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Parallel System Design for
Time-Delay Neural Networks
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Abstract—In this paper, we develop a parallel structure for the
time-delay neural network used in some speech recognition ap-
plications. The effectiveness of the design is illustrated by 1) ex-
tracting a window computing model from the time-delay neural
systems; 2) building its pipelined architecture with parallel or se-
rial processing stages; and 3) applying this parallel window com-
puting to some typical speech recognition systems. An analysis of
the complexity of the proposed design shows a greatly reduced
complexity while maintaining a high throughput rate.

Index Terms—Parallel computing, pipelined architecture, time-
delay neural networks, speech recognition.

I. INTRODUCTION

A RTIFICIAL neural networks (ANN), as processors of
time-sequence patterns, have been successfully applied

to several speaker-dependent speech recognition problems
[1]–[14]. A variety of neural speech recognition algorithms
has been developed. Numerous studies have demonstrated the
effectiveness of multilayer systems with time-delay sequences
as inputs to these systems [15]–[18]. Typical examples are:
time-delay neural network (TDNN) proposed by Waibel and
Lang [19]–[21]; block-windowed neural network (BWNN) by
Sawai [22]; and dynamic programming neural network (DNN)
by Sakoe [23], [24].

Some features used in these neural speech recognition sys-
tems are incorporation of time delays, temporal integration, or
recurrent connections. Spectral inputs are applied to input nodes
sequentially, one frame at a time, and their corresponding input
matrix is formed [15], [16]. Since only short time delays are
used, these neural speech recognition systems can be integrated
into real time speech recognizer. However, these systems con-
cern, so far, mainly with algorithms; their behaviors and char-
acteristics are primarily investigated by simulation on general
purpose computers. The spatiotemporal computing parallelism
inhered in such neural speech recognition systems is little ex-
plored; thereby restricting its application domain to real life
problems.

In this paper, we describe a methodology for parallel
time-delay window computing by considering the features and
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characteristics of such neural speech recognition systems. A
model for time-delay window computing and its corresponding
architecture definition are described in Section II. Two kinds
of processing stages used in pipelined architecture and their
building elements are explained in Section III. In Section IV,
some mapping strategies from window computing model into
systolic array structures are defined. Three typical speech
recognition applications and their performance analysis by
parallel window computing are given in Sections V and VI,
respectively. A brief conclusion is included in Section VII.

II. WINDOW COMPUTING MODEL

A. Definition and Notation

Based on the neural systems with time-delay sequence input
of feature parameters for speech recognition [15]–[18], we can
develop a typical computing model composed of layers,
which includes an input layer, hidden layers, and an output
layer. Both the input layer and the hidden layers are character-
ized by time-delay sequence input matrix of speech parameters,
built by memory elements, where

is the number of pattern classes. The output layer
consists in units. The relation between node in Layer
and node in Layer can be defined as

(1)

where and
is a sigmoid function; and and

are referred to as weight value and bias value,
respectively. Both values can be obtained from a small input
submatrix (called “window”), where the size is
and in Layer to the node in Layer This
kind of time-delay window computing methodology is shown in
Fig. 1. Obviously, there will be windows formed
by the input matrix in Layer .

To implement such a time-delay window computing in (1),
we can use only an input window built by elements in
Layer Instead of moving such a window to the whole input
matrix, speech parameters in time-delay sequence are arranged
to pass through the window in pipeline. Thus, the expression in
(1) can be rewritten as

(2)
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Fig. 1. Time-delay window computing model between layers and layers+1:

where is an input sub-matrix given by such a fixed window,
which can be represented as

(3)

and is the corresponding weight matrix from the window
in Layer to node in Layer , i.e.,

(4)

It is evident that there are different weight matrices
from Layer to Layer Their sizes are equal to the size of
the window in Layer .

B. Pipelined Neural Architecture

The time-delay window computing model discussed above
can be implemented by a pipelined neural architecture with

processing stages, each with its own control sequence
[see Fig. 2(a)]. In each processing stage, a fixed time-delay
computing window is built as a connection to next stage.
Loading an input submatrix, to the window in a pipeline
mode and mapping the corresponding weight matrix,

the output result,
can be obtained. Since all time-delay computing windows

in the pipelined neural architecture are capable of working at
the same time, the potential parallelism inhered in such neural
speech recognition systems can be well explored.

A basic time-delay neuron in the pipelined neural architec-
ture is defined in Fig. 2(b). The time-delay inputs,

are undelayed or delayed
where is a delay unit and is its increment

The time-delay speech inputs, will
be multiplied by several weights, one for each delay and one for
the undelayed input.

Note that two types of operations, namely, control flow and
data flow, are used in this pipelined neural architecture. Master

control unit not only gives each control sequence to the cor-
responding processing stage, but also arranges the time-delay
speech input parameters of each frame as data flow input to
the given computing window. Once the window is filled, the
time-delay sequence input submatrix obtained is processed. De-
pending on the nature of the time-delay speech inputs, two dif-
ferent processing stages can be used in the architecture. These
will be discussed in the next section.

III. PIPELINED ARCHITECTURE: PROCESSINGSTAGES

A. Parallel Processing Stage

In the pipelined neural system, a parallel processing stage can
be defined in Fig. 3(a), where a window built by ele-
ments is utilized to receive the input data flow from its previous
stage, and neurons are used to send the output results to
the next stage in parallel. In other words, the input data flow
is passed through the window and transformed by this stage to
generate the corresponding output data flow. The widths of both
data flows are defined as and respectively. A new fea-
ture parameter obtained by each neuron in stagecan be repre-
sented as

(5)

where is the
th weight matrix and is the input submatrix given by the

window in stage .

B. Serial Processing Stage

In this processing stage, a pipe with single parameter width
is made by a chain of serial shifting elements [see Fig. 3(b)]. A
window structure is designed to implement the transformation
between stages. The line delays, each shifting
elements, are built to receive a serial stream of parameters and
to form the required window which are input to
neurons. Thus, the total

elements are needed in window structure. The
neurons associated with the window are defined in (5) with their
common output

(6)

where Note that
the output of each neuron can, in turn, be obtained as, either
a single output, or no output within a single clock in-
terval. The output order in a cycle is:

where and “ ” in-
dicates no output. There are a total of
processing cycles for each given speech input matrix, .

C. Building Elements

There are three kinds of building elements, including
window, synapse and summing element, which are used in
two different processing stages described before. A window
element can be implemented by a regular shifting register and
thus the following discussion will be focused on the other
two building elements. Considering on-line backpropagation
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(a) (b)

Fig. 2. (a) Pipelined neural speech recognition system withp+ 1 processing stages and (b) time-delay neuron structure in the pipelined neural system.

(a) (b)

Fig. 3. Two kinds of processing stages in (a) parallel and (b) serial.

(BP) learning, which has successfully applied to the neural
speech recognition systems, two processing phases, searching
and learning, are defined in the building elements. They can
be implemented by special feedforward and feedback paths,
respectively.

1) Synapse Element:A synapse element is used to store
and change weight values. It is mainly composed of a weight
memory two multipliers ( and ) and two selectors (
and ), shown as in Fig. 4. A control clock, CLK, indicates
the phase of the element. CLK 0, means searching (or feed-
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Fig. 4. Synapse building element structure.

forward) phase and CLK 1, means learning (or feedback)
phase. In this element, there are two data inputs (and ) and
two outputs ( and where work in CLK
= 0, and in CLK = 1. Multiplier can generate a
common output

(7)

where is the output of the input parameter selector,which
is represented as

CLK = 0
CLK = 1.

(8)

An output parameter selector,, can choose a correct output
result of the element, i.e.,

CLK = 0

CLK = 1.
(9)

Multiplier is only designed to obtain the increment of the
weight value when CLK 1

(10)

where is a gain. Using the arithmetic mechanism attached in
the element, the increment,, can be added to the weight,
to generate a new weight value. In this way, when CLK0, the
output of the element is otherwise, the output is
Also, is changed in terms of the following rule

(11)

2) Summing Element:This element is built to obtain two-di-
rection accumulative results for both feedforward and feedback

Fig. 5. Summing building element structure.

processing (see Fig. 5). It consists of two amplifiers and one
multiplier. Two inputs (outputs), and ( and ),
are from (to) the current stage and the next stage, respectively.
Their input/output relations are and When
CLK = 0, the output of the element is represented as

(12)

and when CLK 1, the output is

(13)

3) Connection Network:Three kinds of building elements
can be easily implemented by the current VLSI technologies
[13], [25], [26]. Using these simple building elements, a basic
connection network in stage can be designed as in Fig. 6,
where the size of the time-delay computing window is defined
as There are a total of synapse elements
and summing elements used in the network. Obviously,
the whole pipelined neural system can be implemented by cas-
cading such regular connection networks.

IV. SYSTOLIC ARRAY IMPLEMENTATION

A. Mapping Strategies

It is clear that the complexity of a computing window im-
plementation stems not from the complexity of its nodes but
rather from the multitude of ways in which a large collection of
these nodes can interact. Therefore, an important task is to build
highly parallel, regular and modular systolic arrays (SAs) that
are attractive for VLSI techniques. Here we present different
mapping strategies from pipelined architecture to SA with im-
plementation efficiency as our goal.

1) Processing Mode Mapping:Here, we partition a
pipelined neural system into some basic processing stages with
time-delay window, each capable of performing an independent
function. Often a processing stage represents a layer in the
neural networks. The processing stages are implemented using
a corresponding SA, which are then cascaded.

2) Computing Property Mapping:Each processing stage
function is reduced to a recursive form which is implemented
by the corresponding pipeline matrix in terms of some systolic
rules. In practice, this mapping changes parallelism in place to
parallelism in time.
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Fig. 6. Connection network with on-line learning in stages:

3) Arithmetic Module Mapping:A basic operation in recur-
sive arithmetic is implemented by a computing element. For ex-
ample, a node is divided into two parts: forming a weighted sum
of inputs and passing the result through a nonlinearity. The
weighted sum can easily be integrated by a two-dimensional
(2-D) recursive matrix. To form the nonlinearity, a special el-
ement is defined which may be cascaded with the recursive ma-
trix as a bound node of its output.

B. SA Structures: Computing Cell

Using the aforesaid mapping strategies two kinds of pro-
cessing stages, in parallel and in serial, as obtained in Section III
can be systematically implemented by the corresponding SAs
(see Figs. 7 and 8). In both arrays, the line delays built by
shifting elements are used to receive a data stream of parame-
ters and to construct the window required. There are a total of

and shifting
elements in parallel processing SA and in serial processing SA,
respectively. The adder arrays are built as the accumulators to
compress the output results of the computing window. Obvi-
ously, some regular shifting registers and adders can implement
the line delays and adder arrays.

Computing cells, defined in the both SAs, can be properly
arranged to form each computing window in parallel or in serial.
However, all of these computing cells have an identical structure
with special feedforward and feedback paths. They are mainly
composed of weight memory ( ) ( adder
( ) and multiplier ( ). Three data inputs, and and
their outputs, and are defined in the computing
cell, where and are used for CLK 0; and

Fig. 7. Parallel data flow window computation.

for CLK 1. Note that each input (output) is transmitted by
data except When CLK 0, the outputs of the

cell in feedforward path are defined as: and
; otherwise, the output as At the same time, is

changed in terms of the rule in (11).
It is evident that the SAs shown in Figs. 7, 8 are regular

interconnected arrays using a set of computing cells, each
performing some simple window computing, where the data
flows in a rhythmic fashion with only local interconnects
between cells. They can provide a good medium to implement
the pipelined neural system in VLSI.
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Fig. 8. Serial data flow window computation.

V. SPEECHRECOGNITION APPLICATIONS

In this section, we provide the results of our study on three
types of neural systems using the parallel time-delay window
computing in the pipelined neural architecture. The neural sys-
tems selected are motivated by speech recognition applications
and they have been widely used [15]–[24].

A. Time-Delay Neural Network

Time-delay neural network (TDNN) is a neural system that
can take into account the “dynamic nature of speech.” It is used
to represent temporal relationships between successive acoustic
frames, while providing some invariance under time translation
[19]. It has been demonstrated that the TDNN computing can
provide excellent discrimination ability among speech sounds.
Speech recognition performance obtained by using the TDNN
has often exceeded that of many conventional approaches [20],
[21].

The basic TDNN system is composed of an input layer, two
hidden layers and an output layer [19]. Except the output layer,
each layer has an ( matrix of memory
elements, where and
The relation between the input layer and the 1st hidden layer
(and also between first and second hidden layers; see Fig. 9) is
represented as

(14)

where and The TDNN
computing can be implemented by the pipelined system with
three parallel processing stages. Except the last stage without the
data window, each input parameter matrix ( in the first
two stages is pipelined to pass through its window (

When the window is filled by successive data flow,
new values of the parameters can be, in parallel, obtained

Fig. 9. Relation between layers for TDNN.

and simultaneously fed into the window in the next stage. It is
evident that there are different weight matrices and
input data windows from stageto stage and their sizes
are equal to the size of the window in stage, i.e.,
Using this parallel window computing to implement the TDNN,
only window elements, instead of (generally,

elements, are needed in stage

B. Block-Windowed Neural Network

Block-windowed neural network (BWNN) is based on win-
dowing each layer of the neural network with overlaped local
time-frequency windows. This neural system makes it possible
to capture global features from the upper layers as well as pre-
cise local features from the lower layers. It is proved to be ro-
bust for speech sound variations in both frequency- and time-do-
mains among different speakers [22].

The BWNN system is composed of an input layer, three
hidden layers and an output layer [22]. Excepting the output
layer, each layer has a ( matrix of
memory elements and their relation between layers satisfies

(15)

where and , i.e., the length and the width of
the submatrix in Layer are the same (see Fig. 10). It is clear
that the TDNN structure is a special example of the BWNN if

The use of the pipelined neural system to implement the
BWNN involves four serial processing stages. Like the TDNN
implementation, the last stage is the output stage without the
data window. Each input matrix in the other stages can form
an ( ) pipeline with the width of a single
parameter and passes through its window ( parameter
by parameter. An output result obtained from stagewithin a
single clock interval is sent to the window in stage without
any delay. This means that only an input window built by
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Fig. 10. Relation between layers for BWNN.

shifting elements and some line delays by (
shifting elements, i.e., the total window
elements, instead of elements (in general,
and are needed in stage

C. Dynamic Programming Neural Network

Dynamic programming neural network (DNN) is proposed
on the integration of multilayer neural network and dynamic
programming based matching. Researchers have used DNN ex-
tensively in speaker-independent word recognition, and proved
that it has excellent time normalization ability, flexible learning
facility, expandability to continuous speech recognition, and
high tolerance to the spectral pattern variation [23].

The DNN can be implemented by the pipelined neural system
with three processing stages (see Fig. 11). An input pattern,

is defined as a warping function
between input pattern timeand window element where

Without an input matrix with memory ele-
ments [23], a window is built by window elements and
neurons are used in the first stage. When the input patterns,
and pass through the window, the corresponding output
for each neuron can be represented as

(16)

where and are weighs from two window elements to
neuron

In the second stage, a window with window elements
is used to receive in parallel. Each neuron
in the stage is used as a multiplier, i.e.,

(17)

The third stage is built by a serial processing structure. Its input
data, is arranged in a pipeline mode of a single param-
eter like In other words,

the parallel outputs from the previous stage will be changed as
the serial inputs to this stage. It is composed of a four-element
window, two line delays and a processing element (PE),
shown in Fig. 12(a). The PE is designed by the standard dy-
namic programming algorithm [24]. Its initial condition is set at

implemented by the external control. Then, the data
is processed with

(18)

The PE shown in Fig. 12(b) implements this maximization
problem. The PE consists of a tricomparator subnet for ex-
tracting the maximum of three analog inputs [31] and an adder.
Given an input parameter, an output of the PE, can
be obtained and fed into the window to generate the following
new values. This process is continued until the total cumulating
value, is reached. Such a process is represented
in Fig. 13.

VI. STRUCTUREANALYSIS

For a given neural system, both the structure design and ac-
cess time needed to solve the problem are two most important
performance measures [13], [25]–[30]. In this section, we will
analyze these measures for our pipelined neural architecture,
where parallel processing stage defined in Fig. 3(a) and serial
processing stage in Fig. 3(b) are referred to as type 1 and type
2, respectively. The way of selecting the property parameters for
parallel time-delay window computing is also discussed in this
section.

A. Structure Complexity

We choose a typical TDNN computing for comparison with
our methodology. In Section V, it has been shown that the par-
allel time-delay window computing can implement TDNN and
greatly reduce the memory elements in each layer of the neural
networks to a small number of window elements in the pro-
cessing stage. This is because only a limited window is con-
nected to its next stage and the parameters shifted out from the
window are discarded. Since the speech feature parameters are
applied to each layer sequentially one frame at a time, this re-
duction of memory elements is feasible.

Note that both memory element used in traditional TDNN
computing and window element in parallel window computing
have the same hardware complexity because they are based on
a regular register. In this way, we can perform the traditional
TDNN computing by using the three kinds of building elements
given in Section III. According to the basic TDNN definition
[19], [20], it is assumed for the traditional computing that in
Layer ( the number of window elements is
taken as the number of synapse elements as

and the number of summing elements as
In the parallel window computing, the numbers of window

elements used in stagefor type 1 and type 2 (see Section III)
have been given as and respectively.
Their measures for window elements can be defined as follows:

(19)
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Fig. 11. Pipelined neural architecture for DNN implementation.

(a) (b)

Fig. 12. (a) Serial processing stage for DNN and (b) its PE structure.

and

(20)

Similarly, the numbers of both synapse and summing elements
used in stage for type 1 and type 2 can be obtained from Sec-
tion III. Thus, the measures for synapse element are

(21)

and

(22)

Both the numbers of summing elements used in stagefor type
1 and type 2 are Hence these two kinds of processing
stages have the same measure, i.e.,

(23)

It is evident that the measures of the entire system for three kinds
of building elements are their mean of over each stage

As an example, the traditional TDNN computing for typical
speech recognition applications has been described in [19], [20]:

Then, in order to implement the
basic TDNN, the measures of the first two type 1 processing
stages in the neural pipelined system are:

and
This means that three building elements in parallel time-delay
window computing can be reduced by a factor of 3, 3, and 10,
respectively.

The results of the above analysis are summarized in Table I.
It indicates that the structure complexity for our parallel time-
delay window computing is much less than that of the traditional
TDNN computing.

B. Throughput Rate

The neural speech recognition systems are well suited to
pipelining because of their multilayer networks as processors
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Fig. 13. Window process for DNN implementation.

TABLE I
COMPARISONBETWEEN TRADITIONAL TDNN COMPUTING AND PARALLEL

WINDOW COMPUTING IN STAGE s

of time-delay sequence patterns. In the pipelined system
embedding parallelism or concurrency, the throughput rate
can be fixed and it does not vary with the size of the problem
grows, i.e.,

(24)

Hence, a high throughput rate can be maintained in such
pipelined neural systems, where the clock of the master con-
trol element is selected from the longest time delay among
processing stages.

C. Window Parameter

Computing window in the pipelined neural system is not only
an important component, but also an obvious feature which dif-
fers from other neural systems. The window size has a direct
relation to the properties of the pipelined system, such as the
number of window elements, and the computing time,
The smaller the window, the fewer is the number of window el-
ements, and the longer is the computing time required.

In type 1, these two tradeoff properties for stageare

(25)

We define their product as

(26)

To maximize the function, take derivative with respect to
window size , i.e.,

(27)

Let The optimal size of window for type 1 [see
Fig. 14(a)] can be then selected as

(28)
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(a) (b)

Fig. 14. (a) Window parameter selection for (a) type 1 and (b) type 2.

Note that this optimal window size is not a function of the length
of the window, In the same way, the two tradeoff properties
in type 2 can be written as:

(29)

where , i.e., a square window is used. The size of the
window can be selected directly from the relation

[see Fig. 14(b)], which leads to

(30)

Hence, the choice of the window size for type 2 is

(31)

VII. CONCLUSIONS

In this paper, a novel parallel structure for time-delay
neural networks are used in speech recognition applications is
presented. The effectiveness of the design has been illustrated
by extracting a window computing model from the time-delay
neural systems, developing the corresponding pipelined archi-
tecture with parallel or serial processing stages and comparing
its performance with the traditional TDNN computing. Ap-
plying this parallel window to a typical time-delay neural
network, it has been shown that the methodology can greatly
reduce the structure complexity while maintaining a high
throughput rate.
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