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Abstract
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cus of the paper is on whether the incentives of individuals to add
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distributed in ways depending on “outsiders” who do not contribute
to the productive value of the network, or in ways that violate equity
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ally stable via (re)distributions that are balanced across components of
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1 Introduction

Much of the communication that is important in economic and social con-
texts does not take place via centralized institutions, but rather through
networks of decentralized bilateral relationships. Examples that have been
studied range from the production and transmission of gossip and jokes,
to information about job opportunities, securities, consumer products, and
even information regarding the returns to crime. As these networks arise in
a decentralized manner, it is important to understand how they form and
to what degree the resulting communication is efficient.

This paper analyzes the formation of such directed networks when self-
interested individuals choose with whom they communicate. The focus of
the paper is on whether the incentives of individuals will lead them to form
networks that are efficient from a societal viewpoint. Most importantly,
are there ways of allocating (or redistributing) the benefits from a network
among individuals in order to ensure that efficient networks are stable in
the face of individual incentives to add or sever links?

To be more precise, networks are modeled as directed graphs among a
finite set of individual players. Fach network generates some total produc-
tive value or utility. We allow for situations where the productive value or
utility may depend on the network structure in general ways, allowing for
indirect communication and externalities.

The productive value or utility is allocated to the players. The allocation
may simply be the value that players themselves realize from the network
relationships. It may instead represent some redistribution of that value,
which might take place via side contracts, bargaining, or outside intervention
by a government or some other player. We consider three main constraints
on the allocation of productive value or utility. First, the allocation must
be anonymous so that the allocation depends only on a player’s position
in a network and how his or her position in the network affects overall
productive value, but the allocation may not depend on a player’s label or
name. Second, the allocation must respect component balance: in situations
where there are no externalities in the network, the network’s value should be
(re)distributed inside the components (separate sub-networks) that generate
the value. Third, if an outsider unilaterally connects to a network, but is not
connected to by any individual in that network, then that outsider obtains
at most her marginal contribution to the network. We will refer to this
property as outsider independence.

The formation of networks is analyzed via a notion of individual stability



based on a simple game of network formation in such a context: each player
simultaneously selects a list of the other players with whom she wishes to
be linked. Individual stability then corresponds to a (pure strategy) Nash
equilibrium of this game.

We show that there is an open set of value functions for which no allo-
cation rule satisfies anonymity, component balance, and outsider indepen-
dence, and still has at least one efficient (value maximizing) network being
individually stable. However, this result is not true if the outsider indepen-
dence condition is removed. We show that there exists an allocation rule
which is anonymous, component balanced and guarantees that some efficient
network is individually stable. This shows a contrast with the results for
non-directed networks. We go on to show that for certain classes of value
functions an anonymous allocation rule satisfying component balance and
outsider independence can be constructed such that an efficient network is
individually stable. Finally, we show that when value accumulates from con-
nected communication, then the value function is in this class and so there
is an allocation rule that satisfies anonymity, component balance, and out-
sider independence, and still ensures that at least one (in fact all) efficient
networks are individually stable.

Relationship to the Literature

There are three papers that are most closely related to the analysis con-
ducted here: Jackson and Wolinsky (1996), Dutta and Mutuswami (1997),
Bala and Goyal (1999).!

The relationship between efficiency and stability was analyzed by Jack-
son and Wolinsky (1996) in the context of non-directed networks. They
noted a tension between efficiency and stability of networks under anonymity
and component balance, and also identified some conditions under which the
tension disappeared or could be overcome via an appropriate method of re-
distribution.

There are two main reasons for revisiting these questions in the context
of directed networks. The most obvious reason is that the set of applications
for the directed and non-directed models is quite different. While a trad-
ing relationship, marriage, or employment relationship necessarily requires
the consent of two individuals, an individual can mail (or email) a paper
to another individual without the second individual’s consent. The other

!Papers by Watts (1997), Jackson and Watts (1998), and Currarini and Morelli (1998)
are not directly related, but also analyze network formation in very similar contexts and
explore efficiency of emerging networks.



reason for revisiting these questions is that incentive properties turn out
to be different in the context of directed networks. Thus, the theory from
non-directed

networks cannot simply be cut and pasted to cover directed networks.
There turn out to be some substantive similarities between the contexts,
but also some significant differences. In particular, the notion of an outsider
to a network is unique to the directed network setting. The differences
between the directed and non-directed settings are made evident through
the theorems and propositions, below.

Dutta and Mutuswami (1997) showed that if one weakens anonymity
to only hold on stable networks, then it is possible to carefully construct a
component balanced allocation rule for which an efficient network is pairwise
stable. Here the extent to which anonymity can be weakened in the directed
network setting is explored. It is shown that when there is a tension between
efficiency and stability, then anonymity must be weakened to hold only on
stable networks. Moreover, only some (and not all) permutations of a given
network can be supported even when all permutations are efficient. So,
certain efficient networks can be supported as being individually stable by
weakening anonymity, but not efficient network architectures.

This paper is also related to a recent paper by Bala and Goyal (1999),
who also examine the formation of directed communication networks. The
papers are, however, quite complementary. Bala and Goyal focus on the
formation of networks in the context of two specific models (the directed
connections and hybrid connections models discussed below) without the
possibility of reallocating of any of the productive value.? Here, the focus is
instead on whether there exist equitable and (component) balanced methods
of allocating (or possibly re-allocating) resources to provide efficient incen-
tives in the context of a broad set of directed network models. Results at
the end of this paper relate back to the directed connections and hybrid
connections models studied by Bala and Goyal, and show that the individ-
ual stability of efficient networks in those models can be ensured (only) if
reallocation of the productive value of the network is possible.

2 Also, much of Bala and Goyal’s analysis is focussed on a dynamic model of formation
that selects strict Nash equilibria in the link formation game in certain contexts where
there also exist Nash equilibria that are not strict.



2 Definitions and Examples

Players

{1,..., N} is a finite set of players. The network relations among these
players are formally represented by graphs whose nodes are identified with
the players.

Networks

We model directed networks as digraphs.

A directed network is an N x N matrix g where each entry is in {0, 1}.
The interpretation of ¢g;; = 1 is that 7 is linked to j, and the interpretation
of g;; = 0is that 7 is not linked to j. Note that ¢g;; = 1 does not necessarily
imply that g;; = 1. It can be that 7 is linked to j, but that j is not linked
to 2. Adopt the convention that g;; = 0 for each ¢, and let ¢ denote the set
of all such directed networks. Let ¢; denote the vector (g1,...,gin)-

For g € G'let N(g) = {¢ |3 js.t. gij = 1 or gj; = 1}. So N(g) are the
active players in the network g, in that either they are linked to someone or
someone is linked to them.

For any given g and ¢j let g + ¢j denote the network obtained by setting
¢;; = 1 and keeping other entries of g unchanged. Similarly, let g —4j denote
the directed network obtained by setting g;; = 0 and keeping other entries
of g unchanged.

Paths

A directed path in g connecting i; to ¢, is a set of distinct nodes
{t1,42,...,9,} C N(g) such that g;,;,,, = 1 foreach k, 1 <k <n —1.

A non-directed path in g connecting i1 to i, is a set of distinct nodes
{t1,92,...,19,} C N(g) such that either g;.; ., = L or g;, ;, = 1 for each £,
1<k<n-13

Components

A network ¢’ is a sub-network of ¢ if for any ¢ and j gl’»j = 1 implies
gij = 1.

A non-empty sub-network of g, ¢’, is a component of g if for all i € N(g¢')
and j € N(¢'), ¢ # j, there exists a non-directed path in ¢’ connecting ¢ and
J, and for any i € N(g') and j € N(g) if there is a non-directed path in ¢

*Non-directed paths are sometimes referred to as semipaths in the literature.



between 7 and j, then j € N(g’). The set of components of a network g is
denoted C(g).

A network g is completely connected (or the complete network) if g;; = 1
for all 77.

A network ¢ is connected if for each distinct ¢ and j in N there is a
non-directed path between ¢ and 7 in g.

A network ¢’ is a copy of g if there exists a permutation 7 of N such
that ¢’ = g™.

Specific Network Structures

A network ¢ is a star if there is 7 such that gi; = 1 only if 7 € {k,}.
That is, a star is a network in which all connections involve a central node
..

A network g is a k-person wheel if there is a sequence of players {iy, ..., 1z}
such that gx1 = ¢i;i,,, = 1 forall j=1,...,k—1, and g;; = 0 otherwise.

Value Functions

A value function v : G — IR, assigns a value v(g) to each network g¢.
The set of all value functions is denoted V.

In some applications the value of a network is an aggregate of individual
utilities or productions, so that v(g) = 3", u;(g) for some profile of u; : G —
IR.

The concepts above are illustrated in the context of the following exam-
ples.

Example 1. The Directed Connections Model.*

The value function v%(-) is the sum of utility functions (u;(-)’s) that
describe the benefit (net of link costs) that players obtain from direct and
indirect communication with others. Fach player has some information that
has a value 1 to other players.® The factor § € [0,1] captures decay of
information as it is transmitted. If a player ¢ has ¢;; = 1, then ¢ obtains 0 in

*This model is considered by Bala and Goyal (1999), and is also related to a model
considered by Goyal (1993). The name reflects the relationship to the non-directed “con-
nections model” discussed in Jackson and Wolinsky (1996).

®Bala and Goyal consider a value V. Without loss of generality this can be normalized
to 1 since it is the ratio of this V' to the cost ¢ that matters in determining properties of
networks, such as identifying the efficient network or considering the incentives of players
to form links.



value from communication with j. There are different interpretations of this
communication: sending or receiving. Player ¢ could be getting value from
receiving information that ¢ has accessed from j (e.g., contacting j’s web
site), or it could be that ¢ is getting value from sending j information (e.g.,
mailing research papers or advertising). In either case, it is ¢ who incurs the
cost of communication and is benefiting from the interaction. If the shortest
directed path between 7 and j contains 2 links (e.g., g;x = 1 and gx; = 1),
then ¢ gets a value of 2 from the indirect communication with j. Similarly,
if the shortest directed path between ¢ and j contains m links, then ¢ gets a
value of 6™ from the indirect communication with j. If there is no directed
path from ¢ to j, then ¢ gets no value from communication with j.

Note that information only flows one way on each link. Thus, 7 gets no
value from the link g;; = 1. This also means that 7 gets no value from j if
there is exists a non-directed path between ¢ and 7, but no directed path
from ¢ to j.

Player ¢ incurs a cost ¢ > 0 of maintaining each direct link. Player ¢ can
benefit from indirect communication without incurring any cost beyond 2’s
direct links.

Let N(¢,g) denote the set of players j for which there is a directed path
from ¢ to j. For 7 and any j € N(i,g), let d(ij, g) denote the number of links
in the minimum-length directed path from 7 to j. Let ng(i,9) = #4{j | 9;; =
1} represent the number of direct links that ¢ maintains. The function wu;
can be expressed as®

wilg) = Y 8N —ny(i,g)e.

JEN(i,9)
Then v?(g) = 3", ui(g).

Example 2. The Hybrid Connections Model.

Consider a variation on the directed connections model where players
still form directed links, but where information flows both ways along any
link. This model is studied in Bala and Goyal (1999), who mention telephone
calls as an example of such communication. One player initiates the link
and incurs the cost, but both share the communication benefits (or losses).
Another example that would fit into this hybrid model would be physical
connections on a computer network like the internet. A player (who may be

5Player ¢ gets no value from his or her own information. This is simply a normalization
so that the value of the empty network is 0.



an individual, a university, company, or some other collection of users) incurs
the cost for connecting to a network, and then others already interconnected
can communicate with the player.

Let N(i,g) denote the set of players j for which there is a non-directed
path between ¢ and j. For 7 and any j € N(i,g), let d(ij,g) denote the
number of links in the minimum-length non-directed path from ¢ to j. The
function u; can be expressed as

wilg)= > 6199 _ (i, g)e,

JEN(i,9)
and v"(g) = Y, uig).

Strong Efficiency
A network g C gV is strongly efficient if v(g) > v(g’) for all ¢’ C ¢g".

The term strong efficiency indicates maximal total value, rather than
a Paretian notion.” Of course, these are equivalent if value is transferable
across players. In situations where Y represents a redistribution, and not a
primitive utility, then implicitly value is transferable and strong efficiency is
an appropriate notion.

Allocation Functions

An allocation rule Y : G x V. — IRYN describes how the value associated
with each network is distributed to the individual players.
Yi(g,v) is the payoff to player 7 from graph g under the value function

In the directed connections model (without any redistribution) Y;(g,v) =
u;(g), so that players obtain exactly the utility of their communication. The
definition of an allocation rule, however, also allows for situations where
Yi(g,v) # ui(g), so that transfers or some redistribution is considered.

Anonymity of a Value Function:

A value function v is anonymous if v(g”™) = v(g) for all g and .

"The term strong efficiency is used by Jackson and Wolinsky (1996), Dutta and Mu-
tuswami (1997), and Jackson and Watts (1998). This is referred to as efficiency by Bala
and Goyal (1999). We stick with the term strong efficiency to distinguish the notion from
Pareto efficiency.



Anonymity of a value function states that the value of a network depends
only on the pattern of links in the network, and not on the labels of the
players who are in given positions in the network.

Anonymity of an Allocation Function:

For any value function » and permutation of players w, let the value
function v™ be defined by v™(¢7) = v(g) for each g.

An allocation rule Y is anonymous relative to a network ¢ and value func-
tion v if, for any permutation m, Y (;y(¢™,v™) = Y;(g,v). Y is anonymous,
if it is anonymous relative to each network ¢ and value function v.

Anonymity of an allocation rule states that if all that has changed is the
names of the agents (and not anything concerning their relative positions
or production values in some network), then the allocations they receive
should not change. In other words, the anonymity of ¥ requires that the
information used to decide on allocations be obtained from the value function
v and the particular network ¢, and not from the label of a player.

Note that anonymity of an allocation rule implies that individuals who
are in symmetric positions in a network are assigned the same allocation, if
the underlying v is anonymous, but not necessarily otherwise.® For instance
if g is such that g12 = go1 = 1 and g;; = 0 for all other 77, then provided »
is anonymous? it follows that Yi(g,v) = Ya(g,v).

Balance and Component Balance:

An allocation rule Y is balanced if 3, Yi(g,v) = v(g) for all value func-
tions v and networks g.

A stronger notion of balance, component balance, requires ¥ to allocate
resources generated by any component to that component.

A value function v is component additive if v(g) = 3"}y v(h) for each
network ¢.'°

8This is the only implication of anonymity that is needed to establish the negative
results in what follows.

®More explicitly, for this network the conclusion follows if ™12 = v, where 7(12)
is the permutation such that 1 and 2 are switched and all other players are mapped to
themselves.

19This definition implicitly requires that the value of disconnected players is 0. This
is not necessary. Omne can redefine components to allow a disconnected player to be a
component. One has also to extend the definition of v so that it assigns values to such
components.



An allocation rule Y is component balanced if 3~;cny) Yi(g,v) = v(h)
for every g € GG and h € C(g) and component additive v € V.

Component balance requires that the value generated by a given com-
ponent be redistributed only among the players in that component. It is
important that the definition of component balance only applies when v is
component additive. Thus, it is only required to hold when there are no
externalities across components.

Outsiders:

A stronger version of component balance turns out to be important in
the context of directed networks. The following definition of outsider is
important in that definition and outsider independence.

A player 7 is an outsider of a network g if
(i) g;; = 1 for some j € N(g),
(i) g = 0 for all k € N(g), and

(iii) for every j # 14, j € N(g), there exists k # i with & € N(g) such that
gr; = 1.

Thus, an outsider is a player who has linked to some other players in
a network, but to whom no other player has linked. Furthermore, a player
is considered an outsider only when all other players in the network have
someone (other than the outsider) linked to them, so the outsider is not
important in connecting anyone else to the network. This last condition
avoids the trivial case of calling player 1 an outsider in the network g where
g12 = 1 and g¢;; = 0 for all other ;. It also implies that there is at most one
outsider to a network.

Directed Component Balance:

Let g — ¢ denote the network obtained from network g by deleting each
of player ¢’s links, but not the links from any player j # ¢ to player ¢. That
is, (g — t)i; = 0 for all j, and (¢ — 7)x = g whenever k # 1.

The allocation rule Y satisfies directed component balance if it is com-
ponent balanced, and for any component additive value function v, network
g, and outsider ¢ to ¢, if v(g) = v(g — i), then Y (¢) = Y (g — 7).

The situation covered by directed component balance but not by compo-
nent balance is one where a single player z is initially completely unconnected

10



under g — ¢, then connects to some other players resulting in g, but does not
change the value of the network. The directed component balance condition
requires that the allocation rule not change due to the addition of such an
outsider. This directed version of component balance is in the same spirit
as component balance. The reasoning is that a player who unilaterally links
up to a component whose members are already interconnected, and who
does not change the productive value of the network in any way, effectively
should not be considered to be part of that component for the purposes of
allocating productive value.

Network Formation and Individual Stability

Let Di(g) = {g'lg} = g9;¥j # i}. These are the networks that i can reach
from g by a unilateral change in strategy.

A network ¢ is individually stable relative to Y and v if Y;(¢,v) < Yi(g,v)
for all ¢’ € Dy(g). !

The idea of individual stability is quite straightforward. A network is in-
dividually stable if no player would benefit from changing his or her directed
links. The set of individually stable networks corresponds to the networks
that are pure strategy Nash equilibrium outcomes of a link formation game
where each player simultaneously writes down the list of players who he or
she will link to, and those links are then formed. 12

3 Individual Stability and Strong Efficiency

Theorem 1 If N > 3, then there is no Y which satisfies anonymity and
directed component balance and is such that for each v at least one strongly
efficient graph is individually stable.

Proof: Let N = 3 and consider any Y which satisfies anonymity and di-
rected component balance. The theorem is verified by showing that there
exists a v such that no strongly efficient graph is individually stable.

1 This notion is called ‘sustainability’ by Bala and Goyal (1999). The term stability is
used to be consistent with a series of definitions from Jackson and Wolinsky (1996) and
Dutta and Mutuswami (1997) for similar concepts with non-directed graphs.

12This link formation process is a variation of the game defined by Myerson (1991, page
448). Similar games are used to model link formation by Qin (1996), Dutta, van den
Nouweland and Tijs (1998), Dutta and Mutuswami (1996), and Bala and Goyal (1999).

11



Let g be such that g12 = g23 = g31 = 1 and all other g;; = 0, and ¢ be
such that gi3 = g3, = g5; = 1 and all other g/. = 0. Thus, g and ¢’ are the
3-person wheels.

Let v be such that v(g) = v(¢’) = 1+ € and v(¢g”) = 1 for any other
graph ¢”. Therefore, the strongly efficient networks are the wheels, g and
g’

Consider ¢" such that gf, = g5, = 1 and all other g/% = 0.

It follows from anonymity and component balance that Yi(v,¢"”) =
Ya(v,g") = 1/2.

It follows from directed component balance that Y; (v, ¢"+31) = Y5(v, ¢"+
31) = 1/2.

It follows from anonymity and balance that Y1(g,v) = Ya(g,v) = Y3(g¢,v) =
14¢

’ Consider the strategy profile leading to g in the link formation game. If
€ < 1/6, then this strategy profile is not a Nash equilibrium, since player 2
will benefit by deviating and adding 21 and deleting 23. (Notice that ¢’ +31
is obtained from ¢ by adding 21 and deleting 23.) A similar argument shows
that the strategy profile leading to ¢’ in the link formation game does not
form a Nash equilibrium. The case of N > 3 is easily handled by extending
the above v so that components with more than three players have no value. Il

The proof of Theorem 1 necessarily follows a different line of reasoning
from the proof of the analogous theorem for the non-directed case in Jackson
and Wolinsky (1996). This reflects the difference between individual stabil-
ity in the directed setting and pairwise stability in the non-directed setting
that naturally arises due to the possibility of unilateral link formation in
the directed network context. In the proof here, the problematic efficient
network is an anonymous one and the contradiction is reached via a com-
parison to the network ¢” which makes use of directed component balance.
In the non-directed case, the proof examines a situation where the efficient
network is not anonymous, and reaches a contradiction via comparisons to
anonymous super- and sub-networks. The difference between the directed
and non-directed settings is further explored below.

For the case of non-directed networks, one of the main points of Dutta
and Mutuswami’s (1997) analysis is that one can weaken anonymity to re-
quire that it only hold on stable networks and thereby overcome the incom-
patibility between efficiency and stability noted by Jackson and Wolinsky
(1996). This is based on an argument that one is normatively less con-
cerned with what occurs on unstable networks (out of equilibrium), pro-

12



vided one expects to see stable networks form. So Dutta and Mutuswami
use non-anonymous rewards and punishments out of equilibrium to support
an anonymous stable allocation. It can be shown, however, that in the non-
directed case there is no Y that is component balanced and for which a
strongly efficient network is pairwise stable,'® as are all anonymous permu-
tations of that network when v is anonymous. (This follows from Theorem
17 and its proof in the appendix of Jackson and Wolinsky (1996).) The impli-
cation of this is that in order to have at least one strongly efficient network
be pairwise stable and satisfy component balance, it can be that only one
of the strongly efficient networks is pairwise stable even though anonymous
permutations of it are also strongly efficient. Thus, pairwise stability may
apply just to a specific efficient network with players in a fixed relationship
(and not to a network structure). For example, in certain contexts one can
construct a component balanced allocation rule for which a star with player
1 at the center is strongly efficient and pairwise stable, but one cannot at
the same time ensure that a star with player 2 at the center is also pair-
wise stable even though it generates exactly the same total productive value
as the star with player 1 at the center, and thus is also strongly efficient.
1 This may not be objectionable, as long as one can at least ensure an
anonymous set of payoffs to players, as Dutta and Mutuswami do. But the
fact that only specific efficient networks can be supported, and not a given
efficient network structure, gives a very precise idea of the extent to which
anonymity must be weakened in order to reconcile efficiency and stability
in the face of component balance. This is stated in the context of directed
networks as follows.

Theorem 2 If N > 3, then there is no Y that satisfies anonymity relative to
individually stable networks, directed component balance, has an anonymous
set of individually stable networks when v is anonymous,'® and is such that
for each v at least one strongly efficient networks is individually stable.

Proof: Let N = 3 and consider any Y which satisfies anonymity on individ-
ually stable networks, directed component balance, has an anonymous set

!3In the context of non-directed networks it takes the consent of two individuals to form
a link. Pairwise stability requires that no individual benefit from severing one link, and
no two individuals benefit (one weakly and one strictly) from adding a link. A precise
definition is given in Jackson and Wolinsky (1996).

14 Again, see the proof of Theorem 1’ in the appendix of Jackson and Wolinsky (1996).

1547 is individually stable whenever g, for any permutation =.

13



of stable networks when v is anonymous. The theorem is proven by showing
that there exists a v such that no strongly efficient network is individually
stable.

Consider ¢, ¢’, ¢, and v from the proof of Theorem 1. Suppose the
contrary, so that either g or ¢’ is individually stable. Since v is anonymous
and g and ¢’ are anonymous permutations of each other, it follows that both
g and ¢’ are individually stable.

Thus, anonymity on individually stable networks and balance that Y1(g,v) =

Ya(g,v) = Ys(g,v) = 1£ and likewise that Yy (v, ¢’) = Ya(v,¢') = Y3(v,¢') =
14¢

’ Also, it follows from directed component balance that Y (v,¢” + 31) =
Y (v,g") and that Y (v,¢" 4+ 32) = Y(v,¢").

Case 1: Yi(v,¢") > 1/2. Consider the strategy profile leading to ¢’ in
the link formation game. If € < 1/6, then this strategy profile is not a
Nash equilibrium, since player 1 will benefit by deviating and adding 12 and
deleting 13 (which results in ¢” 4+ 32). This is a contradiction.

Case 2: Yy(v,¢") > 1/2. Consider the strategy profile leading to ¢ in
the link formation game. If € < 1/6, then this strategy profile is not a
Nash equilibrium, since player 2 will benefit by deviating and adding 21 and
deleting 23 (which results in ¢’ + 31). This is a contradiction.

By component balance, these two cases are exhaustive. [l

4 QOutsiders

We consider next, a condition that states one cannot shift too much value
to an outsider: no more than their marginal contribution to the network. A
reason for exploring the role of outsiders in detail is that the value function
used in the proof of Theorems 1 and 2 is special. In particular, several net-
works all have the same value even though their architectures are different.
Moreover, that fact is important to the application of directed component
balance in the proof of Theorems 1 and 2. This reliance on specific value
functions is really only due to the weak way in which outsiders are addressed
in directed component balance. If directed component balance is replaced by
the following outsider independence condition which is more explicit about
the treatment of outsiders, then the results of Theorems 1 and 2 hold for
open sets of value functions.

Outsider Independence

14



An allocation rule Y satisfies outsider independence if for all ¢ € GG and
v €V and ¢ € N(g) who is an outsider of g such that v(g) > v(g — 7), then
Yi(g,v) > Y;(g — t,v) for each j # 1.

Outsider independence states that an outsider obtains at most her marginal
contribution to the value of a network. The idea is that if a set of players
has formed a network, and cannot prevent an outsider from linking to it,
then the players should not suffer because of the outsider’s actions. Such a
condition is clearly satisfied in the directed connections model, and in any
setting where the outsider’s actions have no externalities.

Outsider independence is only required to hold in situations where the
outsider’s presence does not decrease the value of the network. Normatively,
one might argue for it more generally.

Theorem 3 If N > 3, there is an open subset'® of the anonymous value

functions for which any Y that satisfies anonymity on individually stable
networks, component balance, and outsider independence, and has an anony-
mous set of individually stable networks when v is anonymous, cannot have
any strongly efficient network be individually stable.

The proof of Theorem 3 is a straightforward extension of the proofs of
Theorems 1 and 2 and therefore is omitted.

It is easily seen that Theorems 1, 2, and 3 are tight in that dropping
anonymity invalidates the results. For example, let Y be the equal split of
value within components rule as defined below. Let Y by picking a strongly
efficient ¢, and let Y (g,v) = Y(v,¢7). For any such that g; = g; for all
j # iforsome i, set Y;(g,v) < Yi(v,g%),set Y;(g,v) = Y;(g,v)for j ¢ N(h;)
where h; is the component of g containing ¢, and let Y;(g,v) = %
for j € N(h;), j # i. For any other ¢ set Y(g,v) = Y(g,v).

Next, we show that weakening directed component balance or ignoring
outsider independenceinvalidates Theorems 1, 2, and 3. If value can be
allocated to outsiders without regards to their contribution to the value of a
network, then it is possible to sustain efficient networks as being individually

stable.

Theorem 4 There exists an allocation rule Y that is anonymous, com-
ponent balanced and such that for each v there is some strongly efficient
network that is individually stable.

1%Given that the set of networks G is a finite set, a value function can be represented
as a finite vector. Here, open is relative to the subspace of anonymous value functions.
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Theorem 4 shows that there are important differences between the di-
rected and non-directed network contexts. In the directed case it is always
possible for any player unilaterally to become part of a network. If the allo-
cation rule can shift value to outsiders, even when they contribute nothing
to the value of a network, then one can overcome the difficulties imposed by
component balance.

The proof of Theorem 4 is constructive and appears in the appendix.
Here, we provide some intuition underlying the constructive proof.

Let Y be an allocation rule that we are designing to support a given
strongly efficient network g* as individually stable. So, it must be that for
all 7, Y;(g",v) > maxyep,(g) Yi(g,v). At the same time we need to make
sure that ¥ is anonymous and component balanced. To get a feeling for the
impact of those restrictions, consider the following example.

Example 3. There are 5 players. The value function v is anonymous.
A strongly efficient network g* is such that ¢, = ¢33 = 934 = g5 = 1 and
g5; = 0 for other 4j. So, g™ is a directed line. Suppose that v(g*) = 5 and
that v(g) = 5if ¢ is a copy of ¢g*.

Let us consider the restrictions on Y imposed by anonymity, component
balance, and guaranteeing that ¢* is individually stable.

First, player 5 can deviate from ¢* by adding the link 51, to result in the
network g* + 51. Let us denote that network as ¢°. So, ¢° is a wheel. Since
a wheel is symmetric, it must be that Y5(¢®,v) = v(¢®)/5. Then, to ensure
that ¢* is individually stable, we need to have Y5(g*,v) > v(g®)/5.

Next, player 4 can deviate from g* by deleting link 45 and adding link 41.
The resulting network, denoted g* is a four person wheel. Here, to ensure
that ¢* is individually stable and Y is anonymous and component balanced,
we need to have Y;(g*,v) > v(g*)/4.

Also, player 3 can deviate from g* by deleting link 34 and adding link 31.
The resulting network, denoted ¢° is a three person wheel among 1,2, and 3,
together with the extra link 45. Here, to ensure that ¢* is individually stable
and Y is anonymous and component balanced, we need to have Y3(¢*,v) >
v(h3)/3, where h? is the three person wheel among 1, 2, and 3.

There is a similar requirement for player 2. These requirements are dif-
ferent for different players, and so an allocation rule that simply equally
splits value does not work. The proof involves showing that these require-
ments can all be satisfied simultaneously, and that the type of requirements
arising in this example are those arising more generally and can always be

handled.
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5 Efficiency and the Connections Models

The above results indicate that in order to find an allocation rule that recon-
ciles individual stability and strong efficiency in general, in some cases one
needs to allocate some value to non-productive outsiders. However, there
are still interesting settings where strong efficiency and individual stability
can be reconciled, while preserving anonymity, directed component balance,
and outsider independence. We explore some such settings here.

Given a value function v and a set K C N, let ¢5( /) be a selection of a
strongly efficient network restricted to the set of players K (so N(g*(K)) C
K). If there is more than one such strongly efficient network among the
players K, then select one which minimizes the number of players in N(g).

A value function v has non-decreasing returns to scale if for any K’ C

KCN
vlgo(K) o olg(K))
#N(g5(K)) ~ #N(g5(K"))

If a value function has non-decreasing returns to scale, then per-capita
value of the efficient network is non-decreasing in the number of individuals
available. This does not imply anything about the structure of the efficient
network, except that larger groups can be at least as productive per capita
in an efficient configuration as smaller groups. As we shall see shortly, it is
satisfied by some natural value functions.

Theorem 5 If a component additive value function v has nondecreasing
returns to scale, then there exists an allocation rule Y satisfying anonymity,
directed component balance and outsider independence for which at least one
strongly efficient networks is individually stable relative to v.

The proof of Theorem 5 is given in the appendix.

The proof of Theorem 5 relies on the following allocation rule f/, which
is a variant on a component-wise egalitarian rule Y. Such a rule is attractive
because of its strong equity properties. To be specific, define Y as follows.
Consider any g and a component additive ». If ¢ is in a component h of ¢
(which is by definition necessarily non-empty), then Y;(g,v) = #ANE(}LL), and if
i is not in any component then Y;(g,v) = 0. For any v that is not component
additive, let Y;(g,v) = % for all 7. Y is a component-wise egalitarian rule,
and is component balanced and anonymous. It divides the value generated
by a given component equally among all the members of that component,
provided v is component additive (and divides resources equally among all
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players otherwise). It is shown in the appendix that under non-decreasing
returns to scale, all strongly efficient networks are individually stable relative
to Y.

Unfortunately, ¥ does not always satisfy outsider independence. For
instance, in the directed connections model it fails outsider independence
for ranges of values of 6§ and ¢.!” However, a modification of ¥ results in
the allocation rule Y that satisfies anonymity, directed component balance,
outsider independence, and for which all strongly efficient networks are in-
dividually stable for »’s that have non-decreasing returns to scale. The
modified allocation tule Y is defined as follows. For any v and strongly
efficient network g¢*, set f/(g*,v) = Y(g*,v). For any other g: if g has

an outsider ¢ then set Y;(g,v) = max[Y;(g — ¢,v),Y;(g,v)] for j # i and

Yi(g,v) = v(g) — 3 ;2 Yi(g,v); and otherwise set Y(g,v) = Y(g,v). As

there is at most one outsider to a network, Y is well-defined.

Both the directed connections and hybrid connections models have non-
decreasing returns to scale:

Proposition 1 The directed and hybrid connections models (v? and v")
have non-decreasing returns to scale. Thus, all strongly efficient networks
are individually stable in the connections models, relative to the anonymous,
directed component balanced and outsider independent allocation rule Y.

The re-allocation of value under Y; compared with uf and u” is important
to Proposition 1. Without any re-allocation of value, in both the directed
and hybrid connections models the set of individually stable and strongly
efficient networks do not intersect for some ranges of parameter values. For
instance, Bala and Goyal (1999) show in the context of the directed con-
nections model that if N = 4 and § < ¢ < 6§ + 62 — 263, then stars and
“diamonds™!® are the strongly efficient network structures, but are not in-
dividually stable. Similarly, in the context of the hybrid connections model
if N =4 and § + 262 < ¢ < 26 + 262 then a star!? is the strongly efficient

7For example, let N =4, § < 1/4 and ¢ be close to 0 in the directed connections model.
Consider the network where g1 = g1 = ¢g21 = ¢ga1 = 1. Adding the link 41 results in
Yi(g+41,0%) < Vi(g,v%) even though 4 is an outsider to g.

¥ For instance a star with 1 at the center has J12 = 13 = g14 = g21 = ¢31 = ga1 = 1,
while a diamond has g12 = g13 = ¢g21 = ¢23 = g32 = ga1 = 1.

19Here, given the two-way communication on a directed link, gs1 = g21 = g41 would
constitute a star, as would ¢g13 = g12 = ¢14, etc.
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network structure but is not individually stable. As Proposition 1 shows,
reallocation of value under Y overcomes this problem.

Let us make a couple of additional remarks about the result above. First,
anonymity of Y implies that the set of individually stable networks will be an
anonymous set, so that all anonymous permutations of a given individually
stable network are also individually stable. Second, in situations where
¢ > 6 (in any of the connections model) the empty network is individually
stable relative to f/, even though it is not strongly efficient. The difficulty
is that a single link generates negative value and so no player will want to
add a link (or set of links) given that none exist. It is not clear whether
an anonymous, component balanced, and outsider independent Y exists for
which the set of individually stable networks exactly coincides with the set
of strongly efficient networks (when ¢ > 6) in these connections models.
Such a Y would necessarily involve careful subsidization of links, in some
cases violating individual rationality constraints.
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Appendix

For each i, let Hi(g) = {h'|h' € C(g'),i € N(h'),g' € Di(g)}.

Let ngl(i,g) = #{j lg;i = 1} represent the number of individuals who
maintain a link with q.

We begin by stating some Lemmas that will be useful in some of the
proofs that follow.

We are most grateful to Anna Bogomolnaia who provided the proof of
Lemma 1.

Lemma 1 Let {ay,...,a,} be any sequence of nonnegative numbers such
that 3-pcsar < ay for any S C {1,...,n} such that )" pcgk < n. Then,

2“7 < a,. (1)
=1

Proof:: We construct a set of n inequalities whose sum will be the left hand
side of (1). We label the i-th inequality in this set as (i').
First, for each ¢, let (r;, j;) be the unique pair such that: n = r;i + j;, 7;
is some integer, and 0 < j; < 1.
For each i > %, write inequality (:') as
Ap—q

a; ay,
& < 2
P T (2)

(Here, we adopt the convention that ay = 0.)

Now, consider any 7 < %, and suppose all inequalities from (n’) to (7 + 1)
have been defined. Let H; be the sum of the coefficients of a; in inequalities
(n') to (1 +1'). Let us now show that h; = + — H; > 0.

Claim: For each ¢ < %, h; > 0.

Proof of Claim: First, we prove that

#{q is an integer |¢j + i = n for j being an integer,i < ¢} < " Z_ ! (3)

Let P = n — i, and note that for j being an integer, #{q¢|l¢ > i, P = jq} =
#{EIE >0 P = jgy = #{E15 > 5P = jod = #0I1F > j,P = ja} =
#{j:E>< k. |

So, each ¢ appears in at most @ inequalities. Choose g > ¢ such that
qry + i = n. Then, from (3), the coefficient of a; in (¢') is if—;’ Note that
since H, = L —h, > 0, we must have 1 > h,. Hence, hy <L = L. Using

q . q Tq qTq n—1

(4), we get H; < (=4)(-L) =1

7 n—i 7
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This completes the proof of the claim.
By (1) it follows that that r;a; + a;; < a,,. Thus, write (¢') as
h; _ h;
hia; + — < —ay, (4)

K3 TZ

Note that by construction, the sum of the coefficients of a; in inequalities
(n') to (i) equals H; + h; = %, and that a; does not figure in any inequality
(k') for k < i. So, we have proved that the sum of the left hand side of the
set of inequalities (i') equals the left hand side of (1).

To complete the proof of the lemma, we show that the sum of the right
hand side of the inequalities (i’) is an expression that must be less than or
equal to a,. The right hand side of the sum of the inequalities (i’) is of the
form C'a,, where C' is independent of the values {ay,...,a,}. Let a; = %

for all 2. Then the inequalities (¢’) hold with equality. But, this establishes
that C' = 1 and completes the proof of the lemma. [

For any g, let D(g) = U;D;(g).
Let
X(g,9") = {i|39" € Di(g) s.t. ¢" is a copy of ¢'}.
So, X(g,¢') is the set of players who via a unilateral deviation can change
g into a copy of ¢'.

Say that S C N is a dead end under g € GG if for any 7 and j in 5, ¢ # j,
there exists a directed path from ¢ to j, and for each k ¢ 5 ¢;; = 0 for each
1€ S.

For any g and ¢ € N(g), either there is a directed path from ¢ to a dead
end S under g, or ¢ is a member of a dead end of g. (Note that a completely
disconnected player forms a dead end.)

Observation Suppose that {57,...,5,} are the dead ends of g € G. Con-
sider ¢ and ¢’ such that ¢’ € D;(g). If i ¢ 5 for any k, then S} is still a
dead end in ¢'. If i € S} for some k, and i has a link to some j ¢ S under
g', then {51,...,5} \ {Sk} are the dead ends of ¢'.

To see the second statement, note that there exists a path from every
l € Sk, | #ito i, and so under ¢" all of the players in 53 have a directed
path to j. If j is in a dead end, then the statement follows. Otherwise, there
is a directed path from j to a dead end, and the statement follows.

Lemma 2 Consider a player 1, ' € G, ¢ € Di(¢') and corresponding hl e

C(g) such that N(h') C X(g,¢). If C(g) # C(g'), then there exists a
directed path from any i € N(h') to any j € N(h').
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Proof of Lemma 2: Let Z = N \ N(h). Consider ¢: € N(h) and suppose
that ¢’ € D;(g). Let S1,...,5, be the dead ends of g. If ¢ is in a dead end
Sk under g, then since C'(g) # C(g'), ¢ must be linked to some player in Z
under ¢'. (Note that since i is in a dead end, there is a directed path from
every player in Sj to ¢, and so ¢ can only change the component structure of
¢ by adding a link to a player outside of S%.) ;From the observation above,
it then follows that {57,...,5¢} \ {9k} are the dead ends of ¢'.

Suppose the contrary of the lemma. This implies that there is a dead
end of g, S, C N(h), and {i,7} C N(h) such that ¢ ¢ Sy and j € Sk. ;From
the Observation it follows that if g' € D;(g) is a copy of ¢/, then ¢ has at
least ¢ dead ends. However, if ¢/ € D;(g) is a copy of ¢’, then from the
arguments above it follows that g7 has at most £ — 1 dead ends. This implies
that ¢* and ¢’ could not both be copies of ¢’. This is a contradiction of the
fact that N(h) C X(g,9).1

Lemma 3 Suppose g’ is connected. Choose anyi,j € N(g') with i # j, and
take g' € Di(g"), ¢/ € D;(g"), and corresponding ' € C(g") and b/ € C(g’).
If N(h') and N(h?) are intersecting but neither is a subset of the other, then
N(h') ¢ X(g',9") and N(W') & X(g7,49").

Proof of Lemma 3: Suppose to the contrary of the Lemma that, say,
N(R') C X(g",9)- | |

Consider the case where j ¢ N(h'). By Lemma 2, for any & € N(h')
with k # i, there is a directed path from & to 7 in h*. Since g, = hf = h{ for
all [ # 14,7, this must be a directed path in A7 as well. Hence, i € N(hj). By
this reasoning, there is a directed path from every [ € N(h')\ {i} to i in A,
and hence in h7. So, N(h') is then a subset of N(h7), which contradicts the
supposition that N (k') and N(h7) are intersecting but neither is a subset of
the other.

So, consider the case where j € N(h'). We first show that i € N(h/).
Since N (A7) is not a subset of N(h'), there exists k € N(h?) with k ¢ N(h').
Since k ¢ N(h'), the only paths (possibly non-directed) connecting j and k&
in ¢’ must pass through ¢. Thus, under ¢’ there is a path connecting i to
k that does not include j. So, since k € N(h?), it follows that i € N(h/).
Next, for any [ € N(h')\{i}, by Lemma 2 there is a directed path from [ to i
in k. If this path passes through j, then there is a directed path from [ to j
in ¢’ (not passing through ¢) and so [ € N(h’). If this path does not involve
j, then it is also a path in h?. Thus, [ € N(h?) for every [ € N(h')\ {i}.

23



Since i € N(h?), we have contradicted the fact that N(h) is not a subset of
N(h?) and so our supposition was incorrect. ||

Lemma 4 Consider i, g and g', with g € D;(g"), and h* € C(g) such that
i€ N(h).2 If N(h') C X(g,9"), then N(h') C N(h') for some h' € C(g").

Proof of Lemma 4: Suppose the contrary, so that there exists 5 € N(hi)
with j ¢ N(h'), where i € N(h') and b’ € C(g¢’). Note, this implies that
C(g) # C(g’). Either j is a dead end under g, or there is a path leading
from j to a dead end under g. So, there exists a dead end S in A' with i ¢ 5.
This contradicts lemma 2. |

Proof of Theorem 4: If v € V is not component additive, then the alloca-
tion rule defined by Yi(g,v) = v(g)/N for each player i and ¢g € G satisfies
the desired properties. So, let us consider the case where v is component
additive.

Fix a v and pick some network g* that is strongly efficient. Define Y*

relative to v as follows.2!

Consider g € D(g*). For any 1, let h® € C(g) be such that i € N(hY).
ITi € X(g,47), let V(g 0) = Vi(g, 0)if N(h') C X(g, ") and Y(g, 0) =
0 otherwise. ,
. * * _ v(h'
I ¢ X (9,47) 160 Y7 (9,0) = ety ety
Let r; = max ep, o+ Y (g, 0).

Claim: Y r; < wv(h*) for each h* € C(g*).
JEN(R*)
We return to prove the claim below.
ol ox v(h*i)—z Wi T
Set Y*(g*,v) =ri + #N(Jfg)(h L
g € D(¢g*) U{g*} according to anonymity, whenever v(g”™) = v(g). For all
remaining g, set Y*(g,v) = Y(g,v).
By the definition of Y™, ¥*(¢%,v) > max,ep,(,+) Y;"(g,v) for all i €
N(g*). Hence, ¢g* is individually stable. Also Y* is component balanced and

. Set Y* on g™ which is a copy of

anonymous.
To complete the proof, we need only verify the claim.

20 Adopt the convention that a disconnected player is considered their own component.
21To ensure anonymity, work with equivalence classes of v with v™ for each 7 defined
via the anonymity property.
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Proof of Claim: By the definition of r; it follows that r; > 0 only if
N(h') C X(g,9%). By Lemma 4, this implies that N(h*) C N(h*) for some
h* e C(g*).

For each h* € C(g*), let I(h*) = {i € N(h*)|r; > 0}. For each i ¢
I(h*), let h' be such that r; = #%fz%)i). Then, the argument in the previous
paragraph establishes that each h' is such that N(h') C N(h*). Hence,
applying lemma 3 to h*, the set {h’ | i € I(h*)} can be partitioned into
{Hy,...,Hy} such that
(i) Bach A in H; is disjoint from every other A7 € I,j # 1.

(ii) For all k = 2,... K, Hy = {hy,...,hy} is such that N(hy) C N(hy) C
N (hy), and elements in Hy, are disjoint from elements in Hys if k # k'
Define A = v(g) — Z v(h').

hicH!

Since g* is strongly efficient, v(h*) > v(h) for all h such that N(h) C
N(h*). Now, one can use Lemma 1 and the fact that v is component additive,
to deduce that there are numbers {Aq, ..., Ag} such that

K
i) ZAk < AL
k=2

(h?
(ii) Foreach k=2,..., K,Ap > Z #N(h))
hJEHk

These inequalities prove the claim. [l

Proof of Theorem 5:

Y satisfies anonymity by definition. Since an outsider is necessarily
unique, Y satisfies directed component balance, and outsider independence
relative to any g # ¢g*. These conditions relative to ¢*, follow from the claim
below.

Fix a component additive v that has non-decreasing returns to scale. We
now show that ¢>(N) is individually stable relative to Y.

The following claim is useful.

Claim: Consider any component additive » that has non-decreasing returns
to scale. If g is a component of ¢X(N), then for any ¢’

vlg) o olg)
#N(g) ~— #N(g)
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Proof of Claim: Note that

v(gs(N))  Yneo(ervy) v(h)
#N(g:(N)) Cnec(gr(ny) #N(h)

By non-decreasing returns,

2necgz vy P w(i)
Lohec(gr(ny N (h) — #N (L)

for each b/ € C(g}(N)). Thus,

>z D B )

heC(gh(N)),h#h!

Also, by non-decreasing returns,

2nec(orvn ) Phec(grvy pn v(R)
Shec(e) #N(h) — Lhecgrny)pgn EN ()

for each b/ € C(g;(N)). Thus,

#N (1) 3
" Zhectgr )t N o) man

v(h') = v(h), (6)

for each ' € C(g}(N)). Inequalities (5) and (6) then imply that

ol olgs(N))
FN() ~ FN(g (V)

for every h' € C(g;(N)). The desired conclusion then follows from non-

decreasing returns. [l

Consider g*(N) and some deviation by a player 7, resulting in the network
g*;(N),g;. It then follows from the claim that Y;(¢g*(N)) > Y,(¢*,(N),7;)
and Y;(g*(N)) > Y;((¢7:(N),g;) — j) for any j. Thus, if i is not an out-
sider at g*.(N),g;, then from the definition of ¥ it follows that Y;(g*(N)) >
Yi(g*(N),7;). I i is an outsider at g* ,(N), g;, then from the definition of V',
Vgm0 > V(o= (V). 7). So, Vilg™(N)) = Vi(g™(V)) > Vilg=(N),7) >
Yi(g*:(N),g;). Thus, ¢=(N) is individually stable. |l

Proof of Proposition 1 The following claim is stronger than the stated
property.
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Claim Fix § and c¢. If ¢*(K) is any strongly efficient network with a

number®*?> K players relative to the directed connections model, and g is
df k(T d

any network with K > #N(g) > 0, then = (gK(I‘)) > #N(f;). The same is

true of the hybrid connections model, substituting v for v?.

Proof of the Claim: It is clear that w >0 (w > 0), since
the empty network is always feasible. The claim is established by showing
that for each K > 2, Gl (I‘)) > Ud(g;,(Kl_l)) (and = 2y (I‘)) > Uh(g;,(Kl_l)))

_ ) - K — ’

— 2%
where ¢*(K) denotes any selection of a strongly efﬁ(:lent network with K

players. This implies the claim.

First, consider the directed connections model. Consider K players, with
players 1,..., K — 1 arranged as in ¢*(K — 1). If ¢*(K — 1) is empty, then
the claim is clear. So suppose that ¢*(K — 1) is not empty and consider
i € N(g*(K — 1)) such that u;(¢*(K — 1)) > u;(¢*(K — 1)) for all j €
N(g*(K — 1)), where u; is as defined in Example 1. Thus, u;(¢*(K — 1)) >

w Consider the network g, where g; = g7(K — 1) for all j < K,

and where g = ¢7 (& — 1). It follows that u;(g) = u;(¢g*(/ — 1)) for all
J < K, and that ug(g) = wi(g*(K — 1)) > W. Since vi(g) =
S uk(g), it follows that v?(g) > v¥(g*(K — 1)) + %1)) This implies
that v¥(g) > v4(g*(K — 1))+ Vg =) g o vi(g) > Mi([(_l)), and thus

K-1 K-1
vig) < vl (I\ 1)
K = K-

Next, c0n51der the hybrid connections model. Again, suppose that K >

2.

If 26 + (K — 3)é% < ¢, then a strongly efficient network for K — 1 players,
¢*(K — 1) is an empty network, (or when 26 + ( { — 3)6% = c then it is
possible that ¢*(K — 1) is nonempty, but still v*(¢*(K — 1)) = 0).?> The
result follows directly.

If ¢ < §— 6% then the efficient networks are those that have either g5 = 1
or g% = 1 (but not both) for each ij (or when ¢ = § — §* has a value
equivalent to such a network). Then v"(g*(K —1)) = (K — 1)(K —2)(6— %)
and v"(g*(K)) = (K)(K —1)(6 — $). This establishes the claim, since it

implies that M =(K-1)(6-%) > W (K —2)(6—75),and

22 As the connections models are anonymous we need only consider the number of players
and not their identities.

2%See Jackson and Wolinsky (1996) Proposition 1 for a proof of the characterization of
efficient networks in the connections model. This translates into the hybrid connections
model as noted by Bala and Goyal (1999) Proposition 5.2.

27



¢ < 26 (or else ¢ = § = 0 in which case v"*(g) = 0 for all g).

If § — 6% < ¢ < 26 + (K — 3)62, a star is the strongly efficient network
structure for K —1 players. Here, v"(g*(K —1)) = (K —2)(26+(K —3)é%*—c).
The value of g*(K) is at least the value of a star, so that v"(¢g*(K)) >
(K —1)(26 + (K — 2)6% — ¢), which establishes the claim. I
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