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Absoract

The reversibility problern for 907150 cellular automata (both null and perfodic boundary) i3
lackled using continuanls and regular cxprossions, A 997150 cellular gutomaty can be wniyguely
encided by u sirng over the alphabel {00175 1t i showne thal the sel ol stings which comrespond
ta peversiblc 90130 cellular autiroata is a repoda sel, We wwe the repulan capression W enamcrate
the number of reversible strings of a fixed [cngth. As a consequence, it 15 shown that given a
polvinomial m(x), it js not alwavs possible tor ger a #0130 cellular aupomar whose transinon
matriz has chatacieristic polvwnomdal pix

Ry worddi: Coolinuanls, Regolar capressions: Fluite automala, 907150 collular dubonuta

1. Introdwtion

tn this article we pose and solve ten problems reparding a special class of mabices
over £, the field of two elements, Lot, M. 6 [(h 1}, be a square matrix over #3.
having the following structurg:

[~ S N N f D O N L
1 e 1 O 0 --- 1 W 0
a t ey b0 - 0 0 0
My — : g [ i1}
L | T M R
RIS A { B (R ] e |

Firat, assyme b — 1, Then My i uniquely specilicd by the sting e - g, over the alpha-

bel 40,1} andd is smid 10 eocode the malriz A, Now, consider the following problems:

(1} Obtain a chamcterismion of sthe set of sirings & .. 4, which encode non-gingular
matrices of the [orm M,.
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(2) Find the mymber of nun-gingular matrices My of the order »

We show that the sct of siings which ¢ncode non-singular matrices is a repular
set with a very simple situctars. This solves the first problem. Trsing the “canomical’
regmlar expression for this set, we eomplelely soive the second problem. It umy oul
that approsimately two-Lhirds of the strines encode non-singular matrices of the form
Ay, The novel teatures of our proof are the use of contimuants for tackling the first
problem and the wse of regular capression for counting,. We belicve that these ideus
can be profiably applicd o other similar simations.,

For the case h— 1. the sitatiot seems more complicatad, However, using the resulty
for matrices of the fwm Ay, we are able to satisfactorily solve the comesponding
problems for mattces of lhe form M),

Thesze problemy arxe very naturally in connection with the study of what are lmown
gs 007150 cellular awtomata (CA). CA arc simple diserete dynamical syetems, capable
af exhibiting quite complex behaviour (sec |6, 117). A finite one-dimensional CA is an
armay of cells, where cach cell can assume srate O or 1, which are regarded as elements
of the 0 I field o, Tt ix an automoroons machine and evolves deterministically in
disgrete thne steps. This evolution 1 offected by 2ach cell changing its value according
to @ local rule, The foeal rule &£ Lot the ith cell & is a tree variahle hoelean function
and the stale of ¢; 1 the fh litne step, demsted by xf, is given by

—1 .,
/‘:,r' =R|'{J‘:;...'_s1_- ,+1}

I the subseript § of & ig taken modulos, the nomber of cells of the CA, then the €A
15 called periudie buundary CA. I on the other hand, the anay is considered to be
placed hetween twao cells having a xed value zero. the CA is called mdff bowndary CA,
I all the R's are lincar (unctivos (SIIET, EX-OR), then the CA s called finear
for additive] and the glebal rade 15 a linear transfonmation of the vectar space £ inko
itselt thal viclds the configuradion an the neal time step during the cvolmtion of the CA,

Here we depart {rom the more usual definition of CA, where the local rute is samuw
{or all cells, as has been stodied in [6, 11]. The kind of CA that we study allows gach
cell to have ity pwn local mle, and henee is called dprid CA. Thiz class of CA s
mors mnportant rom (he VLST applications point of view |5, &, 9] Henceforth, by CA
we will mean hybrid CA.

Linear €A have been proposed as a basic structure in several areas of VLS) design
[5, B, 9]. In fact, the most usefi]l structure from the VLEL point of view iz a 907150
structnre whers the local rule R; is given by

x; _R{-rr [!-r :|_1]]— X ] | aix r ] x::1l (1 =i=n),
where o, = {0, 1} and addition is module2 ie, over Fi Tf o =0, B; is called mle
af, else R; is called rube 150 (see [ 1] for a nomenclature of local mules). The plobal
nile of such a CA is specificd by the matrix {called its frensition mairix)y My of (1),
where » 15 0 or | accordingly as there 35 a null or pedodic boundary condition. Onee
the boundary condition is fixed (he string w, ... 4. over {0. 1} completely specibies the
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structure of the CA, and hence, we shall identify the CA and ifs transition matrix with
the string a; ... .. The CA is reversipde il its transition mattix is non-singular.

The transition matdix Jor mill boundarsy 907130 CA is My, {(from {11 The deter-
minant ol Afy can be elegantly expressed in terms of multivanate polynomials calied
camtimuants, which were first introduced and studied by Fuler [2], A contimumt in g

variables K oixy.. . x, ) Is defined by the following recurrence:
Kol Y — 1. Kqfx 1—xy,
(21
Koo oovgl=x0 K (xa, o ox b+ &l )
In fiael, the conlinuants satisfy 4 mere peneral recurrence |2, po 284]
Ko al¥ 1 Xk 1oveey i)
=Kl B e e ]
Ko 105 X 1M (w20 X ) (3)
and using the reladon in [2, p. 3], we bave
Kolm, . . ooy =det A,
Alue the charsetetiste pobynomial of My iz K (x + ap,. . x — o) (note that over £,

—1 =—1} Hence, My s non-sinpular iT £ {a).. . 0.3 = 1. Lapanding My by the first
and the last row il s casy W sce thal

K.ﬂ{ah'--1“.&}_K|;{H.Hr'-'salj' {4}

Thus, it is most natueal to consider continnants in the analvsis of 207130 null bound-
ary CA and we know of no other place where this has been done, In fact. the problems
that we have posed can be framed entirely in fertns of continuants, and hence o work
can alse be considered 1o be a contribunion to the study of coutinuants. We would like
to point oul that the vse of coplinuants in Sections 2 and 3 is not really necessary.
However, in Scetion 4, we ose (3) in an essential way which clearly highlights the
importance of continuanis o the present setting,

Finally. we point out the implications of our results to the theory of linear finite-state
machines. The counting results show thar certain kinds of limear machimes camnot be
sytithesised vsing 207150 CA,

I whar follows, all arithmeric i over Fo and ¢ will denate the empiv sieing. Also,
x| denates the length of @ stving &, and the cardinality of o set 5 &5 denorad by |S).

2. Mo boundary CA

As stated in the introduction, the charactenistic polynomial of the trungition matrix of
a null boundary 90150 CA is a continuant K {x+a_, ... x+ae). The CA s reversible
tff the constanl term of e + a0 00+ ag) 15 1. The constant term 15 obtained by
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putting x = 0 and is cqual w Kolm. ... 0.0 Sinee the CA 18 uniguely idenuafied by the
BITiNg @1 ...a over {0, 1}, we will write that the string o .. o, 8 teversible o mean
that the coresponding CA is reversible. First note that the conpty string & is reversible.
Mext, we have the following:

Lemma 2.1. Let ye [0, 1V and i< {001} Then
(ah My ix recervitde B ¥ & revervifble

(h) Wy is recersibde 5 1y is revervible,
{e} 11y i reversible 87 0y iv reversibfe.

Proof. {a) Using {3), we can write,
Kl‘?{[}s I! e, by . ,ﬁ;]_}=K:{ﬂ_.|I}Kﬂ 1{“3: da,.. -:a:ll} - K1{0}Kr: 3{@4, [ :]'.
Mow, A0,0=0( 1] =1
Therefore, K (i 2. 2. .. 8.) = Koozlay, dq. ..., a2 ). This proves (a).
{h} K?.'l[ls {].- [P -ar.'}
== KI(lsﬂ}En—ii“Jf e sarl) +K|{_1).Kr;_3{ﬂ'4,. ceatiy ] b}. {3}
=Kq olay,...,Jd+ Ky s 3]
=Kp—{lows,..an) by (2)
This proves (bl

{c) is similar to (b},

Cilven a siring ¢ e can repeatedly “reduce’ it from the lell o obtain shorter sirings
which ars reversible i the origmal siting is reversible. To tormalise this, for any two
Strings @, & we Write ¥ — ¢ and say & redoces to o if
f1y w—0ie, Fe {1 or
(2) u—10x and v=1r or
(3) u—1lr and v =0x
Mote that i 2 —» then <z, By abuse of oulation, we will write w— v {and also
sy o reduces (o ) i thers exisl slrings wg, ... 4y such that

B=tg- tH]— ' g =1
Remark 1.1. Similar reduction from the ripht iz also possible,
The irreducible sitings wre simple o chamclerize.
Proposition 2.1. Lot 1< {0, 1% Then v reduces in zero or more steps 1o exactly

one af the strings Bt 1e,0,1} Furthermaore, ¥ & reversible if v can he reduced 1o
wither ¢ or |,
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Proof. By the reduction rules, any string of length =2 can be redoced. Ilence, the
omly imredueible strings aee {2,011, That the reduction is utique follows from the fact
thut at any stapc at most one of the rules apply. The lasl statement hoids since by
Tomma 2.1, any reduction preserves reversiblility. |

From thiz we get the following lingar time algorithm lor detenmining reveraible nll
bowndary 90150 CA {see [10] for algorithms to determine reversitatity of other kinds
of CA),

Algorithm =/

frpals A string € —ay . oay over {0,170
ouipul “wves® i v is reversible, else "no’
while {x not in {201} de
o {{x—00p) or (x —013p) then x=y
else 1t {x = 10y) then x — 1y
else if (x=11y} then x —(y
i
if [x— & of x= L) then outpul “ves® clse ouepul ‘oo’

Using the idea of roversihility proserving reduclion, one can obtain a detenninis-
tic fnitz gutomata (DFA) to rocognire all reversible strings. Since any initial prefix
of the string can be reduced, 211 that the DFA hus fo do s to remember the cffee-
tive (from the point of reversibility ) amount of inpul scen so far. More fornally. e
M=({0,1},0.5..5,F) hc a DFA, where
{11 €= {s; 5p. 2} is the set of states,

12) The transition function ¢ is defined as follows. Tet e {0, 1} Then,
fa) Hsni)—u,
(b Asn 71—,
() x 0%—s1,
{d) s, 1) — .
(31 F —dwp0} is the set of final states.

The stae s, comespond 1o the empty striog, and any state ¢ € remembers the
effective amount of inpur seen so far, The transition function 4 specifies the reduction
roles. Soowe gei the follewing:

Theorem 2.1. Ler 2P(M) be the language accepted by the DFEA M. Then y £ #(M)
If v correspostd (o o reversifile mul! Poundary CA.

Mext, we obtain the corresponding regular expression. Tet B, Ry, By, rospectively,
cormespond 1o the regular expressions for s, 55,5, Then we get
R=fL 1 e
Ry=RO+R\1,
R =/0. Rl
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We can solve this set of gquatioms uwsing Arden's lemma [4, po 54]. which states that
for regular expressions P, Q. R if R=F — RQ. then R PQ". 50 by a sequence of
simple manipulations, we pet

R={0+ 10" 11 —0p* R =RI0*, R,_ R0+ 10"
and the tegular expression for (M) is R | K. This leads us to the following:

Theorem 2.2, The regular expression for the sei of ol reversible stringe which cor-
respond to nll borndary 4 s given by 2+ w10% , where @ — ({0 - 10711+ 0))*,

Given this regular expression, it is possible tw enumerste the number of reversible
strings of length #. Let § denote the sct of reversible strings. Then, § — 4,102, where
L; (reap. L1} s the set of all stings which reduces o £ (resp. 13, From Froposition 2.1,
Enly = Tet §0 25 denowe he subset of all strings of length » belonging
ta S, £ Ly, respectively. Then, |56 = L4 + Lﬂ”}l. Next, we prove

Proposition 2.2. For n20, |S™] - T 1),

Proof. The regular expression for £q is zi0% where & # the repular expression for £,
Let xFL{M be such that fhe last zero iz chosen 10 times. Then x= ¥10° where
L{" 1= [‘anversely, for any ¥ & " 18 e get an ynigque :J:[—.[.IL ! . Therelore,

|Lm}| |Lw ]|| | Lw—ﬂl_l_ f_n:_l:lj_

Hence,
™= £ BT = DI

S0 the problem reduces to computing LE”:'L Tt tums out that |a’.f_."'J satisles 4 nico
recurrence relation,

Lemma 2.2 [ —1, [£8] =0
£ — LBV 4 21207 for nz2.

Proof. Lot x = 227 IF x| <2, then it is easy 1o see that ,LEﬁ}| —1 and |f,.l:”|=l]. S0 for
|t =2, = can be written as x =aby where |y|=n 2.

Case 1 ab=00 or g="01. Then we have x— p. S0 x reduees to 2 1T ¥ nedoces
ti £ Hence tor cach revemsible string p e LH e gel Lwo sirings in J[.':'!\'l

Coase 22 ab— 10 or ab—11.

It ah— t0), then x reduced to s AT 1y roduces to 2

W ab— 11, then x reduces to £ iff Oy redoces 1o e
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o for cach string in 7MY there exists exactly one string in 22" and alt strings in
I.E.”] anse ax Cases 1 or 2. Henee,

£ =L U =2t

Corellary 2.1. For n =2,
(A Sgmniadiu:
(2) 5P| =24 27 = L

Proof. (1} lFollows [rom the above lemma by induction.
{23 Follows from (1) and Proposition 2.2, L.

; £ 5 T3 i . . . £
The next step is to obtain an expression for L' wia its generating function.

Lemma 2.3, Fr nz0, [L5 iv the cocfficieni of x7 in

et — 1 —x
)= 1 —x —24°

and hence ix given by

L= gppr=bp ey
Proof. The generating function is obtained by standard mazipulations and bence we
shall omit it. To see the second statement. note that

Gix) = | —x _lr 2 i l
bt el Wk S L

Hence. the ceetlicient of x7 in &{x) is
LEamgtegdT=tpR-taaly 3
We finally obtain:
Theorem 2.3, For w =
|59 = 42% T 4 -1y
Consequently, 'S™| satisfies the foltowing recurrence:
IS =1 and 1™ =2|8" Y £ (-1 fornzl.
Proof. For k=1, it is easy to check that |$*| = 1. From Corollary 2.1 for nz2.

S = 3L+ 1201,
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By the above lemma, |L'é"]'|—_%[2”" +1{—13"]. Hence,
|IS':R:|| — %[%(2-’1—| +{_1}n}] + '_;‘[zn—i +{_1}n—l]

o ol

Remark X2, Approximuately two thirds of all strings of length « are reversible.

3. Periddic boumndary CA

Mext, we turn fo the characterization of periodic boundary CA. The lunsilion matx
for such a CA is of the lollowing [orm:

[y ¥+ 0 0O - 0 1]
R 1 0 il il
e 0 1 @& 1 - 0 0
LE o= v ome b g

In analogy wilh comlinuants, lel us denote the determinant of M) by Folay, . ..o
We will only consider #i=2. Then we have the following:

Proposition 3.1. Fila), .. a.)=Kplay,....a0) | Ky_alaa,. .. an ) Consequently, a
ity i veversihle wnder periadic boundary condition If exactly one of ay oy und
da ... d B reversible under null boundary condition.

Proof, Expanding the deterininant by the fimsd row, we got,
ﬂ{a]!"-:dn}

=ahy oz )

1o g o] |1 & 1 0 - 0
0 a0 O 0 0o 1 & 1 --- 0
not d 0 :
0

= [} 0 D;+
(| S e oomwm W EE H_d
1 & - 1 a 1 - A ]

=mfa dn.oe) — Bl m )+ P Ko ge )+
{b¥ expanding cuch of the two determinants by the first colonmn)
_KJ:{.ﬂ'h----.-an:} * Kr; 2{02----:51”—])!

by (2] and the fact that all operations are over #5.
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Consequently, under periodic boundary condition, .. .., @, 15 roversitile iff Fle.,. ...
ay =1, i.e il exactly one of Kafay,.. ., and K_alay, . oomy 1) 0 1, e i exactly
one of @y, ... e and aa, .., dey 1% Teversible uoder oull bowndary condition. '

Remark 3.1. (1) The continuant £t ... a.] can e oblained by the (ollowiog sim-
ple rule [2]. Start with the term a.a; .. 2, and then cancel oul paits agdy i all
possilile ways. From the above proposition a similar tule helds Tor Sda. ... ) with
the tidlowing modification. When considering pains agdy ., consider w.0- to be ong
such pair, ic. comsider the eems ey, 0y to be aranged n a cirele

{21 The cxprassion By, .. ..oy} 08 invariant under a circular shifl of its argimenrs,

Bused on the above proposition we can construct 4 DFA & w recognize all the
possihle stongs which correspond to reversible periodic boundaty CA. The idea is 1o
run two DFAs A aod A in parallel, where My amnd M- oanc coptes of the DFA far
recognizing reversible nall boundary CA. The DFA M) will run on the entite string
ar .. a, while DUA M. will effectively Tun only on s _oaq— . Then we accept ifl
cxactly one of M, and M: accepts, It is casy to design (7 such that M skips the first
symbol, e o When F reads a;, {3 [, it makes o lransiton from ¢ to ¢ in My and
from jm W jooin Me, following the mles of Lemma 201, Skpping the last symbol is
a hit morte tricky since & cannot koow that @, is the last symbol umil it has read it
To tackle this we allow the control of {7t have voe more bit of memory {say h),
which 1s used in the following way, When (r muakes a transition from g to 2 in A,
it puts a value of 1 in b if g was an accepting state ot M else it purs a value of
in & Soal the end ol the input b indicates whetner @z .. . was an accepting soing
for M. Then €F accepts iff cither & i3 1 and 3. is in a rojecting stale of & 15 O and
M) s in an scoepting state.

S0 from thiz desceription we el

Thearem 3.1, The ser of alf serings which correspond tv reiersible periodic howndar)
CA, form g regrlar set.

Consequently, there exisis g linear time algorithm to deternime reversibility of
periodic bewdary 907150 CA,

Prool. We provide a formalization of the above deseription,
Lot M — (Lo, 50,50 ], 508 {5n FY be the DFA for the null houndary CA. Let

Frda 0 {01}, whete #led - H{11=1, and A =1}
Define (F —{{}. 5.8, 5% @ be a DFA. where

(1} Op = {s.ona U s b s {spapnt = {0 1],
£2) Let &, 7= {001} and x, p e {0, 1 ah

(a) 5.11{"'-. =5

{hy dploe iy = {885, 1h
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() dalm. ) = (s, 8. 1)

(d) dalsr. 1) =(50,80, 1),

(e) Bol(Se, 5 i 0 J 1= (Sage e 1o (VI N
(31 F = {{seapid rix) £ i}

It is casy to sce that 7 formalizes the DFA described above and G accepts o string
x il x correspond to a reversible perigdic boundary 2071530 CA. O

We oow enumerate the number of stoings which commespond to reversible periodic
boundury 90/150 CA. In this casc the regular expression is more complicated, so we
wie the results for null boundary CA.

Let 7 be the set of all stings of length » which cormespond to reversible periodic
boundary CA. From Proposition 3.1, 7™ can be written as

Flnk— qletgiet rineg g plad
where

A =y e TW: x=gzh, a,hC{0,1} and x —¢, z— 0},
B = {xL:T':’“:': t=azh, abe {1} und x—1. z =0},
U —Ixe T x=azb, a,bC (0,1} and x =0, z—z},
Dt = {.rl_:.?"f"": £ —uzh, abe{ 1} and x—D, z =1}
and A®, BUY oY DY are pairwise disjoint. Henee,
|T{u‘.l - |Af~‘.|i + |+ (O + |D[.n}|_ (3)
MNext, we prove two results which are crucial for enumerating | 74|

Propesition 3.2. Let ve {0,1.e}. Then theve does not exist strings v (|v|22) such
thar v =ax, a< {0,171 and both v — v and x — 1

Priof. We will only prove the result [or s =10, The other two cases are similar.
We prove by imduction {on the length of sttings) that there docs not exist strings
z such that, = +{} and @z — Q.
Bave step: For |z| =0, z = ¢ and the result is casy.
faductive step: Suppose that the result holds for all strings of length less than n.
Let |z| —#. Suppose if possibie z — 0 and gz — 0. Recall that the repular expression
for the strings reducing to 0 is %(0 | 10%1), where « is the ropular expression for
strings reducing 1o & Since z— 0, either
{1) z— yU and ar =uyl) or,
{27 z= 101 and az = ay10il

with [w|=z].
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Mow, in bulh cases v — & and av — & For Case 1 this is clear, In Case 2, i ap —1),
then gz — & or az — 1 according as i is odd or ¢ is even. Tf oo the ather band, ay — 1,
them ez — ¢ or az— 1 according as § Is even or odd. Since gz -0 it lllows thal ay
must teduce Lo o1

BF Iyl — 1} then we immediately hkave a concradiction. So supposc v =0, Daow,
¥—& implies v —we (oo {0011 such that w-— 0 and ay — & implics ow — U, where
V| | pl<z].

By the induction hypothesis such w does not exist. Honee, the prooll L

Troposition 3.3, For vz, for

X:.::"':' — et v gy and x— 0},

NI =Ty e Y v—ax and x— 11

Tﬁi{‘P‘i, |J[-nr.l|1| L |X|us:u| e %”-E.R:' .

Proof. Let v £ with p=ax.

Let x—zb sochat p=azhr o Wow, gzt-—r il a=1 =« So the strings in L5 can
be paired as =0 and azl. Then exactly one of the strings 24 and 21 reduces to 1 and
the other reduces 1o 0. {Bv Proposition 3.2 nonc can reduce o £).

Hence, X" i=1x3" — 41"

Now, we cun [ind the cardinalities of A%, 8% CW ¥ Following [2], we will Jet
L[] denote the vilue of 2 boolean predicare gr.

Lemma 3.1, For aff n=2,

(1) A" —1,

(2) 1] — 2 fu] = L 507 ),
(3) [Cv =12 0 LY
(4) [P = 4yl )

Praof. (1} This is proved by proving that #% — . To see this first note that x o A5
ifl ¥ —azh—¢ and - -~ 0, But gzh—x implies az — 0, hence 5 &A™ il there cxists
string z such that gz -+ 0 and =z —{. But by Proposition 3.2 such strings du not cxist.

(2} lo this case x CA™ il x—azh—1 and 2z + 0

If =1, ¢tz ¢ and z— 0. There are %iLE"_'” such strings (by Proposition 3.3

IF & — 0. then two cases arisc

fay ==0% 7, a—1 where 107! =1 and 0" % =0 But then &£ — 2 and hence n
must he odd. This contributes the term [2 7n] w |84

{bYz — v10¥ where 0i=w 3 and both ap10°— 1 and »10° — 0. Theretore ay — =
and y— o for some ¢ e {0.1}. By Proposition 3.3 there are | PO 3T gich strings,
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R i -1 f
So, B =2 /] + $ T, L
{3} and (4) are similar to above, [

Su finally, we get the follpwing:
Theorem 3.2. For il n=2,
|T[.'1}|_|S[.n—1’]|_%[2n (=13,
Proof. Using the above lemma and (5),

|TW = |4t 48 4 0 4 |
w—1
- [ == o
=iy R s phsicapegaprell. 3

in

Remark 3.2, [T is approximately hall of |5%)| and one-thitd of the total number
of hinary sirings of length .

4, Limear finite-state machines

In this scetion we point owt the conscquences of pur results to the synthesis prob-
lem for CA. CA belomg w the class of linear finite-state mackines (LFSM), The most
popular examples of LF8Ms are the linear feedback shift segisters (LEFSR), which
have been quite extensively studied [3]. A LFSM is completely characterized by its
characteristic polvoomial, which defines the lingur tecurrence satisfied by the output
bits of the machine. A CA heing an awtomomous machine, there is no concept of
putput. Hoewever, the successive states of any panticolar cell (usually one of the end
cells) cun be considered to be its output. Next, we point oul the relationship be-
tween (he charactetistic polynomial of the transition matnix of 4 CA and the linear
recwrence satisfied By the output bits of any parbcalar cell. Te do that we need the
following [9]:

Lemma 4.1. Lot M ke the transition matvix for @ 907150 mull boundary CA. Then M
fr nonderogatury, Le. the minimal polyromial for M is the same ayv the characteristic
polyaoinial for M,

Mow, we prove the following:

Proposition 4.1. Let M he the transition mateix of a 907150 mull boundary CA
eard Tet

ply=x" -y X g,
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fe s cfiaracteristic pelynomial Then there exivey a vector x, such that the remporal
seguerce af amy cell of the corvesponding CA lvaded with initial configurarion x,
safisfies the fnear recurvence defined by pix. ie

: 1— - ;
= Oty — -+ r:'uc.rlJ o __.I':'Jr =g

Proof. Let x be uny nonnull vector and g(x) be its minimal polynomial, ie the
polynorial of the least degree such that i3 ix =1,

Then gix}| pix} and the cutput of any cell of the CA loaded with initial confizuration
x will satisfy the linear recurrenee dlefined by gix),

By the above lemma, p{x) ix the minimal polynomial for A4, and hence, there exisis
a vector &, whose mimimal polynomial is p{x). Therefore the result follows. 1

Given this resull il is easy o sec that any tao CA having the same characteristic
polynomial will essentially generate the same bit sequence {modudo a shift,

(riven any bit sequence it is possible lo synthestae 2 mimimum length LESR whose
output 15 the given sequence. This is done by the famous Berlekump—Massey shift reg-
ister synthesis Algorithm [L, 7], The algorithm essengally finds the least-degree poly-
nomial which defines & linear recutrence satisfied by the piven bit sequence, Designing
a EFSR from this polyoomial s rivial. o the natoral queston to ask in the confexs
of CA s the following:

Giverr any hit seguence con we design o Y7150 OA whose owtpur s the givesr it
segnence and e mumber of celly in the €4 i equal to the wmamber of cells B the
stiniemum fengeh LFSE witich gewerates the same Bt sequence?

Unltortunately, the answer to this question is no and it follows from the facr i the
answer Lo the following related question is also no;

Criven ary polyeomiad plx) of degree m, com we get anoa-celf 907150 Cd whose
tratsition meirix has characteristic pedymondal piv)?

For the follvwing, let us decide to call a polynomial (and the carresponding LFSM)
reversible il its constant term is 1. So there are exactly 27 ! reversible polynomnials
of degree £, A CA will be said 1o realize an LFSM characterized by a polvnomial
i} il the characteristic polynomial of its transition matrix is p(x). Then we ger the
followeing:

Proposition 4.2, Clsing 907130 nudl bowundary CAL it fy not possible 1o realize aif
frremersihle LES My

Proof. The number of reversible sinings of length # s |89 | and henee, the number
of ireeversible strings is 2" — [S™' — 12" + (—1)**+)y— |§0=1),

The total rumber of irreversible machines is 2* ! and the result follows frem the
fact that for #3=2, S¥ V<2l O

Using a sirular argument it s possible to prove,

Proposition 4.3, Tsieg 907150 periodic bowndary CA. 1t is not possible to realize alf
reversible LES M.
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Sinece approximately two-thirds of all strings of length » correspond to reversible null
hounlary #1150 CA and there are anly 27! reversible polynomials, one might cxpot
that using mull bounduery 907150 CA it is possible to realize all reversible LFSMs,
However, this is nol true and (o prove it requires o more delicate argument. First nots
that it iz possible for two CAs o have the same characteristic polynomial. T a3 ... a9,
encodes a CA, then K (x —ay,...,x + a.) is s characteristic polynomial and since
Kdix 1oy, x+a) =Ky +de . ..,x+e ) ([tom (4)), the CA encoded by a, ... .4
also has the same characteristic polvnomial. (0 course iF o) .. o, 18 2 palindrome, Le.
i), — iq—; for all §, then this is trivially true. Otherwise, we have two distinel CAs with
the same characteristic polynomial. Let 2™ be the set of all reversible palindromes of
length #. Defing,

Ap=27 1 — |,
By = 3|8 — D™,

Then there are at least 4, reversible polynomials which are not realized by reversihle
palindromic strings and Lhere are at most &, reversible polynomials which are realized
by reversible non palindromic stongs. 8o 0 we can prove that 5, <4, then we are
done. W proceed by fissl fnding |20

Lemma 4.2, Forpz2, D =202 14 |LEILF--"TJ . wihere LE” is the set of aif strings
of leagth o wiich reduce 1o 0,

Proad. Weo will prove the resull for odd 20 The tesull for even w1 is similar.
Let m=2k41. Since # ix odd any palindromic steing ¢ will have the following form,

F N | QRPN 1. 3 I (R [
Mow, let us find the conditions under which x is eeversible. We use {3 o get

F A PN T TR O I
= Rplay. e el e )R (e, o O e, e
=Kela. o | Kep{dior.ae,. o b+ Kela. o]

So the condition for reversibility of & 15 the following:
&) -+t 15 reversible and exactly one of 2. .4y and ay.. .3, 1% reversible.
Three cases are to he considered.
fad o ... 1 —¢ Then g = | and a, | = . There arc 'L?_”| reversible palindromes
of this type.
by oy ey —{ Then agy =1 and a; can be either 0 or 1. 8o there are 2|L}}'r‘_lji
reversible palindromes of this tope.
fc) ap...ap 1 ¢l then =0 and ., =1. Io this case we get |L'§*_l:'| reversihle
palindromes.
5o the total number of reversible palindromes of length # is

|Lk.i—]‘,| | zlLLD.i—Jll i ILEﬁc—I}lzjk—l b |L:J.i—]||l -
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Now, we can prove

Theorem 4.1, For a3, using n-cell uufl botndary WO7150 €4 it i3 a0t possible o
rewdize ol reversible LFSMs

Proof. Thes is proved by showing that {r 223, A= #H, The dhove lamma gives
the cxpression for |09 in terms of [£07]. Now, [£771=2" — '™ and the value for
[S] s already known from Theorem 2.3, Since A, and 8, s expressed in terms
of F it is easy to find the expressions for 4, and &, and check that indeed

Ay =B =

Acknowledgements

The authors ure grutelul to the referces for their caretal reading and eritical com-
METts.

References

[1] LR Berlekurnp, Adgebmic Cuding Theory, MeGrow-TUIL, Mew Twk, 19638
[2] R.L. Grahwn, RE. Kouth, O Palashnik. Coacrele Matheimatics, A Foendaricn tor Compurcs Seience.
Addison-Wesley, Reading, MA, 1958
3] 8 W, Crolomb, $hitt Heogister Spqueness, Acgsan Park Pross, Lagona Hills, O4, 1982
[4] LE. Hoperatt, 10x Lliman, Introduction oo Angomata Theney, Lenguages snd Computation. Addisen-
Wesley, Heading, MA, 1074
PO, [Torensius el wl. Pamllel pseode modom awnber penecativn for VLST spstemss usioge cellular
aulvrmits, [EET Trans, Compul. 33 11405 (1982 [da8 14735
[&] O. Blatine AN Odbvzke, 8 Wolllarn, Alpebraic peoperlics of cellular qutomata, Commuan. Math. Phys
S5 [ 198dY )R 23,
|71 L[ Massey, Shift regismr symthesis aed BOH deoeoding, IEFR Trans. laf Theory II-15 (1%96%) 122-127,
[%] %. Mandi, B.F. Chundhuri, Analysis of periodic snd intermediate boandary 901360 celluler aotomata,
IbA:E Irans. Compue. 45 (1] (199 (=11,
[U1 M. Serma et al., Uhe analysis of one dimenswmal cellolar autemata wnd thesr aliasing properiss. TRET
ITams. Compol. Added Desigm Cinewits Seelems 9 (7)) (1991 Te7 725
[HT K. Sutner, Additive aumata oo graphs, Comples Systems 2 {198E1 645 03],
LT &5, Wollean. Slalistvel mechanivs of cellular auieimara. Rec Mod, Phy, 55 (19831 G -ndd

[



	the set of reversible-1.jpg
	the set of reversible-2.jpg
	the set of reversible-3.jpg
	the set of reversible-4.jpg
	the set of reversible-5.jpg
	the set of reversible-6.jpg
	the set of reversible-7.jpg
	the set of reversible-8.jpg
	the set of reversible-9.jpg
	the set of reversible-10.jpg
	the set of reversible-11.jpg
	the set of reversible-12.jpg
	the set of reversible-13.jpg
	the set of reversible-14.jpg
	the set of reversible-15.jpg

