Safety Zone Problem

Subhas C. Nandy -~ and Bhargab B. Bhattacharya

Tndan Stawstical Instinete, Calcutta 700035, India
E-mail: nandysciisical.ac.in, bhargab@isical.ac.in

and

5 r 3
Antonio Herndndez-Barrera™

Commuier Science Department, Faculty of Mathematos and Computer Science,
Havane Universiny, Cuba
E-mail: wnyhdei@matcom.uheu

Received March 5, 2000

Given a simple polygon £, its safery zone § (of width 6) is a closed region
consisting of straight ling segments and circular arcs (of radivs &) bounding the
polygon P such thal there exisis no pair of points p Gon the boundary of PYand g
{on the boundary of §) having their Eoclidean distance d(p, g less than &. In this
paper we present a lingar time algorithm for inding the minimum area safety zone
of an arbitrarily shaped simple polygon. It is also shown that our proposed method
can easily be modified 1o compute the Minkowski sum of a simple polygon and a
comvex polyvgon in OCMNY time, where M and N are the number of vertices of
both the polygons.

Key Words: polygon tnanguiaton; convex hull; Minkowski sum; resizing of VLSI
circuits; algorithm: complexity.

1. INTRODUCTION

In this paper, we introduce a new problem called the safety zone
problem, which is as follows: Given a simple polygon P and a fixed
parameter &, the safety zone (of width §) of the polygon P is a closed

' To whom correspondence should be addressed.

* The research of the third author was supported by JSPS Fellowship No. PO7029,

* This work was done when these authors were visiting Japan Advanced Institute of Science
and Technology, Japan.

538

SAFETY ZONE PROBLEM 539

FIG. 1. Safety sone of a simple polygon.

region S of minimum area such that P s completely inside § and there
exists no pair of points p and g, where p is on the boundary of P and ¢ is
on the boundary of §, such that d(p,), the Euclidean distance between p
and g, is less than 5. Here S is not a polygonal region. Its boundary is
composed of straight line segments and circular arcs of radius 8, where
each straight line segment is parallel to an edge of the polygon at a
distance § from that edge, and each circular arc (of radius §) is centered
at a unique vertex of the polygon. The boundary of the safety zone
describes a simple region in the sense that no two edges (straight line
segment or circular arc) on its boundary intersect in their interior. It is
easy to observe that for every point g on the boundary of the safety zone §
of the polygon P there exists at least one point p on P such that
dl p,q) = & The safety zone of a simple polygon is demonstrated in Fig. 1.
The problem originates in the context of VLSI resizing as described in the
next section.

In this context, it is worth mentioning that, given two polygons P and O
in .#°, their Minkowski sum is definedas P& Q= {p + g: p € P.q € Q),
where p + g denotes the vector sum of the vectors p and g, ie., if
p={p,.p)and g ={4..4q,), then we have p+g=(p_+ q.p, +4g.)
The safety zone (of width &) of a convex polygon P is surely obtained by
taking the Minkowski sum of the polygon P and a circle C of radius &.
But for a simple nonconvex polvgon, the safely zone is a super set of the
region A obtained by taking the Minkowski sum of the polvgon P and the
circle C. Here the area indicated by the Minkowski sum may be composed

540 NANDY, BHATTACHARYA, AND HERNANDEZ-BARRERA

of the safety zone of the polygon P with some holes inside it such that the
boundaries of the holes also satisfy the safety zone property.

The combinatorial complexity of the Minkowski sum of two arbitrary
simple polygons P and O is O(MIN?) [3], where N and M are the
number of vertices of these two polygons respectively. In particular, if one
of these two polygons is convex, the size of the Minkowski sum reduces to
O{MN). In [6], an algorithm of time complexity O(MN logl MN)) is
proposed in the context of the polygon containment problem. The problem
they have smdied is deciding whether a convex polvgon (J can be trans-
lated to fit within an arbitrary polygon P. In [2], a number of results are
proposed on the Minkowski sum problem when one of the polygons is
monotone.

If O is convex and P is monotone, the size of the Minkowski sum as
well as the time and space complexities of the algorithm are O(MN).

If both P and are monotone, the size of the Minkowski sum is
O MNae(mint M, N), where a(-) is the inverse of the Ackermann func-
tion. The time complexity of the proposed algorithm is O(MN log(MN).

If @ is monotone and P is any arbitrary simple polygon, the time
complexity of the proposed algorithm is Ok + MN Mog{ MN), where k is
the size of the Minkowski sum. The value of Xk may be O{M-N) in the
WOrst case.

An algorithm for finding the outer face of the Minkowski sum of two
simple polygons is presented in [11]. It uses the concept of convolution,
and the running time of the algorithm is Ok + (M + N WDlog(M +
N Here M and N are the number of vertices of the two polyzons; & and
! represent the size of the convolution and the number of cycles in the
convolution respectively. In the worst case, & may be O(MN). If one of
the polygons is convex, the algorithm runs in O(k log"(M + N)) time. To
the best of our knowledge, no algorithm exists which can compute the
boundary defined by the Minkowski sum of an arbitrary simple polvgon
and a circle or a convex polygon in time linear in the worst case size of
output (combinatorial complexity) of the problem.

In this paper, we present an algorithm for finding the boundary of the
minimum area safety zone of an arbitrarily shaped simple polvgon. Using
Chazelle’s linear time triangulation algorithm [1], we have shown that the
time complexity of our algorithm is O(N), where N is the number of
vertices of the polvgon. The space complexity of the algorithm is O(N). In
this context, one may argue in two ways:

Chazelle’s polygon triangulation is fairly complex. To avoid this diffi-
culty, one may use a simple randomized algorithm [12] of time complexity
(N log™N) for the practical implementation purpose.

SAFETY ZONE PROBLEM 541

One may draw the boundary of the safety zone of a simple polygon
from its medial axis, which can be obtained in linear time [5]. But the
above algorithm is fairly complex; it involves splitting the polygon into
different forms of histograms. Moreover, it also uses Chazelle's linear time
polygon triangulation algorithm. Surely, one may get a simple algorithm
for finding the medial axis of a simple polygon whose expected time
complexity is O(N) [8]. But after getting the medial axis (Voronoi dia-
gram), drawing the boundary of the safety zone or the Minkowski sum is
also not very straightforward. It is as complex as drawing the boundary of
the safety zone after triangulation of the polygon, using our algorithm. So,
one level of computational complexity (drawing the medial axis) can easily
be avoided by adopting our method for solving this problem.

Although we have used Chazelle’s triangulation algorithm, after the
triangulation step. our algorithm is very easy to implement. It uses only
linear link lists and a binary tree as data structures, which can be tackled
easily in a software program.

Next, we show that the technique of drawing the boundary of the safety
zone is alko applicable for finding the Minkowski sum of an arbitrary
simple polygon and a rectangle in linear time. The same technique is then
used to compute the Minkowski sum of a simple polygon and a convex
polygon in O(MN) time, where N and M are the number of vertices of
both of the polygons respectively.

The paper is organized as follows. In the next section we shall discuss
some important applications of this problem. Some preliminary concepts
will be introduced in Section 3. In Section 4 we shall concentrate on
describing the process of obtaining the boundary of the safety zone inside
a notch of a nonconvex simple polygon. The stepwise description of the
algorithm and its complexity analysis is given in Section 5. In Sections 6
and 7 we use the same technique to compute the Minkowski sum of a
simple polygon and a convex polygon. Finally, we summarize our work in
Section 8.

2. APPLICATIONS

In VLI layout design, the circuit components must not be placed very
closely in order to avoid electrical effects such as inductance, capacitance,
etc., among the circuit components. The circuit components on a floor may
be viewed as a set of polygonal regions on a two-dimensional plane. Each
circuit component P, i associated with a parameter § such that a
minimum clearance zone of width & must be maintained around that
circuit component. The regions representing the circuit components are in

542 NANDY, BHATTACHARYA, AND HERNANDEZ-BARRERA

general isothetic polygons, but may not always be limited to convex ones.
The location of the safety zone (of specified width) for a simple polygon is
a very important problem for resizing the circuit components [10, 13].
Given a set of isothetic nonoverlapping polygonal regions and a common
resizing parameter &, an (N log N) time and O(N) space algorithm for
finding the safety zones of all polygons is already available in [10]. This
outputs another set of closed regions resizing each polygon by an amount
d. If more than one polygon are closed enough, their safety zones overlap,
indicating the violation of the minimum separation constraint among
them. Note that, inside a notch of such a polygonal boundary, if a wide
space is available which may accommodate some circuit component, we
cannot use that location, as space for routing the connection wires from
those circuit components to the other circuit components which are placed
outside the notch s not available. Thus with respect to resizing problems
in WL5I, this is the motivation of defining the safety zone of a polygon.

The safety zone problem finds another important application in the
automatic monitoring of metal cutting tools. Here a metal sheet is given
and the problem is to cut a polygonal region of specified shape from that
sheet. The cutter is a PEN whose tip is a small ball of diameter §, and it is
monitored by a software program. If the holes inside the notch ako need
to be cut, our algorithm can easily be tailored to satisfy that requirement,
oo,

The Minkowski sum is an essential tool for computing the free configu-
ration space of translating a polygonal robot. It also finds application in
the polygon containment problem and in computing the buffer zone in
geographic information systems, to name only a few.

3. PRELIMINARIES

First of all, we classify a vertex of the polygon P as concave or convex
depending on whether the angle between its associated edges inside the
polvgon is greater than or less than 180°. Consider the convex hull CH{P)
of the polygon P. Choose a vertex ¢ of CH(P) and label the vertices of P
as (= vl vy, 0, moving along its boundary in clockwise direction.
Now consider a pair of PENs, say PEN, and PEN,, whose tips are always
a distance & apart. The tip of PEN, moves along the polygonal boundary
from vertex ¢, in the clockwise direction, and the tip of PEN, draws the
boundary of the safety zone, staving orthogonal to the direction of motion
of PEN,. From now on we shall refer to the boundary of the safety zone as
the safe boundary. Our objective s to compute the safe boundary of a
simple polygon. Note that, while drawing the safe boundary, (i) if PEN,
finds a convex vertex then the direction of PEN, is changed by drawing a

SAFETY ZONE PROBLEM 543

circular arc with center at that convex vertex, and (i) if PEN, residing at a
point g, finds another point p, on the boundary of the polygon such that
Mp: =286 and p,p, is completely outside the polygon, then it moves to
s and PEN, will remain in its present position. Then PEN| starts moving
toward the higher numbered vertex attached to that edge; the movement
of PEN, will be gnided by that of PEN,, as described earlier.

It is easy to observe that the safety zone of an n vertex convex polygon
is a convex region, where the number of line segments as well as the
number of circular arcs bounding this region are both N. The straight line
segments of § are parallel to the arms of the polygon at a distance &
outside the polygon, and two consecutive line segments of S are joined by
a circular arc of radius § with its center at the corresponding vertex of the
polygon. Surely, the time required for drawing the safe boundary of a
convex polvgon is QN).

We now concentrate on describing the method of drawing the safe
boundary of nonconvex simple polygons. Given a polygon P, we first
consider the convex hull CH(P) of the polygon P and label the vertices as
stated above. Each hull edge may be classified as any of the following two
types: (i) if it coincides with some edge of P it is called a solid hull edge,
and (ii) if it does not coincide with any of the edges of P it is called a false
hudl edge.

DerFinrrion 1. A novch is a polygonal region outside the polygon P
which is formed with a chain of edges of P initiating and terminating at
two vertices of a false hull edge. Clearly the area CH(P) — P consists of a
number of disjoint notches outside the polygon P.

The safety zone of the polvgon P is inscribed by the safe boundaries of
the solid hull edges, the safe boundaries of all the notches, and circular arcs
of radius § centered at the hull vertices. These circular arcs at the convex
vertices will also be referred to as their safe boundaries. As it has already
been observed that the safe boundaries of solid hull edges and hull vertices
are easy to obtain, our problem now is reduced to designing an efficient
algorithm for drawing the safe boundary of a noich.

4. SAFE BOUNDARY OF A NOTCH

During traversal along the boundary of the convex hull, the PEN,
identifies a noich when it encounters a false hull edge. Consider such a
notch attached to a false hull edge v,v, | having n + 1 vertices, labeled by
Uiy U g e e o5 Uiy p- Here we should emphasize that we need o process inside
the noich even if the length of the false hull edge v.v, | is less than 28. Surely,

P ft+n

the safe boundaries of v, and v, will intersect here, which implies that

544 NANDY, BHATTACHARYA, AND HERNANDEZ-BARRERA

we do not need to traverse the notch. However, inside the notch there may
be other components of the polygon whose safe boundaries may affect the
safe boundaries of ¢, and v, . In Fig. 1, a sitvation similar to this is
displayed inside the notch {v5.... 0L

First of all, we split the notch into triangles by using the linear time
alporithm due to Chazelle [1]. An edge of a triangle is termed the
tiangulation edge if it is generated due to triangulation, otherwise it will be
referred to as a polgonal edge. Each triangle must have at least one
triangulation edpe. For an n vertex polygon, the triangulation generates
(n — 2) triangles introducing (n — 3) triangulation edges. Now consider
the graph with nodes corresponding to the triangles: an edge between a
pair of nodes indicates that the triangles representing those two nodes
share a triangulation edge. Thus each edge of the graph can be mapped to
a unique triangulation edpe shared by a pair of triangles, and each
triangulation edge corresponds to a unique edge of the graph. It is easy to
show that the graph mentioned above is a tree [7], referred to as the
tiangulation tree. We classify the triangles into three categories, type A,
type B, and type C. depending on whether the number of its triangulation
edge(s) is one, two, or three. The roof node of the tree corresponds to the
triangle adjacent to a false hull edge, and directions are assigned to the
edges by traversing the tree in depth-first manner. It is easy to observe that
the type-4 triangles correspond to the leaf nodes of the tree, and each
internal node may have one or two out-degree(s) depending on whether
the corresponding triangle is type B or type C. From now onward, a
triangle having vertices v, v;, and v, will be referred to as Av,ye,. The
triangulation edge of Avvy, through which the control reaches this
triangle during the forward traversal will be referred to as the incoming
edge of Av,v;vy. Its other triangulation edges (if any) will be referred to as
the owigoing edges.

While drawing safe boundary of a notch, nodes of the tree are processed
in post-order. After traversing the subtrees of a node, when the node is
processed the safe boundaries for all of the elements (vertices and poligo-
nal edges, if any) of the corresponding triangle are drawn. The safe
boundary of an element ¢, (a vertex or a polygonal edge) will be denoted
as SB(c,) it is attached with a couwnt field which is initially set to zero.
Next, we compare a selected set of already drawn SBs to check for
possible intersection among them inside that triangle. This procedure is
referred to as a merge pass and is explained in Subsection 4.4. When a pair
of SBs are compared to check for a possible intersection its count field is
incremented. If an intersection among two SBs takes place, the portions of
the two 5Bs to the left of the point of intersection are deleted. In such a
case, the survived portion (if any) of the safe boundary of an element ¢,
will be referred to as SB(¢,). The count field of the surviving portion of

SAFETY ZONE PROBLEM 545

SB(c,) is inherited from the original one. Now note that the $Bs that
survive up to the processing of the current triangle may be intersected by
the 58s, which will be generated while processing the parent or the other
sibling of the current node. So, after processing the current node, we need
to propagate a subset of the SB8s to the triangle corresponding to the
parent of the current node in the tree. Below we describe the concept of a
visibility list that will aid the merge pass inside a triangle and the
propagation of 5Bs from the current triangle to another triangle attached
to the parent of the current node in the tree.

4.1. Visibility List

Let Avpiry be the triangle currently being processed, whose incoming
edge is v, In order to detect for possible intersection among the SBs
which were generated after processing the tree rooted at the current node
(triangle) with some other $Bs which are generated during the processing
of the parent or another sibling of the current node, we introduce the
concept of the visibility list as follows.

Consider a pair of lines [and [”, both parallel to v,v, and at a distance §
from it (see Fig. 2). Let / be on the same side of v, with respect to v,
and I' be on the opposite side of ¢;. The safe boundary of an element, say
SB*, which is generated while the subtree rooted at the node correspond-
ing to Aw,r,r, is processed, may intersect another SB, say SB**, belonging
to the triangle attached to the parent of the current node, if SB* spans
above [. The reason for this is that SB** cannot penetrate inside Avvp,
beyond ! due to the width constraint &. Surely, SB* also cannot span
above the line I, from the interior of Avvu,.

DerFinrion 2. The active zone of a triangulation edge v, is a con-
nected region inside the polvgon bounded by [and [’ and contains v,
in its interior. The active zone of the triangulation edge v, is shown in
Fig. 2.

k

Lype-L arignl
1 Lype TH-Q_(E;_...‘
— L

:J‘\E Y, L

FIG. 2. Demonstration of merge pass.

546 NANDY, BHATTACHARYA, AND HERNANDEZ-BARRERA

A safe boundary, say SB*, i said to be inside the active zone of a
triangulation edge v.v, if it (or a part of it) spans inside that region. This
can easily be tested by comparing SB* with [or [" corresponding to that
edge.

DerFinrrion 3. The safe boundary of a vertex /edge ¢, (SB(¢,)) is said
to be visible to a triangulation edge (v,v,) if it spans the active zone of vy,
and if a line perpendicular to I', drawn from any point on it, cuts §B(c;)
before cutting the safe boundary of some other vertex /edge or some edge
of the polygon.

Each edge of the tree (e, the tdangulation edge) i attached with a
visibility list as defined below.

DerviTion 4. The visibility list V-LIST(v e,), attached to a trianguda-
tion edge v,v,, 5 a doubly connected link list containing a set of 5Bs which
are drawn while processing the tree rooted at the current node and are
visible to v,

The projection of an element SB* on a line is defined as the interval
obtained by the foot of perpendiculars of the endpoints of 55% on that
line. For a pair of elements, say §5* and 5F**, in the V-LIST(v,0,) their
projections on v,r, are disjoint. The SBs in V-LIST (1,0,) are arranged in
such a way that their projections are linearly ordered along v,

It needs to be mentioned that for a fype-B triangle, the I'-LIST corre-
sponding to its polygonal edge will consist of its safe boundary, which is a
line segment parallel to that edge.

While processing a triangle Av;v,y, it is assumed that the V-LIST of its
outgoing edges v, and v, are already inherited from its successor(s) in
the triangulation tree or are prepared by drawing the S8s of the elements
(vertices /edges) of the triangle at the beginning of processing the triangle.
These F-LISTs may contain the SBs that may intersect inside the current
triangle. Now a merge pass among the elements of these two lists is
performed to detect possible intersections,

It is now time to explicitly mention the data structures that need to be
maintained during the execution of the algorithm. This will also help us to
present our algorithm more clearly.

4.2, Data Structure

While processing a notch, the algorithm maintains the following data
structures.

poly_chain An array of vertices and edges of the notch stored in
clockwise order.

SAFETY ZONE PROBLEM 547

T The triangulation tree of the notch. With each edge of this
tree a F-LIST is maintained, as described in the previous
subsection.

2 A list containing SB for the elements (vertices and polvgo-

nal edges) inside a notch. Each element of % has a pointer
to its neighboring SB in clockwise order. This will be
recursively constructed while traversing the tree. At the
time of processing a triangle, the §B of its edge(s) and
vertices inside the triangle is created in % if it is not
already present. During a merge pass, if an intersection
bemween two SBs (say §B* and SB**) is detected, these
S8s are updated by removing the portions to the left of the
point of the intersection. An appropriate pointer s also
established among 8% and S8**. Finally, after processing
the root node, the list % gives the safe boundary of the
noich.

43, Processing of Trangles

While processing a fype-d triangle Avyy,, 0,5, if the length of the
triangulation edge o0, is greater than 248, the SBs for both of its
polgonal edges v, and v, v, . are drawn. Note that for a npe-A
triangle the merge pass essentially means finding the intersection of
SB(uw,,) and SB(y, v, 5) We delete the portions of SB(v,) and
SB(v,, v,) to the left of the point of intersection. Next, we compute SBs
of the two vertices v, and v, .. Finally, the SBs of v.,v, 5, and the
survived portions of SB(vw,) and SB(vy, v, ,) are mnnemed using
their bidirectional links and |rﬁerted in the & list. They are alko inserted
in the V-LIST (v,). If the length of the triangulation edge v, . is less
than 28, SB(v,) am:l SB(v,,.) will intersect and we need not compute
SB(ve,, Jand SB(p,, 0, 5)

While processing a node corresponding to a fype-B triangle Avvr,, .
SBs corresponding to its pobgonal edge vv,, | and the vertex v, , are
created in the = list. Note that here v, is the outgoing edge of Ap Uil g
The control reaches this triangle during the backtrack of the post-order
traversal through AL So. SB(y,) and SB(E}} are already drawn while
processing the triangle attached to its only child. The pointers in 2 are
established among (i} S‘B{t*} and ‘i‘B(v Uy) and (ii} SB(PI.PI.H} and
S‘B{arﬂ} VLI‘&'T{D Uy }is created with S‘B(t* Uiy) and SB(DI.HII. MNext, a
merge pass needs [G be executed among the ‘?B‘i in the V-LIST(v ;) and
the V—LISTU-I.DI. o1) Finally, the V-LIST of the incoming triangulation edge
vy, is prepared. It consists of the members of V-LIST(v,;) and V-

if+1

548 NANDY, BHATTACHARYA, AND HERNANDEZ-BARRERA

LIST(vp,,) which lie inside the active zone of v, ;. The control is then
transferred to the parent of this node in 5

Note that during the postorder processing of .57, when a npe-C triangle
Appriry. i < f < k, is processed, both the children of the node correspond-
ing to Auv, are already processed. Thus, SB(v;). SB(v;), and SB(v,) are
already computed while the triangles attached to both of its children is
processed; V-LIST(vp,) and V-LIST(v v,) are inherited from the succes-
sors of the current triangle in . 50, here only a very careful merge pass
needs to be executed among the V-LIST(v,r;) and V-LIST(v,v,) to detect
any intersection(s) if they are present. Finally, the V-LIST (v, for its
incoming edge ¢,0, is created before control is transferred to its parent in
T

Thus we find that processing a triangle, apart from generating 5Bs of
the polygonal edges and vertices present in that triangle, also involves
efficient management of the F-LISTs, i.e., the merging of two F-LISTs
corresponding to its two outgoing edges and creation of a new F-LIST
corresponding to the incoming edge of that triangle. In the next two
sections we shall elaborate on these two techniques.

44. Merging a Pair of V-LISTs

Let Aw;iyey be a triangle under process whose incoming edge is v, and
whose two outgoing edges are v;1; and v, (see Fig. 2). In order to detect
the intersection(s) among the SBs present in V-LIST(v,v,) and V-
LIST(y;p,), they are merged from their end corresponding to 1, with the
help of two pointers which indicate the current elements of the respective
lists. We fix a point 7; on v;; such that, during the merge pass inside
Apiry, a 8B € V-LIST(v;, } can never intersect with any SB of -
LI‘&'TU) if the prujecncm of the former one on v, lies completely

Gul‘?ldf: the line segment v,

DeFiNimion. During the processing of Av,vvy, a SB € V-LIST(v1,) is
said to be favorable for merge pass if the prﬂjﬂc[lﬂl‘i of at least one end
point on v; lies on the line segment v;7m,.

Similarly, we can locate a point 7, on v, and identify a set of 5B in
V-LIST(v,r,) which are favorable for merge pass inside Avvp,.

While processing Av;u;v,, our merge pass progresses along V-LIST(v,0;)
and V-LIST(v;v,) starting from their ends corresponding to ¢;. This merge
pass terminates as soon as it finds a SB in either V-LIST(vw,) or
V-LIST(v;0,) which is not faverable for a merge pass inside Av,v;0,. The
choice of 7, and m,; follows from the following observation:

Obsenvation 1. Consider the bisector L of the £y, and choose a
point p on it such that the length of the perpendlculam on yry; and vy

SAFETY ZONE PROBLEM 549

from p is equal to 8. Let the foot of the perpendiculars of p on v;r; and
on v,y be a and f, respectively. Now the following cases arise.

Case 1. Both of « and g fall on the closed segment vy and v
respectively. In this case, a SB of V-LIST(vp,) (V-LIST(v;v,)) becomes
favorable if the projection (foot of perpendicular) of at least one end point
on v, (v,) is closer to v, than o (B) (see Fig. 3a). Thus, in this case,
m; = and m, = 8.

Case 2. Both « and 8 fall outside the closed segments vy, and vy,
respectively, and Awr, is an acute angle triangle. Here SB(y,) and
SB(p,) will intersect. But there may exist some 88 who can intersect both
of SB(y,) and SE(v,). So, a merge pass inside this triangle is needed, and
m, = v, and a7, = v, in this case (see Fig. 3b).

Case 3. o lies inside the closed segment v, but £ is outside the
closed segment u;v,. Here SB(y,) must participate in the merge pass. Now
consider a line [perpendicular to v, which touches (not intersects)
SB(y,) inside Avv;v,. Let it meet vyr; at a point y. Note that, as the
vertex ¢, lies on one side of the line v,1,, and the centers of all the SBs in
V-LIST(v,r;) lie on the other side of v, if any one of them intersects
SB(1,) then its projection on 1;r;, must overlap the line segment v,y (as
shown in Fig. 3c). S0, in this case a S5 & V—LIST(DI.Q.} remains favorable
if its projection on v;r; overlaps the line segment vyy. Thus, we have
w; =y and my = v, in this case. A similar case arises if o lies outside

r
the closed segment v, but @ is inside the closed segment v, .

Case 4. Both « and B fall outside the closed segments v,v; and v,
respectively, and Ay is an obtuse angle triangle whose £ v, = 9P,
As SB(v,) must participate in the merge pass, here 7y = vy and 7; is

chosen in a manner similar to that used in the earlier two cases.

During the merge inside Av,vpy, let SB* € V-LIST(vv,) be a favorable
candidate. First of all, we test whether SB* penetrates the active zone of
ity or not. In the case of a negative answer, we skip SB* and consider the

»
ﬂl-":sr" P m —‘-'l = !
el " 5y
= _L__.up S -]
P Y v _E.-;:’.-a——-‘\' .'P v ag T <=
1 T s o W) ! ~_ e/
L = v, To=Ng e =
(EY] Lo

FIG. 3. Seledion of the members of two V-LISTs corresponding o the oulgoing edges of
a triangle which are favorable for the merge pass inside the triangle.

550 NANDY, BHATTACHARYA, AND HERNANDEZ-BARRERA

next element of V—LIST(e*je*r.}. But in the case of an affirmative answer, we
need to check SB* with the members of V-LIST(v,v,) for possible
intersection. We draw perpendiculars from the end points of SB* on L
which hit L at the points a, and a,. Now, the favorable members of
V-LIST(vv,), whose projections on L overlap a,a, will be considered one
by one to detect for possible intersection(s) with SE*, if any. The cost of
each comparison, excepting the last one, is charged by incrementing the
count field of the participating element of V-LIST(v,v,). For the last
comparison, we charge its cost to SB*. The merge pass then proceeds
considering the next element of V-LIST(v;v;). As soon as a member in
either V-LIST(v;v;) or V-LIST(v,v,) is reached which is not favorable for
a merge pass inside Avp,r, the merge pass terminates.

During the merge pass inside a triangle, the intersection (if any) which is
observed most recently is preserved. Let the participating members be
SB* € V-LIST(v,v;) and SB** € V-LIST(v;v,) at the end of the merge
pass. We update SB* and SB** by deleting the portions to the left of the
point of intersection and we establish an appropriate pointer among S8*
and §B** in the & list.

The processing of the current triangle ends by decrementing the count
field of one of the last two compared SBs whose count field was incre-
mented in the last comparison during the merge pass inside the current
triangle. Conceptually, the cost of the last comparison is charged to the
triangle itself. As the merge pass inside a triangle is performed at most
once, such a charging to a triangle may also be done at most once during
the entire execution process of the noich.

Lemma 1. The merge pass inside a trangle requires time linear to the
number of elements in the V-LISTs of both of its ouigoing edges.

Proof. While processing a triangle Av,vey during the backtrack of the
post-order traversal in 7, let v, and v, be the two outgoing edges
whose F-LISTs need to be merged. The proof of the lemma follows from
the fact that the projections of the endpoints of the §8s belonging to the
V-LIST of the edge v,v; (v,) are linearly ordered on the line L bisecting
FAININTI |

Lemma 2. If Zoww, > 9°, members of V-LIST(v,v,) and of V-
LIST(v,v,) will not intersect.

Proof. Let us draw the projections of the point p € L on v, and v
(as defined in the first paragraph of this section) which touch the respec-
tive lines at o and B respectively. As £ pvu, (£ prp,) = 457, both v«
and ¢; B will be less than &. So all the SBs of V—Lfﬁ?(i‘;i}-}(V—LIST(L}PJ_.}}
spanned over o (8) have been covered by SB(¢r) and are not present in

the respective V-LISTs. Again, as 7; and 7, are determined by « and 8

SAFETY ZONE PROBLEM 551

respectively in this case (see Fig. 4), the merge pass need not be executed
in such a triangle. Hence the result follows. [

The above lemma says that if Zvpe, > 90° a merge pass of I~
LIST(vv,) and V-LIST(v;0,) need not be performed. In the next subsec-
tion we explain the creation of the -LIST for the incoming edge of a
triangle as the last step of the processing of a triangle.

4.5, Creation of New V-LIST

After the completion of the merge pass inside a triangle Avvvy, the
V-LIST of its incoming edge v,0, is created by the selected members of
V-LIST(v,v;) and V-LIST(v,v,). We need to consider the two distinct cases
which depend on whether Avyyvy is an obtuse angle triangle or an acute
angle triangle.

Observation 2. I Ay is an obtuse angle triangle, then one of the
following situations holds.

(@) Zuypp, = NP Here no merge pass is needed inside Avpvv, (by
Lemma 2). The V-LIST of the incoming edge v, is obtained by concate-
nating V-LIST (v;0;,) and V-LIST (v,).

(b) ZLupp, > 9°. By Lemma 2, here the members of V-LIST(v,0,)
will not intersect with the SBs penerated inside the triangle attached to
the other sibling or the parent of the current node. Thus no element of
V-LIST(v;v,) need be propagated to V-LIST(v,v,). Only a few members in
V-LIST(rr;), which extends inside the active zone of v, will form
V-LIST(v 0,). These sets of SBs are obtained as follows.

Consider a pair of elements SB* and SB** € V-LIST(v;1;,) which is
favorable with respect to the merge pass inside Avpp,. Let SB* appear
after S8** during the above merge pass. The question of the propagation
of SB** to V-LIST(v,) arises if SB** is inside the active zone of v,
Surely, S5* will also be inside the active zone of (v,r,) in this case and will
be compared with SB(v,). Now, if §B* intersects SB(v), then SB** will
immediately be deleted from the 5 list. Otherwise, by Case 3 of Observa-

R e e T
V= P o
~ -
- =fi_
G =T,

FIG. 4. Proofof Lemma 2.

552 NANDY, BHATTACHARYA, AND HERNANDEZ-BARRERA

tion 1, as 7, is the point of intersection of v,r, and a tangent of SB(v,)
which is perpendicular on v, the orthogonal visibility of SB** from v,
is lost (see Fig. 3c). So, SB** cannot belong to V-LIST(¢,0,). Thus, during
the merge pass inside Avvr,, we need to identify SB* € V-LIST(v1,)
which is compared last with SB(v,). I-LIST(v,v,) will be formed with 58*
and all the SBs in V-LIST(v;v;) which are not considered during this

MErge pass.

c) = vy > 9(F. This situation is similar to Case (b}, stated above.

i

9F, the merge pass has already been performed inside Avr, and
SB' € V-LIST(v;1;) has participated in the last comparison in the merge
pass inside Avpv,. Now,

Observation 3. If Avyvyr, is an acute angle triangle, then as £ 0 <

o If SB’' is outside the active zone of vy, then surely all of the
elements which are compared during the merge pass inside Av,v,v, need
not be propagated to V-LIST (v,)

= In contrast, if SB' is inside the active zone of v,1, then there exists
some element(s) of V-LIST(1}.1',.1 which may have been considered in the
merge pass inside Av,e, and may need to be propagated to F-LIST(v,1).

As mentioned earlier, during the progress of the merge pass inside a
triangle Av,v;vy, two pointers are maintained corresponding to the V-LIST's
of its two outgoing edges vz, and v, At the end of the merge pass each
of them will contain the address of an element of the respective VF-LIST
which has been compared last during the current merge pass. Let 5B’ €
V-LIST(v,v;) and SB" € V-LIST(v;0,) be the above two elements. The
-LIST of the incoming edge v, will be constructed by following the
steps described below.

= If projections of both the endpoints of 5B’ are outside the active
zone of vy, the pointer along V-LIST(v;;) advances to get its first
member, say §B*, which lies inside the active zone of v,u,.

« If 5B’ is the only member of V-LIST(v,v;) which lies inside the
active zone of vy, then the first member which lies in the active zone of
v, is SBY itself.

= If there exist some other elements in F-LIST ;1) in addition to
SB', the pointer along V-LIST(v,v,) needs to backtrack to get its first
member SB* lying inside the active zone of v,

* Any one of the aforesaid three situations may appear regarding the
selection of SB**, the first member of V—LfST(i-‘ji‘k), which lies inside the
active zone of v,u.

SAFETY ZONE PROBLEM 553

* Finally, SB* and SB** are connected using bidirectional pointers.
Now, the V-LIST of the incoming edge v,v, is a list of 585 whose two
terminal members are the last element of the V-LIST(v;1;) toward v; and
the last element of the V-LIST(vv,) toward vy respectively.

Now note that the elements of V—LL‘&'TU}&;} (V—LISTU}P,:” which are
encountered during the backtrack have been considered during the current
merge pass and their cownt fields have been incremented. But the count
field of §B' (§B") remains unchanged as it was considered last during the
current merge pass.

From earlier discussions we note that while processing a node corre-
sponding to a npe-B or a ype-C triangle Avy.p,. there may exist some
situation when some 5B of V-LIST(v,r;) may be considered in the merge
passes in both of Avpe, and in the triangle attached to the parent of the
current node. This gives an impression that after the generation of a SB it
may participate in the merge pass of different triangles arising along a
path of the triangulation tree, which indicates an O(n*) time complexity of
our algorithm. A trivial solution is reducing the depth of the tree. Using
geodesic triangulation proposed in [4], the depth can be reduced to
Ollog N}, and it leads to an (N log N) time algorithm. S0, we shall not
proceed toward the complication of geodesic triangulation. Rather we shall
show that a 8B, after its peneration, may participate in the merge pass of
at most two triangles during a backtrack along the triangulation tree.

TueEorEM 1. After the generation of a 88, s count field may be incre-
mented to at most 2 during its propagaiion while backiracking along a path
during the post-order traversal in 5.

FProof. In order to prove this result, we have to study two triangles
along a path of 7. We assume that currently the control is in the successor
triangle and that the merge pass has already been performed inside the
current triangle. Our aim is to prove that a 58 whose cown field is
incremented during the current merge pass will participate in at most one
more merge pass inside some other predecessor triangle incrementing its
count field. For the sake of simplicity in the proof, we assume that the two
triangles under consideration share a common triangulation edge.

Let Avyry be the triangle corresponding to the current node under
consideration and let Av,ve, be the triangle attached to the parent of the
current node. If £ vy = 907, then by Lemma 2 the merge pass need not
be performed inside Ay, So, we assume £ vy < 907 Surely, at least
one of the other three angles of the quadrilateral, formed by concatenating

554 NANDY, BHATTACHARYA, AND HERNANDEZ-BARRERA

Appry, and A v, must be greater than 90°. This gives birth to three
different cases as follows:

Case 1. Zvpy > 9° Here, by Lemma 2, the members of V-LIST(v,v;)
will not be able to enter in the active zone of the edpge v;r,. Thus the
members of V-LIST(v,v,) will either not be compared with the members of
V-LIST(v;) or they will not be propagated to V-LIST(v,v)), depending on
whether v, or v, s the incoming edge of Av. v, Thus in either case
their count fields will remain unchanged inside Av,e v,

Case 2. Ly, = 907, By case (b} of Observation 2, the two subsets of
members of F-LIST(v.0,), which will participate in the merge pass inside
Avegey and which need to be propagated to the V-LIST of the incoming
edge of Av,pv;, may have at most one element in common, whose cound
field will not be incremented during the merge pass inside Av,v v, Thus if
there exists any member(s) of V-LIST(y,v,) which also need(s) to be
propagated to the F-LIST of the incoming edge of Av,e v, its count field
will be unchanged (not incremented) during the merge process of Avee,.

Case 3. Loy > WP, Note that Lo, = Lo + Loy, To
analyze this case, we need to consider the following three situations
separately.

Case 3.1. Zpey = AP If vy is the incoming edge, the elements of
V-LIST(vp,) will not participate in the merge pass with F-LIST (v, 0,) (by
Lemma 2). So, the elements of V-LIST(vp,) which are inherited from
V-LIST(v;v;) and need to be propagated to V-LIST(vx,) will have their
count field unchanged inside Ay v,

If vyr, is the incoming edge, the elements of V-LIST(v,r,) will not be
propagated to V-LIST (v).

Case 32. Zovpg; = NP, Here the elements of V-LIST(v,0,) which
have been propagated from V-LIST(ur,) will have their count field
unchanged inside Av,v0, (by Case (b) of Observation 2). Among them, if
some one participates in the merge pass inside Av,vy v, then its count field
may be incremented to at most 2. In Case 3.3 we show that the 5Bs of v,
whose count field has been incremented during the merge pass inside two
adjacent triangles, say Av,e, and Avy, vy, will not be propagated further.
The same result is true if the count field of a SB & incremented during
the merge pass of two triangles, which are not necessarily adjacent.

Case 33. Both Ly, and Zppr, are less than 9% As we are
discussing the nature of the propagation of the SBs of V-LIST(v;1;), we
assume that £ e < 9P,

Case 33.1. The incoming edge of Av,eyr, is vyv,. In order to analyze
this case, let us assume that the triangulation edge v, is replaced by v,

SAFETY ZONE PROBLEM 555

urzmral
trizegclackm edge

hypeaherizal
triangulanan edpe

FIG. 5. Demonstration of Case 3,31 in the Proof of Theorem 1.

in the triangulation of the current notch (see Fig. 5). Its adjacent triangles
are A, and Avp, v, where the former one is the predecessor and the
latter is its successor in the triangulation tree.

Now, consider the processing of the triangle Avuvy. After the merge
pass among V-LIST(v,r;) and V-LIST(v,p)) inside Avp,r,, the elements in
V-LIST(v;0,) will be linearly ordered on v;r,. Now arguing in a manner
similar to that in Case 2 of this proof, the elements in V-LIST(v,v,) can be
split into two subsets. One of these subsets will participate in the merge
pass with V-LIST(v;,) and the other subset will be propagated to I~
LIST(vy). Among these two subsets we may have at most one element in
common, whose count field will not be incremented during the merge pass
of the triangle Av.e vy, This leads to the conclusion that there may exist at
most one element of F-LIST(r;1;) which will be considered in the merge
passes of both of the actual triangles Aoy and Avogey.

Case 332. The incoming edge of Ave,r, is vy, Let SB* € V-
LIST(v;p,) be compared last during the merge pass inside Av,vw,. It may
have been compared with SE(¢,) or some element preceding SB(v,) € -
LIST(v,v,). The merge pass inside Avw v, starts with SB(uy,) as the first
element of V-LIST(v.v,). So, the subset of members (if any) of -
LIST(v;v,) which has been propagated to V-LIST (v,) and the subset of
V-LIST(v;v;) that has participated in the merge pass inside Avger, may
have at most one element in common, which is S8¥. The reason is that
since £ vuyv, > 9(F, at most one element of V-LIST(v,v,) can enter in the
active zone of both v,y and vy, Also note that the count field of SB*

has not been incremented during the merge pass inside Avey. |

Thus, Theorem 1 sugpests that if the cownt field of an 8B is set w 2
while processing a triangle, it will not appear in the V-LIST of the
incoming edge of that triangle, which implies that it will not propagate
further toward the root.

556 NANDY, BHATTACHARYA, AND HERNANDEZ-BARRERA

Based on the observations stated above regarding the merging and
creation of visibility lists, we now present the stepwise description of our
algorithm and its complexity analysis in the next section.

5. ALGORITHM AND COMPLEXITY

5.1, Algorthm
ALGORITHM SAFE_BOUNDARY.

Step 1. Compute the convex hull of the given polygon.

Step 2. For each notch do:

Step 2.1. Triangulate the notch to prepare the triangulation tree 5
Step 2.2. (*Traverse the tree in post-order manner *).

Call Post—Order{root).

(* This procedure recursively traverses the tree .. At each node after

the traversal of both its children, it calls the procedure Process_Triangle
which is thematically described in detail in Section 4. *)

Step 3. Draw the safe boundaries for the solid hull edges and for the
hudl vertices of the convex hull.

Step 4. Connect the §B of each solid hull edge to the §B of its
attached hull vertices.

Step 5. For each notch do

Merge each end of the & list of that notch to the 5B of the hull
vertex attached to its false hudl edge.

Step 6. Traverse the & list from any element to output the safe
boundary of the polygon.

Stop.

52, Proof of Correciness

Before analyzing the complexity of our algorithm, we need to prove its
correctness. For a convex polygon the method described is very simple and
its correctness is obvious. The following theorem summarizes the justifica-
tion of correctness of our algorithm for drawing the safe boundary inside a
notch.

TueEorEM 2. Our proposed method of obtaining the safe boundary inside
a notch is correct.

SAFETY ZONE PROBLEM 557

Proof. The correctness of the algorithm follows from (i) the fact that
the generation of the 58 for all the edges and vertices of the notch i done
and (ii) the following recursive argument.

= During the backtrack of the post-order traversal of the triangulation
tree 5 of the notch, when a triangle corresponding to a nonleaf node is
reached, let the safe boundary of the portion(s) of the notch indicated by
the children of that node be correct. Now when the triangle corresponding
to that node will be processed, first of all, the SBs of the vertices/edges of
the current triangle are added to the 2 list and also to the respective
V-Li5Ts. Then the merge pass is initiated which detects whether any pair
of §8s intersect inside the triangle. If intersection(s) takes place, the latest
one (i.e., the one closest to the incoming edge of the triangle) s considered
and the portions to the left of the point of intersection are deleted. Thus
the nevch rooted at the current triangle is correctly processed.

s The 5Bs whose count field is less than 2 and which belong to the
active zone of the incoming edge of the triangle are propagated to its
predecessor triangle through F-LIST to check for possible intersections
with the 585 penerated inside its other sibling and its predecessor triangle.
But, as suggested in Theorem 1, a 88 having a value 2 in its cournt field
need not be propagated further as it will not intersect further with any 5B
during the backtrack along the path from that node up to the root of 7. 11

53, Complexity Analysis

The convex hull of an N vertex simple polvgon can be drawn in O(N)
time using the algorithm proposed in [9]. Let it give birth to K notches
where the ith notch is assumed to have N, vertices. Below we describe a
few results related to the analysis of the time complexity of processing the
noiches.

Lemma 3. Time required for drawing the safe boundany of a notch of N,
vertices is O(N,).

Proof. The triangulation of a notch of N vertices can be done in
O(N,) time [1]. It gives birth to (N, — 2) triangles. The total number of
vertices and polygonal edges considering all the triangles are 3(N, — 2) and
(N, — 1) respectively. So, the time required for the drawing of safe bound-
aries of O(N.) vertices and edges of the notch is O(N.). By Lemma 1, the
time required to conduct the merge pass in each triangle is linear in the
number of SBs attached to V-LIST's of its outgoing edges. But a SB(c,)
corresponding to an element ¢; of the notch may participate in the merge
pass of more than one triangle. Each time it is considered, either its count

field is incremented or the triangle inside which the merge pass is

558 NANDY, BHATTACHARYA, AND HERNANDEZ-BARRERA

conducted is charged. Theorem 1 shows that for any S5 generated inside a
notch, its count field may be incremented to at most 2. Moreover, a
triangle is charged at most once, provided a merge pass takes place inside
it. Thus, apart from generation of 58s, the total time required for the
merge passes of all the triangles in the notch is also O(N). |

Lemma 4. At any point of time, the total space occupied by the V-LISTs
of all the tiangulation edges is O(N).

FProof. Note that the F-LIST of a tiangulation edge corresponding to a
triangle is generated when the control backiracks through that edge. It
consists of some of the §Bs of the F-LISTs of its outgoing edges. After
generation of the new F-LIST, corresponding to the incoming edpe of a
triangle, those of its outgoing edges are deleted. Thus at any instant of
time the sets of §8s present in the F-LISTs of different irangulaiion edges
are disjoint. This proves the lemma. [

Lemmas 3 and 4 lead to the fact that the time required for the
generation of the safe boundaries of each notch is linear in the number of
its vertices. Again, since the notches around the convex hull of the polvgon
are disjoint, the total time complexity for drawing safe boundaries of all
the notches is also linear in the total number of vertices of all the notches.

The time required to draw the safe boundaries of all solid hull edges and
the hull vertices may be O(N) in the worst case. Next, we may have to
concatenate the safe boundary of a notch to the safe boundaries of some
other notch or some solid hull edge which are attached to the two vertices
of its corresponding false hull edge. This requires O(K) time, where K is
the number of notches. A further pass is required for reporting the safe
boundary of the polygon by traversing along the % list. This requires time
linear to the number of 585 describing the safe boundary of the polgon.
Thus we have the following theorem which states the complexity of our
proposed algorithm.

TueoreMm 3. The time and space complexties of our proposed algorithm
are both (N), where N is the toial number of vertices of the polygon.

6. MINKOWSKI 5SUM OF A SIMPLE POLYGON
AND A RECTANGLE

In this section we show that our SAFE_BOUNDARY algorithm can
easily be modified to compute the Minkowski sum of a simple polygon P
and a rectangle . Needless to say, the boundary of the Minkowski sum of
the polygon P and the rectangle (), denoted by P & (J, can be obtained by
translating the reference point of O along the boundary of P (see Fig. 6.

SAFETY ZONE PROBLEM 559

Minkowsky sunm
of polygor P oand

recrangle O

reclugle

FIG. 6. Minkowski sum of a simple polygon and a rectangle.

This will help to show that our technique solves the problem of finding the
Minkowski sum of an arbitrary simple polvgon and a convex polyvgon in
O{ MN) time, where M and N denote the number of vertices of both the
polvgons respectively. Note that the worst case size of the output for the
above problem may also be O(MN). As in the earlier problem, we detect
the notches by finding the convex hull of the simple polygon. These
notches are then processed one by one. The definitions and notations will
remain the same as in the earlier sections unless otherwise specified.

6.1, Recapitulation of Necessary Definitions

The boundary of the Minkowski sum of a nofch and a rectangle O is
formed with a set of disjoint chains of line segments. These line segments
will form components of the Minkowski sum (CMS(c,) = ¢, & Q) for differ-
ent elements ¢, (vertices and edges) of P. Needless to say, CMS(c,) serves
the role of §B(c,) if the rectangle is replaced by the circle C as stated in
the earlier sections. The list %, containing the CMSs is constructed
recursively and is maintained as a doubly connected link list. During the
execution of a notch, if a closed cycle in % & observed it indicates a hole
inside the area defined by the outer boundary of the Minkowski sum, and
it is reported immediately. At the end of processing a notch, 2 contains a
chain of CMSs which describes the outer boundary of the Minkowski sum
of the notch. Finally, the # lists of different notches are concatenated
with the CMSs of solid hull edges and hull vertices to get the outer

560 NANDY, BHATTACHARYA, AND HERNANDEZ-BARRERA

Active zopcal vy
: ;\V_J '

A
=
74.________ YR
e S % B
()) -

FIG. 7. Demonstration of (a} Minkowski sum of edges and vertices inside a notch, and (b}
the adive mone of a triangulation edge.

boundary of the Minkowski sum of P. Below we mention the nature of the
CMS(c,) for different components ¢, of the polygon (see Fig. 7a for an
illustration).

If ¢, is an edge of P, the exposed part of (CMS(c,)) outside the
polygon P will be a straight line segment parallel to ¢, which is the
common tangent of two rectangles, obtained by placing @ at the two end
vertices of c,.

If ¢, is a concave vertex of P, the portion of CMS(c,) outside P will
be subsumed by the Minkowski sums of the edges adjacent to that vertex.
S0, for these vertices the CMS(c,) need not be computed.

If c; is a convex vertex of P, a portion of CMS(c,) must be exposed as
the boundary of P & . It may be a portion of an edge of ¢, & Q or
portions of two adjacent edges along with the corresponding corner.

We process the notch by traversing the triangulation tree 5 in post
order. Here also, the processing of a triangle corresponding to a node in 5
involves a merge pass and a propagation of the relevant CMSs from one
triangle to its predecessor in the triangulation tree 5. But these two key
operations greatly depend on the concept of the active zone of a triangula-
tion edge. which needs to be appropriately modified to suit our present
purpose. Our Definition 2 of the active zone of a triangulation edge
remains valid with the following changed definition of the pair of parallel
lines ! and ' describing the active zone.

Consider a triangle Ay, whose v,y is a triangulation edge. Let o
and Q" be the placement of the rectangle () at v, and v, respectively. The
translation of @ on v,v, generates two common non-intersecting tangents,
Q' and Q" They are parallel to v;; one will pass through A,y and the
other will belong outside Av,v;v,. These two tangents are considered as [
and ' respectively for defining the acive zone of v, (see Fig. Tb)

SAFETY ZONE PROBLEM S0l

}T(é{ Tmf‘

Il"\.-'[’?"'

FIG. 8. Demonstration of the visibility of 2 CMS 1o a triangulation edge v e, The visible
portion of CMS* is indicated by its projection on o,

Similar to the earlier problem., a component of the Minkowski sum
(CMS) is said to be visible to a tdangulation edge v,r, (which is the
incoming edge of Aw,r,r,) if it satisfies the following:

o It is generated during the processing of the subtree rooted at
Ay,
= i spans in the active zone of v,u.

= A line drawn from any point on v,¢, and perpendicular to it meets
{cuts) the CMS before cutting any other component of the Minkowski sum
or some edge of the polyvgon.

In Fig. 8 we demonstrate three situations with respect to a component of
the Minkowski sum, say CMS¥, and a triangulation edge v,0, of Avip, :(a)
all the points of the CMS* are visible, (b) a part of the CM5™ is visible,
and (c) only a single point of the CMS* i visible. Without loss of
generality, the wvisibility list of a triangulation edge v, is denoted as
V-LIST(v,) and it contains the portions of all the CMSs that are visible
from o0,

62, Merging a Pair of V-LISTs

Let Avgyvy be the triangle under current processing. Its incoming edge
is 0,0, and the two outgoing edges are v, and vy, The intersection(s)
among CMSs present in V-LIST(v,v,) and V-LIST(v,v,) are detected by
merging them from their end corresponding to v, with the help of two
pointers indicating the current element of the respective lists.

If more than one intersection is observed, it indicates a hole inside the
area defined by the Minkowski sum. To facilitate the detection of holes,
we attach a single bit field, called the sratus, to each triangle. It contains
or 1 to indicate the current status during the merge pass inside the
triangle. The implications of two different values of the status bit of a
triangle are illustrated below.

562 NANDY, BHATTACHARYA, AND HERNANDEZ-BARRERA

o Initially, all the triangles at the leaf level will have 0 in their status
bit.

= The triangle corresponding to a nonleaf node inherits the value of
its status bit from its successor(s).

» After encountering an intersection, the stams bit of the node
corresponding to that triangle is toggled.

= During traversal along a path, when the status bit is set to 1 it
indicates that the portions of the participating CMSs above the intersec-
tion (toward its predecessor) are exposed as the boundary of the Minkowski
sum. This may correspond to a hole or to the outer boundary of the
Minkowski sum.

= As soon as the next intersection along that path is noted the starus
bit is toggled to 0 and it indicates that a hole has been generated to the
left of the point of intersection (towards the vertex from where the merge
pass has been initiated). Portions to the right of the point of intersection
will not be exposed as the boundary of the Minkowski sum until the next
intersection is found.

During the post-order traversal, when a triangle is processed the line L
guiding the merge pass will not necessarily remain the bisector of £ v,
as in the previous problem. Consider the bounding lines of the active zone
of two outgoing edges v, and vy inside Avgyw, which intersect at a
point p. Here, the line L is obtained by joining p and v,

Suppose CMS* € V-LIST(v ;) needs to be checked with the members
of V-LIST(vv,). Let (a,,a,) be the projections of the (portion of) CMS*
on L (Note that @, and a, may degenerate to a single point). If
min{v;a,, v;a,) > v, p the merge pass terminates inside this triangle. Oth-
erwise, we need to test whether the CMS* intersects with some member of
V-LIST(v,r,) by considering their projections on L. As soon as an inter-
section is noticed with CMS** V—LIST(E}E-‘J:), the starus bit of the
triangle is toggled. If the resulting starus bit is (), it indicates the presence
of a hole to the left of the point of intersection. The portions of CMS* and
CMS** to the right of the point of intersection s removed, the hole is
reported traversing the 2 list starting from CMS™ and ending at CMS**,
and % is set to nwdl. If the resulting siafus bit is 1, it indicates the start of
either a hole or the outer boundary of the Minkowski sum of P & . We
initialize the 2 list with CMS™ and CMS™, after removing the portions to
the left of the point of intersection. Also they are connected in the 2 list
using bidirectional pointers. A cownt field is attached to each CMS; the
law of incrementing the cownt field will remain the same as that of the
earlier problem.

SAFETY ZONE PROBLEM 563

Lemma 5. After processing a triangle inside a noich, the resulting & list
condaing a chain of CM8s, each of whose consecutive pairs are touching ai
their common endpoini. This chain of siraight line segments defines the outer
boundary of the Minkowski sum of the polvgonal chain starting and ending ai
the two vertices of the incoming edge of the aforesaid notch.

Proof. The first part follows from the manner of constructing the &
list. The second part follows from the discussions in the preceding two
paragraphs related to the reporting of holes and establishing connections
among two CMSs that intersect just after reporting a hole. |1

MNow it remains to discuss (i) the creation of the V-LIST of the incoming
edge of a triangle during backtrack and (i) the inheritance of the status bit
by a nonleaf node from its successor(s) in the triangulation tree .5 during
the backtrack of the post-order traversal. The creation of F-LIST will be
discussed in the next subsection. Below we discuss the other aspect.

63, Propagation of Staius Bi

It is easy to follow that the value of the sfatus bit that needs to be
propagated from a node to its predecessor is

either inherited from its children, if no intersection is observed during
the merge pass inside the current triangle, or

set when the last intersection is observed in the merge pass inside the
triangle corresponding to the current node.

Lemma 6. If the value of the status bit of a idangle is observed o be)
after its processing, it implies that the CMSs of the veriices adjacent to its
incoming edge overlap each other during the processing of the triangle.
Moreover, the CMS of one vertex adjacent to its incoming edge will not be
present in the V-LIST of the incoming edge and hence will not be propagated
io its predecessor friangle.

FProof. The first part of the lemma follows trivially. To prove the second
part, let Avee, be the triangle under consideration whose edge v,p, is the
incoming edge, and let CMS(v;)) and CMS(r,) overlap. Note that the
comparison of CM5(v,) and CMS5(¢,) will be the last comparison during
the merge pass inside Avpv,. Now if the parts of both CMS(r,) and
CMS(p,) are present in V-LIST (v,), then their intersection will set the
status bit of Appwy, to 1 (see Fig 9a). Otherwise, if the merge pass
terminates with a 0 in the status bit of Av,v, then the V-LIST(vp,) will
contain a single CMS which is a part of either CMS(v,) or CMS(v,) (see
Fig. 9b). 1

564 NANDY, BHATTACHARYA, AND HERNANDEZ-BARRERA

Vo | mse
s T RLa 4
Chig e
- ;\ I! Lol
R e ¥
Y ER s B
o e oy
|
[} i

FIG. 9. Proof of Lemma 6.

A nonleaf node corresponding to a fype-B triangle inherits the value of
its status bit from its children. If the node under current processing
corresponds to a fpe-C triangle, then the following two situations may
oceur:

(i) The status bits of both of the children are set to 1, in which case
the status bit of the current node is unambiguously set to 1 and the merge
proceeds in the current node.

(ii) The status bit of at least one of the two children of the current
node i set to (. In that case, by Lemma 6, the CMS of the element
adjacent to at least one of its vertices will not be exposed in the boundary
of P& (. So, we can easily initiate the merge pass inside the current
triangle by setting the value of its starus bit to (.

It needs to be mentioned that if only the outer boundary of the
Minkowski sum needs to be reported as in the previous problem, the status
bit is not required. Here as soon as a new intersection is observed the
entries corresponding to the participating CMSs need to be updated by
removing the portions to the left of the point of intersection, and these two
CMSs are connected in the & list.

6.4, Creation of New V-LIST

The creation of new I-LIST for the incoming edge of a triangle can be
done in a manner exactly similar to that of the previous problem. To
ensure the linear time complexity, we need to prove that the count field of
a CMS may be incremented in the merge pass of at most two triangles. Let
us consider our axes of reference, which are parallel to the two orthogonal
edges of the rectangle (. We shall use two terms, “vertical visibility” and
“horizontal visibility,” with respect to that

Let .o V-LIST(v;p;) be the set elements that are considered in the
merge pass inside Ay, and are propagated to its predecessor triangle
(i.e., the triangle attached to its parent in .57} during a backward pass. The
count fields of all the members of & are incremented except for the last

SAFETY ZONE PROBLEM 565

one, say CMS**, since it may be visible to some other edge of its
predecessor triangles in the same direction (horizontal /vertical) as that
from v, , and a CMS belonging to the I-LIST of that edge may intersect
it. Conventionally, the cost of considering CMS** in the merge pass inside
the current triangle Awpewy is charged to Avary. Let us consider two
exhaustive and mutually exclusive subsets of & — CMS5**, say .o and &,
such that the cownt field of the elements of & and &% are 1 and 2
respectively at the end of a merge pass inside the current triangle.

Lemma 7. The count field of the members of o, may be incremented in
the merge pass of at most one more irangle during the backirack up fo the root
af 7, and that of &, will not be considered in the merge pass of any other
iriangle.

Proof. let CMS* be an element in V-LIST(uv,r;) which is compared
with CMS' € V-LIST(v;r,) in the current merge pass. Let them be visible
to each other vertically. As CMS* is not the last element considered
during the current merge pass, it will not be vertically visible to any other
edge of its predecessor triangles (see Fig. 10b). Some other CMS, say
CMS", may intersect CMS* if CMS8* and CMS” are visible to each other
horizontally. Now, if CMS* €. this may be possible; but if CMS™ €.
its couni field is already set to 2 This indicates that it has already been
compared with some CMS (say CMS5** in Fig. 10a) during the processing
of one of the children of the current node in ¥, which spans on it
horizontally and destroys the horizontal visibility from any other triangula-
tion edge. |l

It should be noted here that this intersection may not be observed in the
immediate predecessor of Av,vp, . So the propagation of a CMS continues

-
£ MR ”*1"
LM
r r— ~ T
" ¥,
I et o | <oz .
;.1:::&::n_rrr|nn[\-ln =~ -!_".-1_.'-_{" BT ':-M"‘:' G ‘:;
e R - e {
1"‘-:-11--_ 1.:-:_,?_1__‘_ - - | 1‘
. —— %, =, 5 st
CUPRCAF TS g
ey / T FLl .o, :
O Pk digh | T Ll s prodecissor angle
1|'.
JEILE R A 15- ety luoneocially nes "-"f”-"_l'lu'!" wisibde v v, (120008 7 i3 tewdenntally visiolo e v v utlu:
n e peedesesenr of sumwnk irang e praderessar af careenT riangls

LS izt Lastcompared eleraent of V-1 TST(v v, L with the merabesg of V-LIS U v, o both (a0 aed (b

FIG. 10, Proofof Lemma 7.

566 NANDY, BHATTACHARYA, AND HERNANDEZ-BARRERA

until it fails to belong in the active zone of the incoming edge of the
current triangle or its count field attains a value 2.

Thus Lemma 7 leads to the following theorem stating the complexity
results of the problem considered in this section.

TueoreEM 4. The time and space complexdties of our proposed algorithm
for computing the Minkowski sum of an arbitrary simple polygon and a
rectangle are both OUN), where N is the total number of venices of the
polygon.

7. MINKOWSKI SUM OF A SIMPLE POLYGON AND A
CONVEX POLYGON

Next, we show that the same technique efficiently computes the
Minkowski sum of a simple polygon and a convex polygon. According to
the prior convention, we refer to the above two polygons as P and
respectively. Here, the most crucial thing is to appropriately redefine [and
I" which describe the active zone of a triangulation edge, say . Let),
and , be two copies of O, placed at v; and v, respectively. Now, [and [
are a pair of tangents of @, and @, parallel to v,

Lemma 8. The time required for compuiing the aciive zones of a triangula-
tion edge of a notch may be O(log M) in the worst case.

Proof. 'We may assume that the ordered list of vertices of the convex
polygon @ is stored in a circular array, Now, the tangents of @ parallel to
a given straight line can easily be found using a binary search. |l

Here we add two additional fields to each edge of 77 At the beginning of
the execution of a notch, we compute [and [’ of each triangulation edge
and attach them to the corresponding node in &7 The time required to
compute the active zones of all triangulation edges of a notch is
(N, log M) in the worst case, where N, is the number of vertices of the
notch. Thus considering all the notches, this additional preprocessing step
may consume (N log M) time in the worst case.

Mext, it needs to be mentioned that, for a given edge or a vertex ¢, of P,
the complexity of ¢, & Q depends on the number of vertices of Q. So,
unlike the problem discussed in the previous section, here each straight
line segment of ¢, @ O will be referred to as a component of the Minkowski
sum (CMS). The generation of CMSs, the merging of a pair of F-LISTs
while processing a triangle, and the propagation of CMSs from one
triangle to its predecessor will remain the same as we have used in the
previous sections. But in order to claim the desired time complexity, we

SAFETY ZONE PROBLEM 567

need to prove Lemma 9, stated below, on the basis of the following
observation.

Observation 4. Two straight-line segments A; and A; intersect if the
axes-parallel rectangles with A, and A, as diagonals also intersect. Note
that the converse may not always be true.

Lemma 9. After the generation of a CMS, its count field may be incre-
menied in at most two merge passes during its propagation toward the root of
7.

FProof. In order to prove this result, we choose a pair of orthogonal
axes and define the vertical /horizontal visibility in reference to that.

While merging a pair of V-LISTs, let us consider the axes-parallel
rectangles of all the participating CMSs. Now the following observations
are important.

A pair of CMSs are compared during this merge if the corresponding
axes-parallel rectangles are mutually visible in either the horizontal or the
vertical direction.

If a CMS, belonging to the I-LIST of an outgoing edge of the current
triangle, participates in the comparisons during the merge pass, its corre-
sponding rectangle will partially or completely lose its visibility in one
{horizontal /vertical) direction.

Particularly, if the cownt field of a CMS is incremented due to a
comparison during this merge, it implies that one side of the correspond-
ing rectangle completely loses its (horizontal or vertical) visibility from its
predecessor triangle.

However, if the count field of a CMS & not incremented due to a
comparison during this merge, this implies that the corresponding CMS
participated in the last comparison of the current merge pass. 5o, the
visibility of the rectangle corresponding to that CMS is partially lost from
the direction (horizontal /vertical) under consideration during the current
merge pass. 50, a rectangle corresponding to some other CMS, present in
some of its predecessor triangle(s), may span over it from the same
direction. This may cause an intersection between the aforesaid two CMSs.

If a CMS does not participate in the current merge pass, no question
of incrementing its count field arises.

Now the proof of this lemma follows from the fact that Lemma 7
remains valid for rectangles of unequal aspect ratios also. ||

Using Lemmas 8 and 9, and arguing as in Section 5.3, we may state the
last result of our work as follows.

568 NANDY, BHATTACHARYA, AND HERNANDEZ-BARRERA

THeEorEM 5. The time and space complexities of our proposed scheme for
computing the Minkowski sum of an arbitrary simple polygon and a convex
polyeon are both OUMN), where N and M denote the number of vertices of the
above two polygons respectively.

8. CONCLUSION

In this paper we introduce the problem of locating the safety zone of a
simple polygon and present a linear time algorithm for drawing the
boundary of the safety zone which uses Chazelle’s algorithm for triangulat-
ing simple polygons in linear time. The safety zone of width & for a simple
polvgon is a simple closed area defining the outer boundary of the
Minkowski sum of the polvgon and a circle of radius 8. In order to get the
holes generated by the Minkowski sum inside the safety zone, our algo-
rithm can easily be tailored, keeping time and space complexities invariant.
The same technique works for computing the Minkowski sum of an
arbitrary simple polygon and a convex polypgon in time proportional to the
product of the number of vertices of both the polvgons.

ACKNOWLEDGMENT

We acknowledge the two anonymous referees for their valuable suggestions regarding the
presentation of the paper.

REFERENCES

I. B. Chazelle, Triangulating a simple polygon in linear time, Discrete Compa. Geom. 6
(1991), 485-524.

2 AL Herndindez-Barrera, Computing the Minkowski sum of monotone polygons, [EACE
Trans. Inform. Systermy ES80-D, No. 2 (199a), 218-222.

3 M. de Berg, M. van Kreveld, M. Overmars, and 0. Schwarskopl, “Computational
Geometry: Algorithms and Applications,” Springer-Verlag, Berlin, 1997,

4. B. Chazelle, H. Edelsbrunner, M. Grigni, L. Guibas, J. Hershberger, M. Sharir, and 1.
Snoeyink, Ray shooting in polygons using geodesic triangulation, @ “Proceedings, 18th
International Collogquivm on Automata Language Programming,” Ledure Noles in
Computer Science, Vol. 510, pp. 661-673, Springer-Verlag, New York /Berlin, 1991,

5 F. Chin, 1. Sneeyink, and C-A. Wang, Finding the medial ais of a simple polygon in
lingar time, i “Proceedings, 6th Annual International Symposivm on Algorithms and
Computation (ISAAC 950" Lecture Noles in Compuler Science, Vol 100, pp. 382-391,
Springer-Verlag, New York /Berlin, 1995,

f. 5. Fortune, A st algorithm for polygon containment by translation, @ “Proceedings,
12th International Colloguivm on Automata Language Programming,” Lecture Notes in
Computer Science, Vol. 194, pp. 189- 198, Springer-Verlag, New York /Berlin, 1985,

1.
11.

SAFETY ZONE PROBLEM S569

. M. R Garey, D 5. Johnson, F. P. Preparata, and R. E Tarjan, Triangulating a simple

polygon, faform. Pocess. Lew. 7 (1978), 175-179.

. R Klein and AL Lingas, A linear-time randomized algorithm for the bounded Voronod

dizgram of a simple polygon, e “Proceedings, 9th Annual ACM Symposium on Compu-
tational Geometry,” pp. 124-132, Assodation for Computing Machinery, Mew York,
1443,

. DT, Lee, On finding the convex hull of a simple polyeon, faternam. J. Comp. fnform. Sa.

12, Mo. 2 (1983}, 87498,

T. Ohtsuki, “Layout Design and Verification,” North-Holland, Amsterdam, 1986,

G. [Ramkumar, An algorithm o compute the Minkowski sum outer face of two simple
polygon, i “Proceedings, 12th Annual ACM Symposiom on Computational Geometry,”
pp. 234-241, Association for Computing Machinery, New York, 1996

- R Seidal, A simple and fast incremental randomized algorithm for computing the

trapezoidal decompositions and for riangulating polygons, Compat. Geom. 1 (1991,
54-0l.

. ML Sherwani, “Algorithms for VLSI Physical Design Automation,” Kluower Academic,

Boston, 1993,

	safety zone-1.jpg
	safety zone-2.jpg
	safety zone-3.jpg
	safety zone-4.jpg
	safety zone-5.jpg
	safety zone-6.jpg
	safety zone-7.jpg
	safety zone-8.jpg
	safety zone-9.jpg
	safety zone-10.jpg
	safety zone-11.jpg
	safety zone-12.jpg
	safety zone-13.jpg
	safety zone-14.jpg
	safety zone-15.jpg
	safety zone-16.jpg
	safety zone-17.jpg
	safety zone-18.jpg
	safety zone-19.jpg
	safety zone-20.jpg
	safety zone-21.jpg
	safety zone-22.jpg
	safety zone-23.jpg
	safety zone-24.jpg
	safety zone-25.jpg
	safety zone-26.jpg
	safety zone-27.jpg
	safety zone-28.jpg
	safety zone-29.jpg
	safety zone-30.jpg
	safety zone-31.jpg
	safety zone-32.jpg

