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Abstract

A self-organizing neural network model is proposed to generate the skeleton of a pattern. The proposed neural net is
topology-adaptive and has a few advantages over other self-organizing models. The model is dynamic in the sense that it
grows in size over time. The model is especially designed to produce a vector skeleton of a pattern. It works on binary
patterns, dot patterns and also on gray-level pattems. Thus it provides a unified approach to skeletonization. The
proposed model is highly robust to noise (boundary and interior noise) as compared to existing conventional skeletoniz-
ation algorithms and is invariant under arbitrary rotation. It is also efficient in medial axis representation and in data

reduction.
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1. Introduoction

Skeletonization is the process of transforming a several
pixel wide object to a single pixel wide object so that the
topological properties of the object are momr or less
preserved. The resulting object is called a skeleton. Such
skeletons are useful in the recognition of elongated
shaped objects, for example, character patterns, chromo-
some patterns, etc. The skeleton provides an abstraction
of geometrical and topological features of the object.
Since it stores the essential structural information of the
pattern, skeletonization can be viewed as data compres-
sion as well.

The concept of a skeleton (in continuous case, it is
called medial axis transformation or MAT) was introduc-
ed by Blum [1]. Formally, the medial axis can be defined
as follows, Consider the circles that totally lie within the
object and touch the object boundary at two or more

points. The centres of all such circles form the medial axis
of the object. Extensive researches have been carried out
in this area (in digital domain) and as a result, a large
number of skeletonization or thinning techniques have
been developed in the last few decades. These techniques
differ from each other in performance and in implementa-
tion. But the main objective is to achieve a close approxi-
mation of the MAT of the object. A large number of
skeletonization algorithms remove outer laver pixels
iteratively until a one-pixel thick skeleton is achieved.
Another popular approach uses the distance transform
{DT). Several other techniques based on polygon approx-
imation, run-length encoding, contour following, etc., are
also available. These techniques are surveyed in a classi-
fied manner by Smith [2] and Lam et al. [3]. The output
skeleton, produced by some of these algorithms, may not
be a raster representation. Rather, it may be in the form
of a planar graph providing a line-segment approxima-
tion of the input pattern. In this paper, we call such
representation as vector skeleton as opposed to raster
skeleton produced by other technigues.

This paper deals with generation of the vector skeleton
of an object. For this, we propose a self-organizing neural



618 A Datta et al. [ Pattern Recognition 34 (2004) 61 7- 629

network model which is topology-adaptive. The neural
net grows in size with iterations according to the local
topology of the input pattern. When the net converges,
the topology of the processors defines the vector skel-
eton.

Owr study shows that the proposed neural algorthm
has guite a few advantages over the conventional ones.
The most important advantage is high mobustness with
respect to boundary and interior noise. Second, the out-
put here is rotation invariant to arbitrary angles which is
not so for many conventional algorithms. The medial
axis representation efficiency is found to be satisfactory.
The algorithm is also capable of higher data reduction.
Finally, the proposed algorithm can be seen as a unified
approach to skeletonization because it is applicable to all
the three types of input patterns, namely, binary images,
dot patterns and gray-level images.

We describe our neural network model for skeletoniz-
ation in Sections 2 and 3. Section 4 presents comparative
results between the proposed neural algorithm and some
conventional thinning algonthms. Conclusions are given
in Section 5.

2. The topology-adaptive self-organizing neural network
{TASONN) model

Kohonen's self-organizing neural network (SONN)
model [4] uses a network of fixed (either linear or planar)
topology. The neighbourhood topology in the network is
fixed. Such a net of fixed reighbourhood topology does
not work well in some situations [5,6]. It is so because
during weight-updation process the weight vectors lying
in zero-density areas may be affected by input vectors
from the surrounding parts of the nonzero distribution,
As the neighbourhoods are shrunk, the fluctuation van-
ishes that makes some processors remain outlier due to
the residual effect. Moreover, because of rigid topology of
the net, the topology of the input pattern cannot be
completely adapted. These pose problems, as discussed in
the next section, because the resulting network does not
give the required vector skeleton.

From the above issues it is felt that a dynamic network
with an adaptive local neighbourhood is required for
skeletonization. The model proposed here meets this
requirement. In the present model, the initial list of pro-
cessors is empty and the resulting topology is completely
data driven. That is, initially there is no processor and no
neighbourhood is defined. The net grows in size by
means of a certain processor evolution mechanism. Dur-
ing the learning process the processors create/adapt their
neighbourhoods dynamically, by means of connection
building, on the basis of the input. The neighbourhood of
a processor in the net is totally input driven which gets
dynamically defined. The degrees of different processors
{number of neighbours) may vary and may increase or

decrease over time and hence the neighbourhood topol-
ogy of the net is not fixed. The topology is adapted on the
basis of the local input vectors. The model enables the
network to learn the weight vectors as well as its topol-
ogy from the input vectors in an unsupervised manner.
Thus the present model is a topologyv-adaptive self-or-
panizing newral network {TASONN),

A different topology adaptive network was proposed
by Martinetz and Schulten [7] but, as we shall see later
on, this network is not suitable for generating the vector
skeleton of a pattern.

We shall first describe our model in a general case and
then demonstrate its applicability to skeletonization. Let
the input vectors X come from a manifold defined in the
m-dimensional space. Denote the array of processors by
{7y, M, ..., 7, and the neighbourhood N of a processor
m; by {n4|n, is connected to m ) which excludes n;. The
processor m; stores an m-dimensional weight vector
W, which can be considered to be the location of the
processor in R™.

Deefinition 1. By sensitive region of a processor we mean
an m-dimensional ball of a given radius centred at the
weight vector of the processor. The radius is called the
sensitive level.

Deefinition 2. A processor is said to respond to an input
signal if the input vector falls inside the sensitive region of
the processor.

Deefinition 3. A processor is said to win if it is the nearest
to the input vector among all the processors. The proces-
sor is called the winmer processor. The processor that is
second pearest to the input vector is called the second
Wi er,

In the present model, the entire network is evolved.
Initially, there is no processor, that is, the set of proces-
sors is null. New processors can be added to the network
in two manners (which will be discussed in a shortwhile)
and we use two terms create and fmsert to distinguish
between them. Both creation and insertion are performed
according to the demand by the input. The former is to
take care of new input regions while the latter is to take
care of highly dense regions. If some input region is
unattended, that is, if no other processor is found
around, a new processor is created there. Again, if any
input region is highly dense, new processors are inserted
there.

An input vector is received through the input lines. The
first processor is created at the location of the first input
vector. A sensitive level is set and a sensitive region is
assigned to the processor. From the second input on-
wards the process continues as follows. If the presented
input falls cutside the sensitive regions of all the existing
processors (that is, no processor responds) then a proces-
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soris created at the location of the input. If at least one
processor responds, then (1) adjust the weights of the
winner and the second winner; and {2) strengthen the
strength variable of the edge connecting the winner and
the second winner and weaken that of all other edges.

Several iterations (presentations of input) make one
phase. One phase is completed when the weight vectors of
the current set of processors converge, that is, when the
network becomes stable. After every phase, a new proces-
soris inserted at the middle of the link with the maximum
strength value, The links for the new processor are rebuilt
after removing the old link and the strengths are read-
justed (strength of the old link is distributed equally to
the two new links). The nextinput vector is presented and
the whole process is continued until certain convergence
crterion is met. Formally, the above process can be
described as follows.

Processor creation: Suppose the sensitive level s 1
A new processoris created when the input vector Xir), at
time t, comes from a new region. A new input region is
detected if no processor is found within a distance of
t from X{t). In other words, on presentation of an input, if
no processor responds {or if the processor set is empty)
with the given sensitive level t then create a new proces-
sor at the location of X{r).

Lirk construction: Establish a link between two nodes
m, and m, (v # v) if X isan input from p(X) such that

max(d (X, W)L X, WO = dl X, B Wk (k# wk # ),

where d{-) stands for distance. The above criterion
means, in the iterative process, if some input vector arses
which has W, and W, as the two nearest weight vectors
{one is the nearest and the other is the second nearest)
then the nodes m, and n, are joined by a link, say, L,,.
A strength i (0 = ff; < 1)is associated with every such
link Lj. These strengths are updated during learning.
Initially, all f#;’s are set to (. Suppose, the input vector at
iteration t is X{t). Let m, and m, (1 # v) be, respectively,
the first and second nearest processors of X(r), that is,

max(d(X{e) W Ld(X{r W= A X (), W)
Wkik #uk# . (11
Then the strengths are updated as follows:

1
fult + 1) = (1) s (1 — fia.i) i2)

+ 1
For all other links,

1 t
fidt + 1) = fide) + f'l'_] 0 —fith = m fide) (3)
This is as if X{t) pulls only ff,, towards 1 and pulls all
other ['s towards (0.
Weight updation: After presentation of input X{t) at tth
iteration the links are established by condition (1) and the

weights are updated by
Wolt + 1) = Wir) + 2, ([ X(1) — W] i4)
Wit + 1) = Wit + a0[ Xi(1) — Win], (3)

where @, () and a2 (1) (0 < x.(t) < a,(t) =< 1) are chosen as
in the SONN model.

The asymptotic relation between fi;;"s and W{'s will be
as follows. Suppose, the asymptotic values of the weight
vectors are W, Consider the Voronoi tiles [T] of the
Voronoi diagram of order 2 of the set of weight vectors
W

b= 1XeR" maxid{ X W).d(X W)
=X W§ Yhkiksik=

The present model considers pattern distribution p{X)
that has support only on a submanifold, not on the entire
embedding space R™. It can be noted that the asymptotic
value of the strength i is J',.-Jp{X]dX. For some K; # .
the integral [, X)dX may vanish as a result of which
the respective ffi; values will tend to zero. Again, it is
possible that some [I;; can have a positive value at a cer-
tain stage of learning although ¥ is in fact empty. In
both cases, a link introduced during learning will vanish
in the limit. By similar arguments given by Martinetz and
Schulten [ 7], the links with asymptotically non-zero ff;'s
will form a subgraph of the Delaunay triangulation of
Wiii= L2, ..n.

It is to be noted that the asymptotic links alongwith
their strengths contain information regarding p( X). The
1 value, against each link, indicates the degree of exist-
ence of the link. For example, for an “L'-shaped pattern
{Fig. 1{a)), there are 13 processors{after convergence) and
a link between two processors is shown whenever the
comresponding [T value is greater than zero. Here plX) is
the uniform distribution over the “L'-shaped area. The
value of {Tfor the diagonal link is0.01 5 while the [ values
for the other links are between 0.070 and 0.080 (for the
end processors they are 0.110). Removal of a link with a
significantly low (in comparison to others) [ value can
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Fig L For "L'shaped pattern, the output net achieved by
TASONN after convergence:(a)d = 25, (b)d = 50. The nonzero
# values are shown against each link.
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thus result in a network that represents the skeletal shape
of the input pattern more accurately. Itis to be noted that
such undesirable spurious triangles may occur at the
junctions of a pattern. They can be avoided by increasing
the gaps between two processors{ Fig. 1(b)). Altematively,
such spurious triangles can be removed by deletion of
links with significantly low /I,

Processor insertion: The processors are inserted only
after a phase is completed. Suppose, at the end of the sth
phase, the weight wvectors of the processors ame
Wile,) ... . Wyit,) where ms) is the number of processors
during the sth phase and t, is the total number of iter-
ations needed to reach the end of the sth phase. Now, the
stopping criterion can be set depending upon the applica-
tion in hand (see the next section). If the stopping cri-
terion is not met then a new processor m is inserted
between m and me, where

o = max max ff. (3]
=1, .., w5 f-ehy
Set fiy, =l = %ﬁM-._ new I, =0 and the weight of
m = 3[Wilt,) + Wit )]
By this process a processor is inserted at a location
where the demand is maximum. The process continues
until, at the end of a phase, the stopping criterion is met.

The TASONMN Algorithm

Step 10 Initialize ¢ = 0.

Step 20 Present the input pattern X{1).

Step 30 If some processor responds to X(f) then go to
Step 5.

Step 4 Create a processor at the location of Xit).

Step 5 If the second winner exists then update the
strengths ;s according to Egs. (2) and (3).

Step & Update the weights of the winner and the
second winner, according to Eqgs. (4) and (5).

Step T: If the net is not stable, set t =t + 1 and goto
Step 2.

Step & I the stopping criterion is met, then go to Step
10.

Step 9 Insert a processor according to condition (6), set
t =t + 1. Goto Step 2.

Step 10: Stop.

We shall now see how the above model can be wsed in
skeletal shape extraction. The main feature of the
TASONN model, useful in skeletonization, is the dynamic
topology adaptivity and its dynamic growth in size.

3. Skeletonization by TASONN model

To make the propopsed TASONN model applicable
to skeletonization problem, a suitable stopping criterion
isused. A parameter 4 is introduced as an upper bound of
the distances between two neighbouring processors. The

problem of skeletal shape extraction of two-dimensional
visual patterns, images and dot patterns, are considered
together here. Here, the set of input vectors is
5= {P.P;... Pyl where P; represents the positional
co-ordinates of an object point. One presentation of all
the points in § makes one sweep consisting of N iter-
ations. After one sweep is completed, the iterative process
for the next sweep starts again from P, through Py, With
the present stopping criterion, the processor insertion
step (discussed in the previous section) is set as follows.
Processor insertion: Processors are inserted after each
phase. A phase is completed when the network with the
current set of processors converges, that is, when

[t — B <& Wi,

where t and ¢ are the iteration numbers at the end of two

consecutive sweeps and ¢ is a predetermined small posit-

ive quantity. If

[Wi(t,) — Wil = max  max [Wit,) — We(t,)| =
=1, k) wsN,

then one processor is inserted between m and me. The

weight of the new processor and the new [f values are set

as before. After the insertion of a processor, the next

phase starts with the new set of processors. The process

continues until, at the end of a phase,

for all i,|Wit) — Welt,) =8, ¥meN,;

The output network of the algorthm gives an approxim-
ate global shape of the input pattern. The final network
obtained by the above algorithm gives a vector skeleton
for the given input pattern. The raster skeleton can easily
be derved from the network as follows. It should be
mentioned that the output net depends on the parameter
&, and with a proper choice of 4, one can get a satisfactory
vector skeleton. This issue is discussed in Section 3.1

Procedure raster-skel: For each link, the line segment
connecting the weight vectors of the two corresponding
processors, is considered. The set of all object pixels
intersecting such a line segment gives the raster skeleton.

Experimental results on various input patterns have
shown that the above algorthm converges and the re-
sulting network gives an approximation of the skeleton
of the input pattern. The following discussions would
help us to see how the resulting net gives an approxima-
tion of the skeletal shape of the pattern.

For arc patterns, it can easily be seen that the above
node joining criteria would join the processors by single
links {other link strengths are zero) so that the topology
of the input is preserved (for example, see Fig. 2{a)). Here
two processors comesponding to the regions §; and
5, are joined since they are the two nearest processors
from the input vectors lying in the shaded region. Sim-
ilarly, other links are established. The strengths of all
other possible links are zero since no input vector
contributes to them. For a node representing a fork
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(b}

Fig 2. Link establishments in {a) arc pattern, (b) fork patiern.

junction region §, (Fig. 2(b)) the node pairs comespond-
ing to the region pairs (5,,5;) (5,.5.) and (§,,5,) are
joined for the same reason.

3.1, Role of parameter &

The parameter & controls how densely the processors
are to be located in the network. It controls the gap
between two neighbourng processors. A desirable skel-
etonmay not be achieved if & is too high or too low. If & is
very high then the skeleton, although may preserve the
essential topology of the pattern, does not propery rep-
resent the medial axis (Figs. 3(a) and (b)) A portion of the
output skeleton may lie outside the object. On the other
hand, very low values of & might produce spurious tri-
angles in the network (Figs. 3{e) and (f)) which does not
represent the true skeletal shape of the pattern. Hence we
require some adaptive mechanism to avoid this situation
s0 that a satisfactory medial axis representation can be
obtained. One such mechanism is to introduce activation
fevel in the weight updating process which is described
below.

We specify an activation region of a processor so that if
an input vector falls within the region then only it acti-
vates the processor. The activation region decreases over
time. In the present problem it is defined as follows.

Deefinition 4. The activation level ails) of ith processor,
fori = 1,..,.ms), at the end of the sth phase, is defined as

| C—
afs) =— 3 |Wilt,) -

i neen.

Wile,)l

where ¢ is the number of neighbours of m; excluding ;.

<

led 1

Fig 3. Output nets for a "R’ shaped pattern when {a) 8 = 30, (b)
=25 {c)d=2(d)d =15{e)d =10, () i = 5 withoul activa-
tien level.
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Fig 4. Adtivation regions {a) al time t, (b} al time 4, {c)at time
t3- 1 <t < by

Definition 5. The activation region of a processor is
a circle with the corresponding weight vector as the
centre and the activation level as its radius (see Fig. 4).

It should be mentioned at this stage that the sensitive
level and activation level, although similar, are used in
different contexts and hence are given different names.
The sensitive level remains fixed over time and is used to
create the initial set of processors. [t is not used any more
unless a new input region occurs. The activation level
varies over time and may not be the same for all the
processors at a point of time. It is used in competition
and weight updating.

A processor is called active if the presented input
vector lies within its activation region. In other words, if
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an input vector lies outside all the activation regions, it is
ignored in the competition and updating process. An
input must activate a processor first before entering into
the competition. Only active processors are qualified for
competition after which the winner processor is selected
and the weight vectors are updated accordingly. Thus,
the weak signals (here the object pixels pear the bound-
ary of the object) gradually become ineffective in the
weight updating process. This is so because, as the
processors become more and more close to each other,
the region of input vectors that activates (influences)
a processor is also shrunk and thereby the influence of
the outer layers are symmetrically decreased. The object
pixels near the medial axis aquires more control over the
process {Fig. 4ic)).

It should be noted that the sensitive level is also taken
as a parameter in the TASONN model But, since it is
used to detect new regions and to select the initial few
processors, its choice is not crucial. Within a wide range
of the sensitive level, the model produces identical results,

Although the activation level overcomes the formation
of spurious triangles in linear or arc segments of the
pattern, it cannot overcome the problem completely at
junctions of the pattern. If two such segments meet at
a small angle then spurious triangles may occur even
after incorporating activation levels. But this situation
can be avoided by keeping & high as seen in Fig. 1.

With these observations, we implement the TASONN
maodel for skeletonization as follows. The whole process
is divided into two stages (a) finding an initial skeleton
to get the overall topology of the pattem and (b) arriving
at a more accurate final skeleton after incorporating
the activation level. In the first stage, set & high and get
an initial skeleton that does not contain any spurious
triangle but preserves the topology of the input pattern
(Figs. 3aHd)). WNote that higher the wvalue of &
lower is the chance of forming a spurious triangle. If
there is a spurous triangle then one of the following
actions can be taken: (i) remove a link by choosing
a threshold on the [ values as described in Fig. 1 and (ii)
take a higher value of & and repeat the process to get an
initial skeleton.

By the above method, we get an initial skeleton free of
spurious triangles that reflects the overall topology of the
pattern but may not be close to the medial axis. Now, in
the second stage, to get a close medial axis approxima-
tion, a lower value is assigned to & and the weight
updating process is continued. As the topology of the
input pattern is already learned, the strengths () are
ignored at this stage. Thatis, we do not develop any more
connections or links in the second stage. We only update
the weight vectors in an effort to position them more
accurately along the medial axis. New processor inser-
tion is continued as before. For example, the output
networks for the “R'-shaped pattern, using activation
level, are shown for different & values in Fig. 5. It can be

IEY il

Fig 5. Output nets for a “R'-shaped pattern when {a) 8 = 10, (b)
& =35 {c) 4 =3 with activation level.

observed that these rmesults give satisfactory skeletal
shape of the pattem even for small #'s (compare with
Fig. 3 where activation level is not used).

An important guestion is: what value of & should we
choose in stage (a)? Experiments have shown that this
choice can be made from a considerablly wide range and
hence one need not guess an exact value. For example, in
Fig. 3, for an "R'-shaped pattern, the essential topology
could be achieved for 1554 <30, Within this range, the
initial skeletons have the same topology. In many situ-
ations, the initial skeleton itsell {for example, Figs.
3 a)-d)) serves the purpose. For example, skeletonization
is applied as a preprocessing step in character recogni-
tion problems. In character recognition, a vector skeleton
of the character pattern makes the recognition task
easier. This vector skeleton need not be very close to the
medialaxis. Crude vector skeletons similar to that shown
in Figs. 3a}-{d) are good enough for structural analysis
and recognition of the input pattern.

Moreover, for printed and hand-printed character rec-
ognition {for a given font, fixed pen thickness and scanner
resolution) we can learn, by tral and error method, an
estimate of & from a mumber of tmining characters so
that the initial skeleton itself is satisfactory (in other
words, the initial skeleton provides the essential topology
of the input pattern). This estimate can be subsequently
used in stage {a). However, if one wants to get more accu-
rate skeleton, he can go for the second stage mentioned
above.

As mentioned earlier, a topology-adaptive model
“neural gas network” (NGN) model, was proposed by
Martinetz and Schulten [7]. Fritzke [8] modified the
NGN model and suggested a scheme to insert processors
in the netwok. Thus in the “growing neural gas network”
{GNGN) model of Fritzke, the number of weight vectors
to start with need not be known a prion. The models
NGN and GNGN are found to be effective methods
for topology leaming. They are advantageous over the
SONN model becanse the SONN model assumes a
predefined topology of the petwork that remains fixed
throughout learning. However, the NGN and GNGN
maodels are not readily useable in the extraction of a vec-
tor skeleton. Experiments show that in extraction of the
skeleton of a pattem, the TASONN model produces
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much better results than the SONN, NGN and GNGN
models. This is demonstrated in Fig. 6. In Fig. 6, it can be
seen that the output nets may form mesh-like structures
rather than a vector skeleton in SONN and NGN mod-
els. However, in GNGN model, this problem can be
avoided by keeping the number of processors small (for
which one needs to know the optimum number a priori).
For example, the GNGN model may produce a skeleton
as good as that of the TASONN model if the number of
processors is optimally chosen (here 10). The proposed
TASONN model gives an adaptive way {using activation
region) to avoid this type of situations,

Second, in NGN model, weights are updated for the
r nearest processors. Initially, the value of r is set high so
that the chance of getting stuck at a local minimum is
reduced. Ordering of the r distances, for each presenta-
tion of the input, makes the model computationally ex-
pensive.

Third, in NGN and GNGN models, the edge-destruc-
tion mechanism is based on an aging scheme. Connec-
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Fig 6. Responses of different models for Y-shaped pattern. (a)
SOMNN model using linear topology, (b) SONN model using

rectangular topology, (o) NGN/GNGN models, (d) TASONN
meslel {only the links with nonzere § are shown).

tions made at an early stage of the adaptation may not be
valid anymore at an advanced stage. The authors devel-
op an age counter for every link after the link is construc-
ted. If the age of a link exceeds a predefined “lifetime”
then the link is destroyed. The lifetime is chosen subjec-
tively here. This technique may pose problems in certain
situations. In the proposed TASONN model, the aging of
the links is done differently and the link adaptations are
done more efficiently. In NGN and GNGN models, a
link is constructed/destroyed in a sudden manner. A link
is constructed between two processors as soon as an
input arises for which these two processors are the closest
and the second closest. Similarly, a link is destroyed as
soon as its age exceeds the lifetime. This may cause
sudden loss of previous leaming. Note that if the lifetime
is small then the previows learning may be lost soon when
input keeps on coming from a new region [5]. If the
lifetime is big then some undesirable links may survive
which should not. So the choice of the lifetime which is
done manually is crucial. In our model, the links are not
constructed or destroved suddenly. Instead, it assigns
a strength variable to each edge and these strengths are
adapted {lying between 0 and 1) gradually in the learning
process. Thus it does not forget the previous learning in
a sudden manner. Moreover. in Kohonen's SONN
model and in NGN/GNGN model, a link between two
processors either exists or does not exist {detenministic).
But in TASONN model a link is allowed to have a kind
of degree of its existence in the form of f and this can be
of use in shape analysis (as explained in Fig. 1).

Finally, in NGN model, all the processors are created
initially at rondom positions. This may lead to a number
of processors being dead and finally coming to no use.
The GNGN model overcomes this problem by taking
only two processors initially and then by growing the size
of the network. The present model starts with an empty
set of processors and processors are created where the
input demands them. Thus a new input region can be
adapted easily and more efficiently. Moreover, in GNGN
model, new processors are inserted at constant (decided
manually) time intervals while in our model insertions
are done when the current network stabilizes. After the
insertion the leaming again continues.

4. Performance evaluation of the proposed algorithm

Performance of the proposed neural algorithm is ana-
lysed in comparison with some existing conventional
thinning algorthms. The comparnsons are carned out
with respect to the following desirable properties of a
skeletonization algorithm: (a) robustness or noise im-
munity; { b) medial axis representation; (c) rotation invari-
ance; (d) data reduction efficiency; (e) extendibility to
other input types le.g., dot patterns and grav-level pat-
terns). These properties are discussed in different subsec-
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tions below. The response of our algorthm with respect
to these properties are also presented.

4 1. Robustness

Two types of noise namely, boundary noise and object
noise, are considered here. An important aspect of our
skeletonization algorithm is noise immunity which
makes it qualitatively different from the conventional
ones. If the original object contains noise, the skeleton
should not deviate much from the skeleton in the ideal
situation. A serious problem with many of the existing
algorithms is that they sometimes produce noisy skel-
etons if the input patterns contain noisy boundary (see
[9.107). Moreover, these algorithms cannot handle object
noise. On the contrary, our algorithm can take care of
both types of noise.

Justifications of the above claim are as follows. The
resulting skeleton here is given by the weight vectors after
convergence, and their links. Its final position is highly
insensitive to noise pixels because of two factors. First,
the weight vector converges to the centre of gravity of the
respective Voronoi region (§;) and this centre is not
greatly affected by a few noise pixels. Second, the activa-
tion region of a processor decreases over time and as a
result, the boundary noise pixels are kept outside it to a
great extent. Thus, the noise insensitivity of the present
algorithm is clear from its learning mechanism and con-
vergence property. Most of the existing conventional
algorithms use a rigid definition of connectedness of the
ohject which in effect causes noise sensitivity, The
proposed neural approach melaxes the concept of con-
nectivity and it is found that such a relaxation is useful
for robustness even when SNR (signal-to-noise mtio) is
close to 1.

401, Boundary noise

The proposed skeletonization algorithm is found to be
highly robust to boundary noise. The boundary noise is
distributed on the boundary of the object {white noise)
and on its immediate neighbourhood in the background
{black noise). Here we add black and white boundary
noise pixels and study their effect on the skeleton. We
have experimented on several example patterns with
different SN R values where the SN R is defined as follows:

Number of boundary black pixels

SNR, =
5 (B+ W)

where B is the number of black noise pixels and W the
number of white noise pixels. The robustness of our
algorithm to boundary noise is demonstrated in Fig. 7.
A conventional iterative thinning algorithm (for example,
the algorithm by Jang and Chin [11]) is found to be noise
sensitive (Fig. Nb)) while our proposed algorithm is in-
sensitive to it (Fig. Tic), (d)).

o o
000QOCN0OCI00G0000000 000000000000
000000000000000000000000000000000
CO0COCO0000000000GA00000000000000
QO0QOQOLOGCA00O00000000000000000000
QGO00000000030I000000000000000000

o a

" "

QOO00+0A0000000000x00000000000000
0G000eQOO0000000 00000000000 0R0O0
3 o s o b e o e 0 o o o o o o A DT 0D
COOOQC000A+0000000000OCAA0000. 00
QOO0AQCOA0C 00000000000 0000000000

* *
i)

o] i)
QACA0CA000000000000000000000000 00
QO0a00Ge0C0000000aR0000 000000000
CI00o0 50 oo o o (D)
Q00000000 000000000G0AC0000000000
COOOOOO0A00000000000000000 000000

0 o

Q o o Q
0O00C00GGI00I00000 6000000000000
0QO000000000GGA0000000 00400000000
(2046 o o o L G S K o o ()

DO000000000000G000000 00000000000
CO00R000G00C000000000 00000000000

o 0 o
[y
Fig 7. Robustness to boundary noise, anillustration. 0 repres-
ents objed and *# represents skeletal pixel: (a) a line segment
with four boundary noise pixels, (b) result of a conventional

iterative thinning algorithm, (@-(d) results of our neural algo-
rithm with the same noise and higher noise.

An error measure, as given below, has been suggested
by Jang and Chin [107:

Areal[Sg — 8¢] + Area [5; — Sh].i'

= mind 1
m, = min ArealSe]
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Fig 8. Boundary noise immunity.

where 5; and 55 are the skeletons obtained from § and
its noisy version, respectively. Areal ] is an operator that
counts the number of pixels.

The average values of m, against different SNR values
are computed for comparing the algorthms. Using the
above measure, lang and Chin's algorithm [[10] has been
found to be superor to several other conventional algo-
rithms [12-16] in terms of boundary noise immunity.
The average m, values, in our proposed algorithm, are
found to be more encouraging {see Fig. &) and reflect
higher robustness to boundary noise.

0.2 Object noise

Many conventional algorithms are not able to handle
noise which is intedor to the object. By object noise we
mean the white noise distributed over the entire object
including its boundary. Such noise may occur in practice
due to several reasons. The conventional al gorithms (par-
ticularly, the itemative ones) use the property of local
connectivity within a small window (3= 3 or 5= 5) and
try to preserve such local connectivities throughout.
They treat a single white noise pixel as a hole consisting
of a single pixel. As a result, in the output skeleton it
produces a big hole (Fig. 9(b)). Fig. 9 shows how only two
noise pixels misclassify a *1'-like pattern as an “8-like
pattern. On the contrary, the proposed algorithm uses
the connectivity concept in a more general sense (note
that two processors are joined by a link if the two
respective regions are adjacent). The algorthm treats
small holes as white noise at the cost of a possibility of
missing a true small hole. Thus, very small holes have
hardly any effect on the resulting skeleton (Figs. Wc) and
{d)). But if the hole is large enough and is a part of the
pattern {for example, consider an ‘A’-shaped or ‘R'-
shaped pattern), it is output as a hole in the resulting
skeleton. We have experimented and found that the algo-
rithm is robust and performs satisfactorily with moder-

Tat) ]

il [l

Fig 9. Outpul skeleton generates big holes in the presence of
single-noise pixels. Outpul of conventional thinning algorithms
{a) withoul any noise; (b) with two single-noise pixels; (¢ vector
skeleton by the proposed algorithm with the same noise as in (bl
(d) raster skeleton by the proposed algorithm with the same
noise.

ately low SNR (moderate amount of noise) where the
SNR is defined by

Number of object pixels

For a very low SNR, that is, for a very high amount of
noise, the binary object becomes merely a set of scattered
pixels or a dot pattern. The proposed algorithm can still
produce the global skeletal shape of the pattern assuming
the noise to be uniformly distributed.

An illustration is given in Fig. 10 for the pattern “A’
with different SNR values. We have taken a very high
amount of object noise and tested the algorithm for
several character patterns. It has been found that even in
the presence of very high noise (SNR = 2.0, 1.5 and 1.1),
the proposed algorthm is able to extract the skeletal
shape of the original object as can be seen in the example
figure (Fig. 10). The existing conventional algorithms fail
in such situations.

4.2 Medial-axis represemation

The primary objective of skeletonization is to approx-
imate the medial axis of the object pattern. So it is
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i) ik

el

Fig. 10 The final skeletons obtained for the pattern *A’ with
object noise. (a) SNR = 2 (b)SNR = 1.5, (c) SNR = L.1.

important that the output skeleton should approximate
the medial axis as closely as possible. After getting
the raster skeleton as mentioned earlier, the following
measure [11] is computed for comparison of the good-
ness of fit of medial axis representation with some other
thinning algorithms:

Area[ 5]

Area[§]°

where § is the set of all object pixels in the input pattem,
5" is the union of the maximal digital disks (included in §)
centred at all the skeletal pixels.

Clearly, i {lying between 0 and 1) measures the close-
ness of the output skeleton to the ideal medial axis. The
derived skeleton is identical to the ideal medial axis
ifnis 1.

For the proposed algorithm, the average 5 value is
found to be 0.820 (with & = 3). Average values of g are
computed for a number of conventional algorithms for
the same set of test pattems. The results are summarized
in Table 1. It is found that for the proposed algorithm,
the medial axis representation index is as satisfactory as
in the conventional algorithms.

4.3 Rotavion invariance

It is easy to see that, in the proposed algonthm, the
output skeleton is invariant under rotation of the input
pattern by arbitrary angles. This is due to the facts that

Table 1
Index of medial-axis representation

Algorithms n

Helt et al. [12] 0891
Hall [13] 0902
Chin et al. [14] 819
Zhang and Suen [15] (L.8RG
Luand Wang [16] (L89R
Arcelli and Sanniti di Baja [17] 0867
Jang and Chin [11] (LER1
Fan et al. [18] 0811
Propesal neural algorithm (.89

i i

Fig 11. Efect of rotation by angles: (a) 457, (b) 227, and () 11°.

the proposed method does not assume any underlying
grid and that the measure of closeness is done in terms of
Euclidean distance. The iterative methods for skeletoniz-
ation that vse square grid are vsually invariant under
rotation by multiples of %0° only. The work due to Jang
and Chin [107], based on derived grid, reports invariance
under 45° rotation also. As an illustrative example, we
have rotated the pattern *X' by different angles (45°, 22
and 117) and shown the output skeletons in Fig. 11. It
shows hardly any effect of rotation of the input pattern
on the output skeleton.

4.4 Data reduction efficiency

After convergence, the proposed neural network model
creates an adaptive vector gquantization [4] of the input
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set. Each weight vector tends to the centroid of the
respective Voronoi regions. Within each region all pixels
have the same weight vector as their nearest one. In
general, the output weight vectors give the prototypes or
examplar vectors from the corresponding regions and
these can be an encoded version of the input in less
storage space. In the present algorithm, the set of weight
vectors along with their interconnections, or the graph
{planar straight line graph) with the weight vectors as its
nodes and the interconnections as its edges, represents
a vector skeleton of the input pattern. This skeleton
requires much less space than the original input set and
hence a considerable data reduction is achieved.

One of the basic purposes of skeletonization is to
reduce the storage space required to store the image data
without losing the essential structural information. The
proposed method can achieve more data reduction com-
pared to most of the existing skeletonization algorithms,
It can be seen that the less the number of processors in
the network the more is the data reduction. By choosing
larger value of & we can make higher data reduction. But
this might worsen the accuracy of medial axis representa-
tion{see Fig. 3). A proper choice of ¢ as mentioned earlier
can balance this trade-off.

4.5 Extendibifity to dot patterns and grav-level images

Unlike binary images, a skeleton cannot be properly
defined for a dot pattern. But human visual system can
still perceive its skeletal shape and extmact the percepiual
skeleton from a dot pattern. For example, a dot pattern
having a definite shape can be recognised by the human
brain almost as easily as a binary image having the same
shape. The conventional thinning algorithms that extract
skeletons from binary images do not work for dot pat-
terns. On the contrary, as already seen, the proposed
neural algorithm can be used to extract the perceptual
skeleton of a dot pattern (see Fig. 10).

Another advantage of the proposed algorithm is thatit
can take care of gray-level patterns also. The conven-
tional binary image thinning algorithms work only on
binary images. They do not work on gray-level images.
On the other hand, the neural technigue discussed here
works on gray-level images also. In case of gray-level
images the area of interest (i.e., the object portion) can be
interpreted as a multi-valued foreground emerging from
a single-valued background (see [19]). Suppose for
a gray-level pattern, g, is the gray value of the pixel at
the ath row and bth column. If the weight update rules (4)
and (5), are rewritten as

Wit + 1) = Wi + 2 0L X0 — Wale) Tda.
Wit + 1) = Wi + ax(O[ X (1) — Walt) ]gas,

then the TASONN model takes care of gray-level pat-
terns as well. It is to be noted that if g,, = Qor 1 {for all

(el (cdy

(e ]

Fig 12. Output raster skeletons of gray-level patterns.

a, b) then the above update rules are equivalent to rules
{4) and (5). The algorithm has been tested on several
gray-level images. Fig. 12 shows the results of such exam-
ples. For all the test pattems in this paper, the initial
value of = is taken as 0.01 and the initial weight vectors
are chosen at random. The values of 2 are changed over
time as o 5)= 00141 +550) and a.(s)=001/
{1 + 5/20), where 5is the sweep number.

4.6, Computational complexity

In general, finding skeletons is a computationally ex-
pensive task. That is why pamllel algorithms have been
encouraged in this field. The proposed neural network-
based method is parallel in nature (in general, neurocom-
puting has been considered to be a new form of parallel
computing). In the proposed skeletonization algorithm,
the input vectors are presented to the network sequen-
tially. All the processors present in the network compute
the distances from their respective weight vectors in
parallel in a constant time and the winper is selected by a
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‘maxnet’ [20]-like network. The winner and the second
winner processors update their weights simultaneously.
Thus for a single input, the time taken by the above
process is not dependent on the network size. This pro-
cess is repeated for all the input vectors. Hence one
complete pass of the input, that is, one sweep requires
O{N) time where N is the total number of object pixels. [t
can be seen that the total number of sweeps does not
depend on the input size N.

It should be mentioned here that in many existing
parallel thinning algorithms multiple processors are used
where all the processors work in parallel. But in these
algorithms, all the input values are fed together in an
iteration and all the processors {or a large subset
of them) compute their output in parmllel which would
be the input in the next iteration. The total number of
passes that are required by this class of algorithms is
O width,, ) where width,,,. 15 the maximum width of the
input pattern. These algonthms use cellular networks
where each pixel in the image is assigned a processor.
Thus the number of processors required is O{N,) where
N, is the total number of pixels in the whole {including
the background) image. In our algorithm, the size of the
network is O{N) where Ny is the number of skeletal
pixels. In most of the applications, N; & N.

5, Discussion and conclusion

A topology-adaptive self-organizing neural network
model is proposed which is applicable in skeletal shape
extraction of an object. In Kohonen's SONN model, the
network topology is initially set and it is maintained
throughout. In the SONN model, the network is self-
organizing in that it tends to approximate the input
pattern space in an orderly fashion without any super-
vision. In the proposed model the same is achieved and,
in addition, the net topology is adapted automatically
unlike in the SONN model. The topology adaptivity is
a major issue of the proposed model which makes it
applicable to skeletonization tasks. Due to a fixed network
topology set initially, Kohonen's model cannot always
properly represent the shape of a pattem while the pro-
posed model can do it more accurately. The proposed
model evolves the topology of the network and it is
self-organizing as well. Moreover, the model is especially
tuned to generate a vector skeleton {from which a raster
skeleton can also be obtained) of the underlying pattern.

Asa skeletonization algorthm, the present model pos-
sesses quite a few advantages over the existing conven-
tional thinning algorithms. The most important one is
the high robustness of the present algorithm with respect
to boundary and intedor noise. Next, it is rotation invari-
ant to arbitrary angles while most of the conventional
algorithms are not. The medial-axis-representation effi-
ciency is found to be satisfactory. The algorithm is also
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Fig 13 (a), (c) The vector skeleton misses very small gaps. (bj,
{d) However, the raster skeleton is alright

capable of higher data reduction. Finally, the proposed
algorithm can be seen as a unified approach to skeleton-
ization because it is applicable to all the three types of
input patterns, namely, binary images, dot patterns and
gray-level images.

Since the proposed technique is very noise insensitive,
it may treat very small holes or gaps as noise. Thus the
proposed model cannot strictly guarantee homotopy
property of the object (see Fig. 9). Consider a broken line
pattern. By our algorithm, the vector skeleton may miss
the namow gaps and recognize it as a single object
{Fig. 13{a)). Similar sitvation will occur in a ring-like
pattern with a narrow gap (Fig. 13{c)). This, however,
does not cause any serious problem since the raster
skeleton will be broken as found in Fig. 13(b) and {d).

Lastly, an important advantage of the TASONN
maodel is fault tolerance. It is easy to see that damage of a
few nodes or links can be automatically repaired in the
TASONN model while it is not s0 in the SONN model
Dwring learning, if any node or link is damaged, the input
vectors in the surroundings will generate new nodes and
new links. The link strengths ([f values) are adapted from
the subsequent input presentations.
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