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We introduce onhogonal even nonlinear coherent states and study  their
statistical properties.

1. INTRODUCTION

The coherent states introduced by Glauber [ ] are important in the study
of quantum optics. These states are defined as the right-hand eigenstates
e} of the non-Hermitian boson annihilation operator a. Recently nonlinear
coherent states have been studied by various authors [2]. These states are
senerated as right-hand eigenstates of the product of the boson annihilation
operator and a nonlinear function [ of the number operator. The even and
odd nonlinear coherent states were constructed in ref. 3 and their statistical
properties were investigated.

In this paper we introduce orthogonal even nonlinear coherent states
[4] as another superposition of nonlinear coherent states and study their
statistical properties.

2. ORTHOGONAL EVEN NONLINEAR COHERENT STATES

As in ref. 3, we consider the annihilation operator A and the creation
operator A” as the distortions of the usual annihilation operator a and creation
operator a’. They are given by
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where

A=daa, [A, ] = A, [AT, ] = —A'

S is an operator-valued function of the Hermitian number operator.

Using the relations
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we obtain the commutation relation between A and A" as
[A, AT = (i + A + 1) — #f200)

where [ is chosen to be real, nonnegative and (i) = f(si ).
The nonlinear coherent state satisfies the equation
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Using the completeness relation of the number state
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and the decomposition of |ee, /) in the number state basis {|n) ). we observe that
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with the convention f{n)! = f0) (1) ... fin).
The even nonlinear coherent state is defined as
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The odd nonlinear coherent state is defined as
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Now, we define the orthogonal even nonlinear coherent state as
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3. STATISTICAL PROPERTIES

3.1. Number Distribution

Expanding orthogonal even nonlinear coherent states in terms of the
number state basis, we have
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The number distribution in the state |o, /)" is given by
W, llo, £81 = [(ne, £
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which shows that the fluctuation is regulated by the nonlinear function jf.
The expection of the number distribution is given by
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The second-order correlation function is obtained from the relation
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Depending on the particular form of f, the right-hand side of equation

(20) can be less than or greater than one, producing either antibunching
or bunching.

(20)

3.2. Quadrature Variance for Orthogonal Even Nonlinear
Coherent States

Two quadrature components are defined as
‘= A+ AT ) - A— A
' z 2 BT g
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We know that
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(Av)* = (x%) — (x)? (22)
To calculate (22) we observe that
Ao, fleg fy- =10 23)
Again,
Ala, f)y = o= |o, f) (24)
o
Similarly,
Alaf)- = a = lo ) 25)

Thus, arbitrary nonlinear even and nonlinear odd coherent vectors are
orthogonal and can be exchanged by the operator A.
Also we observe that
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Hence we have
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where a0 = re®™.
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Depending on the particular form of f, the right-hand side of {(27) can
be =1 if r* < 1 and so we see that orthogonal even coherent states can
exhibit squeezing.

4. CONCLUSION

We have introduced nonlinear orthogonal even coherent states which
show nonclassical features. These nonclassical effects depend on the intro-
duced nonlinearty rather than on the symmetry of the states. In view of their
singular properties, these states may be of use in optical and microwave
fields. They may be also interesting from the pointof view of quantum groups.
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