

m?

This section focuses on different aspects of neuro—fuzzy com-
puting, keeping in mind the rich literature currently available in
this field. Finally, the concept of soft computing is introduced.

Fuzzy Integration
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whereR‘(i = 1, 2, ---, 1) denotes theth fuzzy rule,z;(j = classification systems can be trained by numerical data and lin-
1,2, ---, n) is the inputy’ is the output of the fuzzy rul&’, guistic knowledge and 2) fuzzy rule-based classification sys-
andAl, A% ... Al Bi(i=1,2,---,1) are fuzzy member- tems can be designed by linguistic knowledge and fuzzy rules
ship functions usually associated with linguistic terms. extracted from neural networks.

The second category, based Buogenetype systems [24], Fuzzy logic and neural systems have very contrasting
uses a rule structure that has fuzzy antecedentfamctional application requirements. For example, fuzzy systems are
consequent parts. This can be viewed as the expansion of pieg@eropriate if sufficient expert knowledge about the process is

wise linear partition represented as available, while neural systems are useful if sufficient process
‘ ‘ ‘ ‘ data are available or measurable. Both approaches build
R If x1is A} andzo is A --- andx, IS A;, nonlinear systems based on bounded continuous variables, the
theny’ = a) + alwy +--- +alx,. (2) difference being that neural systems are treated in a numeric

guantitative manner, whereas fuzzy systems are treated in a

The approach approximates a nonlinear system with a combig¥mbolic qualitative manner. Fuzzy systems, however, exhibit
tion of several linear systems, by decomposing the whole ind@th symbolic and numeric features. For example, when treated
space into several partial fuzzy spaces and representing edghcollections of objects encapsulated by linguistic labels
output space with a linear equation. Such models are capabléh§ly lend themselves to symbolic processing via rule-based
representing both qualitative and quantitative information afperations, while by referring to the definitions of the linguistic
allow re|ative|y easier app”cation of powerfu| |earning techlﬁbG'S their membership functions are also suitable for numeric
niques for their identification from data. They are capable of aprocessing. Therefore, the integration of neural and fuzzy
proximating any continuous real-valued function on a compagystems leads to a symbiotic relationship in which fuzzy
set to any degree of accuracy [25]. This type of knowledge repystems provide a powerful framework for expert knowledge
resentation does not allow the output variables to be descridég@resentation, while neural networks provide learning capa-
in linguistic terms and the parameter optimization is carried oblities and exceptional suitability for computationally efficient
iteratively using a nonlinear optimization method. hardware implementations. The significance of this integration
However, there is a tradeoff between readability and prediecomes even more apparent by considering their disparities.
sion. If one is interested in a more precise solution, then ofural networks do not provide a strong scheme for knowledge
is usually not so bothered about its linguistic interpretabilityepresentation, while fuzzy logic controllers do not possess
Sugeno-type systems are more suitable in such cases. Otfapabilities for automated learning.
wise, the choice is for Mamdani-type systems. Two primary Neuro-fuzzy computing], [25], [27]-[31], which is a judi-
tasks of fuzzy modeling are structure identification and parar@ious integration of the merits of neural and fuzzy approaches,
eter adjustment. The first determines the input—output space p{tables one to build more intelligent decision-making systems.
tition, antecedent and consequent variables=efHEN rules, This incorporates the generic advantages of artificial neural
number of such rules, and initial positions of membership fungetworks like massive parallelism, robustness, and learning
tions. The second identifies a feasible set of parameters unifegata-rich environments into the system. The modeling of
the given structure. imprecise and qualitative knowledge as well as the transmis-
Neural networks, like fuzzy systems, are excellent at dev&iion of uncertainty are possible through the use of fuzzy logic.
oping human-made systems that can perform information pfesides these generic advantages, the neuro—fuzzy approach
cessing in a manner similar to our brain. In fact, the conceplso provides the corresponding application specific merits.
of ANN'’s was inspired byiological neural networkéBNN's),
which are inherently nonlinear, highly parallel, robust and fa
tolerant. A BNN is capable of 1) adapting its synaptic weights Neuro-fuzzy hybridization [4], [27], [31] is done broadly
to changes in the surrounding environment; 2) easily handling two ways: a neural network equipped with the capability
imprecise, fuzzy, noisy, and probabilistic information; and 3)f handling fuzzy information [termeéuzzy-neural network
generalizing to unknown tasks. ANN’s attempt to mimic thegNN)] and a fuzzy system augmented by neural networks to
characteristics, often using principles from nervous systemseonhance some of its characteristics like flexibility, speed, and
solve complex problems in an efficient manner. Fuzzy logic edaptability [termecheural-fuzzy systefiNFS)].
capable of modeling vagueness, handling uncertainty, and supk an FNN, either the input signals and/or connection weights
porting human-type reasoning. and/or the outputs are fuzzy subsets or a set of membership
A neural network is widely regarded as a black box that realues to fuzzy sets, e.g., [7], [32]-[34]. Usually, linguistic
veals little about its predictions. Extraction of rules from neurailues such atow, medium and high, or fuzzy numbers or
nets enables humans to understand this prediction process intervals are used to model these. Neural networks with fuzzy
better manner. Rules are a form of knowledge that human eeurons are also termed FNN as they are capable of processing
perts can easily verify, transmit, and expand. Representing ruleszy information.
in natural form aids in enhancing their comprehensibility for A neural-fuzzy system (NFS), on the other hand, is designed
humans. This aspect is suitably handled using fuzzy set-théo-realize the process of fuzzy reasoning, where the connec-
retic concepts. tion weights of the network correspond to the parameters of
The relation between neural networks and linguistic knowluzzy reasoning, e.qg., [14], [35]-[40]. Using the backpropaga-
edge is bidirectional [26]. Therefore 1) neural network-basein-type learning algorithms, the NFS can identify fuzzy rules

Jp. Different Neuro—Fuzzy Hybridizations
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and learn membership functions of the fuzzy reasoning. Usuatlyle. Ishibuchiet al. [54] incorporated triangular or trapezoidal
for an NFS, it is easy to establish a one-to-one correspondeifiezzy number weights, thereby increasing the complexity of
between the network and the fuzzy system. In other wordhe algorithm. Some of these problems have been overcome
the NFS architecture has distinct nodes for antecedent clausss Feuring et al. in [55]. All these fuzzy neural networks
conjunction operators, and consequent clauses. A fuzzy contrah, however, be grouped under categories 1 and 3 of our
system can also be termed as an NFS. There can be, of counseiyo—fuzzy integration methodology.

another blackbox-type NFS where a multilayer network is usedNaucket al. [14] deal mainly with neuro—fuzzy control and

to determine the input—output relation represented by a fuzzyggest the following: 1) eooperativesystem where the ANN
system. For such a system the network structure has no sackl fuzzy system work independently of each other; the combi-
relation to the architecture of the fuzzy reasoning system. nation lies in determining certain parameters of a fuzzy system

An NFS should be able tearnlinguistic rules and/or mem- by an ANN and 2) éybrid neuro—fuzzgystem which imple-
bership functions, or optimize existing ones. There are thraeents a fuzzy system with an ANN; here one generates a ho-
possibilities [14]: 1) the system starts without rules, and crerogeneous entity which cannot be divided into a fuzzy system
ates new rules until the learning problem is solved. Creation @f an ANN. In our terminology, both these combinations can be
a new rule is triggered by a training pattern which is not sufftermed as an NFS under category 2 of the neuro—fuzzy integra-
ciently covered by the current rulebase; 2) the system starts witim.
all rules that can be created due to the partitioning of the vari-
ables and deletes insufficient rules from the rulebase based®@nSoft Computing
an evaluation of their performance; 3) the system starts with aln traditional hard Computing, the prime desiderata are pre-
rulebase with a fixed number of rules. During Iearning, rules aggsion, certainty, and rigor. By contrast, in soft computing the
replaced by an optimization process. principal notion is that precision and certainty carry a cost and

The state of the art for the different techniques of judiciousifat computation, reasoning, and decision-making should ex-
combining neuro—fuzzy concepts involves synthesis at variogiit (wherever possible) the tolerance for imprecision, uncer-
levels. In general, these methodologies can be broadly categiinty, approximate reasoning, and partial truth for obtaining
rized as follows [41]. Note that categories 1 and 3-5 relate [@w-cost solutions. This leads to the remarkable human ability
FNN’s, while category 2 refers to NFS. of understanding distorted speech, deciphering sloppy hand-

1) Incorporating fuzziness into the neural net frameworkvriting, comprehending the nuances of natural language, sum-

fuzzifying the input data, assigning fuzzy labels to thenarizing text, recognizing and classifying images, driving a ve-
training samples, possibly fuzzifying the learning proceiicle in dense traffic and, more generally, making rational de-
dure, and obtaining neural network outputs in terms afsions in an environment of uncertainty and imprecision. The
fuzzy sets [7], [8], [33], [34], [42]. challenge, then, is to exploit the tolerance for imprecision by
2) Designing neural networks guided by fuzzy logic fordevising methods of computation that leaditbacceptable so-
malism: designing neural networks to implement fuzzjution at low cost This, in essence, is the guiding principle of
logic and fuzzy decision-making, and to realize mensoft computing [56].
bership functions representing fuzzy sets [14], [35]-[40], Soft computing is a consortium of methodologies that
[43]-[46]. works synergetically and provides in one form or another
3) Changing the basic characteristics of the neurons: ndlexible information processing capability for handling real
rons are designed to perform various operations usedlii@ ambiguous situations. Its aim is to exploit the tolerance
fuzzy set theory (like fuzzy union, intersection, aggregder imprecision, uncertainty, approximate reasoning, and
tion) instead of the standard multiplication and additiopartial truth in order to achieve tractability, robustness, and
operations [47]-[51]. low-cost solutions. The guiding principle is to devise methods
4) Using measures of fuzziness as the error or instability ob& computation that lead to an acceptable solution at low cost
network: the fuzziness or uncertainty measures of a fuzby seeking for an approximate solution to an imprecisely/pre-
set are used to model the error or instability or energyisely formulated problem. The neuro—fuzzy approach, which
function of the neural network-based system [52]. provides flexible information processing capability by devising

5) Making the individual neurons fuzzy: the input and outpuhethodologies and algorithms on a massively parallel system

of the neurons are fuzzy sets and the activity of the ndbr representation and recognition of real-life ambiguous
works involving the fuzzy neurons is also a fuzzy processtuations forms, at this juncture, a key component of soft
[32]. computing.

There are other kinds of categorizations for neuro—fuzzy We can have approaches that exploit the benefits of all three
models reported in literature [14], [53]. Buckley and Hayastsioft computation toolssiz. fuzzy logic, ANN'’s and genetic al-
[53] have classified fuzzified neural networks as followsggorithms (GA's), for rule generation. GA's [57] have found var-
Networks can possess 1) real number inputs, fuzzy outputs, amas applications in fields like pattern recognition, image pro-
fuzzy weights; 2) fuzzy inputs, fuzzy outputs, and real numbeessing and neural networks. In the area of ANN'’s, they have
weights; 3) fuzzy inputs, fuzzy outputs, and fuzzy weightfieen used in determining the optimal set of connection weights
Hayashi et al. [49] fuzzified the delta rule for multilayer as well as the optimal topology of layered neural networks. A
perceptron (MLP) using fuzzy numbers at the input, outputjzzy reasoning system can be implemented using a multilayer
and weight levels. But there were problems with the stoppimgetwork, where the free parameters of the system can be learned
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using GA's. Similarly, the parameters of an FNN can also tsoning for any inferred decision or recommendation, preferably
learned using GA's. Such systems are termedro—fuzzy-ge- in rule form, to convince the user that its reasoning is correct.
netic [58]-[63]. It may be mentioned in this connection that
computational intelligenci80], [64] is also a field related to ar- A- Fuzzy Models
tificial intelligence that uses soft computing tools like ANN’s, First of all, let us touch upon some of the approaches in
fuzzy systems, and GA's in order to build intelligent systemigizzy inferencing and rule generation before embarking on
with the capability of rule generation. connectionist models. In the fuzzy classification rule described
The theory ofough set$65] has recently emerged as anothepy Ishibuchiet al. [70], the partitioning is uniform, i.e., the
major mathematical tool for managing uncertainty that arisesgions continue to be split until a sufficiently high certainty
from granularity in the domain of discourse, i.e., from the indisf the rule, generated by each region, is achieved. Ishibetchi
cernibility between objects in a set. The intention is to approad. extended this work later [71] by using an idea of sequential
imate arough (imprecise) concept in the domain of discourspartitioning of the feature space into fuzzy subspaces until a
by a pair ofexactconcepts, called the lower and upper approxpredetermined stopping criterion is satisfied and studied its
mations. These exact concepts are determined lxydiscerni- application for solving various pattern classification problems.
bility relation on the domain, which, in turn, may be induced Wang and Mendel [72] developed a slightly different method
by a given set ofttributesascribed to the objects of the do-for creating a fuzzy rulebase, made up of a combination of rules
main. The lower approximation is the set of objects definitelyenerated from numerical examples and linguistic rules sup-
belonging to the vague concept, whereas the upper approxirpked by human experts. The input and output domain spaces
tion is the set of objects possibly belonging to the same. These divided into a number of linguistic subspaces. Human in-
approximations are used to define the notionslisternibility tervention is sought to assign degrees to the rules and conflicts
matrices discernibility functionsreducts anddependency fac- are resolved by selecting those rules yielding the maximum of
tors, all of which play a fundamental role in the reduction of computed measure corresponding to each linguistic subspace.
knowledge. Rovatti and Guerrieri [73] have attempted to identify the
Hybridizations for rule generation, exploiting the chareorrect rule structure of a fuzzy system when the target
acteristics of rough sets, include th®ugh-neuro [66], input—output behavior is sampled at random points. The
rough-neuro—fuzzy12], [67], rough-neuro-genetigd68], and assumption that a rule can either be included or excluded
rough-neuro—fuzzy genet[69] approaches. The primary rolefrom the rule set is relaxed, and degrees of membership are
of rough sets here is in managing uncertainty and extractisgploited to achieve good approximation results. Defuzzifi-
domain knowledge. cation methodologies are then used to extract well-behaving
crisp rule sets. Symbolic minimization is carried out to obtain a
compact structure that captures the high-level characteristics of
the target behavior. For other details, one may refer to standard
Here we review the different fuzzy, neural and neuro—fuz4iferature [74]-[76].
models for rule generation, inferencing, and querying, alongl) With Genetic AlgorithmsA fuzzy model, containing
with their salient features. Sections llI-A and IlI-B cover th& large number ofF—THEN rules, is liable to encounter the
fuzzy and neural approaches, respectively. This is followed ligk of overfitting and, hence, poor generalization. The strong
Sections IlI-C—IlI-E by different neuro—fuzzy approaches, indsearching capacity of GA's has been utilizedfizzy—genetic
cating three types of hybridization as mentioned in Section II-Bybridization to circumvent this problem by [77] 1) deter-
Incorporation of GA's is also referred to in Sections IlI-A-1mining membership functions with a fixed number of fuzzy
[1-B-2, and llI-D-4 under fuzzy—geneticneuro—geneticand rules [78], [79]; 2) finding fuzzy rules with known membership
neuro—fuzzy—genethybridization. functions [80]; and 3) finding both membership functions and
Let us first explain the significance of querying and rule geriuzzy rules simultaneously [77], [81], [82].
eration, by referring to medical decision making. The models Ishibuchiet al.[82] select a small number of significant fuzzy
are generally capable of dealing with nonavailability of datsf—THEN rules to construct a compact and efficient fuzzy classi-
and can enquire the user for additional data when necessaryigation system. GA's are used to solve this combinatorial opti-
the medical domain, for instance, data may be missing for vapization problem, with an objective function for simultaneously
ious reasons; for example, some examinations can be risky f@aximizing the number of correctly classified patterns and min-
the patient or contraindications can exist, an urgent diagnodtitizing the number of fuzzy rules.
decision may need to be made and some very informative buWang and Yen [77] have designed a hybrid algorithm that
prolonged test results may have to be excluded from the featusges GA's for extracting important fuzzy rules from a given rule-
set, or appropriate technical equipment may not be availabi@se to constructarsimoniousuzzy model with a high gen-
In such cases, the network can query the user for additional @falization ability. The parameters of the model are estimated
formation only when it is particularly necessary to infer a dessing theKalmanfilter.
cision. Again, one realizes that the final responsibility for an
diagnostic decision always has to be accepted by the mediéaINeural Models
practitioner. So the physician may want to verify the justifica- Here we first consider the layered connectionist models by
tion behind the decision reached, based on personal experti3allant [1] and Saito and Nakano [83] used for rule generation
This requires the system to be able to explain its mode of raa-the medical domain. The inputs and outputs consistrisp

Ill. RULE GENERATION
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variables in all cases. Generally the symptoms are represeriibéeé method selects two or four most relevant attributes. For the
by the input nodes while the diseases and possible treatmednits-attribute case, odor and spore print color were found to be
correspond to the intermediate and/or output nodes. The mintportant. A sample of the antecedent part of an extracted rule
tilayer network described by Saito and Nakano [83] has befar edible mushroom is (almonoR aniseOR none)AND (spore
applied to the detection dfeadacheA patient responds to a print color # green). Duckhet al. [85] modified this algorithm
questionnaire regarding the perceived symptoms and these dpneonstraining the weights t¢1, —1, or 0. This is supposed
stitute the input to the network. to result in the extraction of rules with more logical interpreta-

The model by Gallant [1], dealing witkacrophagalprob- tion. They have also used a generalization of RBF networks for
lems, uses a linear discriminant network (with no hidden nodesjerpreting node functions as rules.
that is trained by the simplgocket algorithmThe absence of  Fu [86], [87] has developed CFNet, whose activation func-
the hidden nodes and nonlinearity limits the utility of the systetion is based on the certainty factor (CF) model of expert sys-
in modeling complex decision surfaces. Dependency inform@ms. The CF model is a scheme for evidential reasoning in
tion regarding the variables in the form of an adjacency matrighich a CF is assigned to a concept according to evidence ob-
is provided by the expert. Every input variabieis approxi- served. By mapping a CF model into an ANN, one can use
mated by three Boolean variables, x5, 5. Cell activation is the neural learning mechanism to help revise the former [87].
discrete, taking on values1, —1, or 0, corresponding to log- An analysis of the computational complexity of accurately dis-
ical values oftrue, false or unknown Each cell computes its covering domain rules from a limited number of instances is
new activatiory; as a linear discriminant function. provided. Rules can beonfirming (positive) ordisconfirming

In [83], the system supplies the doctor with informatiofinegative). A rule’s premise is limited to a conjunction of at-
regarding possible diagnoses on the basis of its output nagbutes. The presence of multiple rules with the same conclu-
values. Relation factors, estimating the strength of the relatiagion represents disjunction. Rules can be interpreted by an exact
ship between symptom(s) and disease(s), are extracted fromghénexact inference engine. In the latter case, a rule has to
network. Rules are generated from the changes in levels of inpet attached with a number indicating the degree of belief in
and output units; the connection weights are not involved the conclusion given the premise and an attribute can also be
the process. Hence, this is a pedagogical approach. The seagdigned a weight. The activation function lies in the interval
space is constrained by avoiding meaningless combination[ofi, 1], and the positive and negative inputs are combined sep-
inputs (symptoms) and restricting the maximum number afately. The output is implicitly quantizable in classification do-
coincident symptoms to be considered. The rules are then ugegins. The rule space is shrunk using pruning, resulting in a fea-
to allow patients to confirm the symptoms initially providedsible complete search. Successive rule extraction is performed
by them to the system, in order to eliminate noise from the circumvent the problem of generating rules from insufficient
answers. Nevertheless, the number of rules extracted fokr&@ining data. In each learning cycle, some rules are learned
relatively simple problem domain is exceedingly large [6]. and those positive instances, which can be explained by these

Gallant’s model [1] incorporates inferencing and forwareules, are removed. This cycle repeats until no more new rules
chaining, confidence estimation, backward chaining, and exan be further learned. Validation is performed on the test in-
planation of conclusions biz—THEN rules. In order to generate stances to determine the correct generalization capability. Per-
a rule, the attributes with greater inference strength (magnituidémance of the model is compared with the decision tree-based
of connection weights) are selected and a conjunction afle generator C4.5 [88], KBANN by Towell and Shavlik [3],
the more significant premises is formed to justify the outpyi1] (described in Section IV-A), and cascade ARTMAP by Tan
concept. Here the user can also be queried to supplem89] (Section IV-B). The decision tree approach (as in C4.5) is
incomplete input information. During question generation, thermedmonotheticas it considers the utility of individual at-
system selects the unknown output variable whosdfidence tributes one at a time, and may miss the case when multiple at-
is maximum. Then it backtracks along the connection weighigbutes are weakly predictive separately but become strongly
to find an unknown input variable, whose value is queriggredictive in combination. This problem can be overcome in
from the user. Rules are generated by traversing the traingshiral approaches, also termgdlythetic like CFNet where

connection weights as follows. multiple attributes are considered simultaneously [87]. Another
1) List all inputs that are known and have contributed to thedvantage of CFNet is that it requires no initial domain knowl-
ultimate positivity of a discriminant. edge and yet can perform reasonably well as compared to some
2) Arrange the list by decreasing absolute value of tHgowledge-based networks [3], [11], [89]. Note that the knowl-
weights. edge-based model by Fu [10] (Section IV-A) is unable to extract
3) Generate clauses for amn-THEN rule from this ordered most rules from a very large ANN and often generates only ap-
list. proximate rules. CFNet [86] overcomes some of the limitations

Ishikawa [84] demonstrates the training of a network usirgf [10].
structural learning with forgettingAn examination of the re-  Setiono [90] has used a pruned network for extracting com-
sultant simplified and nonredundant network architecture leaplact, meaningful rules, in terms of hidden unit activation. The
to easy extraction of rules. The positive weights are reducadtivation are clustered into discrete values, and a process of
and negative weights increased using a decay factor. A togglitting of hidden units and creation of new subnetwork is re-
of 8124 samples of mushrooms, with 22 attributes each, hgweated until each hidden unit has only a small number of inputs
been studied for the two-class (edible or poisonous) probleomnnected to it. A penalty term augments a cross-entropy error
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function, that is minimized to encourage weight decay and re- Erro
move redundant weights. NeuroRule [90] can extractreasonabl)|  Fuzzy Neural . Fuzzy
compact rule sets with high predictive accuracy. Unlike other al- Sets network fabels
gorithms [3], [10], this method does not require the activation
values to be zero or one. The exponential complexity associated
with the extraction of rules in search-based methods [10], [88p- 1. Neural network implementing fuzzy classifier.
is avoided here. The accuracy and number of rules generated
are better than those obtained by C4.5 [88]. Setiono and Leavinistic finite-state automata (DFA'S) by applying clustering
[91] have recently developed a fast method for extracting rulafgorithms in the output space of recurrent state neurons.
from trained feedforward networks, that avoids the substantBiarting from a defined initial network state that represents the
overhead associated with pruning and retraining [90] while presot of the search space, the algorithm searches the equally
serving the size and predictive accuracy of the rules. The phrtitioned output space d¥ state neurons in a breadth-first
gorithm uses information gain to identify relevant hidden unitspanner. A heuristic is used to choose among the consistent
and employs C4.5 to build a decision tree in terms of their activBFA's that model, that best approximates the learned regular
tion values. Setiono has also reported [92] the extractidd of grammar. Here the granularity of the underlying ANN within
N rules from a trained feedforward network whose weights artide DFA-extraction technique is at the level of ensembles of
inputs are restricted to values{r-1, 1}. The rules are claimed neurons, rather than individual neurons. Hence, the approach
to possess desirable qualities like accuracy, simplicity and i& not strictly decompositional. This is termea@mpositional
delity. approach [5]. The extracted rules demonstrate high accuracy
Setiono and Liu [93] describe the extraction of obliquand fidelity and the algorithm is portable.
decision rules, corresponding to partition of the attribute spaceVahed and Omlin [99] use a polynomial-time, symbolic
by hyperplanes that are not necessarily axis-parallel. Thislégrning algorithm to infer DFA's solely based on observa-
claimed to result in the extraction of compact rules, with higtion of a trained network’s input-output behavior. This is a
predictive accuracy, from the trained network. The netwoikedagogical approach and produces a minimal representation
is pruned and node activation discretized, followed by rufef the DFA. The clustering phase required in other recurrent
generation. The work is extended in Ref. [94] to generafet-based approaches [98] is eliminated, thereby increasing the
oblique decision trees that can readily be translated intofidelity of the extracted knowledge.
set of rules. Since an oblique decision tree classifies patternéhenet al. [100] have designed a recurrent network, that
based on linear combinations of input attributes, the rules @@apts from an analog phase to a discrete phase, for rule ex-
more compact than that generated by an univariate tree otf@ction. A modified objective function is used to accomplish
the same domain. Comparison is provided with other decisidte discretization process and logic learning. It is claimed that
tree-based approaches, like C4.5 [88] and CART [95]. Tliee network has significant advantage over other recurrent net-
compactness of these oblique rules is said to result in beti@sed approaches.
rule comprehensibility and consistency. 2) With Genetic Algorithms:Here we present rule genera-
Taha and Ghosh [13] have extracted rules along with cdion methodologies ineuro-genetitybridization. Fukumi and
tainty factors from trained feedforward networks. Input featuré¥@matsu [101] have used an evolutionary algorithm for gener-
are discretized and a linear programming problem is formulataling a compact neural network. Concepts of random optimiza-
and solved. @reedyﬂ”e evaluation mechanism is used to ordéi'on search and deterministic mutation are utilized for this pur-
the extracted rules on the basis of three performance measup@se- This is followed by extraction of rules from the network.
viz, soundness, completeness, and false-alarm. A method of inMaeda and De Figuliredo [102] have designed a novel system
tegrating the output decisions of both the extracted rulebase d@@rule extraction of regulator control problems. The system
the corresponding trained network is described, with a goal ®Mploys a hybrid genetic search and reinforcement learning that
improving the overall performance of the system. Compariséfduires neither supervision nor a reference model. The rules
is provided with “NeuroRule” [90] and C4.5 [88]. constitute a rule-based/table lookup structure capturing control
Krishnanet al. [96] sort and order the input Weights of aactions. The extracted rules are claimed to be better than that
neuron, and prune the search space to determine those cor@@perated by a neural controller trained with backpropagation.
nations of inputs that make the neuron active. This is used for ) ) )
rule generation from feedforward networks. Maire [97] backe: Incorporating Fuzziness in Neural Net Framework
propagates unions of polyhedra to design a new rule extractiorThis is category 1 of the neuro—fuzzy hybridization described
technique. The fidelity of these rules is claimed to be very hign Section 1I-B. A basic block diagram illustrating the process
1) With Recurrent NetworksOmlin and Lee Giles [98] use is provided in Fig. 1 [41].
trained discrete-time recurrent neural networks to correctlyAs an illustration of the characteristics of layered fuzzy
classify strings of a regular language. Feedforward networkeural networks for inferencing and rule generation, the
generally do not have the computational capabilities to repodels by Hayashi [103], [104], and Hudsehal. [105] are
resent recursive rules when the depth of the recursion is miatscribed first. Adistributed single-layer perceptron-based
known a priori. Such rules can, however, be convenientlynodel trained with thgocket algorithmhas been used [103],
represented by recurrent networks. Rules defining the learrj@64] for diagnosindhepatobiliary disordersAll contradictory
grammar can be extracted from networks in the form of detdraining data are excluded, as these cannot be tackled by the
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model. The input layer consists of fuzzy and crisp cell groups Error

while the output is modeled only by fuzzy cell groups. The | Antecedent Neural Consequent
crisp cell groups are represented by cells taking on two clauses network clauses
values in {(+1, +1, ---, +1), (-1, =1, ---, —=1)}. Fuzzy

cell groups, on the other hand, use binarydimensional
vectors, each taking on values{in-1, —1}. Linguistic relative Fig- 2. Neural network implementing fuzzy logic.
importance terms such agery importantand moderately

important are allowed in each proposition; linguistic Wuthyats produced in linguistic antatural terms. The antecedent
values like completely true true, possibly true unknown ¢4 ses are derived from the trained network by backtracking
possibly fglsefalse andcompletely falsare also assigned b_y alongmaximum-weightepaths (through active nodes), whereas
the domain experts, depending on the output values. Provisiga consequent part is generated using a certainty measure. The
is kept,_ using different linguistic truth values, for modellng theffectiveness of the algorithms is demonstrated on vowel, syn-
belonging of a pattern to more than one class. Extraction §fatic, and medical data. An application of the fuzzy MLP to
fuzzy IF=THEN production rules is possible using a top-dowpejcal diagnosis [42] is described in detail in Section V.
traversal involving analysis of the node activation, bias and theWanget al.[106] have used a fuzzy logic rule-based system

associated link weights. _ to first determine a good feature set for the recognitioESf
Hudsoret al.[105] used a feedforward network for detectingperichia coli 0157:H7 a cause of serious health problems.

carcinoma of the lungrhe input nodes represent the data valugs,; ,y membership functions are defined for each term set of
for signs, symptoms, and test results (may be continuous or digi, jinguistic variable in the rules. The human inspired fea-
crete) while the interactive nodes account for the interactioffes of this reduced rule set are then incorporated in a multiple
that may occur between these parameters. Information is &&yra network fusion approach. The fuzzy integral is utilized

tracted directly from the accumulated data and then combingde fsion of the networks trained with different feature sets.
with a rule-based system incorporating approximate reasoning

techniques. The learning method is an adaptation optiten-
tial functionapproach to pattern recognition and is used to d
termine the weighting factors as well as the relative strengths offig. 2 provides a block diagram [41], explaining the principle
rules for the two-class problem. behind this form of hybridization (category 2, Section 1I-B). It
The fuzzy MLP [7] and fuzzy Kohonen network [8] are als@ncompasses both fuzzy reasoning and fuzzy control, where
used for linguistic rule generation and inferencing. Note thabmeIF—THEN rules are initially learned using training data
these models extend the concept of Gallant’s method (whicheisd/or expert knowledge. Rules can later be generated (inter-
derived for a perceptron) [1] to an MLP and a Kohonen networgplated) for different input conditions. Integration with GA's
by incorporating fuzzy set theoretic concepts at various levels.also considered briefly.
Here the input, besides being in quantitative, linguistic, or setl) For Fuzzy ReasoningThe MLP-based approach to
forms, or a combination of these, can also be missing. The cofuzzy reasoning reported by Keller and Tahani [35] falls under
ponents of the input vector consist of membership values to ttés category. It receives the possibility distributions of the an-
overlapping partitions of linguistic propertiesv, mediumand tecedent clauses at the input, uses a hidden layer to generate an
high corresponding to each input feature. This provides scopeernal representation of the relationship, and finally produces
for incorporating linguistic information in both the training andhe possibility distribution of the consequent at the output. The
testing phases of the said models and increases their robustdel is expected to function as an inference engine with each
ness in tackling imprecise or uncertain input specifications. Azmall subnetwork learning the functional input—output relation-
n-dimensional feature space is decomposed #itaoverlap- ship of a rule. Trapezoidal possibility distributions, sampled at
ping subregions corresponding to the three primary propertigiscrete points, are used to represent fuzzy linguistic terms and
low, mediumandhigh. Although there is an associated increasmodifiers. The network is supposed to be able to extrapolate to
in dimension and cost, one has to offset this with the specifither inputs (for a rule) followingnodus ponensConjunctive
gains achieved. The scheme enables the models to utilize manéecedent clauses are also modeled using separate groups
local information of the feature space and is found to be suitaldé hidden nodes for each clause. Kelkdral. [36] explicitly
in handling overlapping regions and highly nonlinear decisia@ncode each rule in the structure of the network. A measure of
boundaries. Output decision is provided in terms of class merdisagreement between the input possibility distribution and the
bership values. The contribution of ambiguous or uncertain veantecedent clause distribution is used at thause-checking
tors to the weight correction is automatically reduced. andcombinationlayers to determine the uncertainty in the con-
The connection weights of the trained network constitute tlsequent part of théred rule. Theoretical properties of various
knowledge base for the problem under consideration. When papmbination schemes are also investigated. é®adl. [107]
tial information about a test pattern is presented at the input, thave reported an extension to this algorithm for computing an
model either infers its category or queries the userd@@vant optimal value of«, the importance of the various antecedent
information in the order of their relative importance (decidedlauses, which are supplied subjectively in Ref. [36]. The same
from thelearnedconnection weights). If asked by the user, themembership values with more quantization levels are used at
network is capable of justifying its decision in rule form (relethe antecedent and consequent levels. An improved network
vant to a presented pattern) with the antecedent and conseqgagchitecture is also proposed. This is extended in Ref. [108] by

Q_. Designing Neural Net by Fuzzy Logic Formalism
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using neural learning to find an optimal relation representing a2) For Fuzzy Control: Wang and Mendel [38] represent a
set of fuzzy compositional rules of inference. fuzzy system by a series of fuzzy basis functions, which are

Ishibuchiet al. [45], on the other hand, use interval vectoralgebraic superposition of membership functions. Each such
to represent fuzzy input and output in an MLP. A backpropaghasis function corresponds to one fuzzy logic rule. An orthog-
tion algorithm is applied on a cost function defineddyevel onal least squares learning algorithm is utilized to determine the
sets of actual and target fuzzy outputs, using the principlesfnificant fuzzy logic rules (structure learning) and associated
interval arithmetic. Different fuzzyr—THEN rules are interpo- parameters (parameter learning) from the input—output training
lated from a few sample rules (used during training). Ishibucpairs. However, orthogonalization may lead to the production of
et al.[54], [109] have also reported learning methods of neurasdcomprehensible and complex rules. Since a linguistic fuzzy
networks for utilizing expert knowledge represented by fuzag—THEN rule from human experts can be directly interpreted,
IF-THEN rules. Both numeric and linguistic inputs are reprethe fuzzy basis function network provides a framework for com-
sented in terms of fuzzy numbers and intervals, which can bming both numerical and linguistic information in a uniform
learned by the fuzzy neural network model. Here the connaganner.
tion weights are also modeled as fuzzy numbers represented bgho and Wang [115] describe an RBF-based adaptive fuzzy
a-level sets. A generalization of this scheme for representinggstem to extractF—THEN rules from sample data through
fuzzy weight of any shape is reported in [110]. However, the ussarning. Different consequence types such as constant,
of interval arithmetic operations causes the computations tofirst-order linear function, and fuzzy variable are modeled,
complex and time-consuming. Since fuzzy numbers are prdpereby enabling the network to handle arbitrary fuzzy infer-
agated through the whole network, the computation time aedce schemes. Neither is there an initial rulebase, nor does
required memory capacities at#’ times of those in the tradi- one need to specify in advance the number of rules required to
tional neural networks of comparable size, whireepresents be identified by the system. Fuzzy rules are generated, as and
the number of quantized membership grades. when needed, by recruiting basis function units.

The neural network-based fuzzy reasoning scheme by Takaghann and Fu [116] have designed a layered network for
and Hayashi [44] is capable of learning the membership funearning rules of fuzzy control systems. The network is pruned
tion of the IF part and determining the amount of control irto delete redundant rules and generate a concise fuzzy rulebase.
the THEN part of the inference rules. The input data are clughe network developed by Horikaveadal.[117] is based on the
tered to find the best number of partitions corresponding to theith space approach for automatic acquisition of fuzzy rules.
number of inference rules applicable to the reasoning probleithe fuzzy variables in the consequent are labeled according
with a single neural net block modeling one rule. The optimuto their linguistic truth values represented as fuzzy sets. Bas-
number of cycles required is determined to avoigrlearning tian [118] has introduced defuzzification weights to the over-
and the minimal number of input variables selected for infelapping areas of the consequent to control the linearity/nonlin-
ring the control values. Takagt al.[37] analyzed the identifica- earity at the transition between fuzzy logic rules. These weights
tion error to improve the performance of the structured netwosgke learned by a feedforward ANN. This can also be categorized
based on fuzzy inference rules. The number of clusters detas-a cooperative neuro—fuzzy system according to the method-
mine the correspondintHEN parts to be added. The approaciology of Naucket al.
by Takagiet al. has been adapted in Japanese neuro—fuzzy conANFIS by Jang [39] implements a Sugeno-like fuzzy system
sumer products [111]. Note that Mitra and Kuncheva [112] hay24] in a five-layer network structure. Backpropagation is used
developed a scheme to augmentithparts of the relevant rules to learn the antecedent membership functions, while least mean
for the required pattern classification problem. squares algorithm determines the coefficients of the linear

Nie [46] has developed a general and systematic approachdombinations in the consequent of the rule. Here the min and
constructing a multivariable fuzzy model from numerical datmax functions in the fuzzy system are replaced by differentiable
using a self-organizing counterpropagation network. Both supéunctions. The rulebase must be known in advance, as ANFIS
vised and unsupervised algorithms are used. Knowledge cargligusts only the membership functions of the antecedent and
extracted from the data in the form of a set of rules. This rulebasensequent parameters. ANFIS can be easily implemented by
is then utilized by a fuzzy reasoning model. Moreover, an onlirflexible neural network simulators, and hence is attractive for
adaptive fuzzy model updates the rulebase (in terms of connapplication purposes. However, the learning algorithm being
tion weights) in response to the incoming data. The model claimgmputationally expensive it is important to have an efficient
a simple structure, fast learning speed, and good modeling acicoplementation. Moreover, it is difficult for the model to handle
racy. Chen and Xi[113] have developed an adaptive fuzzy inférigh-dimensional problems, as this leads to a large number
ence system based on competitive learning. The input spacefisnput partitions, rules, and, hence, consequent parameters.
partitioned into local regions (clusters) and their decision bount@ihe structure of ANFIS ensures that each linguistic term is
aries determined. Fuzzy rules corresponding to each local regiepresented by only one fuzzy set.
are then learned. A self-organizing learning algorithm has beenThe neuro—fuzzy model designed by Cletlal.[119] can lo-
used by Cai and Kwan [114] for designing a fuzzy inference netate its rules and optimize their membership functions by com-
work. The number of inference rules and their membership fungetitive learning and Kalman filter algorithm. The key feature is
tions are automatically determined from the data during trainindpat a high-dimensional fuzzy system can be implemented with
Learning speed is claimed to be fast. No prior information is réewer rules than that required by a conventional Sugeno-type
quired from experts while designing the system. model. This is because the input space partitions are unevenly
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distributed. The network can be implemented in real time. Juaftgmed in the previous state. The problem involves optimizing
and Lin [120] have developed a self-constructing neural fuzowt only the direct reinforcement, but also the total amount of
inference network with on-line learning ability. Initially therereinforcement the agent can receive in the future.
are no rules, but they are created and adapted as learning pr@) With Recurrent NetworksMost neuro—fuzzy models
ceeds via simultaneous structure and parameter identificaticgported so far deal with static input—output relationships. They
The input space is partitioned in a flexible way, using clusteringre unable to process temporal input sequences of arbitrary
to identify the antecedents. The consequentis generated initiddlpgth. Recurrent neural networks have the ability to store
by clustering, followed by incremental learning using a pranformation over indefinite periods of time, can develogden
jection-based correlation measure. Linear transformations atates through learning, and are thus potentially useful for
learned for each input variable, enabling the network to modelpresenting recursive linguistic rules. They are particularly
fewer rules with higher accuracy. Kuo and Cohen [121] useell-suited for problem domains where incomplete or contra-
a self-organizing and self-adjusting fuzzy model for manufadictory prior knowledge is available. In such cases, knowledge
turing process control. The inputs and outputs are partitioneditgvision or refinement is also possible using recurrent nets.
Kohonen's feature mapping and the premise and consequehcduzzy regular grammars, there is no question whether a
parameters are updated using backpropagation. The traininggraduction rule is applied; all applicable production rules are
rameters are dynamically updated using fuzzy models, leadiexpcuted to some degree. For a given fuzzy grammar, there
to an acceleration in speed of learning. The self-organizing stagests a fuzzy automaton. Fuzzy finite-state automata (FFA'S)
determines the initial position and shape of each memberskhgn model dynamic processes whose current state depends
function at the antecedent and the control action at the conse-the current input and previous states. Unlike deterministic
quent. Backpropagation is then used to tune these parametefinite-state automata (DFA's), FFA's are not in one particular
GARIC by Berenji and Khedkar [40] uses a differentiabddt state. Here each state is occupied to some degree defined by a
minimumfunction to implement a fuzzy controller. A complexmembership function. Presently, FFA's are gaining significance
supervised learning procedure is used. All the models basedamnsynthesis tools for a variety of problems. Based on their
Sugeno-type systems are sometimes not as easy to intergetlier design on encoding DFA's in discrete-time second-order
as are Mamdani-type fuzzy systems. They are therefore moeeurrent neural networks [98], Omlet al. have constructed
suited to applications where interpretation is not as importantas augmented recurrent network that encodes an FFA and rec-
performance. Initialization using prior knowledge is also not agynizes a given fuzzy regular language with arbitrary accuracy
easy as compared to models implementing Mamdani-type fug4p5]. The encoding methodology is empirically verified using
systems. Berenji and Khedkar later developed a new architeandomly generated FFA's. As in [98], this approach of rule
ture to control dynamic systems [122]. This model is capabéxtraction can also be categorized as compositional.
of starting with approximate prior knowledge, which is refined Zhang and Morris [126] use a recurrent neuro—fuzzy network
using reinforcement learning. to build long-term prediction models for nonlinear processes.
Nauck et al. [14], [123] have developed NEFCON, NEF-Process knowledge is used to initially partition the process op-
CLASS, and NEFPROX using a generic fuzzy perceptron &ration into several local fuzzy operating regions and set up
model Mamdani-type [23] neuro—fuzzy systems. The authdtee initial fuzzification layer weights. Membership functions of
observe that a neuro—fuzzy system should be easy to implemémtzy operating regions are refined through training, enabling
handle and understand. Fuzzy systems are designed to exphatlocal models to learn. The global model output is obtained
the tolerance for imprecision, and hence should not concdyycenter of gravity defuzzification involving the local models.
trate on generating thexactsolution. Reinforcement learning 4) With Genetic AlgorithmsA neuro—fuzzy-genetity-
is found to be more suitable than supervised learning for habridization has been reported by Yuptal.[59]. GA's are used
dling control problems. The learning procedure uses a fuziysearch optimal fuzzy rules and membership functions for the
error, and can operate both on fuzzy sets and rules. The systeuro—fuzzy systenA priori knowledge from the designer is
is claimed to be simple and highly interpretable. This is suitombined with the learning ability of the network to design
able in providing support to users during decision-making. Uan optimal fuzzy controller. This self-learning system uses the
like the ANFIS model, NEFPROX offers a method of structureontrol performance index as the fitness function of the GA
learning. The knowledge base of the fuzzy system is implicitlyhile searching for the network parameters.
given by the network structure. The input units assume the taskraraget al.[60] present a neuro—fuzzy system capable of han-
of the fuzzification interface, the inference logic is representatiing both quantitative and qualitative knowledge. The learning
by the propagation functions, and the output unit is the defuzaivolves first finding the initial parameters of the membership
fication interface. The incremental rule learning algorithm canctions of the fuzzy model with Kohonen’s self-organizing
create a rulebase from scratch by adding rule after rule or daature map algorithm. This is followed by the extraction of
also operate on prior knowledge. linguistic fuzzy rules. A multiresolutional dynamic GA is then
Reinforcement learning has also been used by Jouffe [124Lused for optimized tuning of membership functions.
tune online the consequent part of fuzzy inference systems. Théshibuchiet al. [62] use GA's for selecting a small number
only information available for learning is the system feedbackf significant linguistic rules from a large number of extracted
which describes in terms of reward and punishment the task tldes. As in [82] (Section IlI-A.1), the objective is to maximize
fuzzy agent has to realize. At each time step, the agent receitresnumber of correctly classified patterns while minimizing the
a reinforcement signal according to the last action it has pemamber of selected rules.
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Neural E sented by these hybrid functions. Zhang and Kandel [131] have
Fuzzy in'l“'f]‘;’r’;’e"‘mm Eor Fuzzy also developed an adaptive fuzzy reasoning method using com-
fuzzy pensatory fuzzy operators. It is found to effectively learn fuzzy
connectives IF-THEN rules from both well- and ill-defined data. The effi-

ciency of the compensatory learning algorithm can be enhanced
Fig. 3. Neural network implementing fuzzy connectives. by choosing an appropriate compensatory degree. Zurada and
Lozowski[132] have applied- andS-norms on input member-
Wang and Archer [127] have introducetirafuzzysets for ship functionsnegative zerq andpositiveto extract linguistic
modeling decision-making under conflict, using a modified verules for pattern classes.
sion of backpropagation. In case of ultrafuzzy sets, the mem-Mitra and Pal have used the fuzzy logical MLP for infer-
bership function takes on fuzzy values. Ultrafuzzy interval agfncing and rule generation [48]. The model consists of logical
certainty factor is modeled as the consequent of a rule. Tweurons employing conjugate pairstafiorms?’ and¢-conorms
fuzzy membership functions termed gasticipationandmod- S, like min-maxandproductprobabilistic sumin place of the
eration functions, falling in the ultrafuzzy interval, are develweighted sumandsigmoidalfunctions of the conventional MLP.
oped based on the well-knovptausibility andbelieffunctions  Various fuzzy implication operators are used to introduce dif-
[128]. The concept of plausibility and belief functions is used tferent amounts of interaction during error backpropagation. The
construct conflict measures, which help in explaining the corbuilt-in AND—OR structure of the fuzzy logical MLP helps it to
promise phenomena observed in decision-making. This fuzggnerate more appropriate rulesamb—oR form, expressed as
decision-making model is capable of cumulating human knowdisjunction of conjunctive clauses.
edge and is claimed to be useful for maintaining consistencyA neural network for formulating fuzzy production rules has
while making decisions. & beenconstructed by Yager [133]. Numerical information is used
Chowet al.[129] have introduced an interesting neuro—fuzzis find the preliminary partitioning of the input—output joint
method for enforcing heuristic constraints on membership fungpace. The linguistic variables associated with the antecedent
tions, while extracting knowledge in the form of rules from limand consequent parts of the rules are represented as weights in
ited information. In such cases, there is generally no ideal rul¢re neural structure. The membership values of these linguistic
base, which can be used to validate the extracted rules. Moygriables, modeled as fuzzy sets, can be learned. The determi-
over, using output error measures to validate extracted rulesiégion of the firing level of a neuron is viewed as a measure of
not sufficient as extracted knowledge may not make heurispiessibility between two fuzzy sets: the connection weights and
sense. This model ensures that the final membership functiang input. Unlike Kelleet al.[36], here a self-organizing proce-
conform toa priori heuristic knowledge, reduces the domain aflure is used to determine the structure and initial weights of the
search, and improves convergence speed. network, and obtain the nucleus of rules for a fuzzy knowledge
base. This procedure is suitable in data-rich situations, where
one is unable to find experts who can provide an organized de-
This pertains to category 3 of neuro—fuzzy hybridization décription of the system. However, in the absence of expert opin-
scribed in Section II-B. Fig. 3 provides an overview of the whol@ns, the training data must be representative of the system’s
process [41]. behavior and the unsupervised learning algorithm needs to be
The work of Kelleret al. [35], [36], which falls under the properly selected. Yager [134] has also employed neural mod-
previous category, is extended [47] in the present framewotKes for modeling the rules of fuzzy logic controllers with a com-
The model uses a fixed network architecture that emplog#ner (usingminor productfunctions). The various weights are
parameterized families of operators, such as the generalizearned and the importance of the antecedent clauses simulated.
mean and multiplicative hybrid operators. The hybrid op- Lin and Lu [135] have designed a five-layered network ca-
erator can behave as union, intersection, or mean opergiable of processing both numerical and linguistic information.
for different sets of parameters, which can be learned durifgrzzy rules and membership functions are encoded for fuzzy
training. These networks possess extra predictable propertigferencing. The inputs, outputs, and connection weights can
and admit a training algorithm that producgsrperinference be fuzzy numbers of any shape, representeditgvel fuzzy
results. Since the exact nature of each operator is learnedsieys. Min and max operators are used to perform condition
the network, the generated rules are capable of more accuratebtching of fuzzy rules and integration of fired rules having
representing the input—output relationship. the same consequent. Fuzzy supervised learning and fuzzy
Rhee and Krishnapuram [130] have reported a method f@nforcement learning are developed using interval arithmetic
rule generation from minimal approximate fuzzy aggregaticand fuzzy input—output pairs and/or linguistic information. The
networks, using node activation and link weights. They estimagnforcement signal from the environment involves linguistic
the linguistic labels and the corresponding triangular membénformation (fuzzy critic signal) such agood very good
ship functions for the input features from the training data. Hpr bad instead of the normal numerical critic values like 0
brid operators with compensatory behavior whose parameté&sccess) or-1 (failure). The system is used for reducing the
can be learned during gradient descent to estimate the typenoiber of rules in a fuzzy rulebase, and learning proper fuzzy
aggregation are employed at the neuronal level. Pruning of mantrol rules and membership functions.
dundant features and/or hidden nodes helps in generating apFhe inferencing in the pseudo outer-product-based fuzzy
propriate rules in terms oAND—OR operators that are repre-neural network (POPFNN) [136] uses fuzzy rule-based systems

E. Changing Basic Characteristics of Neurons
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that employ theruth value restrictionmethod. There are five erates on local information, causing only local modifications in
layers, termed the input, condition, rulebase, consequence, #m underlying fuzzy system. The fuzzy rules encoded within
output layers. The fuzzification of the input and the defuzzthe system can be viewed as vague prototypes of the training
fication of the output are automatically accomplished. Thdata.

learning process consists of three phases: self-organizationin this section, we embark on knowledge-based networks for
POP learning, and supervised learning. A self-organizimgerforming inferencing and rule generation. We first describe
algorithm is employed in the first phase to initialize the menthe neural approaches. This is followed by different neuro—fuzzy
bership functions of both the input and output variables gnowledge-based approaches (hybridization categories 1 and 3,
determining their centroids and widths. In the second pha&xsction II-B). Next, we demonstrate how GA's are incorporated
the POP algorithm is run in one pass to identify the fuzzy rulésto this framework. Finally, some recent literature, using rough
that are supported by the training set. The derived structigets in this respect, is presented.

and parameters are then fine-tuned using the backpropagation
algorithm. A. Connectionist Models

A cell recruitmentlearning algorithm that is capable of | et us consider here the models developed by Gallant [1], Fu
forgetting previously learned facts by learning new information 0], Shavliket al. [3], [11], [139], Yin and Liang [140], and
has been employed by Romaniuk and Hall [137] to build gacheret al. [141]. The networks, other than that in [141], in-
neuro—fuzzy system for determining tleeeditworthiness of volve crisp inputs and outputs. The initial domain knowledge,
credit applicantsThe network consists gositiveandnegative in the form of rules, is mapped into the multilayer feedforward
collector cellsalong withunknownandintermediatecells, and network topology, using binary link weights to maintain the se-
can handlefuzzyor uncertaindata. Fuzzy functions such asmantics. Note that the rule generation aspect of Gallant's model
maximum, minimupandnegationare applied at the neuronal[1] has already been discussed in Section 11I-B, as this is one of
levels depending on the corresponding bias values. This incige seminal works in this direction. The other models are now
mental learning algorithm can be used either in conjunctigfescribed.
with an existing knowledge base or alone. Extraction of fuzzy Yin and Liang [_‘]_40] have emp|0yed gradua”y aug-
IF-THEN rules is also possible. mented-nodelearning algorithm to incrementally build a
dynamic knowledge base capable of both acquiring new
knowledge and relearning existing information. The rules are
explicitly represented among tleendition nodesrule nodes

One of the major problems in connectionist/neuro—fuzzandaction nodesand the algorithm gradually builds the mul-
design is the choice of the optimal network structure. This héikyer feedforward network. The network structure is changed
an important bearing on any performance evaluation. Moreovdynamically according to the new environment or through
the models are generally very data-dependent, and the apgmeman intervention. This connectionist incremental model has
priate network size also depends on the available training ddteen applied to the design of amimal identification system
Various methodologies developed for selecting the optimid Fu’'s model [10] hidden units and additional connections
network structure include growing and pruning of nodes arate introduced appropriately when the network performance
links, employing genetic search, and embedding initial knowdtagnates during training using backpropagation. Weight
edge in the network topology. The last approach—embeddidgcay, pruning of weights, and clustering of hidden units are
initial knowledge—is usually followed in the case of knowlincorporated to improve the generalization of the network.
edge-based networks. It is formally shown [138] that such Towell and Shavlik [11] have designed a hybrid learning
knowledge-based networks require relatively smaller trainirsystem KBANN, and applied it to problems of molecular
set sizes for correct generalization. When the initial knowledgpology. Disjunctive rules are rewritten as multiple conjunctive
fails to explain many instances, additional hidden units amdles while mapping into the network structure. Nodes and links
connections need to be added. The initial encoded knowledgye incorporated, on instructions from the user, to augment the
may be refined with experience by performing learning in thHenowledge-based module. It is primarily a theagfinement
data environment. The resulting networks generally invohsystem that is capable of pruning an inserted rule set, but not
less redundancy in their topology. capable of adding new rules. It is largely topology preserving

Incorporation of the concept of neuro—fuzzy integration @nd assumes that the initial domain theory is basically correct
this level can also help in designing more efficient (intelligengnd nearly complete. Learning or evolution of new knowledge,
knowledge-based networks. The general role of fuzzy sets isa®a distributed representation, is not encouraged here [5].
enhance ANN's by incorporating knowledge-oriented mecha-An expansion of the network guided by both the domain
nisms. Preprocessing of training data leads to improvementtireory and training data has been reported in TopGen by Opitz
learning and/or enhanced robustness characteristics of the metd Shavlik [139]. Dynamic additions of hidden nodes are
work. Prior knowledge, in the form of linguistic rules and memmade at the best place by heuristically searching through the
bership functions, can be embedded into an ANN and therefyyace of possible network topologies, in a manner analogous
shorten the learning process. The blackbox aspect of an ANNasthe adding of rules and conjuncts to the symbolic rulebase.
avoided in this manner and new knowledge can be extractedlinis approach uses a specialized ANN architecture with a
rule form. Note that linguistic rules are more natural and easigpecialized training algorithm. It generates sparser rule sets as
interpretable. The heuristic, data-driven learning procedure apmpared to KBANN and overcomes the latter’s limitation of

IV. USING KNOWLEDGE-BASED NETWORKS
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not being able to extend a relatively weak initial domain theorgrating a bound on the number of rules rather than establishing
The computational expense is justified in terms of the humanceiling on the number of antecedents. This approach differs
expert’s willingness to wait for an extended period of time fdirom that of Saito and Nakano [83] (described in Section IlI-B),
better predictive accuracy. TopGen decreases false negativbere a breadth-first search is employed to exhaustively find
by adding new rules, decreases false positives by adding niese input settings that cause the weighted sum to exceed the
nodes to the network, and uses weight decay to presebias at a node. Even though the algorithms in [3], [10] are expo-
useful knowledge. The network which generalizes best on thential, their inherent simplicity makes them extremely useful.
corresponding validation set is selected as the best network. Lacheret al. [141] have designed event-driven, acyclic net-
A way of using the knowledge of the trained neural model tworks of neural objects callakpert networksThere are regular
extract the revised rules for the problem domain is described bgdes and operation nodes (for conjunction and negation). Input
Fu [10] and Towell and Shavlik [3]. Knowledge, in the formweights are hard wired, while the output weights of a node are
of rules in disjunctive normal form, is encoded into the netdaptive. Antecedents of a disjunction in a rule are simplified
work. The other links represent low-weighted connections, db generate a set of individual rules before formulating the ini-
lowing subsequent refinement. The network is trained througjal network architecture. Virtual rules are used to create poten-
error backpropagation. This is followed by rule extraction. It isal connections for learning in order to overcome situations in-
assumed that the neurons have binary inputs and hard-limitvgving small initial set of rules. The backpropagation algorithm
activation functions, and the method of rule extraction searchissnodified to work in the event-driven environment, where both
for constraints on the inputs of a given neuron such that thrward and backward signals propagatedata-flowfashion.
weights are>6 (bias). An exhaustive search for firing condi-The form of the rules (coarse knowledge) is tuned with the asso-
tions follows. Each firing corresponds to a rule under a certaimated certainty factors (fine knowledge), and the resultant net-
combination of inputs. All combinations are checked, such thabrk trained for better performance.
the rule search becomes a combinatorial task.
Thesubsetlgorithm [10] can be used by the network to imB
prove the search complexity for the combination of firing condi-
tions. Here one searches for any single weight exceeding the biaé brief survey on the knowledge-based networks involving
andrewritesall conditions so found as rules with single input vafiizziness at different stages is provided here. The approaches in
able. The search continues for increased size of sets until all §8is[142]-[144] fall under category 1 of the fusion methodolo-
have been explored and possibly rewritten as rules. The extraajéss described in Section 11-B, while those in [89], [145], and
rules are simple to understand and their size can be restrictedb46] can be grouped in category 3.
specifying the number of premises/antecedents to be considered&nowledge extracted from experts in the form of membership
However, some ofthe problems associated with this algorithm dinections and fuzzy rules (isND—OR form) is used to build and
as follows [13]. It requires lengthy, exhaustive searches of sipeeweight the neural net structure, which is then tuned using
O(2%) for a hidden/output node with a fan-in &f It extracts a training data. Kasabov [142] uses three neural subnets—produc-
large set of rules up t@, * (1 + 3,), where3, andg, are the tion memory, working memory, and variable binding space—to
number of subsets of positively and negatively weighted linkencode the production rules, which can later be updated. FUNN
respectively. Some of the generated rules may be repetitive [B43] is a five-layered feedforward architecture with the second
permutations of rule antecedents are not taken care of automiatyer calculating fuzzy input membership functions, the third
cally. Moreover, there is no guarantee that all useful knowledégyer representing fuzzy rules, the fourth layer calculating
embedded in the trained network will be extracted. output membership functions, and the fifth layer computing
The subset algorithm has been further modified in Towell amalitput defuzzification. The network has features of both a neural
Shavlik [3] by theM of N algorithm for extracting meaningful network and a fuzzy inference machine.
rules. A general rule in this case is of the fonm(at leastM of Fuzzy signed digraph with feedback, ternfadzy cognitive
the following V antecedents are trugkieN - - -. The rationale map has been used by Kosko [144] to represent knowledge. Ad-
is to find a group of links that form an equivalence class, whositive combination of augmented connection matrices are em-
members have similar effect (weight values) and can be uggldyed to include the views of a number of experts for generating
interchangeably with one another. the knowledge network. Kosko [15] interprets a fuzzy rule as an
The steps of this algorithm involvelusteringthe weights association between antecedent and consequent. Neural associa-
of each neuron into groupsyeragingtheir values to create tive memory or bidirectional associative memory is used to store
equivalence classesliminatinglow-value weights if they have fuzzy rules. The weight of a rule is indicative of its importance.
no effect on the sign of the total activation aoptimizingby Machado and Rocha [145] have used a connectionist knowl-
freezing the remaining weights and retraining the biases usiadge base involving fuzzy numbers at the input layer, fuzzy
the backpropagation algorithm. This is followed hyle ex- AND at the hidden layers, and fuzog at the output layer. The
traction. Arithmetic is performed such that one searches ftnidden layers chunk input evidences into clusters of information
all weighted antecedents, which, when summed up, exceed fheerepresenting regular patterns of the environment. The output
threshold value of a given neuron. layer computes the degree of possibility of each hypothesis.
This algorithm has good generalization (accuracy), but cdime initial network architecture is generated uskmpwledge
have degraded comprehensibility [6]. Note that the algorithgraphselicited from experts. The experts express their knowl-
considers groups of links as equivalence classes, thereby gesige about each hypothesis of the problem domain by selecting
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an appropriate set of evidences and building an acyclic weightashclusion was reachedwhya particular question was formu-
AND—-OR graph (knowledge graph) to describe how these musated. The network forms a set of pathways that compete to send
be combined to support decision making. the largest evidential flow to the output neuron representing the
Tan [89] has used a generalization of fuzzy ARTMAP [50lhypothesis. The structure of the winning pathway represents a
called cascade ARTMARt represents intermediate attributeshain of fuzzy pseudoproduction rules that can be presented to
and rule cascades of rule-based knowledge explicitly, and ptire user either in a graphical format or as English text.
forms multistep inferencing. A major problem of using MLP Application of this algorithm has been made to the deforesta-
to refine rule-based knowledge [3], [10] is the preservatidion monitoring of the Amazon region, using Landsat-V satellite
of symbolic knowledge under the weight tuning mechanisimages. The classes considered are forest, savanna, water, defor-
of the backpropagation algorithm. Another limitation is thatsted area, cloud, and shadow. Eighty-two numerical features of
unless the initial rulebase is roughly complete, the initiglpectral, textural, and geometric nature were measured on each
network architecture may not be sufficiently rich for handlingmage segment (of spectrally homogeneous regions, generated
the problem domain. A rule insertion algorithm translatédy region growing). Fuzzy classification allows the modeling
IF-THEN symbolic rules into cascade ARTMAP architectureof complex situations such as transition phenomena (as in the
This knowledge can be refined and enhanced by the learniegeneration of forest in a previously burned area) or multiple
algorithm. During learning, new recognition categories (rules)assification (as in the case of forest overcast by clouds).
can be created dynamically to cover the deficiency of the A model by Mitraet al. [9], falling under category 1 of the
domain theory. This is in contrast to the static architecture beuro—fuzzy integration scheme, has been developed for clas-
the standard slow learning backpropagation networks. Learn@ification, inferencing, querying, and rule generation. It is ca-
in cascade ARTMAP is match-based (not error-based); it dogeable of generating botpositive(indicating the belongingness
not wash away existing knowledge and the meanings of un@tba pattern to a class) amkgative(indicating its degree of
do not shift. It relies on a specific architectundz. adaptive notbelonging to a class) rules in linguistic form to justify any
resonance theory mapping, which enables it to handlstde decision reached. This is found to be useful for inferencing in
bility—plasticity dilemma. The extracted rules involve discretambiguous cases. The knowledge encoding procedure, unlike
inputs and are of good quality. The algorithmic complexity ig1any other methods [10], [11], involves a nonbinary weighting
linear in the number of recognition categories. Results indicargechanism. Tha priori class information and the distribution
that the performance is superior as compared to the KBANX pattern points in the feature space are taken into account while
[11], ID-3 (decision tree) and MLP. encoding the crude domain knowledge from the data set among
Most of these models are mainly concerned with the efpe connection weights. Fuzzy intervals and linguistic sets are
coding of initial knowledge by a fuzzy neural network followedised in the process. Each pattern class is modeled in terms of
by refinement during training. Extraction of fuzzy rules irpositive and negative hidden nodes. An estimation of the links
this framework has been attempted [9], [89], [142], [145F0onnecting the output and hidden layers (in terms of the pre-
[146]. Connection weights of FUNN, above a preset thresholegding layer link weights and node activation) is made. The net-
determine thecondition or action elements in the extractedwork topology is then refined, using growing and/or pruning,
rules along with their correspondinfggrees of importancand thereby generating a near optimal network architecture. The
confidence factor§143]. Inference, inquiry, and explanationknowledge-based network is shown to converge much earlier,
are possible during consultation with the expert in [145]. Aesulting in more meaningful rules at this stage as compared to
the cascade ARTMAP [89] preserves symbolic rule form, trgher models.
extracted rules can be directly compared with the originally The trained knowledge-based network is used for rule
inserted rules. These rules are claimed [89] to be simplggneration inF—THEN form. These rules describe the extent to
and more accurate than ttié of NV rules [3]. Besides, each which a test pattern belongs or does not belong to one of the
extracted rule is associated with a confidence factor thelasses in terms of antecedent and consequent clauses provided
indicates its importance or usefulness. This allows ranking aifdnatural form. Two rule generation strategies, as developed
evaluation of the extracted knowledge. by Mitra et al. [9] are 1) pedagogical—treating the network
Machado and Rocha [146] have also used an interval-bagsda blackbox and using the training set input (in numeric
representation for membership grades (MGI) to allow reasoniggd/or linguistic forms) and network output (with confidence
with different types of uncertainty: vagueness, ignorance, aff¢tor) to generate the antecedent and consequent parts and
relevance. The model incorporates the facilities of incrementl decompositional—backtracking along maximal weighted
learning, inference, inquiry, censorship of input informatioraths using the trained net and utilizing its input and output
and explanation as in expert systems. The utility-based inquigtivation (with confidence factor) for obtaining the antecedent
process permits significant reduction of consultation cost or rigd consequent clauses. The concept of generatagative
and gives the system the common sense property possessethlg§p and its implication to medical diagnosis is described in
experts when selecting tests to be performed. The ability to cifiection V-C. The model has been testedvowe| synthetic,
icize input data when they disrupt a trend of acceptance or rej@gd medical data.
tion observed for a hypothesis mimics the behavior of experts,
who are often able to detect suspicious input data and eitlfer
reject them or ask for their confirmation. The explanation al- Omlin and Lee Giles [147] insert prior knowledge in the form
gorithm provides responses to queries such@ga particular of rules into recurrent networks for performing rule revision.

With Recurrent Networks
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The inserted rules are compared with those in the DFA ewhere the theory of rough sets is utilized for extracting do-
tracted from the trained network. Itis claimed that the network ieain knowledge. In the rough—fuzzy MLP [12], [67], the ex-
able to preserve the correct rules, while simultaneously adaptingcted crude domain knowledge is encoded among the connec-

(through training) the incorrect inserted rules. tion weights. This helps one to automatically generate an appro-
priate network architecture in terms of hidden nodes and links.
D. Incorporating Genetic Algorithms Neuro-fuzzy hybridization of category 1 (Section II-B) is em-

Opitz and Shavlik [148] have used the domain theory &oned he_re. l\_/lethods_are derived to ’T‘Ode': 1) convex deC|5|o_n
regions with single-object representatives and 2) arbitrary deci-

Towell and Shavlik [3], [L1], as described in Section IV_ASion regions with multiple-object representatives. From the per-
to generate the knowledge-based network structure. Random 9 P ) b ' P

perturbation is applied to create an initial set of candida gectlve of patter recognition, this implies using a single pro-

i . . . “1otype to model a (convex) decision region in case of method 1.
petworks omopulatlon A nod_e 's perturbed by either d6|etlr.]gF8t>r/rrJnethod 2 this( means)using multir?le prototypes to serve as
torb addingnewnodes o . Nert tese networs areraingl L8 108 TS T PR S
Newgnetwofksparge created bp USING CIOSSOVET an% Fr)nutati u%zy MLP is considered where the feature space gives the con-

o -c by g c Qition attributes and the output classes the decision attributes
operators specifically designed to function on these networks

The algorithm tries to minimize the destruction of the rulg® s o result in a decision table. This table may be trans-

structure of the crossed-over networks, by keeping intact no§8rsmed’ keeping the complexity of the network to be constructed
» Y ping In mind. Rules are then generated from the (transformed) table

belonging to the same syntactic rule (i.e., the nodes highly cqn- ) :
nected to each other). The mutation operator adds diversit)c/)D computing relative reducts. The dependency factors of these

. . d L . - rules are encoded as the initial connection weights of the fuzzy
a population, while still maintaining a directed heuristic sear

) . . LP. The knowledge encoding procedure involves a nonbinary
technique for choosing where to add nodes. In this manner, the. | .. ; . . .

. ) ) . " weighting mechanism based on a detailed and systematic esti-
algorithm searches the topology space in order to find suitable

networks, which are then trained using backpropagation. mation of the available domain information. Moreover, the ap-

Evolutionary strategy is used by Jit al. [61] to optimize propriate number of hidden nodes is automatically determined

a fuzzy rule system. The neuro—fuzzy hybridization employeh re. . i
) Such a network is found to be more efficient than the conven-

here falls under category 2 (Section II-B). However this initia[l

: . : . .tional version [12]. The architecture of the network becomes
knowledge is tuned using evolutionary algorithms before bein . .
stmpler, due to the inherent reduction of the redundancy among

mapped to a radial basis function network for refinement. Tr@ﬁe connection weights. The dependency rule for each class is

number of fuzzy rules equals the number of hidden nodesA tained by considering the corresponding reduced attribute-

the network. A neural network regularization technique, terme lue table. A smaller table leads to a simpler rule in terms of

adaptive Welghtsharmg, is developed to extract undergandaﬁ%junctions and disjunctions, which is then translated into a
fuzzy rules from the trained network.

network having fewer hidden nodes. The objective is to strike
Kasabov and Woodford [149] haewolvecthe FUNN [143] a_.balance by reducing the network complexity and reaching a

(Section 1V-B) as an associative memory for the purpose of . "
dynamically storing and modifying a rulebase. Rules can ggodsolutmn, perhaps at the expense of not achievinggut

extracted and inserted from/into the system (EFUNN) in bo erformancg. While designing the initial structure of thg fuzzy
. . : . . LP, the union of the rules of all the pattern classes is con-
on-line and off-line modes in a changing environment.

sidered. Here the hidden nodes model the conjuncts in the an-
tecedent part of a rule, while the output nodes model the dis-
juncts. The appropriate number of hidden nodes is automatically
Let us first describe a model by Yasdi [66], which usegenerated by the rough set theoretic knowledge encoding pro-
rough sets for the design of knowledge-based networks in tbedure. On the other hand, both the fuzzy and conventional ver-
rough-neuro framework. The intention is to use rough sets sisns of the MLP are required to empirically generate a suitable
a tool for structuring the neural networks. The methodologsize of the hidden layer(s). Banerjetal.[12] further compared
consists of generating rules from training examples by usitige rough—fuzzy MLP with other related techniques like deci-
rough set-theoretic concepts and mapping them into a singlen trees.
layer of connection weights of a four-layered neural network. A modular approach has been pursued by Migtaal.
Attributes appearing as rule antecedent (consequent) becd68] to combine the knowledge-based rough-fuzzy MLP
the input (output) nodes, while the dependency factors becoswbnetworks/modules generated for each class, using GA's.
the weight of the adjoining links in the hidden layer. The inpuDependency rules are extracted directly from real-valued
and output layers involve nonadjustable binary weightax, attribute table consisting of fuzzy membership values. This
min, andor operators are modeled at the hidden nodes, badszps in preserving all the class representative points in the
on the syntax of the rules. The backpropagation algorithm dependency rules by adaptively applying a threshold that
slightly modified. However, the network has not been tested antomatically takes care of the shape of the membership func-
any real life problem and no comparative study is provided tmns. Anl-class classification problem is split inftdwo-class
bring out the effectiveness of this hybrid approach. problems. The generated subnetworks are combined, and the
Now we demonstrate a way of integrating rough sets afidal network evolved using a GA with restricted mutation
fuzzy-neural network for designing a knowledge-based systeaperator that utilizes the inherent knowledge of the modular

E. Incorporating Rough Sets
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Fig. 4. Block diagram of inferencing and rule generation phases of fuzzy MLP.

structure. Thigdivide and conquestrategy, followed by evo- the inferencing systepby backtracking, from the connection
lutionary optimization, is found to enhance the performanaeeights as needed for explanation. As the model has already
of the network. A compact set of more meaningful and lessferred a conclusion (at this stage), a subset of the currently
redundant (refined) rules are generated. This work is a nokalown information is selected to justify this decision. The an-
rough—neuro—fuzzy—genetigbridization in the soft computing tecedent and consequent parts of the generated rulesrae in
framework. Application of the model has been made farral form using the linguistic modifiers and a certainty factor.

medical diagnosis [68], [69]. An input patternt”, from the training set is presented to the
input of the trained network and its output computed. To find
V. APPLICATION TO MEDICAL DIAGNOSIS the antecedent clauses of the rule, one may backtrack from the

utput layer to the input through the maximal weighted links.

Here we describe a fuzzy MLP for rule generation [7] an : o )
demonstrate its effectiveness in medical diagnosis probler]wge path from nodé in the output layer to nodg, in the input

This is followed by a short description ofegativerule gen- ayer through nodg in the hidden layer is maximal if
eration by a knowledge-based fuzzy MLP [9]. At the end of

the training phase the network is supposed to have encoded
the input—output information distributed among its connection o
weights. This constitutes thevowledge basef the desired de- Provided node activatiop; > 0.5, 3, > 0.5, and themax-

cision-making system. Handling of imprecise inputs is possibi@Umis computed over the index. Here thepath 'engﬂffogﬂ
and natural decision is obtained associated with a certainty mBgdek in the outputlayer to nodgin the hidden layer isv; 47,

1.1 0 0 _ 1 1 0 0
wkjyj + wjiA yiA - H%E}X {wkrnyrn + wrniA yiA} (3)

sure denoting the confidence in the decision. the superscript referring to the layer [9]. Only one nedeor-
responding to the three linguistic values of each feafrés
A. Model considered so that
Th<-:- modell|s capable of o . w?“y% A w?iBy?B @)
« inferencing based on complete and/or partial information; AT Be{L, M, H}

* querying the user for unknown input variables that are key

to reaching a decision; where A and B correspond tdow (L), medium(A/), or high
- producing justification for inferences in the form of(H). The three-dimensional linguistic pattern vector, with or
IEZTHEN rules. without modifiers [corresponding to the linguistic featurg,

iomputed by (4)], which is closest to the relevant three-dimen-

slonal part of pattert”,, is selected as the antecedent clause.
The input can be in quantitative, linguistic, or set forms or S IS done for all input features to which a path may be found

combination ofthese. Itis represented as a combination of mefy-(3)- The completer part of the rule is obtained bynping

bership values to the three primary linguistic propertims, C'2uSes corresponding to each of the features, e.g.,

medium andhigh, modeled a% functions [33]. The model can

handle the linguistic hedge®ry, more or lessandnot, as well

Fig. 4 gives an overall view of the various stages involved in t
process of inferencing and rule generation.

If I} ismore or less AandF, isnot A

as the set form modifiembout less thangreater than andbe- and--- andF, isvery A.
tween Missingor unknowrinput features can also be taken care _ _
of. The consequent part of the correspondmegHEN rule is gen-

The user can ask the system why it inferred a particular copfated using a certainty factéel[’. For the linguistic output
clusion. The system answers withiaaTHEN rule applicable to form, one uses one of the following.
the case at hand. Note that theseTHEN rules are not repre- 1) Very likelyfor 0.8 < bel]H <1
sented explicitly in the knowledge base; they are generated by2) Likelyfor 0.6 < belj’ < 0.8.
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TABLE |
RULE GENERATION AND QUERYING PHASES ONHEPATO DATA

Input features Rule generated Ini-
Initially Initially Query i THEN | tial
supplied unknown for IF clause part rule
GOT > 100 MCV, TBil. - 77
GPT < 40 CRTNN
LDH > 700
GGT < 60 GOT medium,
15 < BUN < 20 GPT low,
30 < MCH < 36 GGT very low, Likely ALD
male BUN very med. PH false
MCV > 100 GOT, GPT, .0 GOT very low,
male LDH, GGT, GOT 1 GPT very low,
BUN, MCH, GPT 07 LDH very low,
TBil, MCH .26 MCYV very high, Very
CRTNN BUN 74 MCH Mol med., likely PH
LDH 1.0 MCH Mol high LC false
GOT < 40 GPT, LDH, .04 GOT very low,
female GGT, BUN, GPT .07 GPT very low,
MCV, MCH, GGT .62 | LDH low,
TBil, BUN .53 GGT very low,
CRTNN LDH .67 BUN Mol med., Likely PH
MCV .72 MCV Mol med. LC false
GOT < 40 LDH, GGT, .75 GOT very low,
40 < GPT < 100 BUN, MCH, MCH .8 MCYV very low,
MCV < 90 TBil MCH Mol med., Likely PH
female CRTNN MCH Mol low C false
LDH > 700 GOT, GPT, .87
MCV < 90 GGT, BUN, GOT 91 GOT low,
male MCH, TBil, GPT .94 GPT Mol low,
CRTNN MCH .94 BUN very med., Very
GGT .87 MCV very low, likely LC
BUN .84 MCH Mol med. PH false
BUN > 20 GOT, GPT. .85 GOT high,
MCV > 100 LDH, GGT. GoT .85 BUN Mol high,
male MCH, TBil, GPT .9 MCYV high, Very
CRTNN MCH .84 MCH Mol med., likely C
MCH Mol high PH false
GOT < 40 LDH, GGT, 01 GOT very low,
40 < GPT < 100 BUN, MCV, MCH .59 BUN very low,
male MCH, TBil, CRTNN 77 MCV very high,
CRTNN GGT .88 | MCH high, Very
BUN .78 CRTNN low, likely PH
MCV .89 CRTNN very med. | ALD false
3) More or less likelyfor 0.4 < bel]H < 0.6. An effective handling of a certain medical diagnosis problem
4) Not unlikelyfor 0.1 < bel]H < 0.4. involving hepatobiliary disorders [42] is demonstrated in this
5) Unable to recognizéor bel]H < 0.1. section. The data is available in http://www.isical.ac.in/~sush-

A sample rule, in terms of input featurdg and Ib, is as Mita/patterns. . , _
follows: If F, is very mediunanp F, is highthenlikelyclass 1.~ 1he datahepatoconsists of 536 patient cases of various
hepatobiliary disorders. The nine input features are the results

B. Medical Data of different biochen_]ical tests: _glutamic_ oxalacetic_transaminate
' (GOT; Karmen unit), glutamic pyruvic transaminase (GPT;
Medical diagnosis, or more specifically, the results of testéarmen unit), lactate dehydrase (LDH; iu/liter), gamma

involve imprecision, noise, and individual difference. Often onglutamyl transpeptidase (GGT; mu/ml), blood urea nitrogen

cannot clearly distinguish the difference between normal a@UN; mg/dl), mean corpuscular volume of red blood cell
pathological values. Such test results cannot be precisely eyMCV;, fl), mean corpuscular haemoglobin (MCH; pg), total
uated by crisp sets. Sometimes the patient can be simultabiirubin (TBil; mg/dl), and creatinine (CRTNN; mg/dl).
ously diagnosed as suffering in different degrees from multiplehe 10th feature corresponds to the sex of the patient and is
diseases. It is also more dangerous to classify a sick persomegggesented in binary mode as (1,0) or (0,1). The hepatobiliary
healthy than vice versa. Incorporation of fuzziness at the inpdisorders alcoholic liver damage (ALD), primary hepatoma
and output of the neural network under consideration appeéiPH), liver cirrhosis (LC), and cholelithiasis (C) constitute the
to be a good solution to such problems. Here one can simultaur output classes. Table | depicts the rule generation and
neously assign one or more finite nonzero membership valugaerying phases of the fuzzy MLP for a sample set of partially
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known input features of théepatodata. Columns 3 and 4 Rule generation from fuzzy/nonfuzzy knowledge-based net-
refer, respectively, to the input feature supplied by the user afteorks were found to resultin more refined rules, as compared to
querying and the resulting output membership of the neurbnth the initial crude domain knowledge used to encode them as
corresponding to the disorder supported bytheN part of the well as those generated by networks involving no initial knowl-

generated rule in column 6.

edge encoding. Finally, real-life application to medical diag-

The last column of the table indicates the rules obtained fromesis was provided.

the initially supplied feature set in column 1. There were only
two types of such rules in Hayashi’'s model [103]: the ones ex-
cluding a disease and the ones confirming a disease. The fuzzM]
MLP [42] resorts to querying and further updating to obtain
rules that are more specifically indicative of a disease. Note tha{2]
querying should be resorted to at a particular stage, and there[é]
fore querying is not required in all cases with a partial set of

input features (e.g., see row 1 of Table I). [4]

5
C. Negative Rules ol
It may sometimes happen that we are unable to classify a test
pattern directly with the help of theositiverules (concerningits  [6]
belonging to a class). In such cases, one proceeds by discarding
some classes that are unlikely to contain the pattern, and therebjy]
arrive at the class(es) to which the pattern possibly belongs. In
otherwords, in the absence of positive information regarding the[B]
belonging of patterd”), to classCy, the complementary infor-

mation about the pattetf, not belonging to clas€}, is used. [
To handle such situationsegativerules are generated with the
consequent part of the formot in classCys by backtracking [10]

from the output layer through the trained connection Weight?ﬂ]
alongnegativehidden nodes corresponding to this class [9]. A
samplenegativerule generated for the medical ddtapatois:  [12]
If GOT is low AND GPT islow AND LDH is very mediunmanD
GGT islow AND BUN is low AND MCV is mediumanp MCH
is Mol mediumanDp TBIl is low AND CRTNN isvery medium
then the pattern inot in class ALD.

[13]
(14]
[15]

VI. CONCLUSIONS [16]

We have provided an exhaustive survey of fuzzy, neural, and
neuro—fuzzy rule generation algorithms. The neuro—fuzzy ap-
proach, symbiotically combining the merits of connectionist and
fuzzy approaches, constitutes a key component of soft coni8l
puting at this stage. To date, there has been no detailed and in-
tegrated categorization of the various neuro—fuzzy models usggo]
for rule generation. We have attempted to collect these under a
unified soft computing framework. [

Moreover, we have included both rule extraction and rule re-
finement in the broader perspective of rule generation. Rules

i : 1]
learned and interpolated for fuzzy reasoning and fuzzy contrdf
have also been considered from this wider viewpoint.

Although the focus remained on neuro—fuzzy models, we als&?l
dealt with other fuzzy, neural, GA's, and rough set-based ap-
proaches to rule generation. Both feedforward and recurremnz3s]
neural networks were considered. We concentrated on catego-
rizing the different neuro—fuzzy approaches based on their leve},
of synthesis. In the course of our study we noticed that other than
the fuzzy perceptron [34], not much work has been reported in
literature on the convergence analysis of neuro—fuzzy Iearninéz.sl
This remains an open problem for future research.
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