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1 IntroductionMuch of the communication that is important in economic and social con-texts does not take place via centralized institutions, but rather throughnetworks of decentralized bilateral relationships. Examples that have beenstudied range from the production and transmission of gossip and jokes,to information about job opportunities, securities, consumer products, andeven information regarding the returns to crime. As these networks arise ina decentralized manner, it is important to understand how they form andto what degree the resulting communication is e�cient.This paper analyzes the formation of such directed networks when self-interested individuals choose with whom they communicate. The focus ofthe paper is on whether the incentives of individuals will lead them to formnetworks that are e�cient from a societal viewpoint. Most importantly,are there ways of allocating (or redistributing) the bene�ts from a networkamong individuals in order to ensure that e�cient networks are stable inthe face of individual incentives to add or sever links?To be more precise, networks are modeled as directed graphs among a�nite set of individual players. Each network generates some total produc-tive value or utility. We allow for situations where the productive value orutility may depend on the network structure in general ways, allowing forindirect communication and externalities.The productive value or utility is allocated to the players. The allocationmay simply be the value that players themselves realize from the networkrelationships. It may instead represent some redistribution of that value,which might take place via side contracts, bargaining, or outside interventionby a government or some other player. We consider three main constraintson the allocation of productive value or utility. First, the allocation mustbe anonymous so that the allocation depends only on a player's positionin a network and how his or her position in the network a�ects overallproductive value, but the allocation may not depend on a player's label orname. Second, the allocation must respect component balance: in situationswhere there are no externalities in the network, the network's value should be(re)distributed inside the components (separate sub-networks) that generatethe value. Third, if an outsider unilaterally connects to a network, but is notconnected to by any individual in that network, then that outsider obtainsat most her marginal contribution to the network. We will refer to thisproperty as outsider independence.The formation of networks is analyzed via a notion of individual stability2



based on a simple game of network formation in such a context: each playersimultaneously selects a list of the other players with whom she wishes tobe linked. Individual stability then corresponds to a (pure strategy) Nashequilibrium of this game.We show that there is an open set of value functions for which no allo-cation rule satis�es anonymity, component balance, and outsider indepen-dence, and still has at least one e�cient (value maximizing) network beingindividually stable. However, this result is not true if the outsider indepen-dence condition is removed. We show that there exists an allocation rulewhich is anonymous, component balanced and guarantees that some e�cientnetwork is individually stable. This shows a contrast with the results fornon-directed networks. We go on to show that for certain classes of valuefunctions an anonymous allocation rule satisfying component balance andoutsider independence can be constructed such that an e�cient network isindividually stable. Finally, we show that when value accumulates from con-nected communication, then the value function is in this class and so thereis an allocation rule that satis�es anonymity, component balance, and out-sider independence, and still ensures that at least one (in fact all) e�cientnetworks are individually stable.Relationship to the LiteratureThere are three papers that are most closely related to the analysis con-ducted here: Jackson and Wolinsky (1996), Dutta and Mutuswami (1997),Bala and Goyal (1999).1The relationship between e�ciency and stability was analyzed by Jack-son and Wolinsky (1996) in the context of non-directed networks. Theynoted a tension between e�ciency and stability of networks under anonymityand component balance, and also identi�ed some conditions under which thetension disappeared or could be overcome via an appropriate method of re-distribution.There are two main reasons for revisiting these questions in the contextof directed networks. The most obvious reason is that the set of applicationsfor the directed and non-directed models is quite di�erent. While a trad-ing relationship, marriage, or employment relationship necessarily requiresthe consent of two individuals, an individual can mail (or email) a paperto another individual without the second individual's consent. The other1Papers by Watts (1997), Jackson and Watts (1998), and Currarini and Morelli (1998)are not directly related, but also analyze network formation in very similar contexts andexplore e�ciency of emerging networks. 3



reason for revisiting these questions is that incentive properties turn outto be di�erent in the context of directed networks. Thus, the theory fromnon-directednetworks cannot simply be cut and pasted to cover directed networks.There turn out to be some substantive similarities between the contexts,but also some signi�cant di�erences. In particular, the notion of an outsiderto a network is unique to the directed network setting. The di�erencesbetween the directed and non-directed settings are made evident throughthe theorems and propositions, below.Dutta and Mutuswami (1997) showed that if one weakens anonymityto only hold on stable networks, then it is possible to carefully construct acomponent balanced allocation rule for which an e�cient network is pairwisestable. Here the extent to which anonymity can be weakened in the directednetwork setting is explored. It is shown that when there is a tension betweene�ciency and stability, then anonymity must be weakened to hold only onstable networks. Moreover, only some (and not all) permutations of a givennetwork can be supported even when all permutations are e�cient. So,certain e�cient networks can be supported as being individually stable byweakening anonymity, but not e�cient network architectures.This paper is also related to a recent paper by Bala and Goyal (1999),who also examine the formation of directed communication networks. Thepapers are, however, quite complementary. Bala and Goyal focus on theformation of networks in the context of two speci�c models (the directedconnections and hybrid connections models discussed below) without thepossibility of reallocating of any of the productive value.2 Here, the focus isinstead on whether there exist equitable and (component) balanced methodsof allocating (or possibly re-allocating) resources to provide e�cient incen-tives in the context of a broad set of directed network models. Results atthe end of this paper relate back to the directed connections and hybridconnections models studied by Bala and Goyal, and show that the individ-ual stability of e�cient networks in those models can be ensured (only) ifreallocation of the productive value of the network is possible.2Also, much of Bala and Goyal's analysis is focussed on a dynamic model of formationthat selects strict Nash equilibria in the link formation game in certain contexts wherethere also exist Nash equilibria that are not strict.4



2 De�nitions and ExamplesPlayersf1; : : : ; Ng is a �nite set of players. The network relations among theseplayers are formally represented by graphs whose nodes are identi�ed withthe players.NetworksWe model directed networks as digraphs.A directed network is an N �N matrix g where each entry is in f0; 1g.The interpretation of gij = 1 is that i is linked to j, and the interpretationof gij = 0 is that i is not linked to j. Note that gij = 1 does not necessarilyimply that gji = 1. It can be that i is linked to j, but that j is not linkedto i. Adopt the convention that gii = 0 for each i, and let G denote the setof all such directed networks. Let gi denote the vector (gi1; : : : ; giN).For g 2 G let N(g) = fi j9 j s:t: gij = 1 or gji = 1g. So N(g) are theactive players in the network g, in that either they are linked to someone orsomeone is linked to them.For any given g and ij let g+ ij denote the network obtained by settinggij = 1 and keeping other entries of g unchanged. Similarly, let g� ij denotethe directed network obtained by setting gij = 0 and keeping other entriesof g unchanged.PathsA directed path in g connecting i1 to in is a set of distinct nodesfi1; i2; : : : ; ing � N(g) such that gikik+1 = 1 for each k, 1 � k � n � 1.A non-directed path in g connecting i1 to in is a set of distinct nodesfi1; i2; : : : ; ing � N(g) such that either gikik+1 = 1 or gik+1ik = 1 for each k,1 � k � n � 1.3ComponentsA network g0 is a sub-network of g if for any i and j g0ij = 1 impliesgij = 1.A non-empty sub-network of g, g0, is a component of g if for all i 2 N(g0)and j 2 N(g0), i 6= j, there exists a non-directed path in g0 connecting i andj, and for any i 2 N(g0) and j 2 N(g) if there is a non-directed path in g3Non-directed paths are sometimes referred to as semipaths in the literature.5



between i and j, then j 2 N(g0). The set of components of a network g isdenoted C(g).A network g is completely connected (or the complete network) if gij = 1for all ij.A network g is connected if for each distinct i and j in N there is anon-directed path between i and j in g.A network g0 is a copy of g if there exists a permutation � of N suchthat g0 = g�:Speci�c Network StructuresA network g is a star if there is i such that gkl = 1 only if i 2 fk; lg.That is, a star is a network in which all connections involve a central nodei. A network g is a k-person wheel if there is a sequence of players fi1; : : : ; ikgsuch that gk1 = gijij+1 = 1 for all j = 1; : : : ; k� 1, and gij = 0 otherwise.Value FunctionsA value function v : G ! IR, assigns a value v(g) to each network g.The set of all value functions is denoted V .In some applications the value of a network is an aggregate of individualutilities or productions, so that v(g) =Pi ui(g) for some pro�le of ui : G!IR. The concepts above are illustrated in the context of the following exam-ples.Example 1. The Directed Connections Model.4The value function vd(�) is the sum of utility functions (ui(�)'s) thatdescribe the bene�t (net of link costs) that players obtain from direct andindirect communication with others. Each player has some information thathas a value 1 to other players.5 The factor � 2 [0; 1] captures decay ofinformation as it is transmitted. If a player i has gij = 1, then i obtains � in4This model is considered by Bala and Goyal (1999), and is also related to a modelconsidered by Goyal (1993). The name re
ects the relationship to the non-directed \con-nections model" discussed in Jackson and Wolinsky (1996).5Bala and Goyal consider a value V . Without loss of generality this can be normalizedto 1 since it is the ratio of this V to the cost c that matters in determining properties ofnetworks, such as identifying the e�cient network or considering the incentives of playersto form links. 6



value from communication with j. There are di�erent interpretations of thiscommunication: sending or receiving. Player i could be getting value fromreceiving information that i has accessed from j (e.g., contacting j's website), or it could be that i is getting value from sending j information (e.g.,mailing research papers or advertising). In either case, it is i who incurs thecost of communication and is bene�ting from the interaction. If the shortestdirected path between i and j contains 2 links (e.g., gik = 1 and gkj = 1),then i gets a value of �2 from the indirect communication with j. Similarly,if the shortest directed path between i and j contains m links, then i gets avalue of �m from the indirect communication with j. If there is no directedpath from i to j, then i gets no value from communication with j.Note that information only 
ows one way on each link. Thus, j gets novalue from the link gij = 1. This also means that i gets no value from j ifthere is exists a non-directed path between i and j, but no directed pathfrom i to j.Player i incurs a cost c > 0 of maintaining each direct link. Player i canbene�t from indirect communication without incurring any cost beyond i'sdirect links.Let N(i; g) denote the set of players j for which there is a directed pathfrom i to j. For i and any j 2 N(i; g), let d(ij; g) denote the number of linksin the minimum-length directed path from i to j. Let nd(i; g) = #fj j gij =1g represent the number of direct links that i maintains. The function uican be expressed as6 ui(g) = Xj2N(i;g) �d(ij;g) � nd(i; g)c:Then vd(g) =Pi ui(g).Example 2. The Hybrid Connections Model.Consider a variation on the directed connections model where playersstill form directed links, but where information 
ows both ways along anylink. This model is studied in Bala and Goyal (1999), who mention telephonecalls as an example of such communication. One player initiates the linkand incurs the cost, but both share the communication bene�ts (or losses).Another example that would �t into this hybrid model would be physicalconnections on a computer network like the internet. A player (who may be6Player i gets no value from his or her own information. This is simply a normalizationso that the value of the empty network is 0.7



an individual, a university, company, or some other collection of users) incursthe cost for connecting to a network, and then others already interconnectedcan communicate with the player.Let N(i; g) denote the set of players j for which there is a non-directedpath between i and j. For i and any j 2 N(i; g), let d(ij; g) denote thenumber of links in the minimum-length non-directed path from i to j. Thefunction ui can be expressed asui(g) = Xj2N(i;g) �d(ij;g) � nd(i; g)c;and vh(g) =Pi ui(g).Strong E�ciencyA network g � gN is strongly e�cient if v(g) � v(g0) for all g0 � gN .The term strong e�ciency indicates maximal total value, rather thana Paretian notion.7 Of course, these are equivalent if value is transferableacross players. In situations where Y represents a redistribution, and not aprimitive utility, then implicitly value is transferable and strong e�ciency isan appropriate notion.Allocation FunctionsAn allocation rule Y : G� V ! IRN describes how the value associatedwith each network is distributed to the individual players.Yi(g; v) is the payo� to player i from graph g under the value functionv. In the directed connections model (without any redistribution) Yi(g; v) =ui(g), so that players obtain exactly the utility of their communication. Thede�nition of an allocation rule, however, also allows for situations whereYi(g; v) 6= ui(g), so that transfers or some redistribution is considered.Anonymity of a Value Function:A value function v is anonymous if v(g�) = v(g) for all g and �.7The term strong e�ciency is used by Jackson and Wolinsky (1996), Dutta and Mu-tuswami (1997), and Jackson and Watts (1998). This is referred to as e�ciency by Balaand Goyal (1999). We stick with the term strong e�ciency to distinguish the notion fromPareto e�ciency. 8



Anonymity of a value function states that the value of a network dependsonly on the pattern of links in the network, and not on the labels of theplayers who are in given positions in the network.Anonymity of an Allocation Function:For any value function v and permutation of players �, let the valuefunction v� be de�ned by v�(g�) = v(g) for each g.An allocation rule Y is anonymous relative to a network g and value func-tion v if, for any permutation �, Y�(i)(g�; v�) = Yi(g; v). Y is anonymous,if it is anonymous relative to each network g and value function v.Anonymity of an allocation rule states that if all that has changed is thenames of the agents (and not anything concerning their relative positionsor production values in some network), then the allocations they receiveshould not change. In other words, the anonymity of Y requires that theinformation used to decide on allocations be obtained from the value functionv and the particular network g, and not from the label of a player.Note that anonymity of an allocation rule implies that individuals whoare in symmetric positions in a network are assigned the same allocation, ifthe underlying v is anonymous, but not necessarily otherwise.8 For instanceif g is such that g12 = g21 = 1 and gij = 0 for all other ij, then provided vis anonymous9 it follows that Y1(g; v) = Y2(g; v).Balance and Component Balance:An allocation rule Y is balanced if Pi Yi(g; v) = v(g) for all value func-tions v and networks g.A stronger notion of balance, component balance, requires Y to allocateresources generated by any component to that component.A value function v is component additive if v(g) =Ph2C(g) v(h) for eachnetwork g.108This is the only implication of anonymity that is needed to establish the negativeresults in what follows.9More explicitly, for this network the conclusion follows if v�(12) = v, where �(12)is the permutation such that 1 and 2 are switched and all other players are mapped tothemselves.10This de�nition implicitly requires that the value of disconnected players is 0. Thisis not necessary. One can rede�ne components to allow a disconnected player to be acomponent. One has also to extend the de�nition of v so that it assigns values to suchcomponents. 9



An allocation rule Y is component balanced if Pi2N(h) Yi(g; v) = v(h)for every g 2 G and h 2 C(g) and component additive v 2 V .Component balance requires that the value generated by a given com-ponent be redistributed only among the players in that component. It isimportant that the de�nition of component balance only applies when v iscomponent additive. Thus, it is only required to hold when there are noexternalities across components.Outsiders:A stronger version of component balance turns out to be important inthe context of directed networks. The following de�nition of outsider isimportant in that de�nition and outsider independence.A player i is an outsider of a network g if(i) gij = 1 for some j 2 N(g),(ii) gki = 0 for all k 2 N(g), and(iii) for every j 6= i, j 2 N(g), there exists k 6= i with k 2 N(g) such thatgkj = 1.Thus, an outsider is a player who has linked to some other players ina network, but to whom no other player has linked. Furthermore, a playeris considered an outsider only when all other players in the network havesomeone (other than the outsider) linked to them, so the outsider is notimportant in connecting anyone else to the network. This last conditionavoids the trivial case of calling player 1 an outsider in the network g whereg12 = 1 and gij = 0 for all other ij. It also implies that there is at most oneoutsider to a network.Directed Component Balance:Let g � i denote the network obtained from network g by deleting eachof player i's links, but not the links from any player j 6= i to player i. Thatis, (g � i)ij = 0 for all j, and (g � i)k = gk whenever k 6= i.The allocation rule Y satis�es directed component balance if it is com-ponent balanced, and for any component additive value function v, networkg, and outsider i to g, if v(g) = v(g � i), then Y (g) = Y (g � i).The situation covered by directed component balance but not by compo-nent balance is one where a single player i is initially completely unconnected10



under g� i, then connects to some other players resulting in g, but does notchange the value of the network. The directed component balance conditionrequires that the allocation rule not change due to the addition of such anoutsider. This directed version of component balance is in the same spiritas component balance. The reasoning is that a player who unilaterally linksup to a component whose members are already interconnected, and whodoes not change the productive value of the network in any way, e�ectivelyshould not be considered to be part of that component for the purposes ofallocating productive value.Network Formation and Individual StabilityLet Di(g) = fg0jg0j = gj8j 6= ig. These are the networks that i can reachfrom g by a unilateral change in strategy.A network g is individually stable relative to Y and v if Yi(g0; v) � Yi(g; v)for all g0 2 Di(g). 11The idea of individual stability is quite straightforward. A network is in-dividually stable if no player would bene�t from changing his or her directedlinks. The set of individually stable networks corresponds to the networksthat are pure strategy Nash equilibrium outcomes of a link formation gamewhere each player simultaneously writes down the list of players who he orshe will link to, and those links are then formed. 123 Individual Stability and Strong E�ciencyTheorem 1 If N � 3, then there is no Y which satis�es anonymity anddirected component balance and is such that for each v at least one stronglye�cient graph is individually stable.Proof: Let N = 3 and consider any Y which satis�es anonymity and di-rected component balance. The theorem is veri�ed by showing that thereexists a v such that no strongly e�cient graph is individually stable.11This notion is called `sustainability' by Bala and Goyal (1999). The term stability isused to be consistent with a series of de�nitions from Jackson and Wolinsky (1996) andDutta and Mutuswami (1997) for similar concepts with non-directed graphs.12This link formation process is a variation of the game de�ned by Myerson (1991, page448). Similar games are used to model link formation by Qin (1996), Dutta, van denNouweland and Tijs (1998), Dutta and Mutuswami (1996), and Bala and Goyal (1999).11



Let g be such that g12 = g23 = g31 = 1 and all other gij = 0, and g0 besuch that g013 = g032 = g021 = 1 and all other g0ij = 0. Thus, g and g0 are the3-person wheels.Let v be such that v(g) = v(g0) = 1 + � and v(g00) = 1 for any othergraph g00. Therefore, the strongly e�cient networks are the wheels, g andg0. Consider g00 such that g0012 = g0021 = 1 and all other g00ij = 0.It follows from anonymity and component balance that Y1(v; g00) =Y2(v; g00) = 1=2:It follows from directed component balance that Y1(v; g00+31) = Y2(v; g00+31) = 1=2:It follows from anonymity and balance that Y1(g; v) = Y2(g; v) = Y3(g; v) =1+�3 :Consider the strategy pro�le leading to g in the link formation game. If� < 1=6, then this strategy pro�le is not a Nash equilibrium, since player 2will bene�t by deviating and adding 21 and deleting 23. (Notice that g00+31is obtained from g by adding 21 and deleting 23.) A similar argument showsthat the strategy pro�le leading to g0 in the link formation game does notform a Nash equilibrium. The case of N > 3 is easily handled by extendingthe above v so that components with more than three players have no value.The proof of Theorem 1 necessarily follows a di�erent line of reasoningfrom the proof of the analogous theorem for the non-directed case in Jacksonand Wolinsky (1996). This re
ects the di�erence between individual stabil-ity in the directed setting and pairwise stability in the non-directed settingthat naturally arises due to the possibility of unilateral link formation inthe directed network context. In the proof here, the problematic e�cientnetwork is an anonymous one and the contradiction is reached via a com-parison to the network g00 which makes use of directed component balance.In the non-directed case, the proof examines a situation where the e�cientnetwork is not anonymous, and reaches a contradiction via comparisons toanonymous super- and sub-networks. The di�erence between the directedand non-directed settings is further explored below.For the case of non-directed networks, one of the main points of Duttaand Mutuswami's (1997) analysis is that one can weaken anonymity to re-quire that it only hold on stable networks and thereby overcome the incom-patibility between e�ciency and stability noted by Jackson and Wolinsky(1996). This is based on an argument that one is normatively less con-cerned with what occurs on unstable networks (out of equilibrium), pro-12



vided one expects to see stable networks form. So Dutta and Mutuswamiuse non-anonymous rewards and punishments out of equilibrium to supportan anonymous stable allocation. It can be shown, however, that in the non-directed case there is no Y that is component balanced and for which astrongly e�cient network is pairwise stable,13 as are all anonymous permu-tations of that network when v is anonymous. (This follows from Theorem1' and its proof in the appendix of Jackson and Wolinsky (1996).) The impli-cation of this is that in order to have at least one strongly e�cient networkbe pairwise stable and satisfy component balance, it can be that only oneof the strongly e�cient networks is pairwise stable even though anonymouspermutations of it are also strongly e�cient. Thus, pairwise stability mayapply just to a speci�c e�cient network with players in a �xed relationship(and not to a network structure). For example, in certain contexts one canconstruct a component balanced allocation rule for which a star with player1 at the center is strongly e�cient and pairwise stable, but one cannot atthe same time ensure that a star with player 2 at the center is also pair-wise stable even though it generates exactly the same total productive valueas the star with player 1 at the center, and thus is also strongly e�cient.14 This may not be objectionable, as long as one can at least ensure ananonymous set of payo�s to players, as Dutta and Mutuswami do. But thefact that only speci�c e�cient networks can be supported, and not a givene�cient network structure, gives a very precise idea of the extent to whichanonymity must be weakened in order to reconcile e�ciency and stabilityin the face of component balance. This is stated in the context of directednetworks as follows.Theorem 2 If N � 3, then there is no Y that satis�es anonymity relative toindividually stable networks, directed component balance, has an anonymousset of individually stable networks when v is anonymous,15 and is such thatfor each v at least one strongly e�cient networks is individually stable.Proof: Let N = 3 and consider any Y which satis�es anonymity on individ-ually stable networks, directed component balance, has an anonymous set13In the context of non-directed networks it takes the consent of two individuals to forma link. Pairwise stability requires that no individual bene�t from severing one link, andno two individuals bene�t (one weakly and one strictly) from adding a link. A precisede�nition is given in Jackson and Wolinsky (1996).14Again, see the proof of Theorem 1' in the appendix of Jackson and Wolinsky (1996).15g� is individually stable whenever g, for any permutation �.13



of stable networks when v is anonymous. The theorem is proven by showingthat there exists a v such that no strongly e�cient network is individuallystable.Consider g, g0, g00, and v from the proof of Theorem 1. Suppose thecontrary, so that either g or g0 is individually stable. Since v is anonymousand g and g0 are anonymous permutations of each other, it follows that bothg and g0 are individually stable.Thus, anonymity on individually stable networks and balance that Y1(g; v) =Y2(g; v) = Y3(g; v) = 1+�3 and likewise that Y1(v; g0) = Y2(v; g0) = Y3(v; g0) =1+�3 :Also, it follows from directed component balance that Y (v; g00 + 31) =Y (v; g00) and that Y (v; g00+ 32) = Y (v; g00).Case 1: Y1(v; g00) � 1=2. Consider the strategy pro�le leading to g0 inthe link formation game. If � < 1=6, then this strategy pro�le is not aNash equilibrium, since player 1 will bene�t by deviating and adding 12 anddeleting 13 (which results in g00+ 32). This is a contradiction.Case 2: Y2(v; g00) > 1=2. Consider the strategy pro�le leading to g inthe link formation game. If � � 1=6, then this strategy pro�le is not aNash equilibrium, since player 2 will bene�t by deviating and adding 21 anddeleting 23 (which results in g00+ 31). This is a contradiction.By component balance, these two cases are exhaustive.4 OutsidersWe consider next, a condition that states one cannot shift too much valueto an outsider: no more than their marginal contribution to the network. Areason for exploring the role of outsiders in detail is that the value functionused in the proof of Theorems 1 and 2 is special. In particular, several net-works all have the same value even though their architectures are di�erent.Moreover, that fact is important to the application of directed componentbalance in the proof of Theorems 1 and 2. This reliance on speci�c valuefunctions is really only due to the weak way in which outsiders are addressedin directed component balance. If directed component balance is replaced bythe following outsider independence condition which is more explicit aboutthe treatment of outsiders, then the results of Theorems 1 and 2 hold foropen sets of value functions.Outsider Independence 14



An allocation rule Y satis�es outsider independence if for all g 2 G andv 2 V and i 2 N(g) who is an outsider of g such that v(g) � v(g � i), thenYj(g; v)� Yj(g � i; v) for each j 6= i.Outsider independence states that an outsider obtains at most her marginalcontribution to the value of a network. The idea is that if a set of playershas formed a network, and cannot prevent an outsider from linking to it,then the players should not su�er because of the outsider's actions. Such acondition is clearly satis�ed in the directed connections model, and in anysetting where the outsider's actions have no externalities.Outsider independence is only required to hold in situations where theoutsider's presence does not decrease the value of the network. Normatively,one might argue for it more generally.Theorem 3 If N � 3, there is an open subset16 of the anonymous valuefunctions for which any Y that satis�es anonymity on individually stablenetworks, component balance, and outsider independence, and has an anony-mous set of individually stable networks when v is anonymous, cannot haveany strongly e�cient network be individually stable.The proof of Theorem 3 is a straightforward extension of the proofs ofTheorems 1 and 2 and therefore is omitted.It is easily seen that Theorems 1, 2, and 3 are tight in that droppinganonymity invalidates the results. For example, let Y be the equal split ofvalue within components rule as de�ned below. Let Y by picking a stronglye�cient g�, and let Y (g; v) = Y (v; g�). For any such that gj = g�j for allj 6= i for some i, set Yi(g; v)� Y i(v; g�), set Yj(g; v) = Y j(g; v) for j =2 N(hi)where hi is the component of g containing i, and let Yj(g; v) = v(hi)�Yi(g;v)#N(hi)�1for j 2 N(hi), j 6= i. For any other g set Y (g; v) = Y (g; v).Next, we show that weakening directed component balance or ignoringoutsider independenceinvalidates Theorems 1, 2, and 3. If value can beallocated to outsiders without regards to their contribution to the value of anetwork, then it is possible to sustain e�cient networks as being individuallystable.Theorem 4 There exists an allocation rule Y that is anonymous, com-ponent balanced and such that for each v there is some strongly e�cientnetwork that is individually stable.16Given that the set of networks G is a �nite set, a value function can be representedas a �nite vector. Here, open is relative to the subspace of anonymous value functions.15



Theorem 4 shows that there are important di�erences between the di-rected and non-directed network contexts. In the directed case it is alwayspossible for any player unilaterally to become part of a network. If the allo-cation rule can shift value to outsiders, even when they contribute nothingto the value of a network, then one can overcome the di�culties imposed bycomponent balance.The proof of Theorem 4 is constructive and appears in the appendix.Here, we provide some intuition underlying the constructive proof.Let Y be an allocation rule that we are designing to support a givenstrongly e�cient network g� as individually stable. So, it must be that forall i, Yi(g�; v) � maxg2Di(g) Yi(g; v). At the same time we need to makesure that Y is anonymous and component balanced. To get a feeling for theimpact of those restrictions, consider the following example.Example 3. There are 5 players. The value function v is anonymous.A strongly e�cient network g� is such that g�12 = g�23 = g�34 = g�45 = 1 andg�ij = 0 for other ij. So, g� is a directed line. Suppose that v(g�) = 5 andthat v(g) = 5 if g is a copy of g�.Let us consider the restrictions on Y imposed by anonymity, componentbalance, and guaranteeing that g� is individually stable.First, player 5 can deviate from g� by adding the link 51, to result in thenetwork g�+ 51. Let us denote that network as g5. So, g5 is a wheel. Sincea wheel is symmetric, it must be that Y5(g5; v) = v(g5)=5. Then, to ensurethat g� is individually stable, we need to have Y5(g�; v) � v(g5)=5.Next, player 4 can deviate from g� by deleting link 45 and adding link 41.The resulting network, denoted g4 is a four person wheel. Here, to ensurethat g� is individually stable and Y is anonymous and component balanced,we need to have Y4(g�; v) � v(g4)=4.Also, player 3 can deviate from g� by deleting link 34 and adding link 31.The resulting network, denoted g3 is a three person wheel among 1,2, and 3,together with the extra link 45. Here, to ensure that g� is individually stableand Y is anonymous and component balanced, we need to have Y3(g�; v) �v(h3)=3, where h3 is the three person wheel among 1, 2, and 3.There is a similar requirement for player 2. These requirements are dif-ferent for di�erent players, and so an allocation rule that simply equallysplits value does not work. The proof involves showing that these require-ments can all be satis�ed simultaneously, and that the type of requirementsarising in this example are those arising more generally and can always behandled. 16



5 E�ciency and the Connections ModelsThe above results indicate that in order to �nd an allocation rule that recon-ciles individual stability and strong e�ciency in general, in some cases oneneeds to allocate some value to non-productive outsiders. However, thereare still interesting settings where strong e�ciency and individual stabilitycan be reconciled, while preserving anonymity, directed component balance,and outsider independence. We explore some such settings here.Given a value function v and a set K � N , let g�v(K) be a selection of astrongly e�cient network restricted to the set of players K (so N(g�(K)) �K). If there is more than one such strongly e�cient network among theplayers K, then select one which minimizes the number of players in N(g).A value function v has non-decreasing returns to scale if for any K 0 �K � N v(g�v(K))#N(g�v(K)) � v(g�v(K 0))#N(g�v(K 0)) :If a value function has non-decreasing returns to scale, then per-capitavalue of the e�cient network is non-decreasing in the number of individualsavailable. This does not imply anything about the structure of the e�cientnetwork, except that larger groups can be at least as productive per capitain an e�cient con�guration as smaller groups. As we shall see shortly, it issatis�ed by some natural value functions.Theorem 5 If a component additive value function v has nondecreasingreturns to scale, then there exists an allocation rule Y satisfying anonymity,directed component balance and outsider independence for which at least onestrongly e�cient networks is individually stable relative to v.The proof of Theorem 5 is given in the appendix.The proof of Theorem 5 relies on the following allocation rule bY , whichis a variant on a component-wise egalitarian rule Y . Such a rule is attractivebecause of its strong equity properties. To be speci�c, de�ne Y as follows.Consider any g and a component additive v. If i is in a component h of g(which is by de�nition necessarily non-empty), then Y i(g; v) = v(h)#N(h) , and ifi is not in any component then Y i(g; v) = 0. For any v that is not componentadditive, let Yi(g; v) = v(g)N for all i. Y is a component-wise egalitarian rule,and is component balanced and anonymous. It divides the value generatedby a given component equally among all the members of that component,provided v is component additive (and divides resources equally among all17



players otherwise). It is shown in the appendix that under non-decreasingreturns to scale, all strongly e�cient networks are individually stable relativeto Y .Unfortunately, Y does not always satisfy outsider independence. Forinstance, in the directed connections model it fails outsider independencefor ranges of values of � and c.17 However, a modi�cation of Y results inthe allocation rule bY that satis�es anonymity, directed component balance,outsider independence, and for which all strongly e�cient networks are in-dividually stable for v's that have non-decreasing returns to scale. Themodi�ed allocation rule bY is de�ned as follows. For any v and stronglye�cient network g�, set bY (g�; v) = Y (g�; v). For any other g: if g hasan outsider i then set bYj(g; v) = max[Y j(g � i; v); Y j(g; v)] for j 6= i andbYi(g; v) = v(g) � Pj 6=i bYj(g; v); and otherwise set bY (g; v) = Y (g; v). Asthere is at most one outsider to a network, bY is well-de�ned.Both the directed connections and hybrid connections models have non-decreasing returns to scale:Proposition 1 The directed and hybrid connections models (vd and vh)have non-decreasing returns to scale. Thus, all strongly e�cient networksare individually stable in the connections models, relative to the anonymous,directed component balanced and outsider independent allocation rule bY .The re-allocation of value under bYi compared with udi and uhi is importantto Proposition 1. Without any re-allocation of value, in both the directedand hybrid connections models the set of individually stable and stronglye�cient networks do not intersect for some ranges of parameter values. Forinstance, Bala and Goyal (1999) show in the context of the directed con-nections model that if N = 4 and � < c < � + �2 � 2�3, then stars and\diamonds"18 are the strongly e�cient network structures, but are not in-dividually stable. Similarly, in the context of the hybrid connections modelif N = 4 and � + 2�2 < c < 2� + 2�2 then a star19 is the strongly e�cient17For example, let N = 4, � < 1=4 and c be close to 0 in the directed connections model.Consider the network where g12 = g13 = g21 = g31 = 1. Adding the link 41 results inY 1(g + 41; vd) < Y 1(g; vd) even though 4 is an outsider to g.18For instance a star with 1 at the center has g12 = g13 = g14 = g21 = g31 = g41 = 1,while a diamond has g12 = g13 = g21 = g23 = g32 = g41 = 1.19Here, given the two-way communication on a directed link, g31 = g21 = g41 wouldconstitute a star, as would g13 = g12 = g14, etc.18



network structure but is not individually stable. As Proposition 1 shows,reallocation of value under bY overcomes this problem.Let us make a couple of additional remarks about the result above. First,anonymity of bY implies that the set of individually stable networks will be ananonymous set, so that all anonymous permutations of a given individuallystable network are also individually stable. Second, in situations wherec > � (in any of the connections model) the empty network is individuallystable relative to bY , even though it is not strongly e�cient. The di�cultyis that a single link generates negative value and so no player will want toadd a link (or set of links) given that none exist. It is not clear whetheran anonymous, component balanced, and outsider independent Y exists forwhich the set of individually stable networks exactly coincides with the setof strongly e�cient networks (when c > �) in these connections models.Such a Y would necessarily involve careful subsidization of links, in somecases violating individual rationality constraints.
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AppendixFor each i, let H i(g) = fhijhi 2 C(gi); i 2 N(hi); gi 2 Di(g)g.Let n�1d (i; g) = #fj jgji = 1g represent the number of individuals whomaintain a link with i.We begin by stating some Lemmas that will be useful in some of theproofs that follow.We are most grateful to Anna Bogomolnaia who provided the proof ofLemma 1.Lemma 1 Let fa1; : : : ; ang be any sequence of nonnegative numbers suchthat Pk2S ak � an for any S � f1; : : : ; ng such that Pk2S k � n. Then,nXi=1aii � an: (1)Proof:: We construct a set of n inequalities whose sum will be the left handside of (1). We label the i-th inequality in this set as (i0).First, for each i, let (ri; ji) be the unique pair such that: n = rii+ ji, riis some integer, and 0 � ji < i.For each i > n2 , write inequality (i0) asaii + an�ii � ani (2)(Here, we adopt the convention that a0 = 0.)Now, consider any i � n2 , and suppose all inequalities from (n0) to (i+ 10)have been de�ned. Let Hi be the sum of the coe�cients of ai in inequalities(n0) to (i+ 10). Let us now show that hi = 1i �Hi � 0.Claim: For each i � n2 ; hi � 0.Proof of Claim: First, we prove that#fq is an integer jqj + i = n for j being an integer; i < qg � n� ii (3)Let P = n � i, and note that for j being an integer, #fqjq > i; P = jqg =#fPj jPj > i; P = jqg = #fPj jPi > j; P = jqg = #fjjPi > j; P = jqg =#fj : Pi > jg � Pi .So, each i appears in at most (n�i)i inequalities. Choose q > i such thatqrq + i = n. Then, from (3), the coe�cient of ai in (q0) is hqrq . Note thatsince Hq = 1q �hq � 0, we must have 1q � hq. Hence, hqrq � 1qrq = 1n�i . Using(4), we get Hi � (n�ii )( 1n�i) = 1i . 21



This completes the proof of the claim.By (1) it follows that that riai + aji � an. Thus, write (i0) ashiai + hiri � hiri an (4)Note that by construction, the sum of the coe�cients of ai in inequalities(n0) to (i0) equals Hi + hi = 1i , and that ai does not �gure in any inequality(k0) for k < i. So, we have proved that the sum of the left hand side of theset of inequalities (i0) equals the left hand side of (1).To complete the proof of the lemma, we show that the sum of the righthand side of the inequalities (i0) is an expression that must be less than orequal to an. The right hand side of the sum of the inequalities (i0) is of theform Can, where C is independent of the values fa1; : : : ; ang. Let ai = infor all i. Then the inequalities (i0) hold with equality. But, this establishesthat C = 1 and completes the proof of the lemma.For any g, let D(g) = [iDi(g).Let X(g; g0) = fij9g00 2 Di(g) s:t: g00 is a copy of g0g:So, X(g; g0) is the set of players who via a unilateral deviation can changeg into a copy of g0.Say that S � N is a dead end under g 2 G if for any i and j in S, i 6= j,there exists a directed path from i to j, and for each k 62 S gik = 0 for eachi 2 S.For any g and i 2 N(g), either there is a directed path from i to a deadend S under g, or i is a member of a dead end of g. (Note that a completelydisconnected player forms a dead end.)Observation Suppose that fS1; : : : ; S`g are the dead ends of g 2 G. Con-sider i and g0 such that g0 2 Di(g). If i =2 Sk for any k, then Sk is still adead end in g0. If i 2 Sk for some k, and i has a link to some j =2 Sk underg0, then fS1; : : : ; S`g n fSkg are the dead ends of g0.To see the second statement, note that there exists a path from everyl 2 Sk, l 6= i to i, and so under g0 all of the players in Sk have a directedpath to j. If j is in a dead end, then the statement follows. Otherwise, thereis a directed path from j to a dead end, and the statement follows.Lemma 2 Consider a player l, g0 2 G, g 2 Dl(g0) and corresponding hl 2C(g) such that N(hl) � X(g; g0). If C(g) 6= C(g0), then there exists adirected path from any i 2 N(hl) to any j 2 N(hl).22



Proof of Lemma 2: Let Z = N nN(h). Consider i 2 N(h) and supposethat g0 2 Di(g). Let S1; : : : ; S` be the dead ends of g. If i is in a dead endSk under g, then since C(g) 6= C(g0), i must be linked to some player in Zunder g0. (Note that since i is in a dead end, there is a directed path fromevery player in Sk to i, and so i can only change the component structure ofg by adding a link to a player outside of Sk.) >From the observation above,it then follows that fS1; : : : ; S`g n fSkg are the dead ends of g0.Suppose the contrary of the lemma. This implies that there is a deadend of g, Sk � N(h), and fi; jg � N(h) such that i =2 Sk and j 2 Sk. >Fromthe Observation it follows that if gi 2 Di(g) is a copy of g0, then g0 has atleast ` dead ends. However, if gj 2 Dj(g) is a copy of g0, then from thearguments above it follows that gj has at most `�1 dead ends. This impliesthat gi and gj could not both be copies of g0. This is a contradiction of thefact that N(h) � X(g; g0).Lemma 3 Suppose g0 is connected. Choose any i; j 2 N(g0) with i 6= j, andtake gi 2 Di(g0), gj 2 Dj(g0), and corresponding hi 2 C(gi) and hj 2 C(gj).If N(hi) and N(hj) are intersecting but neither is a subset of the other, thenN(hi) 6� X(gi; g0) and N(hj) 6� X(gj; g0).Proof of Lemma 3: Suppose to the contrary of the Lemma that, say,N(hi) � X(gi; g0).Consider the case where j =2 N(hi). By Lemma 2, for any k 2 N(hi)with k 6= i, there is a directed path from k to i in hi. Since g0l = hil = hjl forall l 6= i; j, this must be a directed path in hj as well. Hence, i 2 N(hj). Bythis reasoning, there is a directed path from every l 2 N(hi) n fig to i in hi,and hence in hj . So, N(hi) is then a subset of N(hj), which contradicts thesupposition that N(hi) and N(hj) are intersecting but neither is a subset ofthe other.So, consider the case where j 2 N(hi). We �rst show that i 2 N(hj).Since N(hj) is not a subset of N(hi), there exists k 2 N(hj) with k =2 N(hi).Since k =2 N(hi), the only paths (possibly non-directed) connecting j and kin g0 must pass through i. Thus, under g0 there is a path connecting i tok that does not include j. So, since k 2 N(hj), it follows that i 2 N(hj).Next, for any l 2 N(hi)nfig, by Lemma 2 there is a directed path from l to iin hi. If this path passes through j, then there is a directed path from l to jin g0 (not passing through i) and so l 2 N(hj). If this path does not involvej, then it is also a path in hj . Thus, l 2 N(hj) for every l 2 N(hi) n fig.23



Since i 2 N(hj), we have contradicted the fact that N(hi) is not a subset ofN(hj) and so our supposition was incorrect.Lemma 4 Consider i, g and g0, with g 2 Di(g0), and hi 2 C(g) such thati 2 N(hi).20 If N(hi) � X(g; g0), then N(hi) � N(h0) for some h0 2 C(g0).Proof of Lemma 4: Suppose the contrary, so that there exists j 2 N(hi)with j =2 N(h0), where i 2 N(h0) and h0 2 C(g0). Note, this implies thatC(g) 6= C(g0). Either j is a dead end under g, or there is a path leadingfrom j to a dead end under g. So, there exists a dead end S in hi with i =2 S.This contradicts lemma 2.Proof of Theorem 4: If v 2 V is not component additive, then the alloca-tion rule de�ned by Yi(g; v) = v(g)=N for each player i and g 2 G satis�esthe desired properties. So, let us consider the case where v is componentadditive.Fix a v and pick some network g� that is strongly e�cient. De�ne Y �relative to v as follows.21Consider g 2 D(g�). For any i, let hi 2 C(g) be such that i 2 N(hi).If i 2 X(g; g�), let Y �i (g; v) = Y i(g; v) ifN(hi) � X(g; g�) and Y �i (g; v) =0 otherwise.If i =2 X(g; g�), let Y �i (g; v) = v(hi)#fjjj2N(hi);j =2X(g;g�)g .Let ri = maxg2Di(g�)Y �i (g; v).Claim: Xj2N(h�)rj � v(h�) for each h� 2 C(g�).We return to prove the claim below.Set Y �i (g�; v) = ri + v(h�i)�Pj2N(h�i) rj#N(h�i) . Set Y � on g� which is a copy ofg 2 D(g�) [ fg�g according to anonymity, whenever v(g�) = v(g). For allremaining g, set Y �(g; v) = Y (g; v).By the de�nition of Y �, Y �i (g�; v) � maxg2Di(g�) Y �i (g; v) for all i 2N(g�). Hence, g� is individually stable. Also Y � is component balanced andanonymous.To complete the proof, we need only verify the claim.20Adopt the convention that a disconnected player is considered their own component.21To ensure anonymity, work with equivalence classes of v with v� for each � de�nedvia the anonymity property. 24



Proof of Claim: By the de�nition of ri it follows that ri > 0 only ifN(hi) � X(g; g�). By Lemma 4, this implies that N(hi) � N(h�) for someh� 2 C(g�).For each h� 2 C(g�), let I(h�) = fi 2 N(h�)jri > 0g: For each i 2I(h�), let �hi be such that ri = v(�hi)#N(�hi) . Then, the argument in the previousparagraph establishes that each �hi is such that N(�hi) � N(h�). Hence,applying lemma 3 to h�, the set f�hi j i 2 I(h�)g can be partitioned intofH1; : : : ; Hkg such that(i) Each �hi in H1 is disjoint from every other �hj 2 I; j 6= i.(ii) For all k = 2; : : :K; Hk = fh1; : : : ; h`g is such that N(�h1) � N(�h2) �� � �N(�h`), and elements in Hk are disjoint from elements in Hk0 if k 6= k0.De�ne � = v(g)� X�hi2H1v(�hi):Since g� is strongly e�cient, v(h�) � v(h) for all h such that N(h) �N(h�). Now, one can use Lemma 1 and the fact that v is component additive,to deduce that there are numbers f�2; : : : ;�Kg such that(i) KXk=2�k � �.(ii) For each k = 2; : : : ; K;�k � X�hj2Hk v(�hj)#N(�hj) :These inequalities prove the claim.Proof of Theorem 5:bY satis�es anonymity by de�nition. Since an outsider is necessarilyunique, bY satis�es directed component balance, and outsider independencerelative to any g 6= g�. These conditions relative to g�, follow from the claimbelow.Fix a component additive v that has non-decreasing returns to scale. Wenow show that g�v(N) is individually stable relative to bY .The following claim is useful.Claim: Consider any component additive v that has non-decreasing returnsto scale. If g is a component of g�v(N), then for any g0v(g)#N(g) � v(g0)#N(g0) :25



Proof of Claim: Note thatv(g�v(N))#N(g�v(N)) = Ph2C(g�v(N)) v(h)Ph2C(g�v(N))#N(h) :By non-decreasing returns,Ph2C(g�v(N)) v(h)Ph2C(g�v(N))#N(h) � v(h0)#N(h0)for each h0 2 C(g�v(N)). Thus,Xh2C(g�v(N));h6=h0 v(h) � Ph2C(g�v(N));h6=h0 #N(h)#N(h0) v(h0): (5)Also, by non-decreasing returns,Ph2C(g�v(N)) v(h)Ph2C(g)#N(h) � Ph2C(g�v(N));h6=h0 v(h)Ph2C(g�v(N));h6=h0 #N(h) ;for each h0 2 C(g�v(N)). Thus,v(h0) � #N(h0)Ph2C(g�v(N));h6=h0 #N(h) Xh2C(g�v(N));h6=h0 v(h); (6)for each h0 2 C(g�v(N)). Inequalities (5) and (6) then imply thatv(h0)#N(h0) = v(g�v(N))#N(g�v(N)) :for every h0 2 C(g�v(N)). The desired conclusion then follows from non-decreasing returns.Consider g�(N) and some deviation by a player i, resulting in the networkg��i(N); gi. It then follows from the claim that Y i(g�(N)) � Y i(g��i(N); gi)and Y i(g�(N)) � Y i((g��i(N); gi) � j) for any j. Thus, if i is not an out-sider at g��i(N); gi, then from the de�nition of bY it follows that bYi(g�(N)) �bYi(g��i(N); gi). If i is an outsider at g��i(N); gi, then from the de�nition of bY ,Y i(g��i(N); gi) � bYi(g��i(N); gi). So, bYi(g�(N)) = Y i(g�(N)) � Y i(g��i(N); gi) �bYi(g��i(N); gi). Thus, g�v(N) is individually stable.Proof of Proposition 1 The following claim is stronger than the statedproperty. 26



Claim Fix � and c. If g�(K) is any strongly e�cient network with anumber22 K players relative to the directed connections model, and g isany network with K � #N(g) > 0, then vd(g�(K))K � vd(g)#N(g) . The same istrue of the hybrid connections model, substituting vh for vd.Proof of the Claim: It is clear that vd(g�(K))K � 0 (vh(g�(K))K � 0), sincethe empty network is always feasible. The claim is established by showingthat for each K > 2, vd(g�(K))K � vd(g�(K�1))K�1 , (and vh(g�(K))K � vh(g�(K�1))K�1 ),where g�(K) denotes any selection of a strongly e�cient network with Kplayers. This implies the claim.First, consider the directed connections model. Consider K players, withplayers 1; : : : ; K � 1 arranged as in g�(K � 1). If g�(K � 1) is empty, thenthe claim is clear. So suppose that g�(K � 1) is not empty and consideri 2 N(g�(K � 1)) such that ui(g�(K � 1)) � uj(g�(K � 1)) for all j 2N(g�(K � 1)), where ui is as de�ned in Example 1. Thus, ui(g�(K � 1)) �vd(g�(K�1))K�1 Consider the network g, where gj = g�j (K � 1) for all j < K,and where gK = g�i (K � 1). It follows that uj(g) = uj(g�(K � 1)) for allj < K, and that uK(g) = ui(g�(K � 1)) � vd(g�(K�1))K�1 . Since vd(g) =Pk uk(g), it follows that vd(g) � vd(g�(K � 1)) + vd(g�(K�1))K�1 . This impliesthat vd(g) � vd(g�(K� 1))+ vd(g�(K�1))K�1 . So vd(g) � Kvd(g�(K�1))K�1 , and thusvd(g)K � vd(g�(K�1))K�1 .Next, consider the hybrid connections model. Again, suppose that K >2. If 2�+(K�3)�2 � c, then a strongly e�cient network for K�1 players,g�(K � 1) is an empty network, (or when 2� + (K � 3)�2 = c then it ispossible that g�(K � 1) is nonempty, but still vh(g�(K � 1)) = 0).23 Theresult follows directly.If c � ���2 then the e�cient networks are those that have either g�ij = 1or g�ji = 1 (but not both) for each ij (or when c = � � �2 has a valueequivalent to such a network). Then vh(g�(K� 1)) = (K� 1)(K� 2)(�� c2)and vh(g�(K)) = (K)(K � 1)(� � c2). This establishes the claim, since itimplies that vh(g�(K))K = (K� 1)(�� c2) � vh(g�(K�1))K�1 = (K � 2)(�� c2), and22As the connections models are anonymous we need only consider the number of playersand not their identities.23See Jackson and Wolinsky (1996) Proposition 1 for a proof of the characterization ofe�cient networks in the connections model. This translates into the hybrid connectionsmodel as noted by Bala and Goyal (1999) Proposition 5.2.27



c < 2� (or else c = � = 0 in which case vh(g) = 0 for all g).If � � �2 < c < 2� + (K � 3)�2, a star is the strongly e�cient networkstructure forK�1 players. Here, vh(g�(K�1)) = (K�2)(2�+(K�3)�2�c).The value of g�(K) is at least the value of a star, so that vh(g�(K)) �(K � 1)(2� + (K � 2)�2 � c), which establishes the claim.
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