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Summary. An affine equivariant estimate of multivariate location based on an adaptive trans- 
formation and retransformation approach is studied. The work is primarily motivated by earlier 
work on different versions of the multivariate median and their properties. We explore an issue 
related to efficiency and equivariance that was originally raised by Bickel and subsequently 
investigated by Brown and Hettmansperger. Our estimate has better asymptotic performance than 
the vector of co-ordinatewise medians when the variables are substantially correlated. The finite 
sample performance of the estimate is investigated by using Monte Carlo simulations. Some 
examples are presented to demonstrate the effect of the adaptive transformation-retransformation 
strategy in the construction of multivariate location estimates for real data. 
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1. Introduction 

Various versions of the multivariate median and their statistical properties have been 
extensively investigated (see Small (1990) and Chaudhuri (1992) for two recent detailed 
reviews). Bickel (1964) (see also Barnett (1976) and Babu and Rao (1988)) investigated the 
vector of medians, which is not equivariant under rotation and arbitrary affine trans- 
formation of the data, and compared it with the affine equivariant vector of means. One of 
Bickel's main conclusions was that, despite some very encouraging robustness as well as 
efficiency properties, the performance of this vector of medians becomes very poor when the 
real-valued components of the data vector are highly correlated. He expressed a strong 
suspicion that this pathological behaviour may be partly due to the lack of affine equi- 
variance. A similar feeling has been expressed by Brown and Hettmansperger (1987), who 
discussed the issue in detail and recommended some affine equivariant procedures (see also 
Brown and Hettmansperger (1989)). However, they did not attempt to dig very deeply into 
this issue of a possible connection between affine equivariance of a multivariate location 
estimate and its asymptotic efficiency when the real-valued components of multivariate 
observations are substantially correlated. 

In many situations, non-equivariant versions of the multivariate median will not be a very 
sensible location estimate for reasons that arise from simple and natural geometric 
considerations. The problem of locating the 'geographical centre' of the population in a 
country, which has been extensively discussed by Small (1990) and Chaudhuri (1996) in 
connection with the population of the USA, is an excellent example making a rather 
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convincing case for the affine equivariant multivariate median. It is necessary to have the 
affine equivariance of such a location estimate because, if the estimate lacks affine 
equivariance, we shall obtain different centres of the same population just by choosing 
different co-ordinate systems, i.e. rotations of the map of the country will lead to different 
geographical centres of its population, which is not at all desirable. 

Several affine equivariant versions of the multivariate median have been proposed (see for 
example Tukey (1975), Oja (1983) and Liu (1990)). But all are computationally quite 
intensive especially when the dimension of the data vector is large. This is primarily because 
each is defined as the solution of a complex minimization problem and cannot be expressed as 
a simple function of the data in a closed form. Moreover, their sampling distributions (even 
asymptotic distributions) are typically not easy to derive, and it is often very difficult to 
estimate their sampling variations from the data. Though not affine equivariant, the vector of 
medians, however, is very easy to compute as it is based on several univariate medians, and 
for the same reason its sampling distribution and related matters are fairly easy to work out. 
Chakraborty and Chaudhuri (1996) proposed a data-driven transformation and retransfor- 
mation strategy for creating an affine equivariant version of the multivariate median from the 
non-equivariant vector of univariate medians. The purpose of this paper is to investigate in 
detail the properties of this multivariate location estimate when the transformation used in 
the construction of the estimate is chosen in an adaptive data-based way. Also, we shall 
explore the intriguing connection between affine equivariance and asymptotic efficiency of 
this location estimate in the presence of correlation between the variables observed. 

In Section 2, we briefly describe our adaptive transformation and retransformation 
procedure, discuss some of its main features and demonstrate its usefulness in locating the 
geographical centre of the population of a country. In Section 3, we present some results 
related to the asymptotic properties of the estimate proposed, and we show that the estimate 
is always at least as efficient as the vector of medians and performs significantly better when 
there are high correlations between the variables in the data. We also present some simulation 
results for small samples drawn from some standard bivariate probability distributions to 
demonstrate the performance of our estimate in finite sample situations. In Section 4, we 
apply our techniques to some real data sets. There we estimate the generalized variance of the 
proposed estimate of multivariate location by using the bootstrap method and observe that 
this adaptive equivariant estimate outperforms the vector of medians in many cases, though 
not always. On the basis of this critical observation, we suggest a rule for deciding when we 
shall benefit by using the adaptive equivariant estimate and when the non-equivariant vector 
of medians will suffice. Section 5 concludes the paper with some brief remarks on the issues 
that have transpired in the course of our investigation. All the proofs are presented in 
Appendix A. 

2. Adaptive transformation-retransformation estimate 

We begin by introducing some notation following Chakraborty and Chaudhuri (1996). 
Consider data points X1, X2, . . ., X,, in Rd. Unless specified otherwise, all vectors in this 
paper will be column vectors, and the superscript T will be used to denote the transpose of a 
vector or a matrix. Define 

Sn = {tla Cr {1, 2, . . ., n} and ai = d?+ 1}, 

which is the collection of all subsets of size d+ 1 of {1, 2, . . ., n}. For a fixed a = {io, 
il, . . ., idl} E Sn, let X(a, io) be the d x d matrix whose columns are the random vectors 
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(Xi-X X ) with i E a and i 5 io. We assume here that 1 il < i2 < ... < id < n and io ? ik 
for k = 1, 2, . . ., d. If the Xi are independent and identically distributed (IID) observations 
with a common probability distribution that happens to be absolutely continuous with 
respect to Lebesgue measure on Rd, X(a, io) must be an invertible matrix with probability 1. 
Define, for each i g a, ya& io) = X(a, io)-1Xi, and set ( to be the vector of medians of the 
co-ordinates of the d-dimensional transformed observations Y(t"?). Then the multivariate 
median On; i) for the original data is defined by retransforming (,n as On' = X(a, io)on"i). 
The asymptotic behaviour of the affine equivariant location estimate JA,io) has been worked 
out in detail in section 3 in Chakraborty and Chaudhuri (1996), and we shall only sketch the 
main results here. 

Suppose that the underlying distribution of the Xi is absolutely continuous with a common 
density h(x). Then we know from the discussion at the beginning of section 3 in Chakraborty 
and Chaudhuri (1996) that, if h(x) is such that any real-valued linear function of Xi has a 
differentiable and positive density, (na'io) is an nl/2_consistent and asymptotically normal 
location estimate. Further, this limiting multivariate normal distribution takes an interesting 
form when h is elliptically symmetric, i.e. 

h(x) = det(E)-"/2f{(x - )TE-1(X - 0)1 

where 0 E 3Rd iS the location of symmetry, ? is a d x d positive definite matrix and f(lxl) is a 
spherically symmetric density on R d. Let us write 

{ -1/2 X(a, io)}-1 = R(a, io) J(a, io), 

where R(a, io) is a diagonal matrix with positive diagonal entries and J(a, io) is a matrix 
whose rows are of unit length, i.e. the rows of J(a, io) are obtained by normalizing the rows of 
{E-1/2 X(a, io)f-', and the diagonal elements of R(a, io) are the lengths of those rows. Then it 
follows from theorem 3.1 in Chakraborty and Chaudhuri (1996) that, if the univariate 
marginals off are differentiable and positive at 0, 9c"'o) is an n"12-consistent and asymp- 
totically normal estimate of 0, and its conditional asymptotic generalized variance given the 
Xi for i E a is 

(c/n)d det(E) det{D(a, io)} det{J(a, io)f-2. 

Here c = {2 g(0)F-2, g being any univariate marginal of the spherically symmetric densityf, 
and D(a, io) is the d x d matrix whose (i, j)th element is (2/ur) sin-'(yq,), -yu being the inner 
product of the ith and the jth row of J(a, io). 

Consider next the symmetric positive definite matrix 

V(a, io) = J(a, io)-l D(a, io) {J(a, io)T}-1. 

It was established in theorem 3.2 in Chakraborty and Chaudhuri (1996) that det{V(a, 
io)} = v(a, io) (say) > 1. Our adaptive procedure to select the best subset a E Sn and io E a 
can be described as follows. First obtain some consistent estimate of the scale matrix ?, say 
E, that is equivariant under non-singular linear transformation of the data. Then normalize 
each data point Xi by multiplying by tt,2 to define Zi = tt"2x1 for 1 < i < n. For each 
a E Sn and io E a, compute J(a, io), 1(a, io) and P(a, io) on the basis of the Zi (instead of the 
Xi) as described before. Then minimize det{ P(a, io)} (= v(a, io), say) over all possible choices 
of a E Sn and io E a, and suppose that a and to are some minimizers of this estimated 
conditional generalized variance. Form X(a, i^o), and use it to compute the adaptive 



148 B. Chakraborty and P. Chaudhuri 

transformation-retransformation estimate O( ' ) from the original observations Xi. The term 
'adaptive' is being used here to indicate the data-based selection of a as well as io that is 
required to construct the transformation matrix X(a, io). 

As an illustration of the methodology, let us now consider the following example where we 
locate the geographical centre of the Indian population by using the transformation- 
retransformation median computed from decennial census data. This example will 
demonstrate the usefulness of this affine equivariant location estimate as a multivariate 
descriptive statistic before we start exploring its asymptotic efficiency and related matters in 
the following sections. 

2.1. Example 1 
To estimate the geographical centre of a population distribution, earlier statisticians used the 
centroid (i.e. the usual multivariate mean) but observed that the centroid may be highly 
sensitive to the influence of probability masses at the extremes (see for example Small (1990) 
and Chaudhuri (1996)). In other words an event like a death or a birth at the periphery of the 
country tends to have more influence on the centroid of the population than does a similar 
event in the central part of the country. This motivates the use of a median-like measure of 
the centre of a population. For India, we have used the data obtained in census years during 
the period 1872 to 1971 and considered only the populations of type I towns (as classified in 
1971), which cover nearly 80% of the population. The rest of the population is scattered in 
smaller towns and villages, which have an insignificant effect on the estimation of the centre 
of the population, and by ignoring them we have substantially reduced the time required for 
the compilation of the data and subsequent numerical computation. As the radius of the 
earth is very large compared with the size of India, we have ignored the effect of the curvature 
of the earth in this example, and the population is regarded as living on an essentially flat 
surface in which the lines of latitude and those of longitude are assumed to be orthogonal 
straight lines. The geographical centres of population located by our transformation- 
retransformation median are given in Fig. 1. 

3. Asymptotic results 

In this section, we shall discuss the asymptotic performance of the adaptive transformation- 
retransformation estimate and establish some efficiency results. Suppose that a* E Sn and 
io E a* minimize det{ V(a, io)} = v(a, io), and recall that XI, X2, . . ., Xn are IID observations 
with a common density h on Rd, which need not be elliptically symmetric for the time being. 

Theorem 1. Assume that h satisfies 

J h(y)d+I dy < oo. 
d 

Then v(a*, io*) converges to 1 in probability as n -+ oo. 

Clearly, the integrability condition imposed on h in this theorem will hold if h happens to 
be a bounded density on Rd. In the presence of elliptic symmetry with 

h(x) = det()-"/2f{(x - O)TZ-I(x - 0)1, 

this condition translates into an integrability condition onf, which is again trivially satisfied 
for any bounded spherically symmetric densityf on Rd. This theorem implies that, when the 
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Fig. 1. Geographical centres (*) of the Indian population during 1872-1981 

scale matrix X is known and the adaptive selection of a"* and S, is done using that known 
J, the conditional generalized variance of the resulting transformation-retransformation 

estimate tends to the lower bound established in theorem 3.2 in Chakraborty and Chaudhuri 
(1996) (see our discussion in Section 2). However, in practice J is unknown, and we shall 
estimate it by a consistent and affine equivariant estimate f when we minimize v((a, io) to 
obtain a' and i^o. The next theorem says that the difference between v(a&, io) and v(a*, io*) is 
asymptotically negligible. 

Theorem 2. Under the condition assumed in theorem 1, v(a, io) - v(a*, io*) converges in 
probability to 0 as n -+ oo. 

It follows from theorems 1 and 2 that both of v(a*, io*) and v(a&, iO) converge to 1, which is 
the lower bound discussed in section 2 following theorem 3.2 in Chakraborty and Chaudhuri 
(1996). Recall from this discussion that the asymptotic generalized variance of n(`,i) is 
(c/n)d det(J) v(a, io). Consequently, it now follows from theorems 1 and 2 that the adaptive 
selection of a E Sn and io E a will produce an estimate with asymptotic generalized variance 
(c/n)d det(J). As noted by Bickel (1964) and Babu and Rao (1988), the asymptotic gener- 
alized variance of the vector of medians is (c/n)d det(r), where the (i, j)th element of r is 

Uai>) I2(2/r) sin (l) 

P = ij Ao .U)1/29j is the (i,j)th element of J and c is as defined earlier. Following the line 
of arguments used in the proof of theorem 3.2 in Chakraborty and Chaudhuri (1996), it is 
easy to see that det(J7) > det(J), and equality holds only if J is a diagonal matrix. If the 
asymptotic efficiency of two competing estimates of a d-dimensional location parameter is 
now defined as the dth root of the ratio of their asymptotic generalized variances, the 
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efficiency of our adaptive equivariant estimate compared with the non-equivariant vector of 
medians is always greater than or equal to 1. Further, the asymptotic efficiency of our 
estimate compared with the usual vector of means is the same as the efficiency of the sample 
median compared with the sample mean in the univariate problem, and it may be greater or 
smaller than 1 depending on the nature of the tail of the univariate marginal g of the d-variate 
spherically symmetric densityf. These critical observations enable us to sense the subtle and 
intriguing connection between affine equivariance and asymptotic efficiency of multivariate 
versions of the median when there are correlations between the observed variables. They also 
provide an understanding of some related issues raised and discussed by Bickel (1964) and 
Brown and Hettmansperger (1987), which we have mentioned at the beginning of Section 1. 

We close this section by presenting some simulation results to demonstrate the 
performance of the adaptive equivariant estimate in small samples. We have generated 
observations from the bivariate normal (i.e. h(x, y) = (27r)-l expf-(X2 + y2)/2}) and Laplace 
(i.e. h(x, y) = (27r)-1 exp_-4(X2 + y2)}) distributions with 

( P1) 

and 9 = (0, 0)T. We have used a set of five different values of p and two sample sizes, namely 
20 and 30. Our adaptive equivariant estimate was compared with the non-equivariant vector 
of medians, and for the efficiency computation the estimates of their generalized variances 
were computed on the basis of 2000 Monte Carlo replications. The efficiency is taken to be 
the square root of the ratio of the generalized variances of the two competing bivariate 
location estimates. 

It is apparent from Tables 1 and 2 that even with small sample sizes there is a gain in 
efficiency when the adaptive equivariant estimate is used instead of the non-equivariant 
vector of univariate medians if the correlation between the variables is high. As p increases, 
the efficiency increases, and there is also an increase in efficiency with an increase in the 
sample size. In small samples, the gain in efficiency for the adaptive equivariant estimate 
seems to be more in the bivariate normal case than in the bivariate Laplace case. 

Table 1. Efficiency figures for the bivariate normal distribution example 

Sample Results for the following values of p: 
size 

0.75 0.80 0.85 0.90 0.95 

20 1.1039 1.1876 1.2657 1.3702 1.6202 
130 1.1447 1.2637 1.3031 1.3882 1.6849 

Table 2. Efficiency figures for the bivariate Laplace distribution example 

Sample Results for the following values of p. 
size 0.5 0.80 0.8s 0.90 0.95 

20 1.0679 1.1035 1.1611 1.2533 1.4819 
30 1.0746 1.1659 1.2314 1.4326 1.7864 
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4. Some real examples 

In this section, we shall consider two real data sets and explore the effect of the adaptive 
transformation and retransformation strategy on their analysis. In both examples we shall 
estimate the generalized variances of the location estimates by the bootstrap method (see for 
example Efron (1982)). One of the primary motivations behind considering the transforma- 
tion-retransformation estimate is that, once we have the desired transformation matrix X(a, 
io), it is quite easy to compute the estimate as it involves only determining the vector of co- 
ordinatewise medians of the transformed observations X(a, io)-'Xi and then retransforming 
that vector of univariate medians. As a consequence, we can conveniently estimate the 
conditional generalized variance of the transformation-retransformation estimate by using 
the bootstrap method once a E Sn and io E a are fixed and the transformation matrix is 
formed. In each case considered here, we used 10000 bootstrap replications to estimate the 
generalized variance, and it took only a negligible amount of time on a 486 personal 
computer equipped with a standard Fortran compiler. We note here that the sampling 
variation of any other affine equivariant multivariate median that has been proposed (e.g. 
Tukey (1975), Oja (1983) and Liu (1990)) is extremely difficult to estimate from the data. It is 
virtually impossible to use the bootstrap or other resampling techniques for any of them in 
practice owing to the complex computational problems associated with each of them in the 
case of high or even moderately high dimensional data. 

4.1. Example 2 
Our second example deals with the famous iris data analysed by R. A. Fisher and many 
eminent statisticians by assuming multivariate normality. We have applied our technique of 
adaptive transformation and retransformation to all three different species considered in this 
data set, namely Iris Setosa, Iris Versicolour and Iris Virginica. Each data point in the set 
is four dimensional with variables sepal length, sepal width, petal length and petal width, 
and there are 50 observations for each species. Table 3 gives the adaptive transformation- 
retransformation medians and their estimated root-mean-squared errors (RMSEs) for these 
variables separately for the three different species. 

The estimated correlation matrices of the sample medians for the three iris species are 

1.0 0.81 0.33 0.25 (1.0 0.50 0.75 0.24 (1.0 0.78 0.72 0.52' 
1.0 0.22 0.27 1.0 0.61 0.72 1.0 0.79 0.74 

1.0 0.31)' 1.0 0.53 ' 1.0 0.84) 

In addition to the adaptive equivariant estimate, we have computed the non-equivariant 
vector of medians and estimated the generalized variances for both of them in each species to 

Table 3. Transformation-retransformation medians and their estimated RMSEs for the iris data 

Species Sepal length (cm) Sepal width (cm) Petal length (cm) Petal width (cm) 

Setosa 4.99 3.39 1.46 0.23 
(0.0690) (0.0704) (0.0285) (0.0161) 

Virginica 6.4456 2.9658 5.4039 2.0434 
(0.1264) (0.0534) (0.0769) (0.0640) 

Versicolour 6.0355 2.8285 4.3511 1.3482 
(0.1319) (0.0549) (0.0973) (0.0475) 
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make a comparison. Interestingly, the equivariant estimate turns out to be more efficient than 
the non-equivariant estimate for Iris Versicolour and Iris Virginica (estimated efficiencies 
being 1.9158 and 1.8259 respectively in the two cases), whereas it turns out to be less efficient 
in the case of Iris Setosa (estimated efficiency being only 0.8522). 

4.2. Example 3 
The data set used in the third example was originally obtained from the laboratory of Dr 
James S. Elliot, of the Urology Section, Veterans' Administration Medical Center, Palo Alto, 
California, and the Division of Urology, Stanford University School of Medicine, Stanford, 
California, and it is reported in Andrews and Herzberg (1985). We considered four physical 
characteristics of 33 urine specimens with calcium oxalate crystals. These variables are 
specific gravity (i.e. the density of urine relative to water), pH (i.e. the negative logarithm of 
the hydrogen ion concentration), osmolarity (which is proportional to the concentration of 
molecules in the solution) and conductivity (which is proportional to the concentration of 
charged ions in the solution). As we would expect, the correlations between these variables 
are fairly high and the estimated efficiency of the adaptive equivariant estimate compared 
with the non-equivariant vector of medians turns out to be 2.2870, i.e. the transformation- 
retransformation strategy significantly reduces the sampling variation in the location estimate 
in this case. The transformation and retransformation medians and their estimated RMSEs 
and correlation matrix are presented in Table 4. 

It is clear from the preceding two examples that we sometimes (though not always) gain by 
using the adaptive equivariant estimate. Our analysis enables us to choose between the 
equivariant transformation-retransformation median and the non-equivariant vector of 
usual medians by using a simple and convenient rule after the sampling variations of the two 
multivariate location estimates have been estimated from the data. This leads to a way of 
dealing with the equivariance and efficiency problems in real data analysis. 

5. Concluding remarks 

Remark 1. Once the matrix X(a, io0) has been formed, the computation of I(V,io) is 
straightforward as it does not require any further optimization or iterative computation. But 
the selection of the optimal (a^, i0) may require a search over (dl1) possible subsets a, and this 
number grows very fast with n and d. We can reduce the amount of computation involved for 
searching the optimal (a, io) by stopping whenever vb(a, io) is sufficiently close to 1 because 
we know from theorem 3.2 of Chakraborty and Chaudhuri (1996) that the lower bound for 

Table 4. Transformation-retransformation medians, their estimated RMSEs and 
correlations for the urine data 

Variable Median Correlation matrix 

Specific gravity 1.0222 1.00 -0.1161 0.9207 0.5223 
(0.0015) 

pH 5.8718 1.00 -0.2217 -0.4135 
(0.1253) 

Osmolarity 730.1650 1.00 0.7599 
(55.3338) 

Conductivity (mQ-1) 21.6264 1.00 
(1.7926) 
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v(a, io) is 1 (see our discussion in Section 2). We have observed that this approximation 
makes the algorithm very fast without making any serious change in the sampling variation 
or any significant loss of efficiency of the resulting estimate. In all the examples that we have 
considered, it performed satisfactorily. An alternative approach would be to make a random 
search over different subsets a and different indices io E a and stopping when v(a, io) 
stabilizes in some appropriate sense. Approaches that are similar to this have been considered 
in computing the least median of squares estimates (see for example Rousseeuw and Leroy 
(1987)). 

Remark 2. A version of the multivariate median, which is popularly known as the 'spatial 
median' (see for example Haldane (1948), Gower (1974), Brown (1983), Small (1990) and 
Chaudhuri (1992, 1996)), has received considerable attention. Though equivariant under 
rotation or other forms of orthogonal transformation of the data, the spatial median is not 
equivariant under an arbitrary scale change of different real-valued components of 
multivariate observations. This lack of scale equivariance makes it an inappropriate location 
estimate for data sets (e.g. those considered in examples 2 and 3), where the variables have 
widely different scales. It is not meaningful to compute the spatial median when different real- 
valued components of a multivariate data set are measured in different units. The foremost 
motivation behind considering the adaptive transformation-retransformation strategy is to 
come up with an affine equivariant version of the multivariate median that will be reasonably 
easy to compute even for high dimensional data. At the same time, it is very much desirable in 
practice that we have a convenient and computationally feasible way of estimating the 
sampling variation of our proposed location estimate. It has been amply demonstrated in 
Section 4 that we can comfortably use the bootstrap method to estimate the sampling 
variation of the adaptive transformation and retransformation median in finite sample 
situations involving high dimensional data. All these make our multivariate median quite 
attractive for potential practical applications. 

Remark 3. As we have discussed in detail in Section 3, the concern about poor efficiency 
of the non-equivariant vector of univariate medians raised by Bickel (1964) and Brown 
and Hettmansperger (1987) can be settled by using our adaptive transformation and 
retransformation strategy. Asymptotically our equivariant estimate outperforms the non- 
equivariant vector of medians as well as the affine equivariant vector of means in the presence 
of correlation between the variables if the underlying distribution is elliptically symmetric 
with univariate marginals having heavy tails. Our simulation results amply indicate a gain in 
the efficiency over the vector of co-ordinatewise medians even in finite sample situations for 
standard elliptically symmetric distributions when the amount of correlations between the 
variables in the data is significant. 

Remark 4. When the underlying distribution deviates significantly from being elliptically 
symmetric, instead of minimizing v(a>, io), we can try to estimate the generalized variance of 
the transformation-retransformation median for a fixed cl and io by using some resampling 
technique, and then to minimize that estimated variance with respect to cl E Sn and io E a. 
However, such an approach will be computationally quite intensive, and we shall not discuss 
it here. We conclude by pointing out that this adaptive transformation and retransformation 
strategy is essentially a way of finding an appropriate 'data-driven co-ordinate system' (see 
Chaudhuri and Sengupta (1993)) so that data points can be expressed in terms of that co- 
ordinate system before analysis and the computation of descriptive statistics (such as the 
median) to enable us to make efficient statistical inference. 
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Appendix A: Proofs 

A. 1. Proof of theorem 1 
Assume without loss of generality that E is the d-dimensional identity matrix. Consider a = {1, 
2, .. ., d+ 11 and io = 1. As the underlying distribution of the Xi are IID with density h, the joint 
probability density function of XI, . . ., Xd+1 can be written as nId=+l h(xi). Now we make the following 
transformation of variables: 

Yl = X2-X, ., Yd = Xd+1 -XI, Yd+1 = Xl 

Then the joint density of Y1, . . ., Yd+1 is given by 

d 

h(yd+I) 7 h(yi + yd+l). 
i=l 

Therefore, the joint density of Yi, . . ., Yd at the origin in Rdxd iS 

J h(y)d+I dy, 
Rd 

which is finite and positive by the condition assumed in the statement of the theorem. This condition 
further implies that the map 

rd 
(YI Y2* * , Yd) J h(y) [I h(y1 + y) dy 

from Rdxd to R is everywhere continuous. Therefore the joint density of Yi, . . ., Yd must remain 
bounded away from 0 in a neighbourhood of 0 E Rdxd. Consequently the probability of the event that 
the columns of X(a, io) will be nearly orthogonal (and hence v(a, io) = det{V(a, io)} will be very close to 
1) is bounded away from 0, i.e. we have for any E > 0 

pr[det{V(a, io)} = v(a, io) < 1 +E] =pe > 0. 

Let a,, a2, .. ., akn be disjoint subsets of Sn and io,> E aj for 1 j < k" such that kn -*oo as n -0oo 
(for example kn may be equal to n/(d + 1)). Then 

pr{v(a*, io) > 1 + e} = pr{Va E S, and io E a, v(a, io) > 1 + e} 
< pr{v(al, io,1) > 1 + E, . . ., v(ak., iO,k.) > 1 + E} 

= (I1- p)k" O* as n -*oo. C 

A.2. Preliminary results for proof of theorem 2 
To prove theorem 2, we shall prove some preliminary results first. 

Lemma 1. supaES. sup0Ea I(a, io) - J(a, io)l converges in probability to 0 as n -* oo. 
Proof. Let us write X(a, io)y1 1/2 = R(a, io) J(a, io) and similarly X(a, io)-l V/2 = A(a, io) J(a, io), 

where f; is a consistent estimate of E. Clearly, the rows of J(a, io) and J7(a, io) are just the normalized 
rows of X(a, io)yl 1/2 and X(a, io)1 I 1/2 respectively. Let the jth row of X(a, io)- be ujT. Then 
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UTj1/2 UjEl/2 UfT'1/21 T 1/21 
T 

uE'1/21Tuf1/21 

IUft1/21 jUjT1/21 I|UjT f1/21 lUj E1/21 

UT(f1/2 T 
E 

I'2)IufE"/2i 
+ 

UTEI/2(IUTEI/21 T If; 
1/2I) 

I UjT ;1 /21 
1 
UjT E1/21 

Now, since f; -* E (a positive definite matrix) as n oo, for sufficiently large n and any d x 1 vector 
u, we must have 

UTtU 2 

for some c > 0. Then 

|UT1l/2 uT E/2 21;1/2_ 
- 1/2 

|UjTf1/21 IUjTE1/21 C 

Therefore, 

UT f; 1/2 Uj /2 21 f;1 /2 _ 1/21 
sup sup sup 

j 
- i T <2 

aES, ioEa j - 

i.e. we must have 

supsup17(as, io)-J(a, io)J I c*I:l/2_ - l/21, 
aES, ioEa 

for some positive constant c*. The proof is now complete in view of the fact that f; is a consistent 
estimate of E. 1 

Lemma 2. supaESnSU supEa IJ(a, io)](ca, iO)T - J(, io)J(a, iO)TI converges in probability to 0 as n -* oo. 

Proof First observe that 

J(ca, io) J(a, io)T - J(a, io) J(a, io)Tj = jJ(a, io) J(, io)T - J(a, io) J(a, io)T 

+ J(ca, io) (ca, o)T - J(a, io) J(a, io)T 

< I J(a, io)II J(a, io) - J(ca, io)I + IJ(ca, io) JJ(ca, io) - J(ca, io) 
< c'lJJ(a, io) - J(ca, io)J, 

where c' is some positive constant. The last inequality follows from the fact that the rows of J(ca, io) and 
J(ca, io) are of unit length. The result now follows from lemma 1. 

Lemma 3. For M > 0, define Km = {(Ol, io): a E S,,, io E a and v(a, io) < M}. Then 

sup I V(a, io) - v(a, io)J 
(a, io)EKM 

converges in probability to 0 as n -* oo. 

Proof From lemma 2, it is easy to see that 

sup sup ID(ca, io)-D(ax, io) - O, 
aES, ioEa 

sup sup I det{J(ae, - )}2-det{J(a, i 0)}2 0 
aESn ioEa 

and 
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sup sup I det{D(ca, io)} - det{D(ca, io)}l O 0 as n -* oo. 
aESn ioEa 

Next, note that there exists 6 > 0 such that, for any (ce, io) E KM, det{J(a!, io)}2 > 6. The existence of 
such a 6 follows from some routine analysis using some of the arguments in the proof of theorem 3.2 in 
ChakrabortK and Chaudhuri (1996). So, for sufficiently large n, with probability tending to 1, we have 
det{J(ca, io)} > 6. Therefore, for (ca, io) E Km, 

IV^(a, io) - v(a, io)l I det{D(c, io)} - det{D(ca, io)}I Jb(c~,io) -v(a, o)J 
~det{J(a~, io)}2 

I det{D(ca, io)}l I det{J(ca, io)}2 - det{J(ca, io)}21 
det{J(ca, io)}2 det{J(a!, io)}2 

I det{1(ca, io)} - det{D(ca, io)}J + I det{J(ca, io)}2 - det{J(ca, io)}21 
82 

Hence, we have the result 

A.3. Proof of theorem 2 
From theorem 1, we have that the a* and the io which minimize v(ca, io) are in the set Km, and hence in 
view of lemma 3 (a^, i^o) will be in Km with probability tending to 1 as n -* oo if M > 0 is chosen to be 
suitably large. 

Next, since a^ and i^o minimize v(ca, io), and a* and i* minimize v(ca, io), it follows by some 
straightforward analysis that IvJ(a, io) - v(a, i^o)j <ce and Iv(ca*, io) - v(c*, io)j < c will imply that 
Iv(, io) - v(c*, io)j < c. Hence 

pr{iIv(a, i^o) - v(C*, io*)I > e} < pr{iIv(a, io) - v(a, io)I > e} + pr{Iv(ca*, i*) - v(C*, i*)J > e}. 

At this point, it follows from lemma 3 that v(a&, io) - v(c*, io) converges in probability to 0. The proof is 
now complete after observing the inequality 

Iv(&, i -v(Ca*, io)j < lv(a&, i '))-b(&, i^)j + Jb(&, i^)-v(Ct*, i*)J 

and using lemma 3. 
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