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Abstract

Exponential bounds on the large deviation probability of the maximum likelihood estimator and the Bayes estimators
of the parameter appearing nonlinearly in the drift coe�cient of homogeneous Itô’s stochastic di�erential equations are
obtained under some regularity conditions. c© 1999 Elsevier Science B.V. All rights reserved
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1. Introduction

In the estimation of the parameter appearing nonlinearly in the drift coe�cient of Itô’s stochastic di�erential
equations having a stationary solution, the weak consistency, asymptotic normality and asymptotic e�ciency of
the maximum likelihood estimator (MLE) and the Bayes estimator were obtained by Kutoyants (1977; 1984)
via studying the local asymptotic normality (LAN) property of the model. Lanksa (1979) obtained the strong
consistency and asymptotic normality of the more general minimum contrast estimator which includes the
MLE. Prakasa Rao and Rubin (1981) obtained the strong consistency and asymptotic normality of the MLE
by studying the weak convergence of the least-squares random �eld where the families of stochastic integrals
were studied by Fourier analytic methods. Prakasa Rao (1982) studied the weak consistency, asymptotic
normality and asymptotic e�ciency of the maximum probability estimator. All the above authors assumed
the parameter to be a scalar. For the multidimentional drift parameter, Bose (1983a, b) obtained the strong
consistency and asymptotic normality of the MLE and the Bayes estimators, respectively. In this paper we
obtain bounds on the large deviation probabilities for the maximum likelihood and the Bayes estimator under
some regularity conditions. We follow the method in Ibragimov and Has’minskii (1981). This method was
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used by Prakasa Rao (1984) to obtain the large deviation probability bound for the least-squares estimator in
the nonlinear regression model with Gaussian errors.
The paper is organised as follows: In Section 2 we prepare notations, assumptions and preliminaries.

Section 3 contains the large deviation inequality for the MLE and Section 4 contains the large deviation
results for the Bayes estimator.

2. Notations, assumptions and preliminaries

Let (
;F; {Ft}t¿0P) be a stochastic basis satisfying the usual hypotheses on which we de�ne a stationary
ergodic di�usion process {Xt; t¿0} satisfying the Itô SDE

dXt = f(�; Xt) dt + dWt; t¿0;

X0 = �;
(2.1)

where {Wt; t¿0} is a standard Wiener process, E[�2]¡∞; f(�; x) is a known real-valued function continuous
on � × R where � is a closed interval of the real line and the parameter � is unknown, which is to be
estimated on the basis of the observation of the process {Xt; 06t6T} ≡ X T0 . Let �0 be the true value of the
parameter which lies inside the parameter space �.
Let PT� be the measure generated by the process X

T
0 on the space (CT ; BT ) of continuous functions on [0; T ]

with the associated Borel �-algebra BT under the supremum norm when � is the true value of the parameter.
Let ET� be the expectation with respect to the measure P

T
� . Suppose P

T
� is absolutely continuous with respect

to PT�0 , then it is well known that (see Liptser and Shiryayev, 1977)

LT (�) =
dPT�
dPT�0

(X T0 ) = exp
{∫ T

0
[f(�; Xs)− f(�0; Xs)] dWs − 1

2

∫ T

0
[f(�; Xs)− f(�0; Xs)]2 ds

}
(2.2)

is the Radon–Nikodym derivative of PT� w.r.t. P
T
�0 . The MLE �T of � based on X

T
0 is de�ned as

�T := argmax
�∈�

LT (�): (2.3)

If LT (�) is continuous in �, it can be shown that there exists a measurable MLE by using Lemma 3.3 in
Schmetterer (1974). Hereafter, we assume the existence of such a measurable MLE. We will also assume
that the following regularity conditions on f(�; x) are satis�ed. C denotes a generic constant throughout the
paper.
(A1) (i) f(�; x) is continuous on �× R.
(ii) |f(�; x)|6M (�)(1 + |x|) ∀� ∈ �; x ∈ R; sup{M (�); � ∈ �}¡∞.
(iii) |f(�; x)− f(�; y)|6M (�)|x − y| ∀� ∈ �; ∀x; y ∈ R.
(iv) |f(�; x)− f(�; x)|6J (x)|�− �| ∀�; � ∈ �; ∀x ∈ R where J (·) is continuous and E[J 2(�)]¡∞.
(v) I(�) = E|f(�; �)− f(�0; �)|2¿ 0 ∀� 6= �0.
(A2) (i) The �rst partial derivative of f w.r.t. � exists and is denoted by f(1)� (�; x). The derivative evaluated

at �0 is denoted by f
(1)
� (�0; x).

(ii) � = E[f(1)(�; x)]2¡∞.
(iii) There exists �¿ 0 s.t.

|f(1)� (�; x)− f(1)� (�; x)6 J (x)|�− �|� ∀x ∈ R
∀�; � ∈ � and J is as in (A1)(iv).
(iv) |f(1)� (�; x)|6N (�)(1 + |x|) ∀� ∈ �; ∀x ∈ R; sup{N (�); � ∈ �}¡∞.



J.P.N. Bishwal / Statistics & Probability Letters 43 (1999) 207–215 209

(A3) There exists a positive constant C such that

E�

[
exp

{
−u2(3T )−1

∫ T

0
inf
�∈�

(f(1)� (�; Xt))
2 dt
}]
6C exp(−u2C) for all u:

Under assumptions (A1) and (A2), Prakasa Rao and Rubin (1981) proved the strong consistency and
asymptotic normality of �T as T → ∞. Assumption (A3) is used to prove our large deviation result. This
assumption is satis�ed for the linear case f(�; x) = �x, i.e., for the Ornstein–Uhlenbeck process.

3. Large deviation bounds for the MLE

Before we obtain bounds on the probabilities of large deviation for the MLE �T we shall give a more
general result.

Theorem 3.1. Under assumptions (A1)–(A3), for �¿ 0, we have

sup
�∈�

PT� {
√
T |�T − �|¿�}6B exp(−b�2)

for some positive constants b and B independent of � and T .

By substituting �=
√
T� in Theorem 3.1, the following corollary is obtained.

Corollary 3.1. Under the conditions of Theorem 3:1, for arbitrary �¿ 0 and all T ¿ 0, we have

sup
�∈�

PT� {|�T − �|¿�}6B exp(−CT );

where B and C are positive constants independent of � and T .

To prove Theorem 3.1 we shall use the following revised version of Theorem 19 of Ibragimov and
Has’minskii (1981, p. 372), (see Kallianpur and Selukar, 1993, p. 330).

Lemma 3.2. Let �(t) be a real-valued random function de�ned on a closed subset F of the Euclidean space
Rk . We shall assume that the random process �(t) is measurable and separable. Assume that the following
condition is ful�lled: there exist numbers m¿r ¿k and a function H (x) : Rk → R1 bounded on compact
sets such that for all x; h ∈ F , x + h ∈ F ,

E|�(x)|m6H (x);

E|�(x + h)− �(x)|m6H (x)|h|r :
Then with probability one the realizations of �(t) are continuous functions on F . Moreover, set

w(�; �; L) = sup
x;y∈F; |x|; |y|6L; |x−y|6�

|�(x)− �(y)|;

then

E(w(h; �; L))6B0

(
sup
|x|¡L

H (x)

)1=m
Lkh(r−k)=m log(h−1);

where B0 = 64k(1− 2−(r−k)m)−1 + (2(m−r)=m − 1)−1.
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Let us consider the likelihood ratio process

ZT (u) =
dPT�+uT−1=2

dPT�
(X T0 ):

By (2.2) with gt(u) = f(�+ uT−1=2; Xt)− f(�; Xt), we have

ZT (u) = exp
{∫ T

0
[f(�+ uT−1=2; Xt)− f(�; Xt)] dWt − 1

2

∫ T

0
[f(�+ uT−1=2; Xt)− f(�; Xt)]2 dt

}

= exp
{∫ T

0
gt(u) dWt − 1

2

∫ T

0
g2t (u) dt

}
:

Lemma 3.3. Under the assumptions (A1)–(A3), we have
1. ET� [Z

1=2
T (u1)− Z1=2T (u2)]26C(u2 − u1)2,

2. ET� [Z
1=2
T (u)]6C exp(−Cu2).

Proof. Note that

ET� [Z
1=2
T (u1)− Z1=2T (u2)]2 = ET� [ZT (u1)] + E

T
� [ZT (u2)]− 2ET� [Z1=2T (u1)Z

1=2
T (u2)]

6 2− 2ET� [Z1=2T (u1)Z
1=2
T (u2)]: (3.1)

From Gikhman and Skorohod (1972), for all u we have

ET� [ZT (u)] = E
T
�

[
exp

{∫ T

0
gt(u) dWt − 1

2

∫ T

0
g2t (u) dt

}]
61: (3.2)

Let

�1 = �+ u1T−1=2; �2 = �+ u2T−1=2;

�t = f(�2; Xt)− f(�1; Xt)
(3.3)

and

VT = exp
{
1
2

∫ T

0
�t dWt − 1

4

∫ T

0
�2t dt

}
=

(
dPT�2
dPT�1

1=2)
: (3.4)

By Itô’s formula, VT can be represented as

VT = 1− 1
8

∫ T

0
Vt�2t dt +

∫ T

0
Vt�t dWt: (3.5)

The random process {V 2t ;Ft ; PT� ; 06t6T} is a martingale and from the Ft-measurability of �t for each
t ∈ [0; T ],

ET�1

∫ T

0
V 2t �

2
t dt = E

T
�1

∫ T

0
ET�1 (V

2
T |Ft)�2t dt

= ET�1V
2
T

∫ T

0
�2t dt

=
∫
V 2T

(∫ T

0
�2t dt

)
dPT�1
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=
∫ (∫ T

0
�2t dt

)
dPT�2

= ET�2

(∫ T

0
�2t dt

)

= ET�2

∫ T

0
|f(�2; Xt)− f(�1; Xt)|2 dt (3.6)

6 ET�2

∫ T

0
[J 2(Xt)]|�2 − �1|2 dt (by (A1))

6 (u2 − u1)2 1T
∫ T

0
E�2 [J

2(�)] dt

¡ C(u2 − u1)2¡∞: (3.7)

Hence ET�1
∫ T
0 Vt�t dWt = 0. Therefore, using |ab|6(a2 + b2)=2, we obtain from (3.5)

ET�1 (VT ) = 1−
1
8

∫ T

0
ET�1 (�tVt :�t) dt

¿ 1− 1
16

∫ T

0
ET�1�

2
t dt −

1
16

∫ T

0
ET�1V

2
t �
2
t dt

= 1− 1
16
ET�1

∫ T

0
�2t dt −

1
16
ET�2

∫ T

0
�2t dt (by (3:6)): (3.8)

Now

ET� [Z
1=2
T (u1)Z

1=2
T (u2)] = ET�



[
dPT�+u1T−1=2

dPT�

]1=2 [
dPT�+u2T−1=2

dPT�

]1=2


=
∫ [dPT�1

dPT�

]1=2 [
dPT�2
dPT�

]1=2
dPT�

=
∫ [dPT�2

dPT�1

]1=2
dPT�1 = E

T
�1 (VT ): (3.9)

Substituting (3.9) into (3.1) and using (3.8), we obtain

ET� [Z
1=2
T (u1)− Z1=2T (u2)]26 2− 2E�1 (VT )

6
1
8
ET�1

∫ T

0
�2t dt +

1
8
ET�1

∫ T

0
�2t dt

6C(u2 − u1)2 (using arguments similar to (3:7)):

This completes the proof of (1).
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Let us now prove (2). By the H�older inequality,

ET� [Z
1=2
T (u)]

=ET�

[
exp

{
1
2

∫ T

0
gt(u) dWt − 1

4

∫ T

0
g2t (u) dt

}]

=ET�

[
exp

{
1
2

∫ T

0
gt(u) dWt − 1

6

∫ T

0
(gt(u))2 dt

}
exp

{
− 1
12

∫ T

0
(gt(u))2 dt

}]

6

{
ET�

[
exp

{
1
2

∫ T

0
gt(u) dWt − 1

6

∫ T

0
(gt(u))2 dt

}]4=3}3=4

×
{
ET�

[
exp

{
− 1
12

∫ T

0
(gt(u))2 dt

}]4}1=4

6
[
ET� exp

{
2
3

∫ T

0
gt(u) dWt − 2

9

∫ T

0
(g2t (u)) dt

}]3=4 [
ET� exp

{
−1
3

∫ T

0
(gt(u))2 dt

}]1=4
: (3.10)

Assumptions (A2) and (A3) yield

ET� exp
{
−1
3

∫ T

0
(gt(u))2 dt

}

=ET� exp
{
−1
3

∫ T

0
[f(�+ uT−1=2; Xt)− f(�; Xt)]2 dt

}

=ET� exp
{
− u

2

3T

∫ T

0
(f(1)� (�; Xt))

2 dt
}

(where |�− �|6uT−1=2)

6ET� exp
{
− u

2

3T

∫ T

0
inf�∈�(f

(1)
� (�; Xt))

2 dt
}

6C exp(−u2C): (3.11)

On the other hand, from Gikhman and Skorohod (1972)

ET�

[
exp

{∫ T

0

2
3
gt(u) dWt − 1

2

∫ T

0

(
2
3
gt(u)

)2
dt

}]
61: (3.12)

Combining (3.10)–(3.12) completes the proof of (2).

Proof of Theorem 3.1. Let UT = {u : �+ uT−1=2 ∈ �}. Then
PT� {

√
T |�T − �|¿�} = PT� {|�T − �|¿�T−1=2}

6 PT�

{
sup

|u|¿�; u∈UT
LT (�+ uT−1=2)¿LT (�)

}
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= PT�

{
sup
|u|¿�

LT (�+ uT−1=2)
LT (�)

¿1

}

= PT�

{
sup
|u|¿�

ZT (u)¿1

}

6
∞∑
r=0

PT�

{
sup
u∈�r

ZT (u)¿1
}
; (3.13)

where �r = [�+ r; �+ r + 1].
Applying Lemma 3.2 with �(u) = Z1=2T (u), from Lemma 3.3 it follows that there exists a constant B¿ 0

such that

sup
�∈�

ET�

{
sup

|u1−u2|6h; |u1|; |u2|6l
|Z1=2T (u1)− Z1=2T (u2)|

}
6Bl1=2h1=2 log h−1: (3.14)

Divide �r into subintervals of length atmost h¿ 0. The number n of subintervals is clearly less than or equal
to [1=h] + 1. Let �(j)r ; 16j6n be the subintervals chosen. Choose uj ∈ �( j)r . Then

PT�

[
sup
u∈�r

ZT (u)¿1
]

6
n∑
j=1

PT�

[
Z1=2T (uj)¿

1
2

]
+ PT�

{
sup

|u−v|6h; |u|; |v|6�+r+1
|Z1=2T (u)− Z1=2T (v)|¿1

2

}

6 2
n∑
j=1

ET� [Z
1=2
T (uj)] + 2B(�+ r + 1)1=2h1=2 log(h−1) (by Markov inequality and (3:14))

6 2C
n∑
j=1

exp(−Cu2j ) + 2B(�+ r + 1)1=2h1=2 log(h−1) (by Lemma 3:3)

6 2C
([
1
h

]
+ 1
)
exp {−C(�+ r)2}+ 2B(�+ r + 1)1=2h1=2 log(h−1):

Let us now choose h= exp{−C(�+ r)2=2}. Then

sup
�∈�

PT�

{
sup
u¿�

ZT (u)¿1
}
6B

∞∑
r=0

(�+ r + 1)1=2 exp
{−C(�+ r)2

4

}
6B exp(−b�2); (3.15)

where B and b are positive generic constants independent of � and T .
Similarly, it can be shown that

sup
�∈�

PT�

[
sup
u¡−�

ZT (u)¿1
]
6B exp(−b�2): (3.16)

Combining (3.15) and (3.16), we obtain

sup
�∈�

PT�

[
sup
|u|¿�

ZT (u)¿1

]
6B exp(−b�2): (3.17)

The theorem follows from (3.14) and (3.17).
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4. Large deviation bounds for the Bayes estimators

Let ∧ be a prior probability measure on (�;B) where B is the �-algebra of Borel subsets of �. Suppose
that ∧ has a density �(·) with respect to the Lebesgue measure on R, which is continuous and positive on �
and possesses in � a polynomial majorant.
Let p(� |X T0 ) be the posterior density of � given X T0 . By Bayes theorem p(� |X T0 ) is given by

p(� |X T0 ) =
LT (�)�(�)∫

� LT (�)�(�) d�
:

Let l(· ; ·) : �×�→ R be a loss function which satis�es the following properties:
1. l(u; v) = l(u− v).
2. l(u) is de�ned and nonnegative on R, l(0) = 0 and l(u) is continuous at u=0 but is not identically equal
to 0.

3. l is symmetric, i.e., l(u) = l(−u).
4. {u: l(u)¡c} are convex sets and are bounded for all c¿ 0 su�ciently small.
5. There exists numbers 
¿ 0; H0¿0 s.t. for H¿H0

sup{l(u): |u|6H
}6inf{l(u): |u|¿H}:
Clearly, all loss functions of the form |u− v|r , r ¿ 0 satisfy conditions 1–5. In particular, the quadratic loss
function |u− v|2 satis�es these conditions.
Then a Bayes estimator �̃T of � with respect to the loss function l(�; �′) and prior density ∧(�) is one

which minimizes the posterior risk and is given by

�̃T := argmin
u∈�

∫
�
l(u; �)p(�|X T0 ) d�: (4.1)

In particular, for the quadratic loss function l(u; v) = |u − v|2, the Bayes estimator �̃T becomes the posterior
mean given by

�̃T =

∫
� up(u|X T0 ) du∫
� p(v|X T0 ) dv

:

We now state the large deviation inequality for the Bayes estimator �̃T .

Theorem 4.1. Suppose (A1)–(A3) and 1–5 hold. For �¿ 0, the Bayes estimator �̃T with respect to the
prior �(·) and a loss function l(· ; ·) with l(u) = l(|u|) satis�es

sup
�∈�

PT� {
√
T |�̃T − �|¿�}6B exp(−b�2)

for some positive constants B and b independent of � and T .

Corollary 4.1. Under the conditions of Theorem 4.1, for arbitrary �¿ 0 and all T ¿ 0, we have

sup
�∈�

PT� {|�̃T − �|¿�}6B exp(−CT ):

Proof of Theorem 4.1. To prove Theorem 4.1 we shall use Theorem 5:2 of Ibragimov and Has’minskii (1981,
p. 45). In view of Lemma 3.3, conditions (1)–(3) of the said theorem are satis�ed with �=2 and g(u)= u2.
Hence the result follows from Theorem 5:2 of Ibragimov and Has’minskii (1981, p. 45).

As another application of Theorem 5.2 in Ibragimov and Has’minskii (1981, p. 45), we obtain the following
result.
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Theorem 4.2. Under the assumptions (A1)–(A3), for any N , we have for the Bayes estimator �̃T w.r.t. the
prior �(·) and loss function l(·; ·) satisfying the conditions 1–5,

lim
H→∞; T→∞

HN sup
�∈�

PT� {
√
T |�̃T − �|¿H}= 0:
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