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Abstract

We extend an uncertainty principle doe to Cowling and Price 1o Euclidean spaces, Heisenberg groups
and the Enclidean maotion group of the plane. This uncertainty principle is a generalisation of a classical
result due 1o Hardy, We alsoshow that on the real line this uncertainty principle is almost equivalent 1o
Hardy s theorem.
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0. Intreduction

In the vast literature on uncertaingy principles in harmonic analysis (see [3,5]), the
central theme is the impossibility of simulianeous smalfness of a nonzero function
and its Fourier transform [, where [ is defined by

f{_\'j = f flx)e ™ =dx.
E
A large number of results, beginning with a classical theorem of Hardy {Theorem 1
below), show such impossibility when smallness is interpreted as sharp decay.
In this paper we concern ourselves with results of this kind on certain Lie groups.

We begin by stating the main resulis of this genre for the real line.

THEOREM | (Hardy). Ler [ : B — T be measurable and for all x, v
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@ 1f(0)] < Ce=,
(i) |f(¥)] = Ce™¥,

where Coa b = 0. Ifab = | then [ = 0 almost everywhere. If ab = | then
fix) = Ceone’, If ab < | then there exist infinitely many linearly independent
SJunctions satisfving (1) and (ii).

THEOREM 2 (Cowling and Price). Let [ : R — T be measurable and
i e _.I'i||r_-'rﬁ.;- = O,
(i) ey Sllpom < oo
where a, b = 0, e,(x) = ™ and min{ p.g) <= oo Ifab = 1 then [ = 0 almost

everywhere, If ab < | then there exist infinitely many linearly independent funciions
satisfving (1) and (ii).

THEOREM 3 (Morgan). Ler [ : R — T be measurable and for all x, v

(i 1f(x)] < Ceamhl,
(i) |f(3)] < Cetaiaranir,

where p = 2, p' +q7' =1, a.e = 0and Ala) = 2/[sine(g(pa)’™")] with
w = mlqg — 1)/2. Then | = 0 almost evervwhere.

THEOREM 4 (Beurling). For f € L'(R),

ff F N F() e dxdy < 0o
e J s

implies [ = 0 almost everyvwhere.

For the proofs of the above theorems see [1,5.6].

Barring the case ab = | it is clear that the theorem of Cowling and Price implies
the theoremof Hardy. Also the theorem of Beurling implies that of Cowling and Price
for ab = 1. From Beurling’s theorem we get yet another result which is somewhat
stronger than Morgan's theorem (see [6]).

THEOREM 3. Let [ : B — T be measurable and forall x, v

M If()] = Ce™mH,
@ 1f ()] = Cetmit]

where p~' 4+ g7 = L. If (a7 (bg)/® = 2, then [ = 0 almosr everywhere.

NoTE. Clearly (ap)/"{{A{a) + €)g}V* = 2. Hence Morgan's theorem follows
from Theorem 5.
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One of our results in this paper shows that Hardy 's theorem implies the caseab = 1
of the theorem of Cowling and Price, although in both the theoremsthe casea = 1 = b
is a key point.

Recently Hardy’s theorem has been extended to Euclidean spaces and to some
non-commutative groups (see [10, 11, 13]). Our purpose in this paperis to extend the
theorem of Cowling and Price to the following groups: %, H, and M(2) . Apartfrom
this we will point out an analogue of Beurling's theorem on 3",

The paper is organized as follows: In Section | we consider the extensions of the
above theorems to R”. In Section 2 we take up the theorem of Cowling and Price and
also Theorem 3 for the Heisenberg groups H,. We end this section with our proof
that Theorem I implies Theorem 2 when ab = 1, forthe real line. We do so since our
approach to the theorem of Cowling and Price on H, relies on the idea of this proof.
In Section 3 we take up M (2), the Euclidean motion group of the plane and we make
some comment about the analogue of Theorem 2 on the oscillator group.

Ourresults in Sections 1 and 3 exploit the easily available complexification of lines
in the unitary dual of the group. The Heisenberg groups treated in Section 2 do not
admit such complexification and hence need a different treatment.

1. Euclidean spaces

The proof of Theorem 2 depends on the following result for entire functions.

LEmma L1 Ifg - 0 — T is entive and for 1 = p < o0

{i) |H{t + f.\ljl = A.E"‘T'TJ,
(i (f, |£(.t)|"tf.t]|'”’ < 0Q,
then g =10,

Lemma [.1 which was proved in [1], uses an L"-analogue of Phragmen-Lindeloff
Theorem. We use it to prove an extension of Theorem 2 on R".

NoTATION. In what follows, (x, ..., % ... ,x,) stands for the vector (x,...,
Xi—1s Xifis+ov 1 Xn) € BN

THEOREM 1.1, Let [ : B — T be measurable. Suppose forsomek, 1 =k = n,

@D [ e gl s oo s XIPLF e x| Pdxy - dx, < 00,
[

(i) f Ry, ..., Feoeoe ¥ LS G0 e oy 3)dy - - dy, < 00,
Rﬂ
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where a b = 0, g, b : B — Care measwable with g = a0 = 0, h = g = 0,
where e, B are constanis, 1jg € LY (3", p' 4+ p~' = 1,1/h € LY(R"),
g '+q ' =1 Ifab = 1 then [ = 0 almost everywhere.

PrOOF. By (i) and (ii) it follows that [, f e L'{&"). Asin the real line case it
is enough to prove the case a = 1 = b, otherwise we use dilation. Now if we fix
s oo Phowsis .)€ B Lthenforallw =u +ive ©

1 ST TR TSR 03 T U U ||
E |f{-tl~ LG ~-t.l|]|'|-d'3:“:“d-tl "'dl-t.u
Eﬂ
E AE"‘TI:J,

where A is a constant and the last inequality follows from Holder's inequality and (i).
Then by a standard argument using Lebesgue’s dominated convergence theorem, Fu-
bini's theorem and Morera's theorem it follows that for fixed (v, ... | Viels Miple e s
Vol f is an entire function in «. We define

glw) = f'—rmlff}H ----- V1o @ Vgl oee o Yol

So for almost every (¥, ..., ¥io1s M. --- - ¥ ), £ satisfies conditions of Lemma
1.1. Hence f = 0 almost everywhere. By the inversion formula [ = 0 almost
everywhere. |

Now we take up the theorem of Beurling.
THEOREM 1.2, Ler [ & LYR") and for some k, 1 =k = n,
f LTS A Yl M dx, - dx,dy, - -dy, < oo,
3
Then [ =0 almost evervwhere,
PROOF. We fixy = (vi,. .., Yic1s Yetls - - - ¥a). We define
By ) = F F O e s Vet s Vietava- s s X E R,
where
5 7% 6 T y I A, (ST,
= _ L0 TS S T i S TR )|

% E—Ej:r [ TS FRNNES 2 N R ._n.'ﬂ;l:d.l_ A If.l'k_ |I‘;-tk+ i l‘.f.l'u .
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Then &y (¥) = f(¥1s -+« s Yoty ¥ Yawrs -+ » Ya)- Now

f f |2 ()12, () e dxdy
RIR ’
Ef f F @1 X X Eprn e SO Yi-1: ¥s ¥etts -« 5 Fadl
2 JR

. E'E:rlx'vlff.ﬁ L ff.n-_ |ff.ﬁ-+ ] -E d.l'..,ff.fff}'

= 50
for almost every (v, ..., Vie1s Yitls - - » ¥u ). S0 by Beurling's theorem on 2 for
almost every (v, ..., Pects Verls oo o s ¥als

'%J.'f{-_yh ves g Me—1a % ¥it1a e o0 s _1".'1:] =1

for almost every x. Hence by Fubini's theorem and the inversion formula f = 0
almost everywhere. O

COROLLARY 1. Ler f € L'(R").
(a) ff,ﬂ;m |f{.tj||f{}']|el" WAL ¢y = oo then [ = 0 almost everywhere.
B B f 1f Croee e XFOr o yETERd, - dx,dy, -« dy, < 00 then
I =0 almosi evervwhere. i
(c) Suppose forsomek, | <=k <n, [ and [ sarisfy
@ 1f(x,....x)| <Celxy, ... 6 ... .2 t, Jemom il
@ 103l S ChOs e s Flrr e ade™™ 0,
where p' +p ' =1, g, k(= 0) € L") If (ap)'? (bg)"/? = 2 then [ =0
almost evervwhere.

REMARK 1.1. For IR, decay in the k-th coordinate of [ and f is enough to conclude
that the function is zero. What matters is the fact that R" is a direct product of copies
of . We may also remark that the Fubini argument in Theorem 1.1 appears to be
more effective than using an n dimensional version of Lemma 1.1 which would not
yield Theorem 1.1 in the case ab = 1.

2, Heisenberg groups

The main result of this section, Theorem 2.3, proves an analogue of the theorem of

Cowling and Price for the Heisenberg groups.
We recall some facts about the Heisenberg groups. The n dimensional Heisenberg
group, denoted by H,, as a set is R*"' with the group multiplication

|
{.T,E,fj(.ﬁ,q{;],ﬂ) = (.l’ +.T|,I_E +€|,f +f| +EI|:T,'E|:’— |:.T|1'E:’I)
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where x, £, x, & e E", 1.1, € &, and (., .} denotes the usual Euclidean inner product
on B". With this multiplication #, is a unimodular, connected and simply connected,
step two nilpotent Lie group whose Haar measure is dvd £d1. The reduced dual of H,
is parametrized by & = | {0} and is given by

[, : H, > #(L(RY), TL(x, & 0)f(y) = TR ENf(y _ ),

Given [ = L' H,)n L*( H,). the group Fourier transform on reduced dual is given by

fm,) =f S(x, &, O, ((x, &, 1) dxdEdt,
Hy

the integral being interpreted in the weak sense.

If we think of f as an operator-valued function on B Y {0} then it can be shown
that /(%) (by which we mean f(I1,))is an integral operator on L3(IE") with a kernel
oiven by

Kl (y,x) = FaFa(x — vy, =A(x +¥)/2,1), x,yeR",

where .#, and #, mean the Euclidean Fourier transforms of [ with respect to its
second and third argument. It follows that

(2.1) 1F O = 1M ™ f |&5 fxe, v, M) dxdy

[E2n

where || - || 45 denotes the Hilbert-Schmidt norm. Then by the (Euclidean) Parseval
formula

f 1B A dA = 1 s
i3

So |A|"dX is the Plancherel measure for H, (see [2]).
Now we prove an analogue of Theorem 2 on H,,.

THEOREM 2.1. Ler f € L'(H,) N L*(H,). Suppose that for a.b = 0 and
min{p, g) < oo
(i) JFH. E"”"""T'E'”IF|f{.l’,£,f:]|'"(f.nf€tff = 00,
i) fg e f (s IA"dA < o
(a) Ifg =2 then [ =0ifab = 1.
by Ifl =g <2, thenjforp=oo, [=0ifab=2andfor p <00, [ =10
if ab = 2.

PrOOF. We consider two cases separately.
Casg L. (p = oo) Inthis case the hypothesis (1) reduces to,
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(iii) |f(x, & 1)] < Cea™W=&0F for all (x,&,1) € H,,
Letus define fi, o(1) = fix,&.0), f (1) = f(x. & —1) and

h0) = [ (oo ® S Odxde
Rin
Then it follows that

(2.2) hG) = "L/ (W)l (because of (2.1)),
(2.3) lh(n)] < Ce ¥ (by (i) ).

First let us assume g = 2. Lete = Obesuchthata(b—e¢) = 1. Then, witht' = b —¢
lewn 73 = [ e liGoa
- f SOOI A (by22)
- f""h“”'lllffmllﬁf.\-i.al" (pd-Deer) da
3
(2.4 <K [ @m0l dh < 00 (by (i)
E
where K is a constant. [t follows from (2.3) and (2.4) that /i satisfies conditions of
Theorem 2 for p = oo andg /2 andhence i = Dalmosteverywhere. So ||_f{}-_}| fers =10
for almostevery A whichimplies [ = 0almost everywhere by the Plancherel theorem.
Now we assume that g = 2. By (ii) we have
o> [ @1 f s lhd
= f P PN U P e DY)
= f e ()2 d
|&] =1
As the integrand is a continuous function of & we have
f e R()IPdA < 0.
R
So
f e h(r) dA = f e R ()T R0 2dA
B 3

< |22 f e F RN dA < oo
11

LURY
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By (2.3), the above inequality and Theorem 2we geth = 0if ab = 2. Hence [ = 0.

CaSE 2. (p = o) If || - || denotes the Euclidean norm on %*"', then for
(x.E.0), k1, 5. 1) (= (—x, &, —N)) € H,

e, & 0 W(—xp, =& —11) |
= l(x — %1, & — &, — 1 + 3[(x1, ) — {x. ED
(2.5) = £ 0l = N, &) = 20, & i, &, 0

Letg € C.(H)) withsuppg < {(x,, &, 1) : |Hx, &, 00l = (1/m)}. Now let (x, £, 1)
€ H, be such that [|[(x, £, /)| = 1. Then by (2.5) we get

3
Nx, &, 00, &, 0)7 | = ||(.r,.§.n||(| - E)

for (x,,&.0) in supp g. If e, (x, £, 1) = " V50 we further get
(el SD %18 (x, £, 1) = e, gye(x, &, D] # |gDix, &, 1).

By (i)e,| f]is an L functionand g is an L" function (p~' +p"' = 1).So (e, | fl)=]|gl
is an L™ function and let C be the L™ norm. Then

I(f % 8)(x.E, D] <(If] %12 (x,E.1) < Ce oI sermhi=snl

for all (x, &, 1) with |(x,&,1)|| = 1. Using continuity of [+ g (f  L'(E>**"),
g e L™(R™")) we get (changing the constant if needed)

(2.6) I(f % g)(x, &, 0)] < Ce ™ —5rmhesdF  forall (x,&,1) € H,.

Since ff;_;,:]{}_] - f'{}.] o £(x) and () is a bounded linear operator on L*(R") we
have

0T * D s = DER Lol FOMars = Nelloriayl FOI -
S0
f e.f‘l-'.l:r a2 || {'}:;{] {}-] |I1|-5 |}- |.u Iﬂ'.
E

(2.7) =3 1] H f e fOI % sIA"dh < 00 (by (ii) ).
E

We can choose m so large that ab( 1 — (3/2m))* = 1 (respectively = 2), given ab = 1
irespectively = 2). Soby(2.6)and(2.7) we are reducedto Case | and hence f#g = (.
By running g over an approximate identity we get [ = 0 almost everywhere. This
completes the proof. O
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Next we prove an analogue of Theorem 5 on Heisenberg groups.

THEOREM 22, Ler [ : H, — ' be measurable and

i) |f(x. &0 =< Cax.Ee™V"" forall (x,.E,1) € H,
(i) 1) s = Ce ™ forall & € R\ {0),

wherea,b,C >0,ge L'\R*)NLYR™), p=2 p' +q7 "' =1 If(ap)'*(bg)'"*
=2 then [ =
PrOOF. We define ft as in the previous theorem. Now
|h(r)| = f |f(x, &0 —&)||f(x, & —s)|dedEds
Elﬂ-l
E_—u:rl|.|—.'.I"+|.'i|"i-lﬂ|':t

=C

e—u:rl""' JIIJ —.'.:IJ+.':J}-""J‘:1r:t

— —

.
< Agmem2rHIn,
By (2.2) and (ii) we have
k()] < CIAe ",
We choose & < b such that (ap)'/*(Fg)V = 2 when (ap)V"{bg)''% = 2. Hence
”f;“‘” = R~ 2wt

Since (a2~ p) P (2b'g)" = (ap) P (Bg)" 92" PV PtYY - 2 by Theorem 5, i(A) =
0 for almost every A and hence || f(A)|lus = 0 for almost every & and then by the
Plancherel theorem f = 0 almost everywhere. This completes the proof. O

Going back to Theorem 2.3 we notice that case 2 reduces the integral decay
condition (i) to the pointwise decay condition (iii). Exploiting this idea on the real
line we are led to a somewhat surprising result. 'We introduce some notation. Let
eux) = ¢ wherex € Zand k > 0 and

E, la. b)) ={f : R — C/fis measurable and |le,. f|l, < oa, ||4:i*,,_1f:||g‘I < pal.

THEOREM 2.3, The following are equivalent.
(i) ffab > lthen E__{a,b)=0.
(i) Ifab = 1and min(p, g) < oo then E, (a, b) =0,
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PrOOF. It is easy to see that (i) follows from (ii) by Holder's inequality. Now
we show that (i) implies (ii). Without loss of generality we assume p < oo. Let
g e C.R) be such that suppg C {v : |v| = 4}. We choose an ¢ = 0, which is to be
specified later. We choose v such that |x| = §/¢. Then for all v £ supp ¢ we have

lx — ¥l =[xl —I¥] = |x] =& = |x|(1 —e),

then by (ii) and the fact that g £ L*{I%) for all p, we get, by Holder's inequality, for a
constant C,

Es f e P £ (e — )18 ()l dy

> eu:rl.vl'l'l—r:"{|f| #|g)i(x).

So, | f # g(x)| < (| f] # |gl(x) < Ce *™* =" forall x such that |x| > &§/¢. Since
J % g is acontinuous function we have

(2.8) I(f * g)(x)] < Ce"~=1f  for all x,
(29) New(F % Dy = Nélllesfll, < 00 (by (i) ).

Starting from (2.8) and (2.9) if we can show that [ % g = 0 (with a condition on
€), then by running g over an approximate identity we get [ = (0. So we prove the
following:

Let f : E — L be measurable and

()] = Ce* =P forallx e B, e, fll, < o0,

then [ = 0. Let h € C.{R) be such that supph < {x : |x| = § ). We choose an
€1 = 0, 1o be specified later and do the same thing as above to get

(2.10) |f £ h(¥)| < Ce™™ 0" forall y,

If # ' f denotes the inverse Fourier transform of f then

(2.11) 1 F(f % h)(x)| < Cre etk

by the condition on f and the fact that & ~'h & L™(R). We choose our ¢ and ¢, such
thatab(l —e)* (1 — &) = | wheneverab = 1. Thenby (2.10) and (2.1 1) we get that

feheE_ _(b(1—¢) all—e)?) and henceby (i), f  h = 0. By running i over
an approximate identity we get /' = 0. Thus f = (. This completes the proof. O
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3. The Ewclidean motion group of the plane

The Euclidean motion group of the plane, denoted by M(2), is the semidirect
product of % and S0(2) with respect to the obvious action of SO(2) on B, This
is a connected, unimodular, solvable Lie group. If we denote elements of M (2) by
(z, #), where ; £ € (identified with k%) and 8 < I {identified with S OQ(2)) then dzdp
is a Haar measure. The irreducible, unitary, infinite dimensional representations of
M (2) are realized on L2 (1) and the equivalence classes of them are parametrized by
[reR:re R} andare given by

MM, : M(2) — #(L*(]))
(MAz, B)f Nee) = €70 fBa), felXT), aeT.
[M_, can be defined similarly, but 1, and I1_, are unitarily equivalent. The family
{I1, : r € &7} constitutes the support for the Plancherel measure and the measure is
ziven by crdr, where ¢ is a constant (see [12]).

We shall prove an analogue of Theorem 2 on M(2). For [ L'(M(2))nL2 (M (2)).

the group Fourier transform is given by

fO =iy = [ flz. ALz B Hdzdp

M2}

where the integral is interpreted in the weak sense, and then f{r] is a Hilbert-Schmidt
operator on L2(T).
First, for our use here we state an equivalent version of Lemma [ 1.

LEMmMa 3.1, If g 0 T — T s entive and for 1 = p < o0
i) |glx4+iv) = A_e"”!, whemw a = (0,
i) ([, lgo)|rdx)"" < o0,

then g =0,

Using this we prove
THEOREM 3.1. Ler f € L'(M(2)) N L*(M(2)) and
(W) [y €| f(z, o) Pdzde < o0,
@) [y e 1 f () lysrdr < o,
wherea, b= 0, 1 =g <o, | = p<oc. Ifab = 1 then [ = Qalmost everywhere,
ProoF. Let {e, : n £ £} be the canonical orthonormal basis for L3(T). We define
P, (20 = (z. e, e,)xr, (2. eMQ), r=>0)

= f eREe, (Bae, (@) de.
1
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Now for [ = L3(T),
(M.(z, B) () = 7" f(Ba) w=u+ivel

continues to be a nonunitary representation of M(2) and we get the complex extension
of the functionr — @,  (z, B), for fixed (z, §), m, n. Further

(3.1) D2 (2. B)] = {Tu(z, Blem. €u}] = IE""'““E’"rfa.

for fixed m, n, (z, §). From (3.1), @ — & (z, ) is an entire function by a standard
argument. Also we have the estimate

|f . P, (—Bz. B
< | fiz. 8) f >R, (Bor)e, (at) | der
= | flz, B -[el*"“*“&ﬁ”da, wherew =u +ive T
= 1 (@ )l
Hence

ﬁ ~ |f(z B®, (—Bz, B)ldzdp
< f Tlf{z,ﬁllfz"""“'tfz:fﬁ
=ervtie [ (116 Blemi?) (eemteir) dzdp

< Cye™*(A 4 Blv| + K |[v])
{ by (i) and Holder’s inequality, A, B, K = 0)

(3.2) < €y,

for some k, such that & = k = 1/a. A routine argument now shows that the complex
extension of the function r — { f{r)e,. e.h, r € BT, which we write as

tf{wjfuheu:’ = f f{z~ﬁ)¢:,1,|{_ﬁz~ﬁ)dzdﬁ‘
CxT

is an entire function of the complex variable «, for fixed m, 1. We note further that

I:f{rje.'thu} — ':f{_r]emﬂfu} fﬂrf 1S m'-'-- SIHC'E-' Hf{rjfm-en}l E "f{r]"ﬂ'.ﬁ's Wi
have from (ii)

fe‘“”"’llt_f{r]e,,,,e,,}l*"rdr = na.
1z
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Since Hf{r]em. e,1| 18 a continuous function of r,

(3.3) fe‘“’""’|cf{r)em,e,.}r*n'r < 0.
F.
From (3.2) we have
(34) [(f(@)em, en}] < Cre*™  wherew =u +iv.
We define

g{&.l:] = 'Ek:m; l:f{w:leﬂ.ll L] 'E'.ll }'
Then g is anentire function. From (3.4) and (3.3) it follows that

(3.3) lglu +iv)| < G ek = Cobret,
[‘3-6) f |g{r”4dr = feqkmllll:f{r:]eunfu:’lql’jr < oo ask = b,
e R

By (3.5)and (3.6) it follows that g satisfies conditions of Lemma 3.3 and hence g = (.
So{ flwe,,,e,; =0. Butm, »n are arbitrary and hence || /' (r || x5 = 0, which implies
[ = 0 by the Plancherel theorem. This completes the proof. O

We point out that a similar kind of technique works for another semidirect product
namely the oscillator group.

The oscillator group is the semidirect product of H, (the one dimensional Heisen-
berg group) and R with respect to the homomorphism p : B — Aut(H,) given
by

pirdx £ @) =i{rcosr+4Esinr, —xsinr +£cosr, 1).

Since y has cocompactkernel, G = H, <, R is atype |, unimodular group with H, as
a regularly embedded, closed normal subgroup (see [7, Theorem 3.1]). If we denote
the elements of & by {x, £, ¢, r) where (x,£.1) € H, and r € R then dxdédrdr is a
Haar measure.

To find G, we proceed by Mackey theory. For & € R {0}, we consider 1, € ﬁ?
Then itis clear that I, |Z{H ) = (1, o p{r)|Z{H) forall r € % where Z{ H,) is the
center of . Let Wi{r) be the intertwining operator {which is unique up to a scalar).
So Wir) e % (L*(R)) satisfies

M(y(r)x.E,0) = W(r) e x, &, 00 Wir) ™,

for all (x, &, 1) € H,. Since B has no nontrivial multiplier (see [9]), r — Wi(r) can
be chosen to be a true unitary representation of &. So by the little group method we
zet a family of irreducible unitary representations of ( given by

M,,:G— %L (R), T, (x&fr)=x (M, (x,E1cWir),
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where y.(r) = ¢ It follows from [7, Theorem 3.1] that the representations
{I,, : & e Ry {0}, € B} constitute the support for the Plancherel measure, and
the Plancherel measure is given by |ddids. Now by fixing & and complexifying s if
we concentrate on the matrix coefficients of the group Fourier transform _f {m, ) and
apply Lemma 3.3 we easily get the following theorem.

THEOREM 3.2. Ler f € LYWG) N LA G) and
(i) [ emWessnl| rix £ r, p)|PdxdEdidr < oo,
i) [, e fih, $)lusds < A,

where A; is a consiani depending on b only, anda, b =0, 1 =g =00, 1 = p < 00
Ifab = 1| then [ = 0 almosi evervwhere,
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