
Fast Placement and
Floorplanning Methods in

Modern Reconfigurable FPGAs

Doctoral dissertation submitted by

Pritha Banerjee

for award of the Ph.D. degree of the

Indian Statistical Institute, Kolkata

Advisor :

Professor Susmita Sur-Kolay

Advanced Computing and Microelectronics Unit
Indian Statistical Institute

203, B. T. Road, Kolkata, India 700 108
June 2009

Dedicated to

my parents

Acknowledgement

Although a thesis is known by the name of its author, there are many without
whose direct or indirect help, a thesis does not materialize. It is time to thank them.

First and the foremost, I am profoundly grateful to my supervisor Dr. Susmita
Sur-Kolay for her constant motivation, guidance and advices throughout this work
with patience.

I would like to express my gratitude towards Prof. Subhas C. Nandy, Dr. Sandip
Das, Dr. Arijit Bishnu and Subasis Bhattacharjee for the numerous technical dis-
cussions we had and their motivation during this period. I thank my co-authors
Megha Sangtani and Debasri Saha.

I would like to thank Indian Statistical Institute for providing me the financial
support through fellowship and job assignments, which made this work successful.
My thank goes to all the members of the faculty, office staff and my colleagues of
Advanced Computing and Microelectronics Unit for making this unit a cordial and
wonderful place to work.

I consider myself to be fortunate to have met my friends Partha, Sasanka, Sub-
hasis, Debasis, Sandeep, Arindam, Gautam, Buddha da, Nilanjana, Sruti, Sahadeb,
Sudip and many others, whose support, encouragement and willingness to listen
made things bearable during difficult times and delightful the rest of the times
during these years.

I would like to give a special acknowledgement to my husband, without whose
help, patience and encouragement I would not have completed this work. I am also
thankful to my parents-in-law for their support and encouragement during these
years. Last but not the least, I thank my Grandmother, Mother, Father, Brothers -
Partho, Argho, and my aunts Manju Chatterjee and Late Gopa Mukherjee for their
support, encouragement, patience, faith and love which made this work a success.

(Pritha Banerjee)
June 1, 2009
Advanced Computing and Microelectronics Unit,
Indian Statistical Institute,
203 B T Road, Kolkata
Pin 700 108, India

Contents

1 Introduction 1
1.1 FPGA . 1
1.2 Components of a basic FPGA chip 3
1.3 Types of FPGA . 5

1.3.1 Structural classification . 6
1.3.2 Programming technology based classification 7
1.3.3 Modern FPGAs . 8

1.4 Design flow for FPGA . 9
1.5 Scope of the thesis . 12

1.5.1 Placement of CLBs on island-style homogeneous FPGAs . . . 13
1.5.2 Floorplanning for heterogeneous FPGAs 15
1.5.3 Floorplanning for partial reconfiguration in heterogeneous FP-

GAs . 17
1.6 Organization . 18

2 Previous Works 21
2.1 Placement on island-style FPGAs . 21

2.1.1 Stochastic methods . 22
2.1.2 Partitioning based placement 25
2.1.3 Analytical placement . 26
2.1.4 Other placement techniques 28
2.1.5 Summary . 30

2.2 Floorplanning for heterogeneous FPGAs 31
2.2.1 Summary . 33

2.3 Floorplanning for partial reconfiguration 34
2.3.1 Summary . 35

2.4 Conclusion . 36

3 Bottom-up Cone based Placement for Island-style FPGAs 37
3.1 Introduction . 38
3.2 Background . 38

3.2.1 Overview of our method . 39
3.3 ConeCLBPlace: Cone based CLB placement 40

3.3.1 Placement of output blocks 40

vi Contents

3.3.2 Construction of an output cone for placement of CLBs 40

3.3.3 Placement of CLBs and input blocks 41

3.3.4 Illustration of CLB placement by ConeCLBPlace 43

3.3.5 Time complexity of ConeCLBPlace 44

3.3.6 Iterative improvement of placement 46

3.4 ConeIOBPlace: Cone based IOB placement 47

3.4.1 Phase I: Generation of circular arrangement of IOBs 49

3.4.2 Phase II: Computation of separation between adjacent IOB
positions . 52

3.4.3 Illustration of IOB placement by ConeIOBPlace 53

3.4.4 Time complexity of ConeIOBPlace 53

3.4.5 Placement of CLBs . 55

3.5 ConePlace: Cone based IOB and CLB placement 56

3.6 Experimental results . 56

3.6.1 Placement obtained by ConeCLBPlace 57

3.6.2 Placement obtained by ConeIOBPlace 58

3.6.3 Placement obtained by ConePlace 59

3.7 Conclusion . 62

4 Top-Down Deterministic FPGA Placement 65

4.1 Introduction . 65

4.2 Overview . 66

4.3 Coarse grain placement . 68

4.3.1 Partitioning of CLB netlist 68

4.3.2 Allocation of netlist partitions to regions 69

4.3.3 Reallocation in overloaded regions 71

4.3.4 Placement of IOBs . 72

4.3.5 Time complexity of Coarse grain method 73

4.4 Fine grain placement . 74

4.4.1 Fine grain partitioning . 74

4.4.2 Recursive space filling curve 75

4.4.3 Placement using space filling curve 77

4.4.4 Time Complexity of Fine grain method 78

4.5 Experimental results for top-down deterministic FPGA placement . . 78

4.6 Conclusion . 84

Contents vii

5 Efficient FPGA Placement using Space Filling Curves: Theory
Meets Practice 85

5.1 Introduction . 85
5.1.1 FPGA placement: theory and practice 86

5.2 Our contribution . 87
5.3 Graph embedding and approximation algorithms 88
5.4 Approximation algorithms for FPGA placement 92

5.4.1 Extending approximation algorithms for graphs to hypergraphs 92
5.4.2 Approximation algorithm for HPG using space filling curve . 94

5.5 The algorithm in practice . 99
5.5.1 Computation of linear arrangement 99
5.5.2 Placement by space filling curves 100
5.5.3 Placement of IOBs . 100

5.6 Experimental results . 101
5.6.1 Quality of placement . 101
5.6.2 Effect of low temperature SA 103

5.7 Conclusion . 104

6 Unified Floorplan Topology Generation and Sizing on Heteroge-
neous FPGAs 107

6.1 Introduction . 108
6.2 Background . 109

6.2.1 Architecture . 109
6.2.2 FPGA floorplanning problem 109
6.2.3 Proposed floorplanning method 111
6.2.4 Basic tile of a FPGA architecture 113
6.2.5 Clustering step for large number of small modules 117

6.3 Phase I: Generation of partition tree 117
6.4 Phase II: Floorplan topology generation 118

6.4.1 Generation of module shapes 118
6.4.2 Generation of slicing trees . 120

6.5 Phase III: Realization of slicing tree on target FPGA 122
6.5.1 Greedy allocation of rectangular region (GARR) 122
6.5.2 Allocation of RAM and MUL 123
6.5.3 Time complexity of HeteroFloorplan 127

6.6 An example . 128
6.7 Experimental results . 131

viii Contents

6.8 How good is our GARR? . 136
6.8.1 Max-flow formulation for CLB allocation 136
6.8.2 Comparison of GARR with network flow method 138

6.9 Conclusion . 140

7 Floorplanning for Partial Reconfiguration in FPGAs 141
7.1 Introduction . 141
7.2 Floorplanning for partial reconfiguration 143

7.2.1 Overview of proposed method 144
7.2.2 Basic tile on FPGA chip . 145

7.3 Phase I: Generation of partition trees 145
7.4 Phase II: Global floorplan topology generation 148
7.5 Phase III: Realization of slicing trees on the chip 151

7.5.1 Allocation of rectangular region to a module 151
7.5.2 Pruning the set of slicing trees 153
7.5.3 Grouping of slicing trees for global floorplan 154
7.5.4 Postprocessing for satisfying resource requirements 157

7.6 An example . 160
7.7 Experimental results . 164
7.8 Conclusion . 166

8 Concluding Remarks 167
8.1 Summary of the contributions . 167
8.2 Future directions . 168

Bibliography 169

Publications from the Thesis 179

List of Tables

1.1 Summary of FPGA architectures provided by different companies . . 7

3.1 An example: Adjacency matrix representing the block netlist graph
Db, the netlist of CLBs and IOBs; pi, po and c denote the primary
input blocks, primary output blocks and CLBs respectively. 43

3.2 Characteristics of MCNC FPGA placement benchmark circuits . . . 56
3.3 Comparison of wirelength driven BB cost: ConeCLBPlace vs. VPR . 57
3.4 Comparison of critical path delay: ConeCLBPlace vs. VPR 58
3.5 Comparison of wirelength driven BB cost: ConeIOBPlace vs. VPR . 59
3.6 Comparison of critical path delay: ConeIOBPlace vs. VPR 60
3.7 Comparison of BB cost: ConePlace vs. VPR 61
3.8 Comparison of speedup: ConePlace vs. VPR 61
3.9 Comparison of critical path delay: ConePlace vs. VPR 62

4.1 Characteristics of MCNC FPGA placement benchmark circuits . . . 78
4.2 Placement results for wirelength driven VPR 79
4.3 Comparison ofGL% between timing driven VPR and wirelength driven

VPR . 80
4.4 Comparison of GL% (Initial BB Cost) by our method vs. Final BB

Cost by VPR; [H:Hilbert, Z:Z, S:Snake] 81
4.5 Comparison of GL% (Final BB Cost) of our methods vs. VPR . . . 82
4.6 Speedup of our methods over VPR in terms of GL% (SA moves) and

ratio of CPU times; [H:Hilbert, Z:Z, S:Snake] 83
4.7 Comparison of GL% (Critical path delay) of our methods over VPR 83

5.1 Characteristics of MCNC FPGA placement benchmark circuits . . . 101
5.2 Comparison of HPWL cost, speedup and critical path delay 103
5.3 Comparison of HPWL cost and CPU time for SFC + SA and V PR 105
5.4 Comparison of critical path delay . 106

6.1 Floorplan results for 20-module example [Cheng 2004] 129
6.2 Benchmark circuits, C: CLB, R:RAM, M:MUL 132
6.3 Comparison of wirelength (HPWL a la ASIC): HeteroFloorplan vs.

[Feng 2006]; Case I: center-to-center; Case II: terminals on periphery 132
6.4 Comparison of wirelengths (HPWL): HeteroFloorplan vs. [Cheng 2006]134

x List of Tables

6.5 Comparison of CPU time; [CF: Constrained Floorplanning] 136
6.6 Similarity of CLB allocation by GARR in HeteroFloorplan with net-

work flow based method . 139

7.1 Characteristics of benchmark; [SM: Static modules] 165
7.2 Comparison of HPWL, CPU time and reconfiguration overhead; Par-

tialHeteroFP gives 100% overlap of SM 165

List of Figures

1.1 Basic FPGA architecture. 4

1.2 Types of FPGA architecture. 5

1.3 Modern FPGA architecture with Block RAM and Multipliers. 8

1.4 CAD flow for FPGAs; the rectangle with dashed lines shows the scope
of this thesis. 11

1.5 The placement problem for FPGAs with CLBs and IOBs. 14

1.6 The floorplanning problem for FPGAs with heterogeneous resources;
net S4 and S6 are the nets consisting of modules {m1, m4, m5, m7

m8} and modules {m1, m2, m3, m6 m7} respectively. 16

1.7 The floorplanning problem for partial reconfiguration in FPGAs with
heterogeneous resources; σ: common (static) modules, δ: dynamic
modules. 17

1.8 The organization of this thesis. 19

2.1 An example of placement [Betz 1999]: (a) random initial placement of
netlist of CLBs and IOBs, (b) final placement minimizing linear con-
gestion cost (note the reduction in congestion); (Courtesy: [Betz 1999]). 22

2.2 Flow of PPFF [Maidee 2003, Maidee 2005]. 26

2.3 Overview of CAPRI (Courtesy: [Gopalakrishnan 2006]). 28

2.4 Example of floorplan obtained by [Cheng 2004, Cheng 2006]. (a) Pos-
sible irreducible realization list (IRL)s for two modules (b) a rectilin-
ear floorplan after compaction (Courtesy: [Cheng 2004, Cheng 2006]). 32

2.5 Partial reconfiguration proposed by Singhal and Bozorgzadeh [Singhal 2006];
case III shows the maximum overlap of common modules. (Courtesy:
[Singhal 2006]). 34

3.1 Flow of our methods: (a) ConeCLBPlace; (b) ConeIOBPlace; (c)
ConePlace. 40

3.2 Two output cones with overlap corresponding to two primary output
blocks, po

1 and po
2. 42

3.3 Illustration of ConeCLBPlace: An output cone τ o
4 of primary output

block po
4 of the netlist in Table 3.7. 44

xii List of Figures

3.4 Execution of ConeCLBPlace on the example netlist of Table 3.1; (a)
placement of IOBs; (b) placement of c7 within the extended bounding
box BB7; (c) placement of all blocks in the cone τ o

4 ; (d) placement of
all blocks in the cones τ o

4 , τ o
5 and τ o

6 45

3.5 Position of padframe in an FPGA. 47

3.6 Two input cones with overlap corresponding to two primary input
blocks pi

1 and pi
2. 48

3.7 Example: (a) Generation of subgraphs from the cone adjacency graph;
(b) Subgraph SGi for which linear arrangement Oi of vertices is ob-
tained; (c) Generation of circular arrangement of IOBs from linear
arrangement of subgraphs. 54

4.1 Flow of our placement method: Coarse grain and Fine grain. 66

4.2 Steps of Coarse grain method: (a) balanced partition tree with netlist
partitions at the leaves (b) assignment of netlist partitions to regions
on an FPGA in a snake like fashion; each square corresponds to a
region and is labeled by the netlist partition zi assigned to it; the
number of CLBs in each of the netlist partitions z3, z5, z7, z12 and
z6, appears at the top left corner of the corresponding region (c)
flow network for reallocation of CLBs from the overloaded regions to
neighboring ones. 70

4.3 Minimum weighted bi-partite matching formulation for placement of
IOBs: (a) the bounding box of two IOB nets; (b) the bi-partite graph
for matching. 73

4.4 Generation of space filling curves for l = 0, 1, 2, 3. 75

4.5 Placement of a one dimensional arrangement of 16 blocks on to a 4×4

array using space filling curves. 76

4.6 Cropping the curve for R× C array within a× a. 77

5.1 A schematic indicating the role of our work. 91

5.2 A net/hyperedge and its corresponding graph; v1 is the source. . . . 92

5.3 Span of a net (hyperedge) with ni CLBs. 94

5.4 Effectiveness of our proposed Algorithm 5.2: comparison of the ratios
HPWL(SFC)
HPWL(V PR) and HPWL(V PRt)

HPWL(V PR) , where t is the time taken by Algorithm
5.2, and HPWL(V PRt) is the HPWL cost of the solution produced
by VPR run only for time t. 104

List of Figures xiii

6.1 Spartan-3 XC3S5000 FPGA architecture, tessellated with basic tiles
indicated by thick-lined rectangles, each having 4 rows × 20 columns
of CLBs and 1 pair of RAM-MUL blocks; (0, 0,W,H) = (0, 0, 87, 103). 109

6.2 Flow of our floorplanning method HeteroFloorplan. 112

6.3 The width wA of a basic tile: (a) lower bound, (b) upper bound, (c) for
the CLB columns to the left of the left-most RAM/MUL column pair,
(d) for the CLB columns to the right of the right-most RAM/MUL
column pair. 114

6.4 The width wA of a basic tile for γ > 1: (a) lower bound, (b) upper
bound, (c) for the left-most CLB columns (d) for the right-most CLB
columns. 115

6.5 Lists of shapes created at an internal node p of partition tree B by
post-order traversal. ’∗’ and ’+’ represent abutment of shapes by
vertical and horizontal cut respectively. ’||’ denotes merging of two
lists of shapes obtained by vertical and horizontal node sizing. . . . 121

6.6 Candidate RAM/MUL locations for a module mi with requirement
of 3 RAM blocks, but having only 2 RAM blocks within its allocated
rectangular region. The 7 RAM blocks within each of RAM strip
1 and RAM strip 2 are the candidate RAM locations; (b) portion
of the min-cost flow network corresponding to RAM/MUL alloca-
tion for module mi showing arcs to all 14 candidate RAM locations
1a, . . . 1g, 2a, . . . , 2g; the pair of numbers on each arc indicate its ca-
pacity and cost respectively. 124

6.7 Example of an allocation of RAM/MUL which is not order-preserving.125

6.8 An example circuit with 20 modules [Cheng 2004]: floorplan pro-
duced by HeteroFloorplan. 129

6.9 An example circuit of [Cheng 2004]: one of its slicing trees and the
box next to each node gives the four co-ordinates (xmin, ymin, xmax, ymax)
of the region allocated to the node. 130

6.10 Floorplan of ami33 after phase III for (Tw, Th) = (4, 30). 133

6.11 Computation of bounding box of a net with terminals on modules
marked A, B and C. 134

6.12 Variation of HPWL (Case I) with average aspect ratio of a module. . 135

xiv List of Figures

6.13 (a) A linearly scaled down realization S of a node-sized slicing tree
to fit an (0, 0,W,H) architecture. Rectangles marked 1, . . . , 6 denote
the module realizations; rai (rri) denotes resource available (require-
ment). (b) Flow network corresponding to the realization shown in
(a). 137

6.14 A comparison with original slicing shapes generated (solid lines) and
the ones obtained by shifting cut lines (dotted lines) as done by Het-
eroFloorplan. 139

7.1 Flow of the proposed method PartialHeteroFP. 144

7.2 Spartan-3 XC3S5000 FPGA Architecture, tessellated with a basic tile,
indicated by a rectangle of 4 rows and 20 columns of CLBs and 1 pair
of RAM-MUL blocks (Figure 6.1 reproduced for convenience). 146

7.3 Modules at the left-most and the right-most leaves go to the bottom-
left and top-right corner of the floorplan. 147

7.4 Swapping of static super modules to extreme ends of the partition
tree; the arrow indicates the partitions to be exchanged. 147

7.5 One partition tree for each instance. 148

7.6 Set of slicing trees for each instance; vertical and horizontal cuts are
denoted by * and +; the dotted polygon indicated the group g1 of
slicing trees and the dashed polygon, another group gf 150

7.7 The convention used for allocation of CLBs for (a) vertical cut (b)
horizontal cut; the shaded part shows the free regions; unshaded part
represents the allocated region; ’+’ denotes horizontal cut and ’*’
denotes vertical cut. 152

7.8 Distance between two slicing trees. 154

7.9 Grouping of slicing trees by finding shortest path in the associated
digraph. 155

7.10 Rectangular dual graph (RD) corresponding to a floorplan. 157

7.11 Postprocessing by min-cost max-flow for satisfying CLB requirements. 158

7.12 Slicing trees for two instances; v and h represent vertical and horizon-
tal cut lines; the cut line directions for two instances are separated
by a ’:’ at a node; shape of a module is given as (width, height) pair. 162

7.13 Floorplan after greedy allocation of CLBs: (a) instance 0, (b) instance
1. 163

List of Figures xv

7.14 Rectangular dual graph for (a) instance 0 (b) instance 1; letters repre-
sent a rectangular region either unallocated or shared by two modules,
and numerals denote the modules with deficit in CLB requirements
within its allocated rectangular region. 164

7.15 Final floorplan for (a) instance 0, (b) instance 1. 164

List of Symbols

κ maximum number of shapes generated for a module

ρm resource requirement vector of module m

σL left super module

σR right super module

A basic tile

bcij number of common blocks in cones τi and τj

bi any block CLB or IOB

BBi bounding box of net i

C Set of CLBs

ci a CLB

d maximum number of terminals in a net

Db block netlist graph

DMi set of dynamic modules in instance Ii

Ga cone adjacency graph

Gb bi-partite graph for IOB placement

Go flow graph for reallocation of overloaded regions

Gc netlist graph for clustering

gf a group, consisting of one slicing tree for each instance in a task scedule

H height of FPGA chip in terms of CLB height

H = (V,E) hypergraph representing netlist of CLBs or modules

Ht height of FPGA chip in terms of basic tile

Ii ith instance of a task schedule

k number of signal nets

lbi level of a block in cone τi

M set of modules

m module

mram
i RAM requirement of a module

xviii List of Symbols

n number of CLBs or modules

ni number of dynamic modules in instance Ii

npi number of primary inputs

npo number of primary outputs

Oi linear arrangement of subgraph SGi

p number of primary input and output blocks (IOB)

pi a primary input block

po a primary output block

pi an IOB

q number of instances in a task schedule

Ri rectangular region assigned to a module mi

S set of signal nets

Si a signal net

SM set of static modules among q instances in a task scedule

Th height of floorplan in terms of basic tile

Tm tile required by module m

Tw width of floorplan in terms of basic tile

tij jth slicing tree of ith instance

W width of FPGA chip in terms of CLB width

W c
i width of cone τi

W o
ij width of overlap of cones τi and τj

wA width of basic tile

Wt width of FPGA chip in terms of basic tile

wij weight of edge (vi, vj) in Ga

wij(b) weight of edge (vi, vj) due to block b in Ga

δi a dynamic module

ηi number of slicing trees generated in instance Ii

σi a static module

τ i input cone

τ o output cone

Chapter 1

Introduction

Contents
1.1 FPGA . 1

1.2 Components of a basic FPGA chip 3

1.3 Types of FPGA . 5

1.3.1 Structural classification . 6

1.3.2 Programming technology based classification 7

1.3.3 Modern FPGAs . 8

1.4 Design flow for FPGA . 9

1.5 Scope of the thesis . 12

1.5.1 Placement of CLBs on island-style homogeneous FPGAs . . . 13

1.5.2 Floorplanning for heterogeneous FPGAs 15

1.5.3 Floorplanning for partial reconfiguration in heterogeneous FP-
GAs . 17

1.6 Organization . 18

1.1 FPGA

Field-programmable gate-arrays (FPGA) are programmable hardware platforms with
pre-fabricated logic and interconnects, which are electrically programmed by the user
to realize a variety of circuits frequently required in a wide range of applications.
Unlike application-specific integrated-circuits (ASICs), where realization of a circuit
design takes several man-hours and enormous effort, the pre-fabricated logic and
interconnects can be quickly programmed according to the design specification and
made functional. Thus, in contrast to the ASICs, FPGAs can be customized and
reconfigured depending on the need of the user. A basic FPGA chip consists of
a set of configurable logic blocks (CLB) and interconnects which can be connected
by means of transistor switches or anti-fuses. Each CLB consists of small memory

2 Ch 1. Introduction

units in the form of lookup tables (LUT) which can be programmed at run-time.
To realize a circuit on to FPGA, these LUTs need to be loaded with appropriate
functionality in terms of bits at run-time. Given a circuit design, it undergoes sev-
eral optimization steps [Betz 1999] to get realized on to the FPGA chip. Finally, a
bitstream of the design is generated that is downloaded on to the FPGA chip. This
process of realizing a circuit on to the FPGA chip is called mapping. Once the bit-
stream is loaded on to the chip, the circuit starts functioning. To realize a different
circuit on the same chip, one has to download only the corresponding bitstream on
to the FPGA chip. Being reconfigurable, the turn-around time for the application
is significantly less than realizing an application on ASIC.

FPGAs have experienced an exponential growth in the past twenty years and are
increasingly competing with ASICs in medium to low volume market [Wang 2003].
FPGAs were introduced in mid to late eighties with merely 64 lookup tables (LUTs)
as simple glue logic, whereas modern FPGAs offer up to over two billion pro-
grammable logic cells along with a large number of macro blocks such as mem-
ory, DSP blocks, embedded processors, high speed Input/Outputs and many other
pre-placed blocks [Kuon 2007]. The reason for the success of FPGAs is their low
non-recurring engineering (NRE) costs and reconfigurability. Because of reconfig-
urability and fast turn-around time, FPGAs are not only used in ASIC prototyping
as in earlier days, but also in mission critical applications. Now with millions of
logic gates in an FPGA, with shorter design and production time, lower setup cost
and risk, it is extensively used in space applications, digital signal processing (DSP),
software defined radio, aerospace, defense, medical imaging, speech recognition and
bio-informatics [Xilinx , Brown 1995, Manimegalai 2007].

In order to take the full advantage of FPGA’s reconfigurability, the mapping time
of a given design on to FPGA chip has to be minimized. The process of mapping is
a complex task, involving conflicting objectives to be satisfied during the process.
As in ASICs, the mapping of a design on to the FPGA consists of the following
design steps: synthesis, technology mapping, floorplanning and place-and-route. The
problems to be solved for almost all the steps are difficult in nature, and belong to
the class of NP-hard problems [Sherwani 1993]. Thus, it is not possible to design
polynomial time algorithms to solve the problems optimally. The computer-aided-
design (CAD) tools play a critical role in obtaining solutions of high quality with
efficiency. Although these design steps seem to be similar to those for the traditional
ASIC design, each step of FPGA design has additional constraints and optimization
criteria to be satisfied [Wang 2003, Taghavi 2004].

This thesis focuses on the floorplanning and placement step of the FPGA CAD

1.2. Components of a basic FPGA chip 3

flow. The research in this area aims at either obtaining a very high quality solution
for the physical design problem, or getting the solution quicker with minimal sacrifice
in quality of solution. The objective of this thesis is to develop fast yet efficient
placement and floorplanning technique for mapping a given design on to FPGA with
minimal sacrifice in the quality of solution in the context of run-time reconfiguration
in FPGAs. In this chapter, the basic architecture of FPGAs is presented in Section
1.2 followed by different categories of FPGA architectures in Section 1.3. Section
1.4 discusses the FPGA physical design cycle. The scope of the proposed work is
presented in Section 1.5. Finally, the chapter concludes with the organization of the
thesis in Section 1.6.

1.2 Components of a basic FPGA chip

The basic component of any FPGA chip is a set of programmable or configurable
logic blocks (CLB) arranged in a two dimensional array with routing wires laid
out in horizontal and vertical channels between rows and columns of CLBs respec-
tively. A CLB (also called logic blocks in general) consists of lookup tables (LUT),
flip flops (FF) and/or multiplexers for implementation of logic. Figure 1.1 shows
a simple earlier generation FPGA architecture which is a widely accepted archi-
tecture model used in the FPGA research community [Betz 1999, Emmert 1999b,
Chang 2000, Vicente 2004, Maidee 2005, Vorwerk 2009]. The input/output blocks
(IOB) are located around the periphery of the chip, providing programmable I/O
connections and support for various I/O standards [Anderson 2000]. Each CLB
is surrounded by routing channels connected through switch blocks and connection
blocks. The wires in the channel are segmented, and are of varying length. Com-
mercial FPGA chips have many dedicated interconnects of different lengths which
are point-to-point and unidirectional. A switch block connects wires in adjacent
channels through programmable switches such as pass-transistors or bi-directional
buffers, and is represented as a matrix of possible connections. A connection block
connects the wire segments in a channel to the input and output pins of a CLB
using programmable switches. All the programmable switches are identical. While
programming, the appropriate switches are turned on or off. Figure 1.1 shows the
internal configuration of a part of an FPGA chip.

The routing architecture of an FPGA is defined by channel width Wc, switch
block flexibility Fs, connection block flexibility Fc and segmented wire length. The
channel width defines the number of wires laid out and pre-fabricated in the channel
of an FPGA chip. The switch block flexibility is the number of wires in each channel

4 Ch 1. Introduction

CLB CLB CLB CLB

CLB

CLB

CLB

CLBCLBCLB

CLB

CLB

CLB CLB

CLBCLB

Switch
block

Connection
block

Configurable
Logic Block

(CLB)

Routing
channels

Routing
channels

Long
wires

Wire with
length 2

Input/Output Pins

{

{
Figure 1.1: Basic FPGA architecture.

to which each incoming wire can connect in a switch block. The connection block
flexibility is the number of wires in each channel to which a logic block input or
output pin can connect. The segmented wire length is the number of logic blocks
a wire segment spans. As the wires cross different number of logic blocks in seg-
mented wire architecture, the FPGA interconnect delays become highly non-linear,
discrete, and in some cases, even non-monotone with respect to the distance. If
there is a connection between two CLBs whose distance is 3 CLB units, and there
are two options of connecting them; (i) using two wires spanning 1 CLB each, or
(ii) one wire spanning 3 CLBs, the second option incurs less delay and hence leads
to better performance than the first one. Finally, an H-tree based clock network
[Sherwani 1993] is laid on to the chip for feeding the flip flops in LUTs.

Each logic block or CLB usually contains a group of basic logic elements (BLE).
In an LUT based FPGA architecture, typically each BLE contains a K-input lookup
table and a register. The output of K-LUT [Brown 1995, Kuon 2007] can be reg-
istered by connecting it to a flip flop, or it can remain unregistered. Commercial
FPGAs, for example, Altera’s Stratix II FPGA use an adaptive logic module (ALM)
which contains a group of LUTs and a pair of flip flops [Altera]. The ALM can ex-
pand and share the LUT inputs and has more logic capacity than traditional 4-input
LUT structures for an equivalent function. An ALM is similar to a 7-input LUT

1.3. Types of FPGA 5

logic block

interconnect laid
on logic blocks

(a) Sea-of-gates (b) Hierarchical PLD

PLD Block

Interconnect

Interconnect

logic block

IO blocks

(c) Island style/ symmetrical array (d) Row based

IO blocks

IO blocks

Interconnect

logic block

Figure 1.2: Types of FPGA architecture.

that can be flexibly re-partitioned into a number of configurations such as either a
5-input LUT and a 3-input LUT, or two 4-input LUTs. With input sharing, larger
combinations can be created, such as two 5-input LUTs or even two 6-input LUTs.
The larger logic capacity in Stratix II ALMs improves the overall performance of
the design by packing more logic in an ALM.

1.3 Types of FPGA

FPGAs are used in different types of applications and the resource requirements are
also diverse. FPGAs were first developed by Xilinx in mid 80′s [Xilinx]. Later on,
many companies such as Altera [Altera], Lattice Semiconductor [Lattice], Actel
[Actel], SiliconBlue Technologies [SiliconBlue], Achronix [Achronix], Quicklogic
[QuickLogic] developed their own FPGAs of different structures. FPGAs can either
be classified by the structure and organization of the logic and routing resources,
called structural classification, or by the programming technologies used to configure
it, called programming technology based classification.

6 Ch 1. Introduction

1.3.1 Structural classification

FPGAs can be categorized into four classes depending on the arrangement of its
logic and routing resources as shown in Figure 1.2. These are:

1.3.1.1 Sea-of-gates architecture

Logic blocks are arranged in a two dimensional array, and interconnects are overlaid
on top of the logic blocks as shown in Figure 1.2(a). The logic block is generally
composed of a multiplexer which feeds a NAND gate or some other functional unit,
and a latch. Logic blocks are connected to routing resources through multiplexers,
and a Static RAM (SRAM) cell controls the multiplexer.

1.3.1.2 Hierarchical PLD architecture

Figure 1.2(b) shows the hierarchical programmable logic device (PLD) architecture.
The logic blocks or PLD blocks and programmable interconnects are arranged in
a hierarchy. Each PLD block contains logic modules with programmable combina-
tional and sequential elements. The logic modules are programmed using the bits
stored in configuration memory. Altera FPGAs [Altera] belong to this category of
FPGAs.

1.3.1.3 Symmetrical or island-style architecture

This type of FPGAs is shown in Figure 1.2(c). The CLBs are arranged uniformly in
rows and columns as explained in Section 1.2, with wires laid out in the horizontal
and vertical channels between rows and columns of CLBs respectively. The IOBs
are located on the periphery of the two dimensional array. Each CLB contains one
or more K-input LUTs and flip flops. The routing is done through the wires laid out
in the channel and the switching blocks present at every junction of horizontal and
vertical channel by appropriate programming of the switch blocks. Xilinx, Achronix,
SiliconBlue and QuickLogic FPGAs provide this type of FPGA architecture.

1.3.1.4 Row based architecture

Row based architecture has the logic modules and programmable interconnects ar-
ranged in alternate rows, as shown in Figure 1.2(d) in one layer. The vertical
interconnects, laid out on top of it in a separate layer are used to connect modules
in different rows. The IOBs are located on the periphery surrounding the logic
modules. Actel Corporation provide this type of FPGAs.

1.3. Types of FPGA 7

Company General Type of Programming
Architecture logic block Technology

Xilinx Island-style LUT-based static RAM
Altera Hierarchical PLD PLD block EEPROM
Actel Row based MUX based Anti-fuse
Quicklogic Island-style MUX based Anti-fuse

Table 1.1: Summary of FPGA architectures provided by different companies

In summary, most of the commercial FPGAs belong to the category of island-
style FPGAs and are used widely in the FPGA research community. Thus, island-
style FPGA architecture is assumed for the proposed methods in this thesis. How-
ever, the CAD tools developed for one type of FPGA architecture can be adapted to
other architectures by adding constraints relating to the location of the logic blocks
pertaining to that architecture.

1.3.2 Programming technology based classification

FPGAs can be classified into three groups depending on the programming technolo-
gies used to configure the FPGAs [Brown 1995, Kuon 2007].

Anti-fuse programming technology: FPGAs using this technology are one
time programmable as anti-fuses make permanent connections between logic blocks.
Programming is done by blowing the anti-fuse. A high voltage breaks down the
metal-to-metal anti-fuse and causes the fuse to conduct [Kuon 2007]. It provides a
low resistance, bidirectional connection between segments. This technology is used
in Actel and QuickLogic FPGAs.

Static RAM (SRAM) programming technology: Programmable connec-
tions are realized using pass gates or multiplexers. SRAM cell controls the pass
gates and multiplexers. Since SRAM is volatile, the FPGA needs to be reconfigured
each time the power is applied to the chip. Xilinx, Lattice Semiconductor, Altera
FPGAs mostly use SRAM programming technology.

EEPROM programming technology: It uses EEPROM (electrically erasable
programmable read-only memory) memories and it helps reprogramming of device by
erasing and rewriting into the configuration memory several times. Unlike SRAM
technology, it does not require external memory storage to program it at power up.
Altera FPGAs also use this technology for programming.

Of these approaches, static memory and anti-fuse technologies are widely used
in modern FPGAs. Although SRAM based cells occupy large areas, it is widely

8 Ch 1. Introduction

CLB RAM MUL I/O processor
Core

Island of CLBs

Figure 1.3: Modern FPGA architecture with Block RAM and Multipliers.

used for its re-programmability features. Moreover, an FPGA can even be partially
reconfigured, while a portion of it is still executing some operations using the SRAM
technology. Most of the symmetrical array based FPGA architectures use SRAM
programming technology, and row based structures use anti-fuse technology. Table
1.1 shows a summary of the existing major architectures adopted by the leading
FPGA fabrication companies [Xilinx , Altera , Actel , QuickLogic].

1.3.3 Modern FPGAs

The basic FPGA consisted of only the CLBs and IOBs in the beginning. These are
termed as FPGAs with homogeneous resources. Unlike earlier generation FPGAs,
modern FPGAs such as Xilinx’s Spartan and Virtex Series [Xilinx], Altera’s Stratix
series [Altera] consist of not only the CLBs, but also block RAMs (BRAM), Mul-
tipliers (MUL), DSP cores, and even small microprocessors on the FPGA chip to
support System-on-Chip (SoC) designs. One such configuration with CLBs, RAMs,
multipliers (MULs) and processor core is shown in Figure 1.3.

The first type of heterogeneous resources in FPGAs was BRAM which first ap-
peared commercially in the Altera Flex 10K series FPGA [Ngai 1995, Altera 2003,
Kuon 2007]. This memory block consisted of 2Kb of static RAM, which could be
configured as either a 2048 × 1, or 1024 × 2, or 512 × 4 or 256 × 8 bit memory.
FPGAs in the Xilinx Virtex-4 series onwards have block RAMs of 18Kb [Xilinx].
Xilinx Virtex II FPGA [Xilinx 2005] first introduced the multiplier (MUL) inte-
grated into the chip. This series of FPGAs contained 18 × 18 multiplier that sat
along a block memory. Since the introduction of Virtex II, Xilinx and other manu-
facturers have introduced more sophisticated hard computational units that include

1.4. Design flow for FPGA 9

multiplier-accumulators, and some multiplexer functions [Kuon 2007]. The Stratix
I [Kuon 2007] of Altera contains a single 36× 36 multiplier-accumulator block that
can be broken into eight 9× 9 multipliers and an adder to sum results. Before long,
Altera introduced Excalibur, an FPGA which included a hard processor core from
ARM Inc. [ARM], connected to an Altera Apex 20K series FPGA [Kuon 2007].
Almost at the same time, Xilinx introduced Virtex II Pro FPGAs which included
one, two, or four IBM Power PC microprocessor cores [IBM] integrated with a Vir-
tex II logic fabric [Xilinx 2005]. Several Xilinx Virtex-4 and Virtex-5 subfamilies
also support Power PC cores [Kuon 2007].

The most popular Xilinx Spartan series has about 478K gates, 35K FFs, which
can operate at 300MHz. These FPGAs are built on 90nm technology, while Virtex
series FPGAs use 65nm technology having up to 2.2 million gates, 153K FFs, oper-
ating at 550MHz [Xilinx]. Altera’s Stratix series has up to 7.7 million gates, 430K

FFs in its logic cells, and uses adaptive logic module (ALM) technology [Altera].
This chip can operate at 600MHz and it is made in 65nm technology. Lattice Semi-
conductor uses SRAM technology having FPGAs with 1.7 million gates operating at
550MHz. Actel produces FPGAs with 752K gates operating at 350MHz. These FP-
GAs use anti-fuse technology for programming and are built on 130nm technology.
SiliconBlue Technologies and Achronix FPGAs are used for smaller applications.
SiliconBlue Technologies provides low power FPGAs with 17K gates, operating at
32MHz fabricated in 65nm technology. Achronix FPGAs are RAM based and power
efficient for being asynchronous.

Almost all of the modern FPGA architectures have CLBs, Block RAMs (BRAM)
and Multipliers (MUL) embedded in the FPGA chip. Thus, the Xilinx Spartan
like architecture is assumed for the efficient floorplanning methods presented in
this thesis. However, the proposed methods can be suitably adapted for other
architectures by adding appropriate location constraints for each additional resource
on a modern FPGA chip.

1.4 Design flow for FPGA

In order to obtain high performance circuit on an FPGA, highly efficient CAD tools
are required in each step of the FPGA design flow. Figure 1.4 depicts the typical
CAD flow for modern FPGAs. A circuit to be mapped on to an FPGA, is first
written in any of the hardware description languages such as VHDL/ Verilog. This
description is then synthesized and technology mapped to the target FPGA archi-
tecture depending on the number of inputs and outputs available in the LUT of

10 Ch 1. Introduction

CLBs. Next, this technology-mapped netlist of CLBs are placed to physical locations
on the target chip optimizing certain objective functions such as minimization of
wirelength, delay and power. In recent times, due to large design size, increased com-
plexity and partial reconfigurability in FPGAs, circuits are partitioned into modules
and the technology-mapped netlist of modules are floorplanned before placement of
individual CLBs in a module. The placement is then routed by determining the
exact pre-fabricated wire segments to be used for inter-connecting the terminals of
the placed CLBs. This defines the programming of the appropriate programmable
interconnects on chip, and is stored as a bitstream. Finally, the bitstream of the
placed and routed circuit is downloaded on to the FPGA chip through a hardware
interface such as a dedicated serial or parallel port of a PC, for execution. A more
detailed discussion on each of this step follows [Chen 2006]:

Design entry: Typically, the digital design is represented at register transfer
level (RTL) describing the transfer of signals between registers and the logical opera-
tions performed on these signals during transfers. This RTL design is then described
using various hardware description languages such as VHDL [IEEE 1987] / Verilog
[Verilog International 1993]. The design constraints such as expected operating fre-
quency, delay bounds of signal path delays (i) from input pads to output pads (I/O
delay), (ii) from input pads to registers, and (iii) from registers to output pads are
specified as input. The design constraints also include physical location constraints
specifying the position of certain type of logic in a particular place. The target
FPGA device to which the given design is to be mapped, is next selected from the
set of available architectures depending on the size and resource requirements of the
design.

Synthesis: For a design, different datapath operations such as additions, mul-
tiplications, register files, memory blocks, control logic etc, are identified from the
given Register-Transfer-Level (RTL) design. Next, architecture independent opti-
mizations such as datapath optimization and control logic optimization is performed.

Technology mapping: After synthesis and architecture independent optimiza-
tion, the technology mapping step maps the optimized datapath and control logic
to dedicated circuit structures such as multipliers, embedded memory blocks and
CLBs available on the FPGA chip. This generates a netlist of CLBs, IOBs and other
resources to be assigned to the target FPGA chip. The netlist of CLBs defines a set
of signal nets, where each signal net connects a set of CLBs or IOBs.

Floorplan: With increasing complexity of modern FPGAs and design size,
physical mapping of a flattened technology mapped netlist of CLBs and IOBs on to a
chip has become more complex, and is likely to be counter-productive for obtaining

1.4. Design flow for FPGA 11

Circuit spec.
(VHDL/Verilog)

Technology mapping

Floorplanning

Placement

Routing

Bitstream generation
and programming

Synthesis

FPGA target
architecture

Figure 1.4: CAD flow for FPGAs; the rectangle with dashed lines shows the scope
of this thesis.

high performance. In order to overcome these issues, a given design is partitioned
into modules and then mapped on to a target architecture. Each module in the
technology mapped netlist of modules requires a number of different logic resources
available on the chip. A floorplanning step has become essential for modern FPGAs
to allocate required logic resources to each of the module. The floorplanning problem
for FPGAs with pre-placed heterogeneous resources and fixed-die size is the problem
of allocating logic resources to each module, such that there is no overlap of modules
while the optimization criteria such as total wirelength and area of the floorplan are
minimized. One of the main focus of this thesis is this floorplanning step of physical
design cycle for heterogeneous FPGAs.

Placement: After the technology mapping step, a netlist of logic blocks is ob-
tained. The CLBs are then assigned to specific locations on the target chip such
that certain objective criteria such as minimization of wirelength and critical path
delay, are achieved. In order to obtain high performance circuit, the delay due to
interconnection has to be minimized. This requires the connected CLBs and IOBs
to sit as close as possible to each other. The exact delay of a connection can not be
computed until and unless the path of the connection is routed through the channels
and switch boxes on a particular FPGA chip. For large designs, this step is preceded
by floorplanning of the modules, and then the netlist of CLBs within each module

12 Ch 1. Introduction

are placed.

The quality of a placement solution is typically judged by a cost metric called
half-perimeter wirelength (HPWL) cost [Sarrafzadeh 1996] of a placement. For a
signal net (i.e., a set of terminals of certain CLBs which are to be inter-connected)
the minimum rectangle enclosing all the CLBs to be connected is called the bounding
box of the net. The HPWL of a placement is the sum of the half-perimeters of
the bounding boxes of all the signal nets in the given circuit, and hence called the
bounding box cost (BB cost). The critical path delay of a circuit is the delay due to the
longest path from an input pad to an output pad. Thus, it decides the performance
of a circuit and needs to be minimized to obtain a high performance circuit. Since
the exact delay can not be computed until and unless the signal nets of the design
are routed, HPWL is used to evaluate the quality of the placement solution. Thus,
HPWL or BB cost metric gives an estimate of the total routing wires required for
a placement and this needs to be minimized for a high quality placement. HPWL
is the standard and most popular estimation metric for evaluating the placement
solution [Sherwani 1993, Sarrafzadeh 1996].

In this thesis, several variants of fast and efficient methods of placing the netlist
of CLBs and IOBs have been proposed with the objective of minimizing the HPWL
cost.

Routing: In this step, global and detailed routing are performed to connect
all signals or nets in the netlist using the available programmable interconnects on
the chip. If the solution is not routable, then the placement of logic blocks has
to be altered and the place-then-route steps have to be iterated to obtain a high
performance routable design.

Bitstream generation and programming: This step takes the placed and
routed design to generate the necessary bitstream to program the logic and intercon-
nects implementing the intended logic design on the target device through a serial
or parallel port interface.

1.5 Scope of the thesis

This thesis focuses on the placement and floorplanning steps of the FPGA physical
design flow. The rectangle with dashed lines in Figure 1.4 indicates the scope of this
thesis. Most of the CAD algorithms usually take long time to map, place and route
circuits with millions of gates on a state-of-the-art FPGA chip. This may nullify its
advantage of very short time-to-market, and in particular the capability of reconfig-
uration by the users. With increasing emphasis on reconfigurable computing, there

1.5. Scope of the thesis 13

is a pressing need for very fast CAD tools. Both the placement and floorplanning
problems for FPGAs are NP-hard [Shahookar 1991, Sherwani 1993]. Thus, optimal
solution can not be obtained in reasonable time. Efficient heuristics are needed that
quickly produce solutions with good quality. Current FPGA architectures such as
Xilinx Virtex series FPGA, consist of CLBs along with BRAMs and MULs.

The placement and floorplanning methods described in this thesis are developed
for such heterogeneous FPGAs, although the basic methodology may be applied to
other architectures as well with some modifications. All the methods in this thesis
aim at achieving quick solution in the context of FPGA’s reconfigurability with
minimal compromise in quality of the solution. The quality of the placement and
floorplanning is measured using the standard metric of half-perimeter wirelength
(HPWL) over all the signal nets in a placed circuit. Most of the modern commercial
FPGAs being of island-style, placement problems for this architecture has been
addressed in this thesis. Further, as most of the modern FPGAs have BRAMs and
MULs embedded in the chip, Xilinx Spartan like architecture is assumed for the
floorplanning methods discussed in this thesis. However, the proposed methods can
be adapted to the similar FPGA architectures appropriately.

1.5.1 Placement of CLBs on island-style homogeneous FPGAs

As stated earlier, placement is the process of assigning position to each CLB and
IOB in the netlist to a particular location on a target FPGA chip such that certain
objective functions are optimized. The optimization criteria can be minimization of
total HPWL of all nets, or critical path delay, or congestion, or power dissipation, or
crosstalk, or a combination of the above. Figure 1.5 shows the placement problem
for FPGAs discussed in this thesis. The precise problem formulation is given in
Chapter 3.

In order to solve the placement problem, one group of researchers have aimed
at obtaining accurate estimation metrics to capture the exact details of the chip
architecture and the netlist characteristics. They have applied stochastic iterative
methods such as simulated annealing (SA) to obtain high quality solution using
cost metric for capturing the architectural and placement details during every iter-
ation. The placement configuration is perturbed by swapping CLBs or IOBs and
the schedule of annealing is updated depending on the new value of the cost. This
process continues until there is no significant change in the cost for a few consecu-
tive iterations. The first and the most popular tool developed using this concept is
the VPR (Versatile Place and Route) [Betz 1999, Marquardt 2000]. VPR produced

14 Ch 1. Introduction

po
1 po

2

pi
2pi

1 pi
3

c1 c2 c3

c6

c8c7

c4 c5

c1c2 c3

c4 c5 c6

c8c7

HPWL cost = 39

netlist of CLBs and IOBs
homogeneous FPGA chip

primary
 input

primary
output

IOB padCLB

CLB

po
1 po

2

pi
2

pi
1

pi
3

Figure 1.5: The placement problem for FPGAs with CLBs and IOBs.

high quality of solution at the cost of fairly long execution time. But in the context
of reconfigurability, the placement method has to be very fast. Moreover, real time
applications and smaller applications may not even require high quality solution at
the cost of longer place-and-route time. Thus, another group of researchers aimed at
obtaining faster solution with minimal compromise in the quality using tabu-search
based technique [Emmert 1998], partition-based approaches [Maidee 2005], analytical
approaches [Xu 2005, Gopalakrishnan 2006]. It was observed that, all of the above
methods produced initial placement solutions, which were further improved by a low
temperature simulated annealing, thus reducing the execution time of simulated an-
nealing based placer.

The quality of the simulated annealing based placement depends largely on the
initial placement configuration [Vorwerk 2009]. Many trials have to be performed
with various initial solutions. This motivated the development of fast placement
methods that produce quick solutions with minimal sacrifice in the quality. Although
different types of heuristics such as simulated annealing based method, partitioning
based method, analytical methods, meta-heuristic methods such as tabu search and
many other heuristic methods have been tried to produce high quality solution
quickly, none of them report the quality of the initial solution produced by these
methods. Moreover, there is no theoretical bound on the quality of the solution
thus obtained. This salient issue for FPGA placement methods is addressed in this
thesis. The major contributions in FPGA placement are:

1.5. Scope of the thesis 15

• New deterministic yet fast methods using both bottom-up and top-down
paradigms for placing a flattened CLB netlist on to an island-style FPGA.
Observation of the quality of placement before application of low-temperature
simulated annealing (Chapters 3 and 4) and,

• Deriving a theoretical bound on the quality of the placement produced by the
top-down approach (Chapter 5).

First, a bottom-up cone based greedy heuristic for placement of both CLBs and
IOBs is proposed, and the quality of the solution before and after the execution of a
low-temperature simulated annealing has been observed. Next, experimental results
on new top-down deterministic approaches for placement are presented, and again
the quality of the solution produced both before and after the execution of a low
temperature simulated annealing are scrutinized. Finally, a theoretical bound on
the quality of the solution is derived for a special case of the top-down deterministic
method. Given a set of choices for placement tools with bounds on the quality of
the solution, a user can choose a specific placement tool for a particular design re-
quirement. For example, to place a small design without very stringent performance
requirement, one can opt for a placement tool which produces solutions 33× faster
with 1.31× degradation in the quality of the best known solution.

Current FPGAs having multiple pre-placed resources, segregate the CLBs into
more than one smaller islands of CLBs as shown in Figure 1.3. Once the floorplan of
the modules are obtained, the CLBs pertaining to a module needs to be placed in a
small array of CLBs in a given region. This generates a set of independent placement
subproblems which place smaller designs on to a set of smaller 2D arrays of CLBs.
Application of highly sophisticated but complex placement methods to solve such
subproblems may add overhead on the overall run-time of the FPGA physical design
cycle. In order to achieve faster place-and-route time in such a scenario, our fast,
deterministic placement methods can play an important role.

1.5.2 Floorplanning for heterogeneous FPGAs

A large design with millions of gates is typically partitioned into a smaller number
of functional modules to reduce the compile time for place-and-route and to obtain
better quality of solutions. Moreover, FPGAs with pre-placed resources on it has
necessitated a floorplanning step for hierarchical designs in the physical design flow
of FPGAs. Although a large volume of work exists for ASIC floorplanning, these
were generally not employed while mapping designs on to the earlier island-style

16 Ch 1. Introduction

m1

m2

m3

m6

m8m7

m4 m5

netlist of soft modules

net S6

net S4

(mclb
3 ,mram

3 ,mmul
3)

(mclb
8 ,mram

8 ,mmul
8)

m1

m2

m3

m6

m8
m7

m4

m5

heterogeneous FPGA chip

CLB

RAM

MULmodule

resource
requirement

Figure 1.6: The floorplanning problem for FPGAs with heterogeneous resources; net
S4 and S6 are the nets consisting of modules {m1, m4, m5, m7 m8} and modules
{m1, m2, m3, m6 m7} respectively.

FPGAs. In a typical FPGA physical design flow, after technology-mapping, a flat-
tened CLB netlist is directly placed [Betz 1997, Maidee 2005] and routed without
any floorplanning. Of course, for hierarchical designs, modules or macros consist-
ing of CLBs only were floorplanned or placed using various bin packing techniques
[Tessier 2002, Emmert 1998]. But, for modules with heterogeneous resource require-
ments, neither this technique nor the traditional floorplanners for ASICs adapted to
FPGAs, are adequate [Wang 2003, Taghavi 2004]. Hence, there is a pressing need
for fast floorplanning techniques that consider the heterogeneous logic and routing
resources of modern FPGAs. The floorplanning problem for a netlist of soft modules
(modules without fixed dimensions) is the problem of determining the size and posi-
tion of each module on a chip such that the modules are non overlapping and certain
optimization criteria such as wirelength, area of the floorplan are minimized. Figure
1.6 shows the floorplanning problem for FPGAs with heterogeneous resources. The
precise problem formulation is given in Chapter 6.

The floorplanning problem is also NP-hard [Sherwani 1993] and thus solved with
heuristic methods. Most of the earlier approaches of floorplanning for FPGAs
[Cheng 2004, Cheng 2006, Feng 2006] with heterogeneous resources are based on
simulated annealing, and are slow in the context of reconfiguration. Our focus is to
develop fast floorplanning method which is deterministic, yet produces floorplans
of high quality for FPGAs with heterogeneous resources. Once again, the standard

1.5. Scope of the thesis 17

δ11

δ12

δ13

δ15

δ16σ2

σ1 δ14

Schedule of two instances

net of δ15

net of δ14

(mclb
13 ,mram

13 ,mmul
13)

(mclb
16 ,mram

16 ,mmul
16)

δ21

δ22

δ23

δ24σ2

σ1

net of δ22

(mclb
22 ,mram

22 ,mmul
22)

(mclb
24 ,mram

24 ,mmul
24)

time

instance 1

instance 2

σ1

δ11

δ12

δ13

δ15

δ16

δ14

σ2

δ21

δ22

δ23

floorplan of instance 1
on heterogeneous FPGAs

σ1

σ2

floorplan of instance 2
on heterogeneous FPGAs

Figure 1.7: The floorplanning problem for partial reconfiguration in FPGAs with
heterogeneous resources; σ: common (static) modules, δ: dynamic modules.

HPWL cost metric is chosen for evaluating the quality of the floorplans obtained by
the proposed method.

1.5.3 Floorplanning for partial reconfiguration in heterogeneous
FPGAs

FPGAs are programmable since its inception. However, in the past, the complete
chip had to be configured whenever it required reconfiguration. This incurred re-
configuration overhead. Also, chunks of FPGA resources remained unutilized, when
small tasks were executed on FPGA. To better utilize the FPGA resources, mod-

18 Ch 1. Introduction

ern day FPGAs provide partial reconfiguration capability on FPGAs, i.e., a part
of the chip can be reconfigured while the other part is in operation. In order to
effectively use this feature, new CAD tools are required to map the given set of
tasks to the FPGA chip subject to a set of conflicting optimization parameters.
The objective is to place and route the tasks very quickly on to the FPGA chip such
that the resource utilization is maximized, reconfiguration overhead is minimized
while the performances of the tasks are maximized. Given a schedule of instances,
each instance having a netlist of modules and a set of common modules across all
instances, the floorplanning problem is to determine globally the sizes and positions
of the common modules, invariant over all the instances in the schedule, so that the
partial reconfiguration overhead is minimized, while the total wirelength of all the
floorplans for the entire schedule is minimized. With heterogeneous FPGA chips
having pre-placed resources, the global floorplanning problem becomes a very diffi-
cult task and is NP-hard [Garey 1979]. Figure 1.7 shows the floorplanning problem
in the context of partial reconfiguration in heterogeneous FPGAs. Chapter 7 has
the precise problem formulation of floorplanning for partial reconfiguration.

The research in this new area of partial reconfiguration is merely a handful.
Moreover, the existing methods are based on simulated annealing based approaches
[Singhal 2006] as in the case of floorplanning. Our objective is to develop a fast
yet effective global floorplanning method for the set of instances in a given schedule
such that the partial reconfiguration overhead is minimized without compromising
the quality (measured as HPWL) of the floorplan.

1.6 Organization

Figure 1.8 gives a pictorial representation of the organization of this thesis. The
earlier works on FPGA placement, floorplanning and partial reconfigurations are
detailed in Chapter 2. The two variants of our fast deterministic placement methods
for netlist of CLBs on an island-style FPGA, namely (i) bottom-up greedy cone
based approach and (ii) top-down partition-based approach, have been described in
chapters 3 and 4. In Chapter 5, a theoretical bound on the quality of placement
obtained by the most promising method, described in Chapter 4, is derived. Chapter
6 explains our deterministic unified FPGA floorplan topology generation and sizing
method for floorplanning a netlist of modules with heterogeneous resources. A
global floorplanning method in the context of partial reconfiguration is proposed in
Chapter 7. Finally, the concluding remarks and potential future research directions
appear in Chapter 8.

1.6. Organization 19

Determinstic, Fast
FPGA placement

Deterministic, Fast
FPGA floorplanning

with
heterogeneous

 resources
(CLB,RAM,MUL)

netlist of soft modules
with heterogeneous

resource requirements

a feasible floorplan
of modules

minimize
total

HPWL
FPGAs

with
homogeneous

 resources
(CLBs and IOBs) minimize

total
HPWL

a feasible
placement

netlist of
CLBs and IOBs

islands of CLBs
segregated by
heterogeneous

resources

Full reconfiguration
 for a single

instance

Partial
reconfiguration
 for multiple

instances of a schedule

Deterministic, Fast Global
FPGA floorplanning

for all instances

with
heterogeneous

 resources
(CLB,RAM,MUL)

(i) a schedule of instances
with common modules

(ii) each instance has soft
modules with heterogeneous

resource requirements

a feasible floorplan
of modules in each instance

minimize
total

HPWL

minimize
reconfiguration

overhead

Placement
(Chapters 3, 4 and 5)

bottom-up
cone based
(Chapter 3)

top-down
partitioning-based

with
theoretical bound
(Chapters 4, 5)

Floorplanning
(Chapter 6)

Global Floorplanning
for partial reconfiguration

(Chapter 7)

Figure 1.8: The organization of this thesis.

Chapter 2

Previous Works

Contents
2.1 Placement on island-style FPGAs 21

2.1.1 Stochastic methods . 22

2.1.2 Partitioning based placement 25

2.1.3 Analytical placement . 26

2.1.4 Other placement techniques 28

2.1.5 Summary . 30

2.2 Floorplanning for heterogeneous FPGAs 31

2.2.1 Summary . 33

2.3 Floorplanning for partial reconfiguration 34

2.3.1 Summary . 35

2.4 Conclusion . 36

In this chapter, a survey of different approaches for placement and floorplanning
is reviewed with respect to the placement tools for earlier generation small scale
FPGAs with CLBs to the recent partially reconfigurable FPGAs of the present day.
Section 2.1 has the review of different placement approaches for FPGA placement.
Section 2.2 provides the earlier works on FPGA floorplanning for both homogeneous
and heterogeneous FPGAs. The techniques of floorplanning for partial reconfigu-
ration on FPGAs with heterogeneous resources have been described in Section 2.3.
The chapter closes with concluding remarks in Section 2.4

2.1 Placement on island-style FPGAs

FPGA placement is an NP-hard combinatorial optimization problem [Shahookar 1991].
So, there is no known algorithm that produces optimal solution in reasonable CPU
(guaranteed polynomial) time. Thus, many heuristic techniques have been devel-
oped to obtain solutions. The heuristics are broadly divided into the following three
categories:

22 Ch 2. Previous Works

(a) (b)

Figure 2.1: An example of placement [Betz 1999]: (a) random initial placement of
netlist of CLBs and IOBs, (b) final placement minimizing linear congestion cost
(note the reduction in congestion); (Courtesy: [Betz 1999]).

• stochastic methods

• partitioning based placement

• analytical placement

2.1.1 Stochastic methods

In stochastic methods such as simulated annealing based placement, an initial place-
ment configuration of CLBs and IOBs is obtained by a random assignment of blocks
to legal positions on the FPGA target array. Each placement configuration usually
has a multi-objective cost function such as wirelength, timing, power, to be opti-
mized through several iterations. The initial placement is perturbed by swapping
the positions of two blocks. The move is either accepted or rejected depending on
an acceptance criteria based on the annealing schedule defined for simulated anneal-
ing. The iteration halts when the given exit criteria is met, or there is no more
change in the cost function due to moves. Thus, simulated annealing is a stochas-
tic heuristic that randomizes the iterative improvement procedure, even allowing
moves that worsen the current solution in order to prevent the search from getting
stuck at a locally optimal solution. The moves are controlled probabilistically by
an annealing temperature. Theoretical analysis shows that this class of algorithms
converges to a global optimum asymptotically with a probability 1, provided certain

2.1. Placement on island-style FPGAs 23

conditions are met [Wong 1988, Sechen 1988]. In reality, it is almost equivalent to
searching the entire feasible solution space [Vygen 2007]. So, the research in VLSI
placement using this method, has boiled down to empirically finding suitably well
tuned parameters in the objective function and an appropriate annealing schedule
by performing several trials, such that near-optimal solutions are obtained.

Among these methods, the place and route tool called VPR (Versatile Place
and Route) by Betz and Rose [Betz 1997, Betz 1999, Marquardt 2000] was the first
FPGA place-and-route tool and it has become the most popular one. The results
obtained by VPR has become the benchmark for the entire research community
working in FPGA placement and routing. A placement result obtained by VPR
[Betz 1999] on a target FPGA chip is shown in Figure 2.1(b). VPR employs a con-
gestion aware half-perimeter bounding box metric in wirelength driven mode, with an
adaptive simulated annealing schedule for island-style FPGAs. The linear congestion
cost function takes into account the channel width along with the half-perimeter wire-
length of all nets. In the timing driven mode, the timing optimization is done by the
addition of a timing cost term to the objective function. It minimizes the weighted
delays of all connections, where the weight of a connection depends on its slack.
This does not consider the impact of exponential number of paths going through
a particular connection. The normalized difference in costs of two placement con-
figuration has two components: the linear congestion cost for the wirelength driven
mode, and the timing cost for the timing driven mode as follows [Marquardt 2000]:

△C = λ · △timing_cost
previous_timing_cost

+ (1− λ) · △linear_congestion_cost
previous_linear_congestion_cost

where linear_congestion_cost is

Nnets∑
i=1

q(i)
[

bbx(i)
Cav,x(i)β

+
bby(i)

Cav,y(i)β

]

and timing_cost is ∑
∀i,j∈circuit

Delay(i, j) · Criticality(i, j)crit_exp

△ in the above equation is the change in cost function. For each net i, bbx(i) and
bby(i) denote the horizontal and vertical spans respectively of the bounding box of
ith net. The factor q(i) compensates for the fact that the bounding box wire length
model underestimates the wiring necessary to connect nets with more than three

24 Ch 2. Previous Works

terminals. Cav,x and Cav,y are the average channel capacities in the x and y di-
rections respectively, over the bounding box of net i. The exponent β in the cost
function allows the relative cost of using narrow and wide channels to be adjusted.
Cav,x and Cav,y are constants in case of bounding box cost function. β is set to 0 to
revert the linear congestion cost function to the bounding box cost function (pp. 56 of
[Betz 1999]). Delay(i, j) is the delay defined in the delay lookup matrix correspond-
ing to the placement of two blocks i and j. Criticality(i, j) defines the criticality
of a source-sink connection between i and j [Marquardt 2000]. The crit_exp biases
the critical connections more than the non critical ones [Marquardt 2000]. The per-
formance of VPR has been validated on a set of MCNC (Microelectronics Center
of North Carolina) benchmark circuits, where the size of the largest benchmark is
about 9000 CLBs.

Kong [Kong 2002] has proposed an algorithm PATH, which can scale the impact
of all paths by the relative timing criticality measured by their slacks. The work
shows that in certain cases, enumeration of all paths in the circuit, counting their
weights and then distributing the weights to all edges can be done in linear time.
Compared to VPR, PATH reduces the longest path delay by 15.6% on average with
no run-time overhead and only 4.1% increase in total wirelength.

Although simulated annealing based methods, such as VPR, produce “good”
quality of solution with suitably tuned parameters in terms of congestion-aware
HPWL and critical path delay during routing, it takes long hours [Mulpuri 2001,
Chen 2006] to execute. As it is an iterative move-based stochastic method, the
execution time increases as the size of the netlist increases. This drawback affects
the run-time reconfigurability advantages of FPGAs, and hence the scalability.

Emmert et al. [Emmert 1999b] have proposed meta-heuristic search techniques
such as tabu search optimization for the placement step in order to reduce the exe-
cution time while providing high quality solutions. The proposed method employing
tabu search minimizes the total wirelength and the length of critical path edges for
placed circuits on FPGAs. The moves per iteration are similar to force-directed
placement methods for gate arrays [Eisenmann 1998]. The results showed dramatic
improvement in placement time relative to the commercially available CAD tools
(20×) for a set of small benchmark circuits, and the quality of placement was com-
parable to that of the commercial tools. The benchmark circuits were smaller in size,
having less than 1000 CLBs and about 3000 nets. The tabu search based method
did as good as VPR for the larger MCNC benchmarks but did not show significant
speedup or quality gain.

Vicente et al. [Vicente 2004] proposed a method called Thermodynamic Com-

2.1. Placement on island-style FPGAs 25

binatorial Optimization (TCO) for the FPGA placement problem. The method is
derived from both thermodynamics and information theory. In TCO, two kinds of
processes, termed as micro state and macro state transformations, are considered.
Applying Shannon’s definition of entropy to reversible micro state transformations,
a probability of acceptance based on Fermi-Dirac statistics is derived. Applying
the laws of thermodynamics to macro state transformations, an efficient anneal-
ing schedule is provided. Comparison with simulated annealing (SA) based VPR
showed that TCO produces high quality results of SA, while inheriting the adaptive
properties of natural optimization. The number of moves required and the CPU
time taken by TCO is less than VPR in sixteen out of eighteen cases. The quality
of the placement is comparable to VPR, and the speedup on the average is 1.36×
over VPR. However, the method is quite complex overall. Further, this being a
stochastic method, the run-time of TCO increases with design size, and hence is not
likely to provide high scalability.

2.1.2 Partitioning based placement

In recursive partitioning based method, on one hand, the rectangular FPGA chip is
divided into sub-rectangles by horizontal or vertical cuts, and on the other, the cir-
cuit is simultaneously partitioned such that each partition fits into the corresponding
sub-rectangles and the number of nets going across partitions is minimized. This is
the minimum bisection problem [Garey 1979] where the objective is to partition the
set of vertices into equal sized subsets such that the number of edges having its two
end points in the two different partitions is minimized. The problem being NP-hard,
mostly heuristics [Fiduccia 1982, Kernighan 1970a, Alpert 1995] are employed.

The recursive partitioning based method such as Partitioning based Placement
For FPGAs (PPFF) [Maidee 2003, Maidee 2005] has been proposed to build an
effective coupling between the placement and routing stages. The method incorpo-
rates an accurate delay model and employs effective heuristic that minimizes critical
path delay. It performs recursive bi-partitioning in a breadth-first manner. At each
level of partitioning hierarchy, it considers terminal alignment by incorporating an
alignment_cost in the VPR flow. For this, it uses the routing information of al-
ready routed circuits. PPFF also optimizes the partitioning order of the regions at
the same level of hierarchy by a simple greedy algorithm. Finally, it goes through a
legalization step and post-optimization step of low-temperature simulated anneal-
ing. The overall flow of the proposed approach is shown in Figure 2.2. First, a
set of selected circuits are placed and routed using VPR. Then, the routing pro-

26 Ch 2. Previous Works

selected
circuit VPR Placement VPR Routing

Routing analysis

PPFF PlacementVPR RoutingTiming
info

Figure 2.2: Flow of PPFF [Maidee 2003, Maidee 2005].

file information obtained from the already placed and routed circuit is used in the
PPFF placement. Finally, the circuits are routed using VPR router. The results
produced by PPFF show 2% improvement in delay over VPR with a penalty of 30%

increase in run-time when the routing profile of individual circuit is used. When the
routing profiles of only three representative circuits are used, the speedup is 3.6×.
The regression analysis of up to 8000 blocks shows better scalability of the method
compared to VPR.

Although the objective function is global in partitioning based approaches, a
“good” cut at a certain level does not guarantee “good” cuts at subsequent levels.
Their method includes a local net terminal alignment heuristic during each level of
partitioning. PPFF is based on a reverse engineering technique where the routing
profile statistics of a few already routed circuits are used. This requires additional
pre-processing time. Moreover, to the best of our knowledge, no theoretical analysis
has been provided for the key step of using routing profile statistics of a few already
routed circuits for any given circuit and obtaining speedup. The method is especially
effective for multiple placement runs on the same circuit.

2.1.3 Analytical placement

In analytical placement, the objective is to minimize the netlength, but block over-
lap is allowed by relaxing certain constraints. This leads to an easier placement
problem which is formulated as certain variant of a mathematical program such as
quadratic placement [Vygen 2007]. But, this entails a major bottleneck. Because
of the constraint relaxation, block overlaps remain. Removing such overlaps, while
maintaining the objective criteria of wirelength minimization, remains a daunting
task and again does not scale up well to large circuits.

Quadratic placement algorithms belonging to the class of analytic placement,

2.1. Placement on island-style FPGAs 27

attempt to minimize total squared wire length by solving linear equations. The
resulting placement tends to locate all cells near the center of the chip with a large
amount of overlap. As the sum of the square of the wirelengths is only an indirect
measure of linear wire length, the resulting total wire length may not be minimized.
Xu et al. in their work Quadratic Placement for FPGAs (QPF) [Xu 2005] have
proposed a placement algorithm based on quadratic placement. It builds and solves
linear equations repeatedly to produce the placement. The placements generated
in each iteration might not be legal and thus requires additional heuristic to obtain
a legal placement by pulling nodes out of the dense area while minimizing linear
wirelength. QPF also incorporates a low-temperature simulated annealing step to
improve the quality of the solution. Experimental results indicate that, on an aver-
age, QPF is 5.8× faster compared to the well known FPGA placement tool VPR,
while providing almost comparable estimated total wirelength. However, QPF does
not report the critical path length obtained for the placement. Also, the channel
width increases during routing.

Gopalakrishnan et al. in their work on Convex Assigned Placement for Regular
ICs (CAPRI) [Gopalakrishnan 2006], have proposed an architecture aware analytical
placement using graph embedding and metric geometry [Matousek 2002] that models
the relationship between performance and the routing grid. The placement problem
is modeled as an embedding of a graph representing the netlist into a metric space
that is representative of the FPGA architecture. An analytic metric of distance
that models delays along the FPGA routing grid has been developed. They use a
metric space that accurately captures the delays on the FPGA chip, rather than
the Manhattan space. Then the netlist is embedded into the defined metric space
using matrix projections [Golub 1983] which produces an illegal placement with
overlapping CLBs. The placement is legalized using a online bipartite matching
[Gopalakrishnan 2006] formulation. Finally, a low-temperature simulated annealing
step is performed to improve the solution further. The overall flow of CAPRI is
given in Figure 2.3. Experimental comparisons with the popular FPGA tool VPR,
show that with CAPRI’s initial solution, the resulting placements have median
improvements of 10% in critical path delays for the larger MCNC benchmarks. The
total placement run-time improved by 2× on the average but the average or the
range of run-times were not available in the published literature. It appears that
the step of online bipartite matching is used iteratively and not once. Hence, it is
likely to affect the scalability for large arrays. Analysis on the number of iterations
required by the legalization step would have added strength of this method.

28 Ch 2. Previous Works

Design netlist

binary quadratic assignment
problem formulation

convex objective to minimize
distortion, non-convex solution space

fast heuristic to find good assignment
via matrix decomposition and online

bipartite graph matching

FPGA routing architecture,
abstracted as graph

Define a metric space for
routing architecture

Embed netlist graph in
metric space defined by

architecture graph

local optimization to improve
routability and specific critical paths

using any move-based technique (SA)

Phase I

(CAPRI)

Phase II

Final placement

Figure 2.3: Overview of CAPRI (Courtesy: [Gopalakrishnan 2006]).

2.1.4 Other placement techniques

Sankar et al. have proposed Ultra-Fast Placement (UFP) in [Sankar 1999] aiming to
improve the run-time of the VPR placement tool, which produces good placement
results but is not very scalable due to the use of simulated annealing. It employs
multi-level optimization and multi-level clustering. The algorithm grows a cluster of
blocks based on a connectivity based scoring function. The function includes (i) the
strength of connection between a block and a cluster, and (ii) the number of nets
that will get absorbed in a block if merged with the cluster. As a result, a netlist
of clusters is obtained. A hierarchy of clusters is built in the same way by merging
clusters. Finally, a low temperature simulated annealing is performed at each level
of clustering hierarchy. It achieved 50× speed-up over VPR whereas the wirelength
overhead is 33%.

2.1. Placement on island-style FPGAs 29

2.1.4.1 IOB placement

There are a few works on the placement of IOBs in the literature. Khaled and
Rose have experimentally studied the impact of fixing the positions of IOBs in a
random fashion [Khalid 1995]. The experiments show that fixing the assignment of
signals to pins in a random fashion can cause an increase in delay up to 19% in
worst case and significantly impact the routing resources needed to complete the
routing. For the Xilinx XC4000 architecture, random pin constraints caused an
increase of up to 20% more single length interconnect segments, 11% more double
length interconnect segments, and 49% more long length interconnect segments,
although no routing failures occurred.

Anderson et al. have proposed [Anderson 2000] a placement algorithm that uses
a combination of simulated annealing, weighted bipartite matching and constructive
packing to produce a feasible IOB placement. Results show that the proposed al-
gorithm produces placements with wirelength characteristics that are similar to the
placements produced when pad placement is unconstrained.

Mak [Mak 2004, Mak 2005] has proposed the first exact approach to solve the
constrained IOB placement problem for FPGAs that support multiple I/O stan-
dards. The author derives a compact integer linear program (ILP) formulation for
the constrained IOB placement problem. The size of the ILP derived depends on
the classification of the IOB type rather than the number of IOBs to be placed,
and hence scalable to very large design instances. For a Xilinx Virtex-E FPGA, the
number of integer variables required is never more than 32 and is much smaller for
practical design instances. Extensive experimental results using a non-commercial
ILP solver show that it takes only seconds to solve the resultant integer linear pro-
gram in practice. In addition, the author also proposes a placement flow to place
both core logic and IOBs. The method places the IOBs respecting a set of I/O
banking rules corresponding to the multiple I/O standards. Then, the core logic,
the CLBs are placed using simulated annealing. Thus, IOBs are placed without
considering the connectivity of the IOBs and the CLBs. In this thesis, we address
the issue of IOB placement with respect to the netlist and not the rules of I/O banks.

2.1.4.2 Combined placement and routing

Nag et al. have proposed a combined approach [Nag 1998] where a fast router is
embedded inside the inner loop of a simulated annealing based placement engine.
Although, there is performance improvement of 8% to 15% over the commercially
available tools at that time, the run-time overhead was very high. It took 6× to

30 Ch 2. Previous Works

11× more time than the commercial Xilinx tool XACT [Xilinx].

Alexander et al. [Alexander 1998] have proposed an integrated approach, where
a global router was embedded in a partitioning based placement algorithm. This
was more scalable, but there was no result demonstrating the superiority of this
combined approach.

A more recent work proposed by Chang et al. [Chang 2000] combines a clus-
ter growth placer with maze router, where nets are placed and routed one by one
using a cost function. However, this does not report any comparison with the com-
monly used flows. Hence, nothing could be concluded on the effect of this combined
approach.

2.1.5 Summary

All of the above works, specially the CLB placement, aim at faster method for
routable placement with better or comparable critical path delay and/or wirelength
as in VPR. Almost all the works except VPR, utilize various heuristic techniques to
generate a good initial solution optimizing delay, and then employ a low-temperature
simulated annealing to produce the final solution. This indicates that the solution
produced by those approaches are not close to the quality of the solution produced
by the simulated annealing based method VPR. Nevertheless, the solution by these
methods are better than a random initial placement, and so the simulated annealing
converges faster in all the three types of heuristics detailed above. Further, the
methods which produced better solution than VPR, had to sacrifice in run-time.

Although all of the above methods attempted at generating high quality initial
solution, no work addresses the quality of the initial placement obtained by their
deterministic method, either theoretically or experimentally. All the works report
the quality of the final solution after execution of the low temperature simulated
annealing. The HPWL, routability, delay, congestion of the initial placement are
not available in the literature. Moreover, none of the above approaches give a theo-
retical guarantee on how close their initial placement solution is to the near-optimal
solution. In this thesis, we propose both bottom-up and top-down deterministic
placement approaches for island-style FPGAs, and derive theoretical bound on the
quality of the solution produced by our partition based top-down approach.

2.2. Floorplanning for heterogeneous FPGAs 31

2.2 Floorplanning for heterogeneous FPGAs

With the advent of technology, current FPGAs not only have the array of CLBs
and IOBs but also RAM, Multiplier blocks, DSP cores and even processor cores
pre-placed at specific locations on the chip. Thus, the netlist of CLBs and other
resources need to be placed in appropriate positions on the target chip such that the
performance of the design is optimized. Modern FPGAs with million of gates are
now capable of implementing large designs on to it. The heterogeneity of FPGAs
and the large size of designs, have compelled researchers to investigate floorplanning
for FPGAs.

Emmert et al. [Emmert 1998, Emmert 1999a] devised a macro based floorplan-
ning methodology for earlier generation island-style FPGAs. It uses clustering tech-
niques to combine macros into clusters. Then the clusters are placed using tabu
search based heuristic enhancing the circuit routability, reducing total wirelength
by means of terminal propagation. Using the Xilinx XC4000 series of FPGAs as the
target architecture, the work demonstrated effectiveness of this fast floorplanning
method on a collection of designs. However, the clustering strategy needs extensive
modification for handling modern FPGAs with heterogeneous resources.

Tessier [Tessier 2002] developed a timing-driven FPGA placement system, Fron-
tier, that uses macro blocks in conjunction with a series of placement algorithms
to achieve highly routable and high-performance layouts quickly. In the first stage
of placement, a macro-based floorplanner is used to quickly identify an initial lay-
out based on inter macro connectivity of soft and hard macros. A given FPGA
architecture is decomposed into an array of placement bins with matching dimen-
sions. Macros are clustered and each cluster is placed in a bin. If the available
bins are insufficient to place all clusters, the bin size is increased and the process is
repeated. Finally, after allocation of clusters to bins, entire bins are swapped using
simulated annealing, minimizing inter-bin placement cost. For a collection of large
reconfigurable computing benchmark circuits, Frontier exhibits a 2.6× speedup in
combined place and route time with improved design performance compared to the
commercial FPGA CAD tool Xilinx PAR for most designs. The work shows that
floorplanning, placement evaluation, and back-end optimization are all necessary to
achieve high-performance placement solutions. However, the work dealt with netlist
of CLBs only. With multiple types of pre-placed resources on the modern FPGAs,
this method seems unlikely to be adapted.

Cheng and Wong [Cheng 2004, Cheng 2006] proposed the first floorplanning
algorithm targeted for heterogeneous FPGAs with multiple types of resources which

32 Ch 2. Previous Works

(a)

(b)

Figure 2.4: Example of floorplan obtained by [Cheng 2004, Cheng 2006]. (a) Possi-
ble irreducible realization list (IRL)s for two modules (b) a rectilinear floorplan after
compaction (Courtesy: [Cheng 2004, Cheng 2006]).

produced feasible solution employing simulated annealing, optimizing the area, half-
perimeter wirelength (HPWL) and the aspect ratios of modules. The authors began
with a slicing topology [Otten 1982] and used simulated annealing to iteratively
perturb and improve it. They used the concept of irreducible realization list (IRL)
which is a set of realizations of distinct (width, height) pairs for each node in a slicing
tree. Given an IRL, they devise efficient means to compute IRLs as nodes are merged
from leaf level up to root, thereby finding optimal realizations of a particular slicing
tree. An example of possible IRLs for two modules is shown in Figure 2.4(a). The
rectangles with darker border lines show the possible IRLs for two modules, whose
bottom-left corners are anchored at positions (4, 1) and (10, 0). The method is
an extension of Stockmeyer’s floorplan optimization algorithm [Stockmeyer 1983].
They also proposed a post-processing step of compaction, generating modules with
rectilinear realization as shown in Figure 2.4(b). The proposed method may not
scale well, being simulated annealing based.

Yuan et al. [Yuan 2005] have proposed a constructive packing-based method
using Less Flexibility First (LFF) principle. A set of all atomic realizations (ARL)
of a module is generated from the resource requirement and a starting corner position
on the chip. The realizations are sorted based on the value of a flexibility function

2.2. Floorplanning for heterogeneous FPGAs 33

defined for the current configuration of packed modules on the chip. Thereafter,
all realizations of different modules are collected into a list. The realization with
the highest fitness value is selected. As to the worst case time complexity, the
authors point out that their method takes O(W 2n5 log n) where n is the number
of modules and W is the width of the chip. The authors claim that the log n

factor in the time complexity comes from range searching with the help of a kd-
tree. But, kd-tree takes O(

√
n) (O(n1− 1

d), where d is the dimension) for range
searching in 2D [Berg 2000]. Time complexity proportional to log n is achievable if
fractional cascading [Berg 2000] is used, but then space complexity would go up to
O(n log n). The quality of the floorplans can not be compared as the benchmarks
are synthetically generated.

Recently, Feng and Mehta [Feng 2006] presented a two step approach based
on resource-aware fixed-outline simulated annealing starting from a given topology,
followed by maximum-flow based constrained floorplanning to optimize wirelength.
As FPGA is a bounded rectangle, the authors [Feng 2006] propose a fixed outline
simulated annealing algorithm in contrast to the area minimization approach of
[Cheng 2004]. The authors use a penalty term in their simulated annealing cost
function so that modules are placed as close as possible to their resources. The
shortcoming of each module in meeting its resource requirement is then taken care
of by a constrained floorplanning which is based on a minimum-cost maximum-
flow network formulation. This constrained floorplanning is a generalization of the
method in [Feng 2004] that was developed for ASICs.

In [Singhal 2007b, Singhal 2007a], Singhal et al. have proposed another SA
based floorplanner with an adaptive placer algorithm. The floorplanner handles
each resource type individually. It allows for different placements of different re-
sources of a module. Hence, it utilizes the available area better, optimizing the
internal wirelength of the overall floorplan. The experiments show that the pro-
posed floorplanner can reduce the area by as much as 50% of the area of a disjoint
floorplanner. This multi-layer floorplanning algorithm reports better floorplan area
for heterogeneous resources of statistically large variations. However, the run-time
is 1.4× of the traditional non-heterogeneous floorplanner.

2.2.1 Summary

In summary, excepting the LFF method, all the floorplanning methods for hetero-
geneous FPGAs are simulated annealing based and thus incurs significant run-time.
This raises concern about the scalability of all these methods for large designs. In

34 Ch 2. Previous Works

Figure 2.5: Partial reconfiguration proposed by Singhal and Bozorgzadeh
[Singhal 2006]; case III shows the maximum overlap of common modules. (Courtesy:
[Singhal 2006]).

this thesis, a fast, deterministic unified floorplan topology generation and sizing
method is proposed which improves the run-time as well as the quality significantly
compared to the earlier approaches such as [Feng 2006, Cheng 2006].

2.3 Floorplanning for partial reconfiguration

Partial dynamic reconfiguration is an emerging area in FPGA designs [Xilinx] which
is used for saving device area and cost. In order to reduce the reconfiguration
overhead, two consecutive similar sub-designs should be placed in the same location
to get the maximum reuse of common components. This requires that the entire
sequence (schedule) of tasks for an application be taken into consideration while
floorplanning for the design of any single instance in the schedule. In the FPGA
literature, floorplanning a set of modules in multiple instances is only a handful.

The earliest work on floorplanning for partial reconfiguration was formulated as
a 3D template placement problem in [Bazargan 2000], time being the third dimen-
sion. The work focuses on both online and offline placement algorithms. For the
online problem, a fast but non optimal and a slow yet high quality placement algo-
rithm have been proposed. For the 3D placement of reconfigurable units, simulated
annealing based and greedy placement methods have been devised.

2.3. Floorplanning for partial reconfiguration 35

Singhal and Bozorgzadeh [Singhal 2006] have introduced a new multi-layer sequence-
pair representation based floorplanner which allows overlap of common (static) and
dynamic (non-static) components of multiple designs of a schedule, and guarantees
feasible, overlap-free floorplans with minimal area packing. Figure 2.5 shows this
approach. It maximizes the overlap of common components of multiple designs
thereby reducing reconfiguration overhead. Multi-layer sequence pair is an efficient
representation and helps in reducing the total floorplanning run-time. Experimen-
tal results showed that the proposed floorplanner removes infeasibility in designs,
achieves an improvement of clock period by 12% on an average and reduces the
place-and-route time by as much as 3× compared to a traditional sequential floor-
planner. It also reduces the average wirelength by 50% in the designs. However,
owing to the use of simulated annealing, the execution time is significantly high.

Ahmadinia et al. [Ahmadinia 2007] have proposed an algorithm for online op-
timal free space management and routing conscious dynamic placement for recon-
figurable devices. The work describes algorithmic results on two crucial aspects
of allocating resources on computational hardware devices with partial reconfig-
urability. With computational geometric techniques, their algorithm allows correct
maintenance of free and occupied space of a set of n rectangular modules in time
O(n log n). Previous approaches needed a time of O(n2) for correct results and O(n)

for heuristic results. This work also gives a matching lower bound of Ω(n log n).
The authors also show that, finding an optimal feasible communication-conscious
placement which minimizes the total weighted Manhattan distance between the new
module and existing demand points can be computed in time Θ(n log n). Both the
resulting algorithms are practically easy to implement and demonstrate convincing
experimental behavior.

2.3.1 Summary

The work of Ahmadinia et al. [Ahmadinia 2007] addresses the management of free
spaces during the partial reconfiguration and not the issue of maximizing the over-
lap of common modules. The formulation of the floorplanning method for partial
reconfiguration addressed in this thesis is similar to that in [Singhal 2006]. However,
the challenge is to overcome the drawback of long execution time of their simulated
annealing based approach. This thesis presents a deterministic, fast method for gen-
erating a global floorplan that minimizes the partial reconfiguration overhead while
the HPWL of the overall floorplan is optimized.

36 Ch 2. Previous Works

2.4 Conclusion

In this chapter, a survey of different placement approaches for island style FPGAs
is done. Almost all the works aim at obtaining faster solution minimizing the wiring
cost. With modern FPGAs having heterogeneous resources, floorplanning a netlist
of modules on such a target chip has gained importance in the CAD community.
Most of the earlier methods of floorplanning on heterogeneous FPGA use simulated
annealing framework as in the case of placement. Floorplanning a set of modules
in different instances of a schedule minimizing the reconfiguration overhead, is a
challenging task in the context of partial reconfiguration. The issue of generating
faster placement and floorplanning methods for full as well as partial reconfiguration
has been dealt with in detail in the remaining chapters.

Chapter 3

Bottom-up Cone based Placement
for Island-style FPGAs

Contents
3.1 Introduction . 38

3.2 Background . 38

3.2.1 Overview of our method . 39

3.3 ConeCLBPlace: Cone based CLB placement 40

3.3.1 Placement of output blocks 40

3.3.2 Construction of an output cone for placement of CLBs 40

3.3.3 Placement of CLBs and input blocks 41

3.3.4 Illustration of CLB placement by ConeCLBPlace 43

3.3.5 Time complexity of ConeCLBPlace 44

3.3.6 Iterative improvement of placement 46

3.4 ConeIOBPlace: Cone based IOB placement 47

3.4.1 Phase I: Generation of circular arrangement of IOBs 49

3.4.2 Phase II: Computation of separation between adjacent IOB
positions . 52

3.4.3 Illustration of IOB placement by ConeIOBPlace 53

3.4.4 Time complexity of ConeIOBPlace 53

3.4.5 Placement of CLBs . 55

3.5 ConePlace: Cone based IOB and CLB placement 56

3.6 Experimental results . 56

3.6.1 Placement obtained by ConeCLBPlace 57

3.6.2 Placement obtained by ConeIOBPlace 58

3.6.3 Placement obtained by ConePlace 59

3.7 Conclusion . 62

38 Ch 3. Bottom-up Cone based Placement for Island-style FPGAs

3.1 Introduction

In this chapter, deterministic greedy methods are proposed to place the netlist of
CLBs and IOBs quickly on a two dimensional island-style FPGA array consisting
primarily of CLBs and IOBs. The locations of each type of resources, the CLBs and
IOBs are fixed on the FPGA array with the CLBs placed in the inner portion and
the IOBs on the periphery of the two dimensional array of CLBs. Here, we present
three different placement approaches. The first method, ConeCLBPlace, places the
primary output blocks first at random, and then the CLBs and primary input blocks
in a deterministic way. In the second method, ConeIOBPlace, the IOBs are first
placed on the periphery of the FPGA chip using a deterministic heuristic, and then
the CLBs are placed within the two dimensional array using a typical simulated
annealing flow. Finally, the third method, ConePlace, combines the above two
deterministic approaches by first placing the IOBs only as per the second method,
and then the CLBs by the first method deterministically. For further improvement
of quality of the solution, we employ a very low temperature simulated annealing.

The rest of the chapter is organized as follows. Section 3.2 has the formulation
of the placement problem for an island of CLBs and a brief description of the pro-
posed methods. Section 3.3 describes the first bottom-up cone based deterministic
method, ConeCLBPlace, which places the CLBs keeping the output blocks at some
fixed positions. Section 3.4 presents the second bottom-up cone based determin-
istic method, ConeIOBPlace for placing the IOBs. Finally, Section 3.5 describes
the combined method of deterministic IOB and CLB placement. Experimental re-
sults for all the three methods have been presented together in Section 3.6 and the
concluding remarks appear in Section 3.7.

3.2 Background

Problem 3.1 (FPGA Placement) Given

• a technology mapped netlist of a set of n CLBs C = {c1, c2, · · · , cn}, |C| = n,

• a set of p IOBs P = {p1, p2, · · · , pp},

• a set of k signal nets S = {S1, S2, · · · , Sk}, where each Si is a set of
connected CLBs ci ∈ C,

• a set of locations in a
√
n×
√
n two dimensional array,

3.2. Background 39

the placement problem is to assign each CLB ci ∈ C to a unique location on the
√
n ×
√
n array and each IOB pi ∈ P on the peripheral location of the array, such

that the objective function relating to total wirelength is minimized.

We assume the smallest possible 2D array of size
√
n×
√
n for placing the n CLBs.

Since IOBs are placed along the periphery of
√
n×
√
n array, the number of IOBs is

|P | = p ≈ O(
√
n). Each location on the 2D array is represented by a unique location

(xj , yj) on the 2D array where xj and yj are positive integers. The bounding box
of a net is the minimum enclosing rectangle on the FPGA array that encloses the
positions of all the CLBs in the net. We consider the sum of the half-perimeter of
bounding boxes enclosing the CLBs of each net, i.e, the HPWL cost or BB cost, as
the objective function to be minimized. Here, to compare the quality of a placement,
we consider an extension of the HPWL cost, namely, linear congestion cost function
proposed in VPR [Betz 1999, Betz 1997]. We use this extended BB cost for all our
experiments in this chapter. The extended BB cost function which is already given
in Section 2.1.1 of Chapter 2 is given here once more for the sake of completeness.

BB cost =
k∑

i=1

q(i)
[

bbx(i)
Cav,x(i)β

+
bby(i)

Cav,y(i)β

]
(3.1)

Most of the earlier works focus on obtaining high quality placement by various
stochastic methods for large CLB netlist at the expense of long placement time,
which might affect the advantage of reconfigurability in FPGA. In contrast, we focus
on obtaining a fast deterministic heuristic for placing already partitioned netlist of
CLBs in small islands of CLB arrays present in both island-style, as well as modern
day heterogeneous FPGAs, with comparable quality of solution.

3.2.1 Overview of our method

Our proposed approach divides the placement problem into two subsequent phases,
(1) placement of IOBs on the periphery of the chip, followed by (2) the placement
of CLBs within the chip array.

Given a placement of output blocks, a cone based method, ConeCLBPlace for
placing CLBs, is proposed first. Second, we propose a method, ConeIOBPlace, for
placement of only IOBs, and then placement of the CLBs by a simulated annealing
method such as VPR. Finally, the above two methods are combined together into
ConePlace by first placing the IOBs with ConeIOBPlace and then the CLBs with
ConeCLBPlace. Figure 3.1 depicts the flow of our methods. With all the above
three methods, the quality of the produced placement suffered vis-a-vis the state-of-

40 Ch 3. Bottom-up Cone based Placement for Island-style FPGAs

the-art tool VPR. A post-processing step of low temperature simulated annealing
produced the desired result quickly. In fact, this offers a choice to the designers to
opt for the required trade off between time and quality.

Netlist of CLBs
and IOBs

Place Output
Blocks randomly

Cone based
CLB and Input block

Placement

Low temperature
Simulated Annealing

Cone based
IOB Placement

CLB placement by
Simulated Annealing

Cone based
IOB Placement

Cone based
CLB Placement

Low temperature
Simulated Annealing

Placed CLBs
and IOBs

Placed CLBs
and IOBs

Placed CLBs
and IOBs

(ConeCLBPlace) (ConeIOBPlace) (ConePlace)

(a) (b) (c)

Figure 3.1: Flow of our methods: (a) ConeCLBPlace; (b) ConeIOBPlace; (c) Cone-
Place.

3.3 ConeCLBPlace: Cone based CLB placement

3.3.1 Placement of output blocks

The size of the minimum 2D square array required to place the n CLBs is
√
n×
√
n.

We place the primary output blocks randomly on the periphery of the minimum
square array. Then we place the CLBs with respect to the positions of these placed
primary output blocks.

3.3.2 Construction of an output cone for placement of CLBs

The netlist of CLBs and IOBs is defined as a directed graph as follows.

3.3. ConeCLBPlace: Cone based CLB placement 41

Definition 3.1 (Block netlist graph:) A block netlist graph is a directed graph
Db = (V,E), where vi ∈ V corresponds to a CLB or an IOB, and has an edge
e = (vi, vj) ∈ E if the CLB or output block corresponding to vj receives its input
signal from the CLB or input block corresponding to vi. |V | = n + p ≈ O(n) and
|E| = O(n), where n and p are respectively the number of CLBs and IOBs. The
number of edges are O(n) due to the fact that a CLB has a bounded number of inputs
and outputs, typically a small constant.

The CLBs or output blocks (vj) receiving input signals from a CLB or an input
block (vi) are the fanout blocks of vi. The set of vis, each corresponding to the source
of a signal net, which are fed as input to a CLB or an output block vj , constitute the
fanin of the block vj . Since CLBs in a given FPGA have fixed number of inputs,
the number of fanin blocks of any CLB is assumed to be a constant or bounded
(typically 4), and specified as an input to the placement problem. It is obvious that
the number of fanout blocks of a CLB or an input block may vary. But the average
number of fanout blocks has to be a constant to tally with constant number of fanin
blocks.

Definition 3.2 (Predecessor:) A predecessor of a vertex vi in the directed graph
Db is a vertex vj, such that there is a directed path from vj to vi in the graph Db.

Definition 3.3 (Output cone:) An output cone of a primary output block po ∈ P
is the breadth-first search tree τ o = (Vτ , Eτ) in Db, with primary output block po as
the root.

Two such output cones are shown in Figure 3.2. The predecessor vertices of an
output block belong to the output cone of the corresponding block. Thus, for ease of
computation, the directed edges of Db are reversed while obtaining the output cones
by breadth-first search (BFS) traversal. Using the above definitions, an output cone
is constructed as follows. A primary output (po) already placed on the periphery
of the array, is chosen at random. The output cone τ o of po is extracted from
the directed graph Db by BFS traversal in Db starting from po. The breadth-first
traversal of the graph generates a tree with root vertex corresponding to po and the
CLBs and input blocks as its leaves. This process is repeated for all the primary
output blocks.

3.3.3 Placement of CLBs and input blocks

Having constructed the output cones as above, we place the CLBs and primary inputs
now. One CLB or input block at a time is chosen for placement in breadth-first order

42 Ch 3. Bottom-up Cone based Placement for Island-style FPGAs

Primary
 Output po

1

Level 1

Level 2

Output Cone το
1

Blocks of cone το
1 only

Blocks of cone το
2 only

Blocks of both cone το
1 and το

2

Primary
 Output po

2

Output Cone το
2

Figure 3.2: Two output cones with overlap corresponding to two primary output
blocks, po

1 and po
2.

from the cone. The chosen block is placed in a minimum-cost position with respect to
the current placement configuration. Let bi be the block chosen in the breadth-first
order to be placed in the array. In order to determine the minimum-cost position
with respect to the current placement configuration, we define a bounding box for
the block bi as follows.

Definition 3.4 (Bounding box of a block:) The bounding box of a block bi, de-
noted by BBi, is the smallest rectangular region on the two dimension array, con-
taining all blocks corresponding to bj ∈ fanout(bi) ∪ fanin(bi) which have been
already placed.

Definition 3.5 (Net length:) The net length of two connected blocks bi and bj

already placed in the FPGA array, is the manhattan distance between the two blocks
bi and bj.

Thus, the current bounding box of bi is a two dimensional sub array with already
placed fanout and fanin CLBs or input blocks of bi. All the fanin and fanout blocks
of a CLB may not be placed at an intermediate step. Let bj be the set of CLBs or
input blocks that are adjacent to block bi in Db and already placed. We compute the
net length of each pair (bi, bj) by placing bi tentatively in all empty positions within

3.3. ConeCLBPlace: Cone based CLB placement 43

pi
0 pi

1 pi
2 pi

3 po
4 po

5 po
6 c7 c8 c9 c10 c11 c12 c13 c14 c15 c16

pi
0 - - - - - - - - 1 - 1 - 1 1 - 1 -

pi
1 - - - - - - - - - - - 1 - - 1 - 1

pi
2 - - - - - - - 1 - 1 - - 1 - - 1 1

pi
3 - - - - - - - - - 1 1 - - - - - 1

c7 - - - - 1 - - - - - - - - - - - -
c8 - - - - - - - 1 - - - - 1 - 1 1 -
c9 - - - - - - - 1 - - - - - - 1 - 1
c10 - - - - - 1 - - - - - - - - - - -
c11 - - - - - - - - 1 - 1 - 1 - - - -
c12 - - - - - - - - - - 1 - - - - - -
c13 - - - - - - 1 - - - - - - - - - -
c14 - - - - - - - - - - - 1 - 1 - - -
c15 - - - - - - - - - 1 - - - 1 - - -
c16 - - - - - - - - 1 - - - - - 1 - -

Table 3.1: An example: Adjacency matrix representing the block netlist graph Db,
the netlist of CLBs and IOBs; pi, po and c denote the primary input blocks, primary
output blocks and CLBs respectively.

the bounding box of block bi. The block bi is then assigned to a position within BBi

that results in minimum increase in net length of all the nets associated with the
placed fanin and fanout blocks of bi. If there are no empty slots left within BBi, we
extend the bounding box by either one row or one column, and place the block bi in
the new BBi with the same objective of minimizing the increment in wirelength.

As stated earlier, only the primary output blocks are placed on the periphery of
the chip initially. A single output cone corresponding to the primary output block
po is chosen at random. The output cone τ o is traversed in breadth-first order. The
first CLB bi chosen while traversing, is placed within a BBi which contains only
the placed output block po as no other fanin and fanout CLBs of bi is placed yet.
This process is repeated for each of the CLBs and primary inputs present in the
cone τ o in the breadth-first order. As the process progresses, it finds more and more
placed blocks to compute the position of a new block accurately. Thus, our greedy
heuristic attempts to place each block at a locally optimal position with respect to
the current configuration. We process all the output cones of the given netlist one
by one in an arbitrary order. This gives the initial placement configuration for the
given technology-mapped netlist.

3.3.4 Illustration of CLB placement by ConeCLBPlace

Let us consider a technology-mapped netlist with ten CLBs, four primary inputs and
three primary outputs as shown in Table 3.1. The table shows the adjacency matrix
of the directed graph Db. The vertices pi

0 to pi
3 corresponding to four primary

inputs, po
4 to po

6 correspond to the three primary outputs, and the remaining c7 to

44 Ch 3. Bottom-up Cone based Placement for Island-style FPGAs

p0
4

pi
2

c16pi
0 c11 c15

c14 pi
3pi

2pi
1 pi

2pi
0pi

1

level 1

level 2

level 3

c7

c8 c9

c9 c8

c8 c9 c16

pi
2 pi

3

Figure 3.3: Illustration of ConeCLBPlace: An output cone τ o
4 of primary output

block po
4 of the netlist in Table 3.7.

c16 corresponds to the CLBs. The entries in the matrix corresponding to the fanout
of input blocks and CLBs are also given. Since po

4 to po
6 are primary output blocks,

they do not have any fanout blocks and hence the rows corresponding to po
4 - po

6 are
omitted from the table.

The output cone τ o
4 , of primary output block po

4 is shown in Figure 3.3. A
strikethrough index in the output cone τ o

4 indicates that the tree need not be tra-
versed any further. For example, all the children of c16 at level 3 in the cone, i.e., c9,
pi
1, pi

3 and pi
2 are already placed in the previous levels. The indices that correspond

to the primary inputs are not expanded at any level.

The execution of the algorithm ConeCLBPlace for all the three output cones is
shown in Figure 3.4. The random placement of all those primary outputs as in
VPR is shown in Figure 3.4(a). Next, we trace the cone of primary output po

4. By
tracing the cone we find c7 in the tree, whose bounding box and placement is shown
in Figure 3.4(b). Next we find pi

2 in the tree and so on. Figures 3.4(c) shows the
placement of all other blocks in the cone of po

4. Figure 3.4(d) shows the placement
configuration after all the output cones τ o

4 , τ o
5 and τ o

6 of the given netlist are placed.

3.3.5 Time complexity of ConeCLBPlace

The proposed method is summarized in Algorithm 3.1.

Theorem 3.1 The time complexity of ConeCLBPlace is O(n2), where n is the num-

3.3. ConeCLBPlace: Cone based CLB placement 45

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0 1 2 3 4 5 0 1 2 3 4 5

0 1 2 3 4 50 1 2 3 4 5

(a) (b)

(c) (d)

5

4

6

5

4

6

5

4

6

5

4

6

7

Bounding
box

0 2

3

1 8 711

16 91514

0 2

3

1 8 711

16 91514

12

10 13

IOB

Figure 3.4: Execution of ConeCLBPlace on the example netlist of Table 3.1; (a)
placement of IOBs; (b) placement of c7 within the extended bounding box BB7; (c)
placement of all blocks in the cone τ o

4 ; (d) placement of all blocks in the cones τ o
4 ,

τ o
5 and τ o

6 .

ber of CLBs.

Proof: Let the number of primary input and output blocks be npi and npo

respectively. The time complexity of placing the npo primary output blocks on the
periphery takes O(npo) time. The time complexity of breadth-first traversal of a
graph G(V,E) is O(|V | + |E|) [Alsuwaiyel 1999, Cormen 2003], |V | and |E| being
the number of vertices and edges of the graph respectively. For the directed graph

46 Ch 3. Bottom-up Cone based Placement for Island-style FPGAs

Algorithm 3.1: ConeCLBPlace
Input : Graph Db corresponding to the netlist of CLBs and IOBs
Output: Placement of CLBs and IOBs on the two dimensional array
Compute size of two dimensional array large enough to place all CLBs within1

array and IOBs on the periphery;
Place output blocks randomly on the periphery;2

for each primary output block po do3

Extract the output cone by breadth-first traversal of the input graph Db4

starting from po ;
for each block bi to be placed do5

Compute the bounding box BBi of bi ;6

if there is an empty position in BBi then7

Place bi at a position in the bounding box causing minimum8

increase in net length of all the nets associated with the fanin and
fanout blocks of bi ;

else9

Increase the size of the bounding box by either a row or column;10

Place bi at a position with minimum increase in wirelength;11

/* Initial placement of CLBs and IOBs */

Iteratively improve the quality of placement by execution of a low12

temperature simulated annealing in VPR framework;
/* Final placement of CLBs and IOBs */

Report placement;13

Db, |V | = n + p, and |E| = O(n), where n and p are the number of CLBs and
IOBs respectively. The time complexity of constructing a cone is O(n+ n) = O(n).
Thus, to generate npo cones corresponding to npo primary output blocks, the time
complexity is O(npo · n) = O(n1.5), as npo ≈ O(

√
n) in our case. The size of the

bounding box of a block can be at most
√
n×
√
n = n. Finding the least cost location

within
√
n×
√
n array takes at most n searches for each CLB. The time complexity

of placing n+npi blocks is O(n(n+npi)) = O(n2 +n ·
√
n) = O(n2). The total time

complexity of ConeCLBPlace is O(n1.5) +O(n2) = O(n2). �

3.3.6 Iterative improvement of placement

The initial placement produced by our greedy cone based heuristic is typically twice
as better as random placement but inferior to the solution obtained by simulated
annealing based VPR. To improve the quality of the placement by ConeCLBPlace
further, a low temperature simulated annealing is executed on it in the VPR frame-
work. The initial temperature is empirically computed for the benchmark circuits

3.4. ConeIOBPlace: Cone based IOB placement 47

IO PAD

IO PAD

IO PAD IO PAD

IO PAD

IO PAD

IO PAD IO PAD

Figure 3.5: Position of padframe in an FPGA.

using appropriate values for input parameters init_t and exit_t of VPR. The ex-
perimental results in Section 3.6 show that the simulated annealing converges much
faster with the initial placement obtained by ConeCLBPlace.

3.4 ConeIOBPlace: Cone based IOB placement

The primary output blocks were placed at random positions by our previous method
ConeCLBPlace. The placement of IOBs is also significant to ensure quality place-
ment [Mak 2004, Farbarik 1997, Anderson 2000, Mak 2005]. In this section, a deter-
ministic and fast method of placing the IOBs is proposed. The random placement
of IOBs on the chip periphery degrades the placement quality [Khalid 1995]. Cou-
pling of the proposed deterministic IOB placement, ConeIOBPlace with standard
stochastic block placement methods of VPR, produced placement solution compa-
rable to VPR with a little speedup over VPR. In order to explain the proposed
method ConeIOBPlace, we define the following terms.

Definition 3.6 (Pad frame:) A pad frame is the area around the rectangular bound-
ary of a chip, consisting of input and output pads.

Definition 3.7 (Size of a pad frame:) The size of a pad frame for an FPGA
chip is the number of IOB locations in the pad frame along each side on its periphery.

48 Ch 3. Bottom-up Cone based Placement for Island-style FPGAs

Primary
 Input pi

1

Level 1

Level 2

Input Cone τi
1

Primary
 Input pi

2

Blocks of cone τi
1 only

Blocks of cone τi
2 only

Blocks of both cone τi
1 and τi

2

Input Cone τi
2

b

Figure 3.6: Two input cones with overlap corresponding to two primary input blocks
pi
1 and pi

2.

Definition 3.8 (Input cone:) An input cone of a primary input block pi ∈ P is
the breadth-first search tree τ i = (Vτ , Eτ) in Db, with primary input block pi as the
root.

A typical pad frame surrounding the periphery of the FPGA chip, is shown in Figure
3.5. Figure 3.6 shows two overlapping input cones having common blocks. Now, the
placement problem for IOBs is to find an assignment of IOBs to the positions on the
pad frame such that the total wirelength is minimized after the placement of CLBs.
Since the pad frame surrounds the 2D array of CLBs almost like a circle, we need
to obtain a circular arrangement of IOBs such that a pair of IOBs is placed closer
to each other if their cones have more common blocks than other pairs. Thus, the
problem is defined as follows:

Problem 3.2 (Placement problem for IOBs) Given the netlist of CLBs and
IOBs, and the size of the pad frame for the target FPGA array, the IOB placement
problem is to determine a circular arrangement of IOBs with a particular separation
between adjacent IOBs such that an IOB pair with common CLBs in their respective
cones are placed closer to each other than a pair of IOBs with no common CLBs in
their respective cones.

3.4. ConeIOBPlace: Cone based IOB placement 49

The proposed method ConeIOBPlace to solve the placement problem for IOBs,
has two phases:

Phase I. Arrangement of p IOBs at p equidistant points on a circle (circular arrange-
ment) which maximizes the overlap between adjacent cones corresponding to
the adjacent IOBs.

Phase II. Computation of actual separation between adjacent IOBs in the arrange-
ment obtained in Phase I for the target FPGA padframe.

3.4.1 Phase I: Generation of circular arrangement of IOBs

The problem of finding a circular arrangement is NP-hard [Galil 1977]. Thus, a
heuristic is proposed. First, both the input and output cones are extracted from
the graph Db. The input cones and output cones are generated using breadth-first
traversal on fanout blocks, and on fanin blocks of the graph Db respectively. The
extracted cones represent the level-wise connectivity of logic blocks connected either
directly, or through a number of intermediate blocks to the corresponding IOB. The
level of a block in a cone τ i or τ o is defined as one more than the number of
intermediate blocks in the path from the block to that IOB. The cones for different
IOBs may be overlapping, as shown in Figure 3.6. A block in a particular level of
a cone corresponding to an IOB can be either present in the same or a different
level of the cones for other IOBs. For example, in Figure 3.6, the logic block b is
present in level 2 of cone τ i

1, and in level 1 of cone τ i
2. Next, we construct cone

adjacency graphs in order to obtain a set of linear arrangements. Then, the circular
arrangement is obtained by processing a set of linear arrangements in a bottom-up
fashion as discussed in the following subsections.

3.4.1.1 Preprocessing: construction of cone adjacency graph

In order to obtain the circular arrangement of IOBs, a cone adjacency graph with
vertices corresponding to the IOBs, is constructed first. The cone adjacency graph
Ga = (V,E) is an undirected and weighted graph, where each vertex vi ∈ V repre-
sents an IOB pi, and there exists an undirected edge (vi, vj) ∈ E, if there exists at
least one common block in the cones of pi and pj corresponding to vertices vi and
vj . The weight wij of an edge (vi, vj) ∈ E reflects the closeness of the IOB blocks
pi and pj in the desired circular arrangement. The scheme for assigning weight is
discussed next.

50 Ch 3. Bottom-up Cone based Placement for Island-style FPGAs

3.4.1.2 Preprocessing: computation of edge weights of cone adjacency
graph

A CLB which is connected to two IOBs and is at a level nearer to both the IOBs,
votes for placing the two IOBs closer to each other on the pad frame in order to
minimize the total wirelength. Hence, a logic block b, if present in level lbi of the
cone τi, and also in level lbj of the cone τj , contributes wij(b) weight to the edge
(vi, vj) and is given by

wij(b) =
1
lbi

+
1
lbj

If there are bcij common blocks in the cones τi and τj , then,

wij =
bc
ij∑

b=1

wij(b)

3.4.1.3 The circular arrangement problem (CAP)

The cone adjacency graph Ga models the relative closeness of all possible IOB pairs
with respect to the number of common blocks and their position in the respective
cones. The aim is to obtain a circular arrangement of the vertices of Ga such that a
pair of vertices connected with higher edge weights are adjacent in the arrangement
than the vertices connected with smaller edge weights. Thus, the problem of finding
a circular arrangement of IOBs is formulated as follows.

Problem 3.3 (Circular Arrangement Problem(CAP)) Given a weighted undi-
rected cone adjacency graph Ga = (V,E), the problem is to find a circular arrange-
ment CA(Ga) of the vertices h : V → {1, . . . , |V |} of Ga on evenly placed points on
a circle such that the sum

∑
(i,j)∈E wij ·L(h(i), h(j)) is minimized, where wij is the

weight of the edge (i, j) and L(h(i), h(j)) = min{|h(i) − h(j)|, |V | − |h(i) − h(j)|}
is the minimum distance between h(i) and h(j) along the perimeter of the circle.

Liberatore [Liberatore 2002] has proposed an approximation algorithm for com-
putation of the circular arrangement. But the algorithm is complex and has high
time complexity. Hence, we propose a simple, yet effective heuristic method to ob-
tain the circular arrangement. In order to place the vertices with less edge weights
farther away from each other in the circular arrangement, a balanced min-cut parti-
tioning [Kernighan 1970b, Fiduccia 1982] step is applied to the cone adjacency graph
Ga first. Ga is recursively bi-partitioned up to r levels in order to obtain 2r sub-
graphs, where 2r ≤ √p. The recursive bi-partitioning generates a binary partition

3.4. ConeIOBPlace: Cone based IOB placement 51

tree with each node corresponding to a subgraph as shown in Figure 3.7(a). Thus, a
list of subgraphs SGi, i = 1 · · · 2r of approximately equal size (≈ 2r) is generated at
the leaves of the partition tree. For each subgraph SGi at the leaves of the binary
partition tree, a linear arrangement Oi, i = 1 · · · 2r is obtained as discussed in Sec-
tion 3.4.1.4. Next, the partition tree is processed bottom-up to generate the circular
arrangement of IOBs at the root of the partition tree.

3.4.1.4 Heuristic for circular arrangement

As mentioned above, the cone adjacency graph is partitioned into subgraphs SGi in
order to place loosely connected IOBs farther away from each other. Now, for each
of the subgraph SGi, a linear arrangement Oi is obtained. The linear arrangement
problem is the one, where the vertices are placed on an evenly spaced points on a
line rather than a circle. The problem of linear arrangement [Garey 1979] also being
NP-hard, a simple heuristic has been proposed.

Linear arrangement of vertices of a subgraph: First, a vertex vh is chosen arbi-
trarily. Next, in the subgraph SGi, we find the maximum weighted edge e = (vh, vt)

with one of the end points as vh. The vertices vh and vt are considered adjacent
to each other in the linear arrangement in the order {vh, vt}. Let vh and vt be the
head and tail of the linear arrangement respectively. A single vertex is appended
either at the head or at the tail of this partial list of linear arrangement during each
step of the proposed heuristic. A vertex vi having maximum weighted edge (vi, vh),
and a vertex vj having maximum weighted edge (vt, vj), are determined. If vi and
vj are distinct, we append vi before the current head vh, and vj after the tail vt of
the linearly arranged list respectively. Then the head and tail pointers are updated
to vi and vj respectively. If vi and vj happen to be the same vertex, i.e., vi = vj ,
vi is appended before the head of the list if wih > wti, else vi is appended to the
tail of the list. This process is repeated till all the vertices of the subgraph have
been included in the list. This completes the generation of a linear arrangement
Oi for the corresponding subgraph SGi. The method is followed to generate linear
arrangement for each subgraph SGi at the leaves of the partition tree.

Circular arrangement of vertices of Ga: In order to generate the circular ar-
rangement of all the IOBs, the partition tree is processed bottom-up as shown in
Figure 3.7(c). Let vh

i and vt
i be the head and tail vertices of the linear arrangement

Oi respectively. Similarly, let vh
i+1 and vt

i+1 be the head and tail vertices of the linear
arrangement Oi+1 respectively. The linear arrangement of two adjacent subgraphs
among themselves is obtained by examining the four possible edge weights between

52 Ch 3. Bottom-up Cone based Placement for Island-style FPGAs

the end vertices (vh
i , v

h
i+1), (vh

i , v
t
i+1), (vt

i , v
h
i+1), (vt

i , v
t
i+1) of the two adjacent ar-

rangements Oi and Oi+1. These edge weights are termed as the junction weights of
the two arrangements. The permutation with maximum junction weight is chosen
as the linear arrangement of two adjacent linear arrangements Oi and Oi+1 for the
subgraph at their parent node in the partition tree. This process continues till it
reaches one level below the root. To get the circular arrangement Oa at the root
for the entire cone adjacency graph Ga, an additional junction weight due to the
vertices at the extreme ends of each of the four possible permutation is also added
to the junction weights of respective permutation. The permutation with maximum
junction weight gives the final circular arrangement of IOBs.

The circular arrangement of IOBs assumes uniform distance between the ad-
jacent IOBs. However, the shape of the IOB pad frame is rectangular rather than
circular on the FPGA chip. Also, the size and depth of each cone in terms of number
of blocks and levels respectively, is not uniform. This necessitates the IOBs to be
placed at some distance apart from each other in order to avoid congestion during
routing. Thus, the distance between adjacent IOBs are computed on the basis of
the number of CLBs in each cone, the number of CLB overlaps between cones and
the level of a block in different cones.

3.4.2 Phase II: Computation of separation between adjacent IOB
positions

In order to compute the separation between adjacent IOBs, the average width of a
cone, i.e, the average number of blocks per level of each cone is computed. Next,
the average number of common blocks in each level of adjacent pair of cones in
the circular arrangement is computed. This gives the width of overlap between the
cones of adjacent IOBs. An estimation of the separation of two adjacent IOBs in
the circular arrangement is computed as follows. Let W c

i and W c
j be the average

width of cones τi and τj respectively corresponding to the adjacent IOBs pi and pj .
Let W o

ij be the width of overlap of the pair of cones τi and τj . Then the estimate of
the separation dij between pi and pj is given by

dij = W c
i /2 +W c

j /2−W o
ij

The exact coordinate positions of the IOBs on the periphery of the FPGA ar-
ray is computed by scaling the distance dij to the pad frame using the size of the
rectangular pad frame and the number of IOBs to be placed.

3.4. ConeIOBPlace: Cone based IOB placement 53

3.4.3 Illustration of IOB placement by ConeIOBPlace

Figure 3.7 illustrates the proposed method with an example. Figure 3.7(a) shows
the subgraphs SGis generated by top-down recursive balanced bi-partitioning of the
cone adjacency graph Ga.

Figure 3.7(b) shows a subgraph SGi with five vertices, for which the linear ar-
rangement is obtained. We start with an arbitrary vertex, say v1. Vertex v5 is
connected to v1 with maximum weighted edge. Hence we append v5 to the arrange-
ment {v1, v5}. Among the remaining vertices adjacent to v1 and v5, v2 is a vertex
adjacent to both v1 and v5 with weight 10 and 9 respectively. As w12 > w25, we
choose w12 as the max-weight edge and v2 is appended to the left of v1 generating
the arrangement {v2, v1, v5}. Proceeding thus, the linear arrangement of the ver-
tices of subgraph SGi is Oi = {v3, v4, v2, v1, v5}. Figure 3.7(c) shows the order
of processing the individual linear arrangement of each sungraph in order to obtain
the circular arrangement of the vertices in the entire cone adjacency graph Ga. Let
O3, O4, O5, O6 be the linear arrangements of the subgraphs SG3, SG4, SG5, SG6

respectively. Then the linear arrangement O1 for the parent graph SG1 of the sub-
graphs SG3 and SG4 are obtained by calculating the junction weights for the four
possible permutations of O3 and O4. Similarly, the linear arrangement O2 is com-
puted from O5 and O6. Finally, the circular arrangement of IOBs Oa for the entire
cone adjacency graph Ga is obtained from O1 and O2 with the additional junction
weights.

3.4.4 Time complexity of ConeIOBPlace

Theorem 3.2 The time complexity of ConeIOBPlace is O(n2), where n is the num-
ber of CLBs.

Proof: The two phases of ConeIOBPlace is given in Algorithm 3.2 The time com-
plexity of generating input and output cones by BFS traversal is O(pn), where p
and n are the total number of IOBs and the number of CLBs respectively in the
circuit. Since p ≈ O(

√
n), the cone generation takes O(n1.5) time. The time com-

plexity of construction of weighted cone adjacency graph Ga is O(p2n) = O(n2),
since edge weights are computed for all possible p2 edges of the graph. The parti-
tioning of Ga takes O(n) time [Fiduccia 1982] as the number of edges in the graph is
O(n). The time complexity of finding the linear arrangement for all the subgraphs
is O(p2) = O(n) and the time taken to generate the final circular arrangement
hierarchically is O(n). Thus, the time complexity of the first phase is O(n2).

54 Ch 3. Bottom-up Cone based Placement for Island-style FPGAs

Ga

SG1 SG2

SG3 SG4 SG5 SG6

top-down
partition

(a)

v1
v2

v5

v4 v3

12

10

6

5

7

9
20

4
2

Linear arrangement
Oi = {v3 , v4 , v2 , v1 , v5}

(b)

Oa(Ga)

O1(SG1) O2(SG2)

O3(SG3) O4(SG4) O5(SG5) O6(SG6)

Bottom-up
arrangement

(c)

Figure 3.7: Example: (a) Generation of subgraphs from the cone adjacency graph;
(b) Subgraph SGi for which linear arrangement Oi of vertices is obtained; (c) Gen-
eration of circular arrangement of IOBs from linear arrangement of subgraphs.

3.4. ConeIOBPlace: Cone based IOB placement 55

Algorithm 3.2: ConeIOBPlace
Input : Block netlist graph Db corresponding to the netlist
Output: Placement of CLBs and IOBs on the two dimensional array
Phase I: Generation of circular arrangement of IOBs;1

for each IOB do2

Extract the input and output cone by BFS traversal of Db starting from3

each IOB ;
Generate cone adjacency graph Ga with vertices corresponding to IOBs and4

edge weights representing the closeness between the IOBs corresponding to
the end vertices of an edge;
Apply recursive min-cut bi-partition on Ga generating a partition tree with5

2r ≤ √p almost equal sized subgraphs SGi at the leaf;
for each subgraph SGi do6

Compute linear arrangement Oi;7

Process Ois bottom-up in the partition tree to generate the circular8

arrangement at root based on juntion weight;
Phase II: Computation of separation between adjacent IOBs;9

for each cone τi do10

Compute the average width of cone W c
i ;11

for each pair of adjacent IOBs pi and pj do12

Compute W o
ij , the average width of overlap of cones τi and τj ;13

Estimate the separation dij between IOBs pi and pj as14

dij = W c
i /2 +W c

j /2−W o
ij ;

In the second phase, computation of the average width of p cones is done in
O(n) time, n being the number of CLBs in the netlist graph. The computation
of the average width of overlap between adjacent cones takes O(n) time, and the
computation of separation between adjacent IOBs take O(n) time. Hence, the total
time complexity of the second phase is O(n). Thus, the total time complexity of
the method is O(n2). �

3.4.5 Placement of CLBs

To complete the placement of all blocks and observe the effect of an IOB placement,
we employ the simulated annealing based VPR to place the CLBs on to the FPGA
array. The positions of IOBs obtained by ConeIOBPlace is given as an input to VPR.
Then, VPR is executed only for placing the CLBs without changing the positions of
IOBs. This completes the flow of ConeIOBPlace. The performance of the proposed
method on a set of benchmark circuits is reported in Section 3.6.

56 Ch 3. Bottom-up Cone based Placement for Island-style FPGAs

Table 3.2: Characteristics of MCNC FPGA placement benchmark circuits

1 2 3 4 5
Ckt # CLBs Number of Number of Size of

(n) inputs outputs 2D grid
ex5p 1064 8 63 33× 33
misex3 1397 14 14 38× 38
diffeq 1497 64 39 39× 39
alu4 1522 14 8 40× 40
des 1591 256 245 63× 63
bigkey 1707 229 197 54× 54
seq 1750 41 35 42× 42
apex2 1878 38 3 44× 44
s298 1931 4 6 44× 44
spla 3690 16 46 61× 61
pdc 4575 16 40 68× 68
ex1010 4598 10 10 68× 68

3.5 ConePlace: Cone based IOB and CLB placement

In our last method ConePlace, the ideas of ConeCLBPlace and ConeIOBPlace are
combined in order to evaluate the overall performance of the proposed methods.
Unlike random positioning of primary output blocks, all the IOBs are placed accord-
ing to the circular arrangement obtained by ConeIOBPlace. Next, for each output
cone, we place the CLBs by ConeCLBPlace. Finally, in order to improve the quality
of the solution further, a low temperature simulated annealing is executed on the
placement obtained.

3.6 Experimental results

In this section, the results obtained by the proposed methods ConeCLBPlace,
ConeIOBPlace and ConePlace on a set of technology-mapped benchmarks have been
reported. We use the most popular FPGA benchmarks from Microelectronics Cen-
ter of North Carolina (MCNC) for all our experiments. We have implemented the
proposed methods in C on 1.2GHz SunBlade 2000 workstation with SunOS Release
5.8. Table 3.2 shows the characteristics of the benchmark circuits in terms of num-
ber of CLBs, primary inputs and output blocks. The minimum square array required
to place all the CLBs and IOBs for each circuit is given in the last column. Next,
the performances of the proposed methods have been reported in terms of the BB

3.6. Experimental results 57

Table 3.3: Comparison of wirelength driven BB cost: ConeCLBPlace vs. VPR

1 2 3 4 5 6 7 8 9
BB cost Quality (Ours

V PR) Number of SA moves
Ckt Initial Final Final w.r.t w.r.t Ours VPR Speedup

(Ours) (Ours) (VPR) Initial Final (×106) (×106) (V PR
Ours)

ex5p 291 165 162 1.79 1.02 3.7 13.6 3.7
apex4 316 181 180 1.75 1.01 5.8 16.4 2.8
alu4 361 194 192 1.88 1.01 6.0 22.1 3.7
seq 466 251 248 1.87 1.01 7.1 27.4 3.8
apex2 568 271 268 2.11 1.01 10.0 29.1 2.9
spla 1395 600 608 2.29 0.99 19.8 75.2 3.8
pdc 1725 903 871 1.98 1.04 37.0 97.2 2.6
ex1010 2252 659 654 3.44 1.01 28.4 101.5 3.5
Avg: 2.14 1.01 3.35

cost (computed as in Equation 3.1), speedup and critical path delay obtained after
routing using VPR router. The critical path delay is reported in terms of 10−8 sec-
onds and the CPU time is reported in seconds. In the Tables, the column headed
Initial reports the initial cost obtained by the proposed methods ConeCLBPlace
and ConePlace without the execution of low temperature simulated annealing. The
columns headed Final reports the final cost after execution of low temperature sim-
ulated annealing in the wirelength driven VPR framework for the proposed methods
ConeCLBPlace and ConeIOBPlace. For the method ConePlace, the final placement
results of both wirelength driven and timing driven modes are given.

3.6.1 Placement obtained by ConeCLBPlace

Table 3.3 shows the comparison of bounding box cost (BB cost) as obtained by
ConeCLBPlace with that of VPR. In both the cases, the proposed method and
VPR are executed in wirelength driven mode with -place_algorithm option as bound-
ing_box. The second, third and fourth columns report the BB cost obtained by the
initial placement of ConeCLBPlace, the final cost obtained after the execution of low
temperature simulated annealing on initial placement of ConeCLBPlace and the fi-
nal cost obtained by VPR respectively. The next two columns compare the quality
of the initial and final placement respectively when compared to VPR. It shows that,
on an average the BB cost of initial placement obtained by ConeCLBPlace is 2.14×
of the placement obtained by VPR, although for smaller circuits, it is less than 2×.

58 Ch 3. Bottom-up Cone based Placement for Island-style FPGAs

Table 3.4: Comparison of critical path delay: ConeCLBPlace vs. VPR

1 2 3 4
Critical path delay (10−8 sec.)

Ckt Ours VPR Ours
V PR

ex5p 15.9 11.2 1.41
apex4 20.6 12.8 1.61
alu4 19.1 12.1 1.58
seq 16.9 12.7 1.33
apex2 16.7 12.1 1.38
spla 23.3 17.1 1.36
pdc 39.5 21.9 1.80
ex1010 38.4 23.0 1.67
Average: 1.5

On execution of low temperature simulated annealing the quality of placement is as
good as the placement of VPR (1.01× of VPR) as shown column 6. The number
of simulated annealing moves required to obtain the final placement is reported in
columns 8 and 9. Column 8 shows the number of moves required in execution of
a low temperature annealing which is much less than the moves required in execu-
tion of VPR (column 9), thereby converging much faster than VPR and providing
faster compilation time with almost equal quality of solution. The speedup over
VPR is reported in the last column. On an average, the speedup is 3.3×. As the
initial placement takes just a few seconds, the speedup is significant even if a low
temperature simulated annealing is executed on the initial placement.

In order to validate the quality of the placement produced, the VPR router was
executed on the final placement produced by our method. The results of critical path
delay obtained by routing, is compared with that of routing a placement obtained
by VPR in Table 3.4. The critical path delay reported here is of the order of 10−8

seconds. It is observed that although the critical path delay of the placements
obtained by our method is 1.5× of VPR on the average, the placement was routable.
This shows the suitability of the method for fast reconfiguration at the cost of a small
compromise in the quality of the solution.

3.6.2 Placement obtained by ConeIOBPlace

The effect of IOB placement by ConeIOBPlace is reported next. Table 3.5 shows
the BB cost obtained by pre-placing the IOBs by ConeIOBPlace against the random
IOB placement of VPR. In both the cases, CLBs are placed by simulated annealing

3.6. Experimental results 59

Table 3.5: Comparison of wirelength driven BB cost: ConeIOBPlace vs. VPR

1 2 3 4 5 6 7
BB cost Number of SA moves (×106)

Circuit Ours VPR Ours
V PR Ours VPR Ours

V PR

ex5p 158 162 0.98 11.4 13.6 0.83
apex4 182 186 0.98 15.2 16.4 0.92
alu4 190 192 0.99 21.5 22.1 0.92
des 360 361 1.00 34.4 36.9 0.93
bigkey 270 268 1.01 42.5 44.7 0.95
apex2 265 268 0.99 26.8 29.0 0.92
pdc 871 871 1.00 94.4 97.2 0.97
Average: 0.99 0.92

of VPR in the wirelength driven mode using the option -place_algorithm as bound-
ing_box. The positions of the IOBs obtained by ConeIOBPlace on the periphery of
the array is given as an input to VPR using -fix_pins option. The BB cost obtained
by pre-placing IOBs by the proposed method is reported in the second column. The
third column shows the BB cost obtained by VPR. The fourth column shows that
the quality of the placement is 0.99× of VPR implying a small improvement in the
BB cost when IOBs are placed by ConeIOBPlace. As in the earlier method, we
report the number of simulated annealing moves in the fifth and the sixth columns
respectively for the proposed method and VPR. The speedup is given in the last
column. It is observed that on an average the speedup is 0.92× of VPR implying a
small gain in the execution time.

In order to compare the critical path delay obtained by ConeIOBPlace and VPR,
we routed all the placements obtained using the default router of VPR. The results
are reported in Table 3.6. The second column reports the critical path delay of each
benchmark circuit obtained after routing the placement obtained by ConeIOBPlace
followed by CLB placement using simulated annealing of VPR. The critical path
delay obtained by VPR is reported in the third column. The last column compares
the quality of critical path delay. It shows that, on an average, the critical path delay
obtained is 0.99× of VPR implying a positive gain.

3.6.3 Placement obtained by ConePlace

Observing the positive performances of the proposed heuristics ConeCLBPlace and
ConeIOBPlace in terms of speedup and quality independently, we observed the effect
of the combined approach ConePlace. Here, we execute the low temperature sim-

60 Ch 3. Bottom-up Cone based Placement for Island-style FPGAs

Table 3.6: Comparison of critical path delay: ConeIOBPlace vs. VPR

1 2 3 4
Circuit Ours VPR Ours

V PR
×10−8s ×10−8s

ex5p 6.5 6.7 0.97
apex4 7.0 7.2 0.97
alu4 8.4 8.6 0.98
des 14.7 14.8 0.99
bigkey 10.3 10.2 1.01
apex2 8.9 8.9 1.00
pdc 15.1 15.1 1.00
Average 0.99

ulated annealing in VPR framework with both wirelength and timing driven mode
setting -place_algorithm option of VPR to be bounding_box and net_timing_driven
respectively and compare the results of both the modes. While there was no sig-
nificant improvement in BB cost by applying ConePlace on the set of benchmark
circuits, the critical path delay obtained after routing was better in this combined
approach.

Table 3.7 shows the BB cost obtained by the initial placement of ConePlace and
the final placement after execution of low temperature simulated annealing in both
modes. The BB cost obtained by VPR in both modes are also reported under the
respective modes. It is observed that the initial cost obtained by ConePlace is much
higher than the one obtained by ConeCLBPlace and hence we do not compare it
with the final cost of VPR. The fifth and eighth columns show that, on an average,
the quality of the final placement by the proposed method ConePlace are 1.15× and
1.11× of VPR in wirelength and timing driven mode respectively. The quality of
the placement is better in timing driven mode than the wirelength driven one.

Next, we compare the total CPU time required in both wirelength driven and
timing driven mode by the combined method ConePlace, which includes the deter-
ministic heuristic for IOB placement ConeIOBPlace, CLB placement ConeCLBPlace
and also the iterative improvement by low temperature simulated annealing. Ta-
ble 3.8 shows the CPU time taken in seconds by the proposed method and VPR.
The fourth and seventh columns show the speedup of our method for each circuit.
On the average, the speedup is 2.01× and 2.09× of VPR in wirelength and timing
driven mode respectively. Comparing with ConeCLBPlace, the speedup was more
in ConeCLBPlace than the combined approach ConePlace.

3.6. Experimental results 61

Table 3.7: Comparison of BB cost: ConePlace vs. VPR

1 2 3 4 5 6 7 8
Wirelength driven Timing driven

Ckt Initial Final Final Final Final Final Final
(Ours) (Ours) (VPR) Ours

V PR (Ours) (VPR) Ours
V PR

ex5p 310 173 162 1.07 184 180 1.02
misex3 402 191 189 1.01 200 200 1.00
diffeq 371 177 147 1.20 187 158 1.18
alu4 451 194 192 1.01 201 199 1.01
des 830 383 228 1.68 396 258 1.53
bigkey 584 306 186 1.65 313 209 1.50
seq 591 265 248 1.07 276 263 1.05
apex2 589 281 268 1.05 293 281 1.04
s298 463 205 205 1.00 228 229 1.00
spla 1713 637 608 1.05 667 633 1.05
pdc 2298 898 871 1.03 967 945 1.02
ex1010 2642 657 654 1.00 679 675 1.01
Average: 1.15 1.11

Table 3.8: Comparison of speedup: ConePlace vs. VPR

1 2 3 4 5 6 7
Wirelength driven Timing driven

Ckt Ours VPR V PR
Ours Ours VPR V PR

Ours

ex5p 42 98 2.33 63 169 2.68
misex3 60 136 2.27 78 218 2.79
diffeq 54 161 2.98 100 247 2.47
alu4 79 150 1.90 90 242 2.69
des 122 224 1.84 169 312 1.85
bigkey 87 200 2.30 157 331 2.11
seq 103 198 1.92 146 312 2.14
apex2 100 215 2.15 122 339 2.78
s298 84 201 2.39 210 321 1.53
spla 397 600 1.51 685 961 1.40
pdc 575 770 1.34 941 1280 1.36
ex1010 597 775 1.30 839 1161 1.38
Average: 2.01 2.09

Finally we compare the critical path delay obtained by ConePlace with that of
VPR. Table 3.9 shows the critical path delay obtained by ConePlace and VPR in
both wirelength and timing driven mode respectively. The quality of the critical

62 Ch 3. Bottom-up Cone based Placement for Island-style FPGAs

Table 3.9: Comparison of critical path delay: ConePlace vs. VPR

1 2 3 4 5 6 7
Wirelength driven Timing driven

Ckt Ours VPR Ours
V PR Ours VPR Ours

V PR
×10−8s ×10−8s ×10−8s ×10−8s

ex5p 12.4 11.2 1.11 8.95 8.11 1.10
misex3 11.8 11.2 1.05 10.1 10.5 0.96
diffeq 9.84 9.50 1.04 6.24 6.58 0.95
alu4 13.5 12.1 1.12 11.7 8.53 1.37
des 14.0 12.1 1.16 13.3 8.97 1.48
bigkey 9.59 10.5 0.91 6.85 6.26 1.09
seq 13.0 12.7 1.02 11.1 9.45 1.17
apex2 14.3 12.1 1.18 12.1 10.6 1.14
s298 20.8 19.9 1.05 13.6 16.2 0.84
spla 23.2 17.1 1.36 17.5 17.0 1.03
pdc 26.5 21.9 1.21 28.0 15.6 1.79
ex1010 19.2 23.0 0.83 22.7 17.5 1.30
Average: 1.08 1.18

path delay compared to VPR in both modes are shown in the fourth and seventh
columns. It shows that ConePlace produces placement with critical path delay com-
parable to VPR, as it is 1.08× of VPR in wirelength driven mode, on an average. In
case of timing driven mode, the critical path delay is 1.18× of VPR. However, the
critical path delay is much better than the one produced by ConeCLBPlace, where
the critical path delay is 1.5× of VPR. This shows that ConePlace, the combined
approach provides significant improvement in the quality of the placement even if
the BB cost did not show promising results.

3.7 Conclusion

In this chapter, we present three variants of constructive initial placement method
for placement of netlist on FPGA to accelerate the final placement phase of a sim-
ulated annealing based approach with the objective of minimizing the standard BB
cost. We formulate the placement of IOBs and CLBs as separate problems and
propose fast deterministic heuristics to obtain placement for each of them. We ob-
serve the results produced by these two independent methods ConeCLBPlace and
ConeIOBPlace. Finally, we combine both the approaches in ConePlace by first
placing the IOBs by ConeIOBPlace and then the CLBs with ConeCLBPlace. The

3.7. Conclusion 63

results produced by them are compared with the state-of-the-art tool VPR. The
results show significant speedup and even improvement in quality of the solution for
a few circuits. This emphasizes the suitability of these methods for fast compilation
of smaller circuits on small islands of CLBs on FPGAs. The methods proposed in
this chapter are greedy and hence falls into local optima. In order to overcome the
limitations of the greedy heuristics, partitioning based approaches were tried out
next.

Chapter 4

Top-Down Deterministic FPGA
Placement

4.1 Introduction

Contents
4.1 Introduction . 65

4.2 Overview . 66

4.3 Coarse grain placement . 68

4.3.1 Partitioning of CLB netlist 68

4.3.2 Allocation of netlist partitions to regions 69

4.3.3 Reallocation in overloaded regions 71

4.3.4 Placement of IOBs . 72

4.3.5 Time complexity of Coarse grain method 73

4.4 Fine grain placement . 74

4.4.1 Fine grain partitioning . 74

4.4.2 Recursive space filling curve 75

4.4.3 Placement using space filling curve 77

4.4.4 Time Complexity of Fine grain method 78

4.5 Experimental results for top-down deterministic FPGA place-
ment . 78

4.6 Conclusion . 84

In the previous chapter, we presented a new bottom-up, fast, deterministic
greedy heuristic to place the netlist of CLBs, observed its performance in terms
of speedup and quality and compared the results with the state-of-the-art popular
tool VPR. In this chapter, we explore the top-down partitioning based approach for
FPGA placement. The partitions are made either Coarse grain with more than one
CLB in each partition, or Fine grain with exactly one CLB per partition. The effect

66 Ch 4. Top-Down Deterministic FPGA Placement

of partitioning the netlist of CLBs on placement, both Coarse and Fine grain, is
evaluated here.

The rest of this chapter is organized as follows. Section 4.2 discusses the overview
of our approach. Section 4.3 has the details of our Coarse grain partitioning based
placement method. The Fine grain partitioning based placement method is ex-
plained in Section 4.4. Experimental results are reported in Section 4.5, and the
concluding remarks appear in Section 4.6.

CLB netlist

 Min-cut fine grain bi-partitioning
of CLB netlist till

one CLB per partition

Placement by Space-filling Curves
(eg. Hilbert, Z, Snake)

Improvement by low
temperature Simulated Annealing

High quality Initial
Placement of CLB netlist

Final
Placement

Placement of Primary Input and
Outputs on the periphery

 Min cut coarse grain bi-partitioning of
CLB netlist and FPGA array

by recursive bi-partition

Allocation of partitions to regions on
FPGA followed by redistribution of

 blocks to handle overflow within regions

Fine grainCoarse grain

Figure 4.1: Flow of our placement method: Coarse grain and Fine grain.

4.2 Overview

As in the preceding chapter, the aim of the partitioning based placement is to
minimize the total HPWL cost of the placement quickly. We explore two variants
of the partitioning based approaches. Our first technique, called the Coarse grain

4.2. Overview 67

method comprises the following steps as shown on the left of Figure 4.1: (i) top-
down min-cut partitioning of netlist of CLBs followed by partitioning of FPGA array
into z nearly equal sub-arrays (regions) of specified granularity (i.e., the number of
CLBs in a partition) (ii) mapping the z netlist partitions to the z equal-sized disjoint
square-shaped sub-arrays or regions on an FPGA array, (iii) global reallocation of
logic blocks from the regions corresponding to overloaded partitions to neighboring
under-utilized regions, based on a maximum flow formulation to produce a valid
placement, and finally (iv) obtaining the final placement solution by an appropriate
cooling schedule of simulated annealing (SA). This method is termed as Coarse grain
because each partition produced by partitioning has more than one logic block.
Although this partitioning heuristic is very fast, it may generate partitions with
more CLBs than the given granularity. This requires reallocation of logic blocks in
certain regions. In order to circumvent the step of reallocation, a second method
called Fine grain, is also proposed.

The Fine grain method consists of the following steps, as shown on the right
of Figure 4.1: (i) transformation of the netlist of n CLBs to a one dimensional
arrangement of CLBs, as opposed to partitions with more than one CLB in the
Coarse grain method, using top-down bi-partitioning techniques, (ii) mapping of
this one dimensional arrangement directly on to the

√
n ×

√
n 2D grid using a

recursive space filling curve [Sagan 1994] producing an initial placement, and finally,
(iii) determination of the final placement by an appropriate cooling schedule of
simulated annealing (SA). The technique focuses on generating a one dimensional
placement which minimizes the total wirelength. We use min-cut bi-partitioning
heuristic to generate the one dimensional (1D) arrangement. Having observed the
efficacy of these methods in the experimental results (See Section 4.5), we explore
the theoretical basis of this technique later on in Chapter 5. Next, we need to
place the 1D arrangement of CLBs to the 2D FPGA array such that the wirelength
remains minimized. The intuition behind using space filling curves for this purpose,
is that on one hand the target location for each CLB in the 1D arrangement is
computable in constant time and on the other, it retains the locality properties of
the one dimensional arrangement.

Partitioning based placement traditionally has a recursive top-down phase fol-
lowed by bottom-up construction. The novelty in our proposed methods lies in the
fact that, instead of bottom-up construction, we take advantage of the arrangement
of CLBs due to bi-partition and then apply the technique of space filling curve to
obtain a high quality placement very fast.

68 Ch 4. Top-Down Deterministic FPGA Placement

4.3 Coarse grain placement

Typically, in recursive min-cut bi-partitioning based placement, the netlist and the
FPGA array are partitioned independently keeping a correspondence between the
partitioned netlist and the partitioned FPGA sub-arrays. The FPGA array can
be bi-partitioned either horizontally or vertically, which is often chosen arbitrar-
ily or based on some objective criteria such as the terminal alignment objective in
[Maidee 2003, Maidee 2005]. This incurs additional timing overhead. In order to
achieve faster mapping of netlist partitions to the FPGA sub-array or region pre-
serving the relative closeness of two netlist partitions, the partitions are allocated to
the regions in a snake like fashion.

4.3.1 Partitioning of CLB netlist

Unlike block netlist graph representation of a netlist as in Chapter 3, the netlist of
CLBs is modeled as a hypergraph here. A net originates from a source CLB and
sinks to the set of CLBs in the fanout of the source. In the previous chapter, a
netlist of CLBs has been modeled as a block netlist graph, where there is an edge
corresponding to every source-sink CLB pair in a net. However, the netlist of CLBs
can be better represented as a hypergraph as follows.

Definition 4.1 (Netlist hypergraph:) A netlist hypergraph H(V,E) represents
the technology-mapped netlist of CLBs. It has vertices v ∈ V corresponding to each
logic block or CLB that has to be assigned a physical location on the FPGA array.
Each hyperedge e ∈ E represents a net in the netlist corresponding to a subset of
vertices in V that constitutes the net.

The netlist hypergraph H is bi-partitioned recursively to obtain balanced min-
cut partitions in order to group heavily connected CLBs. By employing a balanced
min-cut bi-partition, we obtain two netlist partitions having almost the same number
of CLBs. The CLBs in each partition are heavily connected as the partitioning is
with respect to the minimum cut. We bi-partition the hypergraph recursively till
the required granularity of netlist partition is achieved. The recursive partitioning
process generates a partition tree, where the root corresponds to all the nodes in the
hypergraph and the leaves correspond to the netlist partitions of given granularity.
Without loss of generality, the order of the two partitions in the partition tree can
be swapped.

We use the state-of-the-art hypergraph partitioner hMetis [hMetis , Karypis 1999a]
to generate the netlist partitions of the given netlist hypergraph H. It first reduces

4.3. Coarse grain placement 69

the size of the hypergraph by collapsing vertices and edges in the coarsening phase,
then partitions the reduced graph in the initial partitioning phase, and finally un-
coarsens it to construct a bi-partition for the original graph in the un-coarsening
and refinement phase.

The FPGA array is also partitioned into a number of square shaped sub-arrays
or regions of same granularity as the netlist partition. In the Coarse grain method,
without loss of generality, we choose the size of each region to be an array of 2× 2

on the FPGA. So, each region has at most 4 target CLB locations thereby having a
granularity of 4. This is termed as region capacity. The number of netlist partitions
or regions is calculated as follows. The FPGA chip is represented as a

√
n ×
√
n

array of CLBs, where n is the number of CLBs. The number of 2 × 2 regions
generated is

√
n

2 .
√

n
2 = n

4 . We partition the given netlist hypergraph into z (= n
4)

netlist partitions, so that these netlist partitions may be mapped on to n
4 regions on

the chip. This implies that each netlist partition has at most 4 logic blocks and each
region on the FPGA chip has 4 CLB locations within it. However, hMetis is based
on min-cut, which may often generate many partitions with more than 4 CLBs in
it. This causes overflow in some of the regions to which the partitions are mapped.
The overflow is resolved in the last step of reallocation. Figure 4.2(a) shows the 16

partitions obtained at the leaves of a partition tree by min-cut recursive balanced
bi-partitioning of a hypothetical circuit.

4.3.2 Allocation of netlist partitions to regions

The partition tree generated has netlist partitions at the leaves of the tree. By the
process of recursive min-cut bi-partition, the netlist partitions of the left sub-tree of
root are tightly connected than they are to the netlist partitions of the right sub-
tree of the root. This implies that there is a relative closeness among the left and
right children of the partition tree and they should be placed next to each other on
the FPGA chip in order to minimize the total wirelength. It was observed that,
if the netlist partitions at the leaves of the partition tree are chosen in left to right
order of their position in the partition tree, and are assigned to the regions on the
FPGA array in a snake like fashion, the relative positions of the netlist partitions
are preserved. Figure 4.2(b) shows the allocation of the 16 partitions to a 4 × 4

array of regions on the FPGA chip following a simple order commonly known as the
snake. Each square in Figure 4.2(b) corresponds to a region of size 2 × 2 array of
CLBs.

A snake curve is a continuous traversal of the euclidean space in a specific man-

70 Ch 4. Top-Down Deterministic FPGA Placement

z1

z2 z3

z4 z5

z6 z7

z8

z16 z9

z10z11

z12z13

z14z15

3

4 5 2

4

z1 z2 z3 z4 z5 z6 z7 z8 z16z9 z10 z11 z12 z13 z14 z15

0 1 2 3

0

1

2

3

z1

z3

z5

z6

z7

z16

so

1,1

0,2

1,3

2,2

1,2

to

5

3

4

2

4

4

4

4

4

4

4

4

4

4

4

(a)

(b)

(c)

U1 U2

cropped part
of snake

Figure 4.2: Steps of Coarse grain method: (a) balanced partition tree with netlist
partitions at the leaves (b) assignment of netlist partitions to regions on an FPGA in
a snake like fashion; each square corresponds to a region and is labeled by the netlist
partition zi assigned to it; the number of CLBs in each of the netlist partitions z3,
z5, z7, z12 and z6, appears at the top left corner of the corresponding region (c) flow
network for reallocation of CLBs from the overloaded regions to neighboring ones.

ner. A snake curve of height l partitions the 2D grid a× a into horizontal stripes of
height l, if l divides a [Asano 1997]. Each of these stripes is covered by a snake-like

4.3. Coarse grain placement 71

curve as shown in Figure 4.2(b). Here, we use a snake curve of height 2, which
implies it traverses the 2D array 2 units vertically, then two units horizontally and
continues till it covers the entire 2D array. The snake curve of height 2 requires odd
number of columns to be continuous in the 2D array. Thus, for arrays with even
number of columns, an extra column is assumed for generating the curve, although
no netlist partition is allocated to this column. The next netlist partition is allocated
to that region where the snake curve re-enters the boundary of the given 2D array.
The order of allocating a netlist partition to a region is shown in Figure 4.2(b) using
the dotted lines, and the partition numbers are shown next to the snake curve in
each region. Since the array has even number of columns, the cropped part of the
snake curve is shown outside the 4× 4 array in Figure 4.2(b).

4.3.3 Reallocation in overloaded regions

Ideally, had the number of CLBs in each partition not exceeded the region capacity
of the region assigned to it, each logic block could be placed within its own region.
However, several of the n

4 netlist partitions of the netlist hypergraph, may have more
than 4 CLBs, whereas, as per our chosen granularity each region can accommodate
only 4 CLBs. Thus, we need an additional step to reallocate them from overloaded
region to its neighboring ones such that there is no overloaded region on the FPGA
array. In order to achieve this, we formulate a max-flow problem as follows.

Let Go = {{so, U1 ∪ U2, t
o}, A} (U1 ∩ U2 = ϕ) be a bipartite network, where U1

represents the partitions or the leaf nodes of the partition tree; U2, the candidate
regions on the FPGA array denoted by the array index (i, j), and so and to are the
special nodes designated as the source and sink respectively. There are three types
of arcs in A:

1) (so, ui) ∀ui ∈ U1, with its capacity as the number of logic blocks in the
partition corresponding to node ui;

2) (ui, uj) where uj ∈ U2 is either the region assigned to the partition ui ∈ U1,
or any of the four regions which is either a horizontal or a vertical neighbor of uj .
Thus, the outdegree of each node ui ∈ U1 is less than or equal to 5, and the capacity
of arc (ui, uj) is the region capacity of uj , namely 4.

3) (uj , t
o) ∀uj ∈ U2, having capacity equal to that of the region uj ∈ U2, i.e., 4.

The max-flow formulation is illustrated in Figures 4.2(b) and 4.2(c). The netlist
partitions z6, z3, z5, z7, z11 are assigned to the regions (1, 2), and its 4 neighboring
regions (1, 1), (0, 2), (1, 3), (2, 2), respectively as shown in Figure 4.2(b). The number
of CLBs in each of this netlist partitions is shown in a smaller square within the

72 Ch 4. Top-Down Deterministic FPGA Placement

respective regions. The flow network corresponding to the netlist partition z6 is
shown in Figure 4.2(c) along with the arc capacities. There is an arc from so to
the node z6 with arc capacity 5, which is the number of CLBs in netlist partition
z6. There are five arcs from node z6; one to the node corresponding to region (1, 2),
to which z6 is initially assigned, and the remaining four to the nodes corresponding
to its four neighboring regions (1, 1), (0, 2), (1, 3), (2, 2). Each arc has capacity of 4

since the region capacity is 4 for each of these five regions. Finally, from each node
corresponding to a region, there is an arc to the sink node to with capacity of 4,
equal to the region capacity of the region corresponding to the tail node of the arc.

By solving the max-flow problem with integral flow, [Cormen 2003,
Alsuwaiyel 1999] we obtain the number of blocks in a netlist partition ui to be allo-
cated to a particular region uj . If the flow through the arc (ui, uj) is f(i, j), then
f(i, j) is the number of CLBs that are chosen arbitrarily from ui and reallocated
to the region uj . A feasible flow always indicate a feasible reallocation of the CLBs
in the regions of the FPGA array. Within a region, the logic blocks are assigned to
physical locations spirally. This completes the Coarse grain placement of CLBs on
an FPGA array.

4.3.4 Placement of IOBs

After the CLBs are placed on to a 2D FPGA array, the IOBs (input/output blocks)
are to be placed on the periphery of the array. We have formulated this prob-
lem as an instance of a minimum weighted bi-partite matching problem (MWBM)
[Papadimitriou 2006, Alsuwaiyel 1999] as described below.

Let Gb = {B1∪B2, Q} be a complete weighted bipartite graph, where B1∩B2 =

ϕ; the nodes in B1 correspond to the primary inputs and primary outputs, and those
in B2 correspond to the IOB pad locations available on the periphery of the FPGA
array of CLBs. Each pair of vertices (bi, bj), bi ∈ B1 and bj ∈ B2 contributes an
edge q = (bi, bj), and its weight is the Manhattan distance between the center of
the bounding box of the net corresponding to the IOB bi ∈ B1 and the specific
location corresponding to bj ∈ B2. For each matched edge (bi, bj) in the solution,
we assign the IOB bi to the location bj . Figure 4.3 shows the MWBM formulation
for placement of IOBs. The bounding boxes of two IOB nets are shown with shaded
rectangles on the FPGA array after the CLB placement in Figure 4.3(a). The center
of the bounding box is identified by a black circle. Each IOB pad is identified by the
co-ordinate positions (x, y). Figure 4.3(b) shows the complete weighted bipartite
graph. The edge weight which is the Manhattan distance between the center of the

4.3. Coarse grain placement 73

corresponding bounding box of an IOB net and the IOB location is shown next to
each edge.

This completes the initial placement of the CLBs and IOBs on the FPGA array
by our Coarse grain method.

x

y
Bounding box (BB)

of IOB net 1

Bounding box (BB)
of IOB net 2

center of
BB

p1

p2

pp

(10,4)

(1,0)

(10,10)

0 1 2 3 4 5 6 7 8 9 10

10
9
8

6
5
4
3
2
1

7

10

0

11

(9,11)

 (0,1)

10

9

9

4

(a)

(b)

11

IOB

Figure 4.3: Minimum weighted bi-partite matching formulation for placement of
IOBs: (a) the bounding box of two IOB nets; (b) the bi-partite graph for matching.

4.3.5 Time complexity of Coarse grain method

Theorem 4.1 The time complexity of the Coarse grain method is O(n2 log n), where
n is the number of CLBs.

Proof: The recursive min cut partitioning of CLB netlist by hMetis is an iterative
process and the authors of hMetis [Karypis 1999a] claim that the time taken is
almost linear in the number of hyperedges. As the number of hyperedges in the
netlist hypergraph is O(n), n being the number of CLBs, the time complexity of the
partitioning step is O(n).

After partitioning the CLB netlist by hMetis, the Coarse grain method allocates
the partitions to regions in O(n) time since the number of regions is O(n). The CLBs
in the regions are reallocated to neighboring regions using a maximum flow formula-
tion. The time complexity of Goldberg-Tarjan max-flow algorithm [Goldberg 1988]

74 Ch 4. Top-Down Deterministic FPGA Placement

is O(|E||V | log |V |2
|E|), where |V | is the number of nodes and |E| is the number of

edges in the flow graph. In our case, the number of nodes is 2 · n
4 = n

2 , as there are
n
4 regions. Thus, |V | = n

2 and |E| = 5n. Therefore, the time complexity of the CLB
placement by Coarse grain method is O(n2 log n).

For placement of IOBs on the periphery, we employ MWBM, which has a worst
case time complexity of O(|E|

√
|V |) [Alsuwaiyel 1999], where |V | and |E| are the

number of nodes and edges of the bipartite graph B with integer edge weights. In
our case, |V | is 4

√
n which is the number of IOB locations on the periphery of the

√
n×
√
n array of CLBs and |E| = O(n). The time complexity of IOB placement is

O(n1.25). Hence, the time complexity of the Coarse grain method is O(n2 log n). �
The initial placement generated thus far provides a fairly good quality solution.

For further improvement in the placement quality, a very low temperature simulated
annealing is executed on it to obtain the final placement as discussed in Section 3.3.6
of Chapter 3 for cone based placement approaches.

4.4 Fine grain placement

We observed that although the placement produced by Coarse grain method is better
than our previous bottom-up greedy heuristics, the min-cut partitions get perturbed
due to reallocation of blocks to neighboring regions thereby resulting in an increase
in BB cost. Moreover, there is a run-time overhead due to the reallocation of CLBs
from overloaded regions to its neighbors. In order to improve upon this drawback,
we generate netlist partitions with finer granularity, and directly map the CLBs on
to the 2D FPGA array using different types of space filling curves, which provide a
way to transform a one dimensional arrangement to a two dimensional space.

4.4.1 Fine grain partitioning

In the Fine grain method, as opposed to the Coarse grain partitions where region
capacity was set to 4, we set the region capacity to 1. Thus, the number of partitions z
is nothing but the number of CLBs. However, for all practical purposes we have seen
that n

2 partitions are sufficient for our purpose, and hence we partition the netlist
hypergraph into z = n

2 partitions. We use the hMetis hypergraph partitioner to
generate the balanced min-cut partition tree. As before, the leaves of the partition
tree represent the netlist partitions and the arrangement of the leaf nodes from left to
right represents a one dimensional arrangement of partitions. Before we delve into
further details of our Fine grain placement method, a brief introduction to space

4.4. Fine grain placement 75

l=0

l=1

l=2

l=3

(a) Hilbert (b) Z

Figure 4.4: Generation of space filling curves for l = 0, 1, 2, 3.

filling curves is presented next.

4.4.2 Recursive space filling curve

Peano [Peano 1890] first defined and proved the existence of space filling curves.
A space filling curve is defined to be a continuous map from the unit interval in
1D into the d-dimensional euclidean space that passes through every point of a
d-dimensional region [Peano 1890, Hilbert 1891, Sagan 1994]. A discrete space fill-
ing curve provides a linear traversal or indexing of a multi-dimensional grid space.
Space filling curves are commonly used to reduce a multi-dimensional problem to
a 1-dimensional one [Asano 1997]. But our objective is the reverse. A given one
dimensional arrangement is to be mapped on to a two dimensional array determin-
istically and by a closed form expression which can be computed in constant time.
This is possible because a bijective mapping as defined next, is used.

Definition 4.2 (Space filling curve:) For positive integers a and l, where a = 2l,
let us denote [a] = {1, 2, . . . , a}. A 2-dimensional discrete space filling curve of length
a2 is a bijective mapping C : [a2] → [a]2, that provides a linear indexing/traversal
or total ordering of all grid points in [a]2. This 2D grid is said to be of order l, and
has sides of length a = 2l.

76 Ch 4. Top-Down Deterministic FPGA Placement

a) Hilbert curve b) Z-curve c) Snake curve

1

23

456

7 8

910

11 12 13

14 15

16

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

1

2 3

4 5

6 7

8 9

10

1114151819

1213161720

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Linear order

Figure 4.5: Placement of a one dimensional arrangement of 16 blocks on to a 4× 4
array using space filling curves.

The generation of a 2D space filling curve of successive orders follows a recursive
framework. Several space filling curves such as Hilbert, Z, gray code curves, are
available in the literature [Sagan 1994] which are generated recursively. The Hilbert
and Z space filling curve can be constructed from a basic unit shape as shown
for l = 1 in Figure 4.4. The relative position and rotation of each unit shape is
defined by its sequential position in the curve generation (see Figure 4.4). As the
resolution of the curve increases, more unit shapes are required for its description,
but the principle remains same as the original proposition of recursively dividing
each part into smaller parts recursively. These curves can be generated using an
EOL-type (extended zero-sided Lindenmayer) grammar [Wood 1987] that basically
forces simultaneous rewriting at every cell of the grid partition. A more practical
and easily implementable recursive procedure to generate Hilbert curve appears in
[Breinholt 1998]. The snake curve used in the Coarse grain method, is also a space
filling curve. However, this is generated non-recursively in a tail-recursive manner
unlike Hilbert or Z.

In order to demonstrate the effectiveness of our proposed Fine grain placement
method using space filling curves, we choose a set of representative space filling
curves which are known to be easily constructable in linear time, using integer
computations. As some of the space filling curves can be generated efficiently in a
non-recursive manner, we selected the Snake curve to be one such. In the recursively
constructable category, the simplest ones Hilbert and Z curves are taken. The reason
is that another distinguishing feature of a space filling curve is whether it can be
traced without long jumps, or discontiguities [Mokbel 2002]. Hilbert curve has no

4.4. Fine grain placement 77

jumps, and Z curve has a jump to a non-contiguous cell at each level. The purpose
was to observe the effect of this feature on the total wirelength of the placement
obtained by applying the space filling curve mapping of the balanced min-cut based
linear order to a 2D array. It should be noted that without loss of generality our
proposed placement method may use other space filling curves as well, provided the
associated mapping can be generated very quickly.

4.4.3 Placement using space filling curve

We select each of the Hilbert, Z and snake space filling curves as described in Section
4.4.2, to place the logic blocks on the

√
n ×

√
n FPGA array. Essentially, this

allocates a specific co-ordinate position for each of the CLBs in the one dimensional
arrangement, using the sequence generated by the specific space filling curve. Figures
4.5(a), 4.5(b) and 4.5(c) respectively demonstrate the mapping of a one dimensional
arrangement on to a 2D grid using Hilbert, Z and snake curves. For practical circuits,
the size of the FPGA array may not necessarily be of the form a = 2l. We draw the
Hilbert curve for an arbitrary R × C array as follows. Let N = max{R,C}, and
a = 2l, where l = ⌈log2N⌉. Next, we find the space filling curve corresponding to a
and crop the array of size R× C from the array a× a as in Figure 4.6.

R x C = 6 x 6

a x a = 8 x 8

l=3

Figure 4.6: Cropping the curve for R× C array within a× a.

In summary, we obtain a one dimensional arrangement of CLBs by recursive
bi-partitioning of CLB netlist and map it to the two dimensional FPGA array by
space filling curve. Finally, the IOBs are placed on the periphery of the array
by formulation of a minimum weighted bipartite matching (MWBM) problem as
described earlier for Coarse grain method in Section 4.3.4. This completes the Fine
grain placement for FPGAs. In Chapter 5, we justify the success of this method. In
order to improve the quality of the placement further, a low temperature simulated
annealing step is executed as discussed in Section 3.3.6 of Chapter 3.

78 Ch 4. Top-Down Deterministic FPGA Placement

4.4.4 Time Complexity of Fine grain method

Theorem 4.2 The time complexity of the Fine grain method is O(n1.25), where n
is the number of CLBs.

Proof: The partitioning of the netlist hypergraph by hMetis takes O(n) time,
where n is the number of CLBs. The time complexity of placing the n CLBs using
a space filling curves is O(n) since n locations are visited only once during the
construction of space filling curve. As explained in the proof of Theorem 4.3.5, the
time complexity of IOB placement is O(n1.25). Thus, the overall time complexity of
Fine grain method is also O(n1.25). �

4.5 Experimental results for top-down deterministic FPGA

placement

In this section, we present the experimental results of our placement methodol-
ogy and compare these with the placement and routing results produced by the
popular FPGA placement tool VPR [Betz 1997]. The platform used is 1.2GHz Sun-
Blade 2000 workstation. The Library of Efficient Datatypes and Algorithms (LEDA)
[LEDA] is employed to solve the max-flow and MWBM formulations of Sections
4.3.3 and 4.3.4.

Table 4.1: Characteristics of MCNC FPGA placement benchmark circuits
1 2 3 4 5 6 7
Ckt # CLBs # Inputs # Outputs array # fine # coarse

size partitions partitions
tseng 1047 52 122 33 523 256
ex5p 1064 8 63 33 532 256
apex4 1262 9 19 36 631 324
dsip 1370 229 197 54 685 729
misex3 1397 14 14 38 698 361
diffeq 1497 64 39 39 748 361
alu4 1522 14 8 40 761 400
des 1591 256 245 63 795 961
bigkey 1707 229 197 54 853 729
seq 1750 41 35 42 875 441
apex2 1878 38 3 44 939 484
s298 1931 4 6 44 965 484
frisc 3556 20 116 60 1778 900
elliptic 3604 131 114 61 1802 900
spla 3690 16 46 61 1845 900
pdc 4575 16 40 68 2287 1156
ex1010 4598 10 10 68 2299 1156
s38417 6406 29 106 81 3203 1600
s38584.1 6447 38 304 81 3223 1600
clma 8383 62 82 92 4191 2116

4.5. Experimental results for top-down deterministic FPGA placement 79

Table 4.2: Placement results for wirelength driven VPR

1 2 3 4 5 6 7
Ckt Initial Final # of Place Delay Channel

BB cost BB cost SA moves time (s) (×10−7s) width
tseng 418.41 92.05 15.5 98.49 0.90 7
ex5p 429.38 161.95 13.6 97.9 1.12 14
apex4 180.45 180.46 16.4 117.5 1.28 13
dsip 915.21 169.99 28.6 179.83 0.79 6
misex3 576.71 189.00 19.2 136.4 1.12 12
diffeq 674.62 146.86 22.1 160.83 0.95 8
alu4 612.34 191.66 22.1 149.7 1.21 10
des 1274.94 227.84 34.0 193.0 1.21 8
bigkey 1096.31 185.98 35.1 200.4 1.05 6
seq 791.10 247.74 27.4 198.1 1.27 12
apex2 905.76 268.14 29.1 215.1 1.21 13
s298 748.91 204.89 30.3 200.9 1.99 8
frisc 517.50 517.50 73.6 548.5 2.07 13
elliptic 2292.46 457.20 76.6 529.1 1.82 11
spla 2388.64 608.16 75.2 600.4 1.71 15
pdc 254.26 870.87 97.2 769.8 2.19 18
ex1010 3350.40 654.19 101.5 775.0 2.30 11
s38417 5816.43 670.56 167.5 1236.7 1.95 8
s38584.1 5597.42 657.87 172.2 1236.5 1.27 9
clma 8008.39 1395.24 233.4 1848.5 2.53 12

Table 4.1 shows the characteristics of twenty MCNC benchmark circuits, twelve
of which have already been presented in Table 3.2. The columns 2 to 4 show the
number of CLBs, primary inputs, and primary outputs respectively in the given
circuit. Column 5 shows the minimum square array required to place all CLBs and
IOBs. The number of coarse and fine grain partitions for each circuit are shown in
columns 6 and 7 respectively.

As results of our proposed methods are compared with those of VPR, we first
report the placement results obtained by VPR in wirelength driven and timing driven
mode respectively with default parameters in Tables 4.2 and 4.3, in order to get a
proper perspective of our method. Then in Tables 4.4 to 4.7, we compare our results
with that of VPR with respect to various metrics, such as BB cost, number of SA
moves and critical path delay. All these tables show the results obtained both in
wirelength driven mode and the timing driven mode. Under each mode of operation,
we report the results of the proposed Coarse grain method (column title Coarse),
and the Fine grain method employing the three space filling curves, namely Hilbert,
Z and Snake.

In Table 4.2, we have reported the initial BB cost, final BB cost after the ex-
ecution of low temperature SA, the number of SA moves required, and the time
taken by VPR to obtain the final placement in columns 2 to 5 respectively. The
critical path delay and the channel width obtained after routing each circuit have

80 Ch 4. Top-Down Deterministic FPGA Placement

Table 4.3: Comparison of GL% between timing driven VPR and wirelength driven
VPR

1 2 3 4 5
Ckt GL%(BB Cost) GL%(SA moves) ratio of GL%(delay)

placement time
tseng 11 −18 2 −40
ex5p 11 −9 2 −28
apex4 8 −11 2 −33
dsip 18 −17 1 −22
misex3 6 −15 2 −6
diffeq 7 −14 2 −31
alu4 4 −15 2 −30
des 13 −13 2 −26
bigkey 13 −11 2 −40
seq 6 −17 2 −26
apex2 5 −16 2 −13
s298 12 −18 2 −19
frisc 14 −15 2 −37
Elliptic 9 −14 2 −26
spla 4 −15 2 −1
pdc 8 −13 2 −29
ex1010 3 −20 1 −24
s38417 2 −26 1 −46
S38584.1 4 −23 2 −25
clma 7 −16 2 −10
Avg: 8.3 −15.7 1.7 −25.5

been reported in the last two columns.

We define GL%(metric) as a percentage of gain or loss with respect to a certain
metric of the final placement of VPR as follows:

GL%(metric) = 100.
Ours(metric)− V PR(metric)

V PR(metric)
(4.1)

where metric can be BB cost, number of SA moves, or critical path delay. A negative
value means our method yields a better result than that by VPR.

Table 4.3 shows the trade off between timing driven VPR, and wirelength driven
VPR. For timing driven VPR, the final BB cost increases (column 2), the number
of SA moves decreases (column 3), while the critical path delay (column 5) improves
significantly over those for wirelength driven VPR. However, the time to place each
circuit (column 4) by timing driven VPR is 2× that by wirelength driven VPR.

In Table 4.4, we show how good our initial placement solution (without execution
of low temperature SA) is with respect to BB cost, vis-a-vis the final placement
obtained by VPR. The columns 2 to 5 show the GL% with respect to the initial
BB cost by our method over final BB cost of VPR in wirelength driven mode. The
columns 6 to 9 show the same in timing driven mode. The last row shows the
averages. We observed that, on the average our initial placement solution is within

4.5. Experimental results for top-down deterministic FPGA placement 81

Table 4.4: Comparison of GL% (Initial BB Cost) by our method vs. Final BB Cost
by VPR; [H:Hilbert, Z:Z, S:Snake]

1 2 3 4 5 6 7 8 9 10
Wirelength driven BB cost Timing driven BB cost

Coarse Fine Coarse Fine Speedup
Ckt H Z S H Z S V PR

Ours
tseng 54 44 53 73 38 30 38 56 31.8
ex5p 44 53 46 50 30 38 31 35 39.2
apex4 43 49 45 54 29 35 30 39 36.7
dsip 64 65 60 67 39 40 36 42 47.2
misex3 43 56 45 55 35 47 37 46 44.0
diffeq 49 59 45 67 39 48 35 55 38.3
alu4 38 48 39 48 33 43 34 43 40.4
des 86 91 88 93 65 69 66 71 43.9
bigkey 42 45 43 46 26 29 27 30 39.3
seq 50 53 47 55 42 44 39 47 46.1
apex2 48 60 52 59 41 53 45 52 43.9
s298 26 39 26 39 12 25 12 24 45.7
frisc 48 52 48 59 44 48 45 56 56.0
Elliptic 47 48 44 57 35 36 32 44 53.4
spla 51 51 48 56 45 45 42 50 60.6
pdc 54 52 50 55 42 40 38 43 61.1
ex1010 80 70 74 93 74 65 69 87 53.1
s38417 64 56 68 82 60 53 64 78 58.6
S38584.1 72 67 73 89 68 64 69 85 58.6
clma 59 55 60 71 57 54 58 69 72.2
Avg: 53.1 55.8 52.7 63.5 41.4 43.7 41.2 51.1 48.5

41% to 63% of the final solution of VPR. However, the placement run-time is just a
few seconds irrespective of the size of the circuits. The last column shows the average
speedup of our initial placement solution by both Coarse grain and Fine grain method
over VPR for each circuit. Our space filling curve based initial placement method
is about 48× faster than VPR on an average, as reported in the last row of the
last column. For both wirelength and timing driven modes, the initial placement
obtained by Z, Coarse, Hilbert and Snake curve are in the increasing order of
performance (BB cost). But, for bigger circuits (above 4000 CLBs), Hilbert curve
performs the best.

The GL% with respect to final BB cost, after execution of low temperature SA is
shown in Table 4.5. We observed that on the average the GL% (Final BB cost) lies
between 1% to 3% for wirelength driven and 4% to 7% for timing driven mode, thus
indicating that our final placement quality is comparable to VPR. The performance
of Hilbert curve is the best for wirelength driven case.

The speedup for all four variations is significantly high, as shown in Table 4.6.
In Table 4.6, we report the GL% (SA moves). This metric is based on the number of
SA moves required during execution of low temperature SA on our initial placement
solution. We observed that this GL% (SA moves) ranges between −47% to −67%

82 Ch 4. Top-Down Deterministic FPGA Placement

Table 4.5: Comparison of GL% (Final BB Cost) of our methods vs. VPR

1 2 3 4 5 6 7 8 9
Wirelength driven BB cost Timing driven BB cost

Coarse Fine Coarse Fine
Ckt Hilbert Z Snake Hilbert Z Snake
tseng 5 2 3 7 1 −1 −2 2
ex5p 2 2 2 3 4 5 2 6
apex4 3 1 1 0 9 8 8 5
dsip 1 1 0 1 3 14 16 18
misex3 1 1 0 1 4 8 4 8
diffeq 1 0 −2 −1 2 5 1 4
alu4 1 0 0 0 2 6 5 3
des 11 10 9 10 9 16 14 18
bigkey 2 1 2 3 3 8 10 15
seq 1 4 5 1 2 6 1 0
apex2 2 0 4 6 10 7 9 14
s298 1 0 0 1 3 3 −1 2
frisc 4 4 3 5 1 2 2 2
Elliptic 0 −1 −1 −1 7 2 3 10
spla −1 −1 7 2 5 1 2 4
pdc 3 0 3 1 4 4 4 7
ex1010 5 2 2 5 28 13 11 17
s38417 1 1 1 −1 5 2 3 7
S38584.1 2 1 −1 2 0 1 1 1
clma 2 1 3 3 0 1 1 0
Avg: 2.3 1.4 2.2 2.4 5.1 5.5 4.7 7.1

implying that our placement solution converges much faster. In case of wirelength
driven SA, the gain is the maximum for Coarse, whereas usage of any one of the
space filling curves Hilbert, Z and Snake has similar gains in terms of SA moves.
However, for the timing driven mode, Hilbert curve has the least gain in SA moves.
We have also reported the actual average speedup (ratio of CPU times on the same
platform) of our method over VPR in the last column. It shows that on the average,
our placement with low temperature SA is about 1.6× faster than VPR.

Finally, Table 4.7 shows the GL% (critical path delay) obtained after routing
our final placement using the router provided by VPR. Here also, we note that on
the average the GL% lies between −0.3% to 5.1% implying the critical path delay of
our placement after routing is comparable to VPR. For both wirelength and timing
driven modes, Hilbert curve produces the best gain in critical path delay compared
to VPR. Comparing the BB cost, speedup and critical path delay in both wirelength
and timing driven mode, the solution produced by Hilbert seems to be the most
promising one.

The results establish that our simple but fast placement technique generates
placement solution very quickly with little or no sacrifice in the quality of placement
solution. We have also noted that the channel width does not increase while routing
our placement solution, excepting one or two cases where it increases by at most 2.

4.5. Experimental results for top-down deterministic FPGA placement 83

Table 4.6: Speedup of our methods over VPR in terms of GL% (SA moves) and
ratio of CPU times; [H:Hilbert, Z:Z, S:Snake]

1 2 3 4 5 6 7 8 9 10
Wirelength Driven Timing Driven

Coarse Fine Coarse Fine Speedup
Ckt H Z S H Z S (V PR

Ours
)

tseng −62 −48 −48 −49 −57 −38 −51 −49 1.4
ex5p −66 −50 −50 −50 −78 −51 −82 −58 2.0
apex4 −71 −51 −54 −47 −58 −58 −58 −58 1.6
dsip −67 −54 −50 −51 −77 −45 −76 −72 1.7
misex3 −69 −52 −53 −51 −81 −40 −74 −53 1.6
diffeq −66 −48 −50 −47 −55 −48 −70 −47 1.5
alu4 −65 −47 −44 −48 −62 −41 −64 −59 1.8
des −66 −50 −50 −51 −78 −67 −79 −76 2.0
bigkey −64 −50 −50 −49 −70 −46 −67 −72 1.8
seq −64 −49 −46 −49 −79 −53 −61 −72 1.6
apex2 −61 −42 −43 −44 −59 −51 −63 −72 1.6
s298 −66 −48 −47 −49 −66 −33 −57 −54 1.3
frisc −67 −50 −50 −50 −58 −58 −59 −58 1.8
elliptic −67 −50 −50 −50 −49 −43 −43 −41 1.5
spla −67 −40 −43 −40 −50 −69 −61 −58 1.3
pdc −60 −39 −39 −37 −53 −37 −35 −38 1.6
ex1010 −61 −38 −41 −36 −41 −39 −32 −30 1.5
s38417 −67 −50 −50 −50 −43 −33 −35 −36 1.4
s38584.1 −67 −50 −50 −50 −58 −59 −57 −55 1.7
clma −67 −50 −50 −50 −57 −56 −57 −57 1.4
Avg: −65.4 −47.9 −47.9 −47.5 −61.6 −48.3 −59.1 −55.8 1.6

Table 4.7: Comparison of GL% (Critical path delay) of our methods over VPR

1 2 3 4 5 6 7 8 9
Wirelength Driven Timing Driven

Coarse Fine Coarse Fine
Ckt Hilbert Z Snake Hilbert Z Snake
tseng 13 17 14 8 4 2 9 11
ex5p 8 2 14 9 3 8 13 9
apex4 5 −4 27 −7 −1 0 0 0
dsip 0 −1 7 2 5 −13 1 5
misex3 5 7 0 2 −11 −5 −4 −3
diffeq 4 3 2 1 4 9 −2 −12
alu4 −10 −1 −9 −10 19 −1 23 10
des 31 2 20 3 15 16 11 9
bigkey 3 4 5 2 15 15 −5 0
seq 1 −6 −4 6 −6 −6 11 6
apex2 3 1 1 13 9 −11 −6 −6
s298 5 2 0 1 −15 −10 −6 −15
frisc 4 2 1 0 1 −3 2 −2
Elliptic 3 2 1 2 18 −12 10 −1
spla −8 −2 −11 21 −10 −10 −4 −5
pdc 32 4 −3 2 1 11 11 40
ex1010 0 −15 −12 −13 9 2 0 −3
s38417 2 3 2 −1 8 −4 17 11
S38584.1 −2 2 4 1 1 2 4 0
clma 2 2 3 0 2 6 3 0
Avg: 5.1 1.2 3.1 2.0 3.7 −0.3 4.5 2.8

84 Ch 4. Top-Down Deterministic FPGA Placement

4.6 Conclusion

In this chapter, we have proposed a very fast technique to place a netlist of CLBs
on FPGAs with a small sacrifice in the quality of solution. The novel contribution
is in using space filling curves to generate a good quality initial placement very
quickly which ultimately reduces the convergence time of an iterative improvement
method. Here, three representative space filling curves, namely Hilbert, Z and snake
have been used to demonstrate the efficacy of the proposed Fine grain placement
method; as a matter of fact, any space filling curve that is easily constructable in
linear time can be used.

The experimental results on benchmark circuits indicate that our initial place-
ment method produces a solution about 47% and 52% faster than VPR by employ-
ing Coarse grain and Fine grain method respectively. As the BB cost of our initial
placement is within 47% and 53% of final BB cost of VPR for Coarse grain and
Fine grain partition respectively, we employed a low temperature SA on our initial
placement solution and compared the BB cost, critical path length and the overall
runtime with that of VPR. We observed that for our Coarse grain method, the final
BB cost and the critical path delay is within 4% of final BB cost and critical path
delay obtained by VPR. However, the gain in number of SA moves is about 63% and
it is 1.6× faster than VPR on the average. In case of our Fine grain method, the
final BB cost and the critical path delay is within 2% and 4% of VPR respectively,
whereas, it is 1.6× faster and requires 53% fewer moves on the average.

The results also show that the Coarse grain method produces the final solu-
tion faster than Fine grain method but of slightly lower quality than that of Fine
grain method. Moreover, while the partitioning-based placement method PPFF
[Maidee 2003], achieves an improvement of 2% in critical path delay at the cost of
additional 0.28% runtime (in case the routing profile statistics are not available or
ineffective for the circuit under consideration) and channel width over VPR, our
method produces a solution of nearly comparable quality in much less time. The
overall performance of Fine grain method using Hilbert space filling curve showed
interesting results. This led to a deeper investigation in the theory behind the suc-
cess of this method described in the next chapter. As stated earlier, our fast methods
can also be applied to small islands of CLBs in heterogeneous FPGAs in the context
of fast reconfiguration.

Chapter 5

Efficient FPGA Placement using
Space Filling Curves: Theory

Meets Practice

Contents
5.1 Introduction . 85

5.1.1 FPGA placement: theory and practice 86

5.2 Our contribution . 87

5.3 Graph embedding and approximation algorithms 88

5.4 Approximation algorithms for FPGA placement 92

5.4.1 Extending approximation algorithms for graphs to hypergraphs 92

5.4.2 Approximation algorithm for HPG using space filling curve . 94

5.5 The algorithm in practice . 99

5.5.1 Computation of linear arrangement 99

5.5.2 Placement by space filling curves 100

5.5.3 Placement of IOBs . 100

5.6 Experimental results . 101

5.6.1 Quality of placement . 101

5.6.2 Effect of low temperature SA 103

5.7 Conclusion . 104

5.1 Introduction

In Chapter 4, we proposed a fast top-down placement method, where a one dimen-
sional placement is obtained first, which is then arranged in two dimensions using
several space filling curves. It was observed that a particular space filling curve,
namely, Hilbert, performed the best in terms of quality of placement. This chapter

86 Ch 5. Efficient FPGA Placement using Space Filling Curves: Theory Meets Practice

presents an analytical viewpoint of this strategy for FPGA placement and gives
bounds to the quality of solution achieved by this method.

5.1.1 FPGA placement: theory and practice

VLSI placement, be it for ASIC or FPGA, is a computationally difficult problem
that challenges both theoreticians and practitioners alike. The existing approaches
to solve the placement problem have branched into two different directions. One
uses stochastic iterative heuristics with many tunable parameters and tries to reach
the optimal solution, but no rigorous theoretical analysis can be given about the
quality of the solution. These methods suffer from all or some of the following draw-
backs - no theoretical guarantee, immense running time for good quality solution,
not scalable for all practical purposes. The problem under study being NP-hard
[Shahookar 1991], the other line of study mainly concerns researchers dealing with
approximation algorithms where the aim is to give theoretical bounds on the devia-
tion of the obtained solution from the optimal one. But, as literature on placement
shows, there has been almost no effort at bridging the gap between theory and
practice.

On the theoretical front, the FPGA placement problem can be modeled as a
graph embedding problem on a two dimensional grid that minimizes a cost resembling
the wirelength [Even 2000, Vempala 1998]. The model is formally defined in Section
5.3. The best known approximation ratios for the graph embedding problem are poly-
logarithmic [Even 2000, Feige 2007, Rao 1998]. This implies worsening theoretical
guarantees with increase in the problem size. On the other hand, inapproximability
results (results that prove that the design of an approximation algorithm with a
small approximation ratio is impossible unless P=NP) [Vazirani 2001] have also
eluded researchers. The best theoretical result for this problem is due to Even
et al. [Even 2000] where the authors propose an O(log n log logn) approximation
result. As it turns out, the one dimensional version of this problem is also NP-hard
[Garey 1979]. Rao and Richa [Rao 1998] showed that the approximation ratio of
the one dimensional version is O(log n). The current approximation result stands
at O(

√
log n log log n) [Feige 2007].

These algorithms are of polynomial time complexity, use advanced concepts, and
are theoretically very elegant. But the running time of these algorithms are pro-
hibitively high for VLSI practitioners since they involve solving linear programs with
exponential number of constraints by the ellipsoid method or semidefinite program
[Schrijver 1998]. Moreover, the theory developed thus far is tuned for VLSI place-

5.2. Our contribution 87

ment modeled as graph embedding. But in FPGA placement problem, the model of
a hypergraph is more accurate for representing a given circuit netlist. To the best of
our knowledge, there have been no efforts on the part of VLSI practitioners to bring
this theory into practice. Practical algorithms should be fast, give reasonably ac-
ceptable solutions and should scale up well for very large circuits [Sarrafzadeh 2001].
In effect, as Vygen [Vygen 2007] points out, one has to accept that no approxima-
tion guarantee can be given for practical algorithms. This has led practitioners to
look for heuristics for global placement that can be broadly classified into three
categories: (i) stochastic iterative search, most notably, using simulated annealing
(SA), (ii) recursive partitioning, and (iii) analytical placement.

All of the above works aim at faster method for routable placement with better
or comparable critical path delay as in VPR. However, no work addresses the quality
of the initial placement as obtained by their deterministic method in terms of half-
perimeter bounding box cost, the routability of the placement or the critical path
delay of this placement after routing. Also, there is no theoretical guarantee on how
close their placement solution is to the optimal solution.

Thus, we observe that there is a wide gap between theory and practice regarding
VLSI placement. Our effort, in this chapter, is to bridge this gap. We propose a very
simple placement method with theoretical bound on the quality of the placement.
Further, to emphasize the suitability of this fast yet effective method in the context
of reconfigurability, we route the placement and show that all the placements are
routable with reasonable critical path delay when compared to VPR.

The rest of the chapter is organized as follows. An overview of our motivation
and approach for FPGA placement is presented in Section 5.2. Section 5.3 defines
the FPGA placement problem as a graph embedding problem. Section 5.4 forms the
theoretical backbone of our work wherein we discuss approximation algorithms for
FPGA placement. We discuss the ways of implementing the theoretical algorithmic
results for real FPGAs in Section 5.5. Section 5.6 reports experimental results.
Finally, the concluding remarks appear in Section 5.7. Although, routing is not
the main focus of this chapter, in order to justify the quality of our fast placement
method, we report the routability of the placed design in the experimental results.

5.2 Our contribution

We first extend the existing graph embedding approximation algorithms [Feige 2007,
Even 2000] to hypergraphs in order to prove an O(d

√
log n log log n) bound for 1D

(i.e., linear arrangement), and an O(d log n log log n) bound for the 2D case. Next,

88 Ch 5. Efficient FPGA Placement using Space Filling Curves: Theory Meets Practice

we obtain a bound on the quality of placement obtained by the fine grain method
proposed in Section 4.4.1 of Chapter 4. The bound is derived for the HPWL,
the half-perimeter bounding box cost only, without considering the congestion and
routability in particular.

We obtain a linear arrangement of the vertices of the hypergraph modeling
the circuit netlist using an approximation algorithm, and then employ a recur-
sive space filling curve [Sagan 1994] for deterministically mapping this linear ar-
rangement to a two dimensional grid. We establish an approximation bound of
O(4
√

log n
√
kd log log n) for this method. However, the theoretical approximation

bound is not tight and the time complexity is still high. This leads us to the perti-
nent issue of how to adapt the algorithms with theoretical bound into practice.

We answer this by replacing the complex approximation algorithm for deter-
mining optimal linear arrangement, with the left to right order of the leaves of the
recursive bi-partition tree produced by a top-down min-cut hypergraph partitioning
heuristic (e.g. hMetis [hMetis , Karypis 1999a]). This method runs in just a few
seconds for standard benchmark circuits to yield reasonably good solutions. We re-
port that the solution obtained is routable even without any iterative improvement
or legalization heuristic. In the existing literature, we have not found reports on
routability for the deterministic heuristics. To sum up, our technique (i) transforms
the netlist hypergraph to a linear arrangement of nodes of the hypergraph using
top-down hypergraph bi-partitioning techniques, (ii) maps this linear arrangement
directly on to the 2D grid using a recursive space filling curve. The intuition behind
using space filling curves is that on one hand the target location for each node in the
linear arrangement is computable in constant time and on the other, it retains the
locality properties of the 1D linear arrangement. Although it is not the main focus
of our work, we also show that our placement can be improved by low temperature
simulated annealing schedule with fast convergence, just as placements obtained by
other methods [Maidee 2003, Xu 2005, Gopalakrishnan 2006] have been improved
using local search or simulated annealing.

5.3 Graph embedding and approximation algorithms

In contrast to the heuristic methods developed by VLSI practitioners for place-
ment, there has been a different line of study where researchers look at designing
approximation algorithms for producing solutions that lie within certain bounds of
the optimal solution [Even 2000, Vempala 1998]. These works mainly formulate the
VLSI layout problem as embedding a graph in a d-dimensional grid. For d = 1, the

5.3. Graph embedding and approximation algorithms 89

graph embedding problem is basically the graph optimal linear arrangement (GOLA)
problem, which is known to be NP-hard [Garey 1979]. Most of these works deal with
laying out a graph on a grid optimizing a cost, which in a way resembles an esti-
mate of the total wirelength. But, a more accurate model of a circuit represented as
netlists of CLBs, is a hypergraph. Before presenting a brief review of existing results,
a series of problem definitions [Bhasker 1987, Even 2000, Rao 1998, Feige 2007] re-
lated to embedding of graphs and hypergraphs, are presented below.

Problem 5.1 (Graph Optimal Linear Arrangement (GOLA):) Given an undi-
rected graph G = (V,E), the problem is to find a linear arrangement of the vertices
h : V → {1, . . . , |V |}, that minimizes the cost function

∑
(i,j)∈E |h(i) − h(j)|, i.e.,

the sum of the lengths of the edges in the arrangement.

Problem 5.2 (Graph Placement on Grid (GPG):) Given an undirected graph
G = (V,E), the problem is to find an embedding of G in a two dimensional grid, or
equivalently, a one-to-one mapping, h of G to a subgraph containing |V | vertices of
the two dimensional grid, such that the cost function

∑
(i,j)∈E d(h(i), h(j)) is mini-

mized. Here d(x, y) is the number of grid edges in the shortest path between x and
y along the grid.

For FPGAs, the circuit represented by the CLB netlist is more realistically
modeled as a hypergraph H = (V, S), where V = {1, 2, . . . , n} are the n CLBs,
and S = {S1, S2, . . . , Sk} are the k hyperedges or nets with each hyperedge Si being
a subset of V . Let a net i (1 ≤ i ≤ k) have ni number of CLBs, i.e., |Si| = ni. Let
d = maxk

i=1{ni} and certainly d ≤ n. Now, we progress to the following problems.

Problem 5.3 (Hypergraph Optimal Linear Arrangement (HOLA):) Given
a hypergraph H = (V, S), the problem is to find a linear arrangement of the vertices
h : V → {1, . . . , |V |} such that the cost

∑k
i=1 maxq,l∈Si

{|h(q)− h(l)|} is minimum.

Problem 5.4 (Hypergraph Placement on Grid (HPG):) Given a hypergraph
H = (V, S), the problem is to find an embedding of H in a two dimensional grid, or
equivalently, a one-to-one mapping, h of H to a subgraph containing |V | vertices of
the two dimensional grid, such that the cost function

HPWL =
k∑

i=1

(bbx(i) + bby(i))

is minimized. Here, bbx(i) is the x span of net i, bby(i) is the y span of net i, and
bbx(i) + bby(i) is termed as the half-perimeter bounding box of net i.

90 Ch 5. Efficient FPGA Placement using Space Filling Curves: Theory Meets Practice

Note that the shortest path between vertices i and j in the 2D grid, as defined
in GPG, is similar to the HPWL-cost as defined in HPG. Both measure the half-
perimeter of the enclosing rectilinear bounding box, i.e., HPWL cost.

Bhasker and Sahni [Bhasker 1987] showed that the problem of computing the
ε-approximation solution for GOLA and HOLA are NP-hard. They provide branch-
and-bound and dynamic programming algorithms for optimal solutions for HOLA,
but obviously the algorithms are not of polynomial time complexity. Approximation
algorithms for GOLA and GPG were designed by Even et al. [Even 2000]. Their
approximation algorithms work in cases where divide-and-conquer is applicable and
a fractional spreading metric can be computed in polynomial time. A spreading
metric on a graph is an assignment of rational lengths to edges such that subgraphs
for which the optimization problem is non-trivial, are spread apart in the associated
metric space. The sum of the lengths of these edges multiplied by the corresponding
weights gives a lower bound on the cost of solving the optimization problem. The
crux of the strategy by Even et al. is a novel divide-and-conquer that divides not
according to the sizes of the subproblems, but on the cost of solving the optimization
problem which is bounded from below by the volume of the spreading metric. Their
approximation bounds for both GOLA and GPG are O(log n log log n). Following on
the work of Even et al. [Even 2000], Rao and Richa [Rao 1998] improved the bound
to O(log n) for GOLA by using better graph separators. This has been further
tightened to O(

√
log n log log n) [Feige 2007]. So, the current approximation bound

for GOLA stands at O(
√

log n log log n) [Feige 2007], and for GPG, O(log n log log n)

[Even 2000]. Apart from minimizing the sum of distances as done in the above
reviewed works, there has been effort in minimizing the maximum edge length.
Vempala [Vempala 1998] obtained an O(log3.5 n) approximation algorithm for this
problem.

The above algorithms though polynomial in nature, have high time complex-
ity as they need to solve a linear program by the ellipsoid method or semidefinite
program as a subpart. This is understandable from a theoretical standpoint since
the challenge is to reduce the approximation bound within polynomial time. Our
goal on the contrary, is designing approximation algorithms with theoretical bounds
for HOLA and HPG, that run in reasonable time and are easy to implement. The
application under consideration is FPGA placement. We present two types of re-
sults. One that extends the work of [Rao 1998, Feige 2007] on GOLA to HOLA, and
the work of [Even 2000] on GPG to HPG. These are mainly of theoretical interest.
Next, we design an approximation algorithm for HPG based on a solution for HOLA
followed by application of a space filling curve. We show that this algorithm can be

5.3. Graph embedding and approximation algorithms 91

Placement

Theory: Graph embedding problem Practice

(1D placement)
Graph Optimal

Linear Arrangement
(GOLA)

[Feige et al. 2007]
O((log n)

0.5
 log log n)

(2D placement)
Graph Placement on Grid
(GPG)[Even et al. 2000]

O(log n log log n)

Stochastic search (SA)
Space Filling

curve

Partitioning based Analytical

(1D placement)
Hypergraph Optimal
Linear Arrangement

 (HOLA)
O(d (log n)

0.5
 log log n)

(2D placement)
Hypergraph Placement

on Grid (HPG)
O((log n)

0.25
 (kd log log n)

0.5
)

extended to

extended to

applied to

applied to

Theory meets practice

linear
arrangement

Figure 5.1: A schematic indicating the role of our work.

adapted for practical FPGA placement running in near-linear time if the approx-
imation algorithm for HOLA is replaced by a linear arrangement obtained from a
recursive min-cut partitioning of the CLB netlist. We provide experimental results
on standard benchmarks that support our claim.

A schematic representation of our line of research is presented in Figure 5.1.
The arrows show the steps/directions of the development of different approaches in
both theory and practice. The dotted lines indicate the theoretical derivation of
approximation ratio of our method from existing results. The dashed lines show
the theoretically or practically available concepts or techniques used in our method.
The steps of our method are marked within oval shapes. The rectangle in the
center depicts how our approach is bridging the gap between theory and practice by
providing a solution with an effective theoretical bound.

92 Ch 5. Efficient FPGA Placement using Space Filling Curves: Theory Meets Practice

5.4 Approximation algorithms for FPGA placement

5.4.1 Extending approximation algorithms for graphs to hyper-
graphs

v2

v3

v4

v2 v3 v4

v1

v1

a signal net graph model of net

Figure 5.2: A net/hyperedge and its corresponding graph; v1 is the source.

First, it is to be noted that GOLA is a special case of HOLA and similarly,
GPG is a special case of HPG. We now deduce relations between costs of GOLA
and HOLA.

Given a hypergraph H(V, S), we construct a graph G∗ = (V,E) as follows. For
each hyperedge Si ∈ S, a vertex vi (∈ V) is designated as source from which edges
are connected to vertices vj (vj ∈ V and vj ̸= vi), i.e., we add edges (vi, vj) to E.
So, for hyperedge Si ∈ S, we add (ni − 1) edges. Figure 5.2 provides an illustration
of how edges are added for a particular hyperedge.

Lemma 5.1 OPTGOLA ≤ d ·OPTHOLA, where OPTHOLA is the optimum cost
of HOLA for a hypergraph H = (V, S), OPTGOLA is the optimum cost of GOLA
for the corresponding graph G∗ = (V,E), and d = maxk

i=1{ni}.

Proof: Let h be the permutation obtained by HOLA of the nodes in H, and

cost(h) =
k∑

i=1

maxq,l∈Si
{|h(q)− h(l)|}

where the cost contribution of hyperedge Si is maxq,l∈Si
{|h(q)− h(l)|}. When the

hyperedge Si is transformed to edges of the graph G∗, (ni − 1) edges are added. Of
them, the maximum contribution is from maxq,l∈Si

{|h(q)−h(l)|} which adds to the
HOLA cost. So, the corresponding graph cost for the hyperedge Si cannot exceed

5.4. Approximation algorithms for FPGA placement 93

(ni − 1) · maxq,l∈Si
{|h(q)− h(l)|}. Thus,

d ·OPTHOLA = d · costH(h) =
k

max
i=1
{ni} ·

k∑
i=1

maxq,l∈Si
|h(q)− h(l)|

≥
k∑

i=1

ni maxq,l∈Si
|h(q)− h(l)|

≥ costG∗(h)

≥ OPTGOLA.

�

Theorem 5.1 HOLA is O(d
√

logn log log n) approximable.

Proof: Using the O(
√

log n log log n) approximation algorithm A(G) for GOLA
[Feige 2007], which produces a solution with cost A(G), we have

A(G)
OPTGOLA

≤ c′
√

log n log logn, where c
′
is a constant. (5.1)

By Lemma 5.1 and Equation 5.1, we have

d · OPTHOLA ≥ OPTGOLA ≥
A(G)

c′
√

log n log log n
(5.2)

Thus, we have A(G)

OPTHOLA
≤ c′ d

√
log n log log n.

In order to get an O(d
√

log n log log n) approximation algorithm for HOLA, we
transform the hypergraph netlist to the corresponding graph G∗ as stated above, and
then run the O(

√
log n log log n) approximation algorithm for GOLA [Feige 2007] on

G∗. �
As a matter of fact, results similar to that of Lemma 5.1, hold for the costs

of GPG and HPG by replacing the cost functions of GOLA and HOLA with the
half-perimeter bounding box cost. Using this observation, we can proceed along
similar lines as Theorem 5.1, and use an approximation algorithm for GPG by Even
at al. [Even 2000] to obtain an approximation algorithm for HPG as stated in the
following theorem.

Theorem 5.2 HPG is O(d log n log log n) approximable.

These results are merely of theoretical interest since these are not implementable
in reasonable time as mandated by VLSI practitioners. In the next subsection, we
begin a line of study that would finally lead to an algorithm with reasonable running
time.

94 Ch 5. Efficient FPGA Placement using Space Filling Curves: Theory Meets Practice

Algorithm 5.1: SFCTheoreticalPlace: Placement using HOLA and SFC.
Input : Hypergraph representing a given netlist of n CLBs; a 2D array of

FPGA chip
Output: Placement of the CLBs on a given 2D array

Call the O(d
√

logn log log n) approximation algorithm for HOLA as per1

Theorem 5.1;
Map the Hypergraph Optimal Linear Arrangement (HOLA) obtained directly2

on to the two dimensional grid using a recursive space filling curve, e.g.,
Hilbert curve;

5.4.2 Approximation algorithm for HPG using space filling curve

Our algorithm for placement is very simple. We obtain a hypergraph optimal lin-
ear arrangement (HOLA) from the hypergraph and then use a space filling curve
[Peano 1890, Sagan 1994] to embed this linear arrangement on the grid. Algo-
rithm 5.1 gives the steps of the proposed method. A discrete space filling curve
provides a linear traversal or indexing of a multi-dimensional grid space, as de-
scribed in Section 4.4.2.

5.4.2.1 Approximation ratio for general hypergraphs

The approximation algorithm we discuss next needs a lower bound on OPTHPG,
the optimal solution for HPG.

Assume that the nets are disjoint. Then, the half-perimeter bounding box of
each net i has to be greater than 2

√
ni. This follows from the fact that for a fixed

area, say ni, the perimeter is minimized when both sides are equal (i.e. =
√
ni). So,

OPTHPG ≥ 2
k∑

i=1

√
ni. (5.3)

First consider the approximation algorithm A(H) for HOLA. As per Theorem
5.1, we have

A(H)
OPTHOLA

≤ c′ d
√

log n log log n

where A(H) is the cost of the output of A(H).

1 2 3 nix

Figure 5.3: Span of a net (hyperedge) with ni CLBs.

5.4. Approximation algorithms for FPGA placement 95

Lemma 5.2 In the optimal solution for HOLA, the sum of the maximum span of the
nets is bounded by d

∑k
i=1 ni, i.e., OPTHOLA ≤ d

∑k
i=1 ni, where k is the number

of nets.

Proof: As shown in Figure 5.3, consider a vertex x /∈ Si but lying in the span of
the net Si. It is easy to observe that x has to share a net Sj ̸= Si with some vertex
vi ∈ Si, otherwise OPTHOLA can be reduced further. Now, if none of the nets share
any vertices, then OPTHOLA =

∑k
i=1(ni − 1). However, each vertex of the net Si

in the worst case can belong to different nets Sj (̸= Si) in addition to Si. Each Sj

can be at most of size d. So, if we expand each net Si to a span of d ·ni and take the
sum, then the sum exceeds OPTHOLA, making the total OPTHOLA ≤ d

∑k
i=1 ni,

where k is the total number of nets or hyperedges. �
As a consequence of Lemma 5.2 and Theorem 5.1 we have the following upper

bound,

A(H) ≤ c′d2
√

log n log logn
k∑

i=1

ni (5.4)

Let us now consider a hyperedge (net) Si that spans a length ri in the linear
arrangement corresponding to A(H). Therefore,

r1 + . . .+ rk ≤ c
′
d2
√

log n log log n
k∑

i=1

ni (5.5)

Lemma 5.3 [Sagan 1994, Even 2000] In a 2D embedding using space filling curve,
each net spanning a length ri in the linear arrangement has a perimeter bounded by
C

′ · √ri where C ′ is a positive constant.

Proof: Consider a Hilbert curve of order l [Sagan 1994, Even 2000, Gotsman 1996].
It is easy to observe that the Hilbert curve of the preceding lower order is obtained
using a 4-fold reduction. As an example, the lower left 16 cells of l = 3 in Figure
4.4(a) are mapped to the lower left 4 cells of l = 2. Now, consider a net spanning
a length of ri in the linear arrangement, and consider its Hilbert filling. As we go
down the order of Hilbert curves applying the 4-fold reduction, the net spanning a
length ri becomes successively smaller till it reaches a size of 4. If x is the number
of such 4-fold reduction for a net of length ri, then ri

4x = 4. So, x = O(log2
√
ri).

If we expand again 4-fold, the sides increase exponentially as a power of 2 (vide
Figure 4.4(a)). So, the perimeter is bounded by 2O(log2

√
ri) = O(

√
ri). �

Next, we derive the approximation ratio of our algorithm for the grid embedding
of hypergraph.

96 Ch 5. Efficient FPGA Placement using Space Filling Curves: Theory Meets Practice

Theorem 5.3 HPG is O(d 4
√

log n
√
k log log n) approximable.

Proof: As a consequence of Lemmata 5.2 and 5.3, the upper bound on the half-
perimeter bounding box cost is HPWL ≤ C ′

(
√
r1 + . . .+

√
rk).

Cauchy-Schwarz inequality [Abramowitz 1972] states that ∀xi, yi ∈ IR,(∑k
i=1 xiyi

)
≤
√(∑k

i=1 x
2
i

)(∑k
i=1 y

2
i

)
.

By setting yi = 1 and xi =
√
ri in the above, we get

(∑k
i=1

√
ri

)
≤
√
k

√(∑k
i=1 ri

)
.

Using the above and Equation 5.5, we arrive at

HPWL ≤ C ′
(
√
r1 + · · ·+

√
rk) ≤ C

′′
d
√
k

√√√√ √
log n log log n

k∑
i=1

ni (5.6)

where C ′ and C
′′ are constants. Finally, using Equations 5.2, 5.3 and 5.6, and the

fact that ni’s are all non-zero positive integers, the approximation ratio becomes

HPWL

OPTHPG
≤

C
′′
d
√
k
√

log n log log n
√∑k

i=1 ni

2
∑k

i=1

√
ni

≤ C
′′
d
√
k
√

log n log log n
2

√∑k

i=1 ni∑k
i=1

√
ni

Thus, HPWL
OPTHPG

≤ O(d 4
√

log n
√
k log log n) because

(
q

Pk
i=1 ni

Pk
i=1

√
ni

)
≤ 1 with ni’s being

all non-zero positive integers. �
The approximation ratio obtained here is dependent on the number of hyperedges/nets.
If k = o(log

3
2 n log log n), then the approximation ratio of Theorem 5.3 is better than

that of Theorem 5.2.

5.4.2.2 Approximation ratio for hypergraphs with bounded degree

In the island style FPGAs, each CLB typically has one or two output terminals and
a small but constant number (say four) input terminals. An output terminal can
have fanout to all other CLBs, but it can have fanin from at most four CLBs. For
example, in the CLB cited above, vi can belong to at most five hyperedges as vi

can have fanout of one hyperedge and fanin of four hyperedges. This leads to the
following observations.

Observation 5.1 Each CLB (denoted as a vertex vi) can belong to at most O(1)

hyperedges. This implies
∑k

i=1 |Si| = O(n), where |Si| denotes the number of vertices

5.4. Approximation algorithms for FPGA placement 97

in the hyperedge Si, k and n being the number of hyperedges and vertices respectively.

Observation 5.2 As each vertex belongs to at most O(1) hyperedges, the number of
pairs of i, j (i ̸= j) such that Si∩Sj ̸= ∅ is O(n). Further,

∑
i

∑
j |Si∩Sj | = O(n).

We already know that for an optimal linear arrangement of a hypergraph, a
vertex x /∈ Si but lying in the span of Si has to share a net Sj ̸= Si with some
vertex y ∈ Si, otherwise, OPTHOLA can be reduced further. The optimal cost of a
hypergraph linear arrangement is

∑k
i=1 maxq,l∈Si

{|h(q)−h(l)|} where the cost con-
tribution of hyperedge Si is maxq,l∈Si

{|h(q)−h(l)|}. Now, maxq,l∈Si
{|h(q)−h(l)|}

is nothing but the number of vertices in the span of Si in the linear arrangement.
Some of these vertices belong to Si and others do not. So, the cost is the sum of
the number of vertices in the span of each Si. It is non-trivial to derive an upper
bound on OPTHOLA this way. Instead, we look at the number of hyperedges Sj

that pass over vi and sum it over all i, 1 ≤ i ≤ n. This would also give us the same
cost. For an amortized counting of the number of hyperedges that pass over vi, we
design a charging scheme as follows.

c1(vi): type 1 charge to vi: ∀Si such that vi ∈ Si, assign a charge of 1 unit to
vi. As vi belongs to O(1) hyperedges, so the number of such charges c1(vi) is
O(1). Thus,

∑
i c1(vi) = O(n) by Observation 5.1.

c2(vi): type 2 charge to vi: ∀Sj such that Si ∩ Sj ̸= ∅ and vi ∈ Si but vi /∈ Sj ,
assign a charge of 1 unit to vi. Owing to our characterization of the optimal
solution, only these hyperedges Sj need to be charged to vi. So, c2(vi) the
charge for this type of hyperedges on vi is

∑
j O(1).|Si ∩ Sj | as any vertex v

(̸= vi and v ∈ Si and Sj) can belong to at most O(1) hyperedges. In the worst
case, c2(vi) can be O(n). But it can only happen for a constant number of
cases because of Observations 5.1 and 5.2. It can also be computed as follows:∑

pred(vi)

(# incoming and outgoing hyperedges of pred(vi)) +

∑
succ(vi)

(# incoming and outgoing hyperedges of succ(vi))

Any vertex vi has bounded indegree and outdegree, i.e., O(1); further while the
number of predecessor vertices of any vi is also O(1), the number of successors is

98 Ch 5. Efficient FPGA Placement using Space Filling Curves: Theory Meets Practice

bounded by the cardinality abs(Si) of its largest outgoing hyperedge, say Si. This
gives us c2(vi) = O(1) ·O(1)+O(|Si|) ·O(1) = O(|Si|). So, we have the following for
the total charge. The total charge summed over all vertices vi is

∑
i(c1(vi)+c2(vi)).

Now, ∑
i

(c1(vi) + c2(vi)) =
∑

i

(O(1) +
∑

j

O(1) · |Si ∩ Sj |)

=
∑

i

O(1) +
∑

i

∑
j

O(1) · |Si ∩ Sj |

= O(n) by Observation 5.2

Alternately,∑
i

(c1(vi) + c2(vi)) =
∑

i

(O(1) +O(|Si|)

=
∑

i

O(|Si|)

= O(n) by Observation 5.1

The above discussion leads to the following lemma which is a special case of
Lemma 5.2. Here, we get a reduction of d compared to Lemma 5.2.

Lemma 5.4 In the optimal solution for HOLA with bounded degree for each vertex,
the sum of the maximum span of the nets is bounded by O(n), i.e., OPTHOLA ≤
O(n).

As a consequence of Lemma 5.4, we get the Corollary 5.1 of Theorem 5.3, where
there is a reduction by

√
d in the approximation ratio. The proof of the Corollary

works out in the same way as the proof of Theorem 5.3, the only exception being
that the proof uses Lemma 5.4 instead of Lemma 5.2.

Corollary 5.1 HPG for degree bounded hypergraph is O(4
√

log n
√
kd log logn) ap-

proximable.

Theorem 5.3 or Corollary 5.1 is not implementable straight away as per fast
FPGA placement standards because of the time consuming O(d

√
log n log log n)

approximation algorithm of HOLA. Hence, we focus on how we can modify this
algorithm in order to make it run very fast.

5.5. The algorithm in practice 99

Algorithm 5.2: SfcPlace: Our efficient placement method.
Input : Hypergraph representing a given netlist of CLBs and IOBs; a 2D

array

Output: Placement of CLBs and IOBs on a given 2D array

Transform the netlist hypergraph to a linear arrangement of CLBs of the1

hypergraph using top-down min-cut graph bi-partitioning technique;
Map this linear arrangement obtained directly on to the

√
n ×

√
n 2D grid2

using a recursive space filling curve;
Place IOBs on the periphery by minimum weighted bipartite matching3

formulation

5.5 The algorithm in practice

Our placement technique is the fine grain method described in Section 4.4 of Chapter
4. The method consists of the three steps as shown in Algorithm 5.2. We replace the
time consuming Step 1 of Algorithm 5.1 as follows. We apply a min-cut recursive
bi-partitioner to partition the netlist of CLBs such that finally each partition has
one element. The left to right order of the leaves of the partition tree is treated as
the linear arrangement of CLBs. We justify this assumption in Section 5.5.1 below.
Step 2 is described in Section 5.5.2. In Step 3, the IOBs are placed on the periphery
using a minimum weighted bi-partite matching formulation.

5.5.1 Computation of linear arrangement

In the fine grain method of Chapter 4, first we generated a one dimensional arrange-
ment of CLBs. This one dimensional arrangement has to be a linear arrangement
such that the total HPWL cost is minimum, in order for the second step of place-
ment, namely, the usage of space filling curve to be meaningful.

The problem of placing the nodes of a graph on a straight line with equal spac-
ing such that the sum of edge lengths of the graph is minimum, is NP-complete

[Garey 1979]. But, for some special classes of graphs, i.e., rooted directed trees,
undirected trees, and series parallel graphs, this problem can be solved in polyno-
mial time [Adolphson 1973, Shiloach 1979, Nandy 1997]. As a netlist hypergraph
does not belong to these special classes, we adopt a heuristic procedure based on
balanced min-cut bipartition to generate a linear arrangement of the nodes. In this
recursive process, at each level we obtain two partitions having almost the same
number of nodes, which are heavily connected intra-partition. The recursive par-
titioning process is represented as a partition tree, where the root corresponds to
all the nodes in the hypergraph. The left and right child correspond to the two

100 Ch 5. Efficient FPGA Placement using Space Filling Curves: Theory Meets Practice

partitions. Without loss of generality, the arrangement of the two partitions in the
partition tree can be swapped. We adopt the convention that the partition assigned
to the left child is the immediate predecessor in the linear arrangement of that as-
signed to the right child. Even et al. [Even 2000] designed a divide-and-conquer
based approximation algorithm for optimal linear arrangement using the decompo-
sition tree of a graph. The root node corresponds to all the vertices of graph and
each internal node of the tree corresponds to a partition of the vertices. The tree
is fully decomposed when each leaf consists of a single node. The decomposition
may be based on any “criteria” that partitions the set of vertices such that “related”
vertices belong to the same partition. The authors [Even 2000] established that
the partitions induced by a decomposition tree gives a qualitatively good linear ar-
rangement of the vertices according to their order of appearance as the leaves of
the decomposition tree. We use this idea to obtain a linear arrangement of blocks
using a very fast hypergraph partitioner hMetis [hMetis , Karypis 1999a] as already
explained in Chapter 4.

The authors of hMetis have not reported about the quality of the linear ar-
rangement obtained by their method. But, we observed that, as established in
[Even 2000], the linear arrangement produced by hMetis is very good and this can
very well help in reducing the final wirelength, and hence the delay. Although the
proposed method does not explicitly consider congestion, the recursive min-cut bi-
partitioning paradigm was chosen for its known byproduct of reducing wide spread
congestion, and thereby to enhance success in routing.

5.5.2 Placement by space filling curves

We generate Hilbert space filling curve as described in Section 4.4.2, to place the
logic blocks on the FPGA array. Essentially, this allocates a specific co-ordinate
position for each of the logic blocks in the linear arrangement, using the sequence
generated by Hilbert curve.

5.5.3 Placement of IOBs

After the CLBs are placed on to a 2D FPGA array, the IOBs are to be placed on
the periphery of the array. We have formulated this problem as an instance of a
minimum weighted bi-partite matching problem (MWBM) as explained in Section
4.3.4.

The time complexity of the proposed method is the time complexity of the Fine
grain method discussed in Chapter 4. Thus, the time complexity is O(n1.25) as

5.6. Experimental results 101

explained in Section 4.4.4 of Chapter 4.

5.6 Experimental results

In this section, we present the experimental results of our placement methodology
and compare these with the placement results produced by popular FPGA tool VPR
[Betz 1997]. In order to demonstrate the suitability of our fast placement method in
the FPGA CAD flow, we have also routed the placement produced by our method
using the router of VPR and compared the critical path delay thus obtained with
that of VPR. The platform used is 1.2GHz SunBlade 2000 workstation. The Library
of Efficient Datatypes and Algorithms (LEDA) [LEDA] is employed to solve the
MWBM problem described in Section 5.5.3.

Table 5.1: Characteristics of MCNC FPGA placement benchmark circuits
1 2 3 4 5 6
Ckt # CLBs # Inputs # Outputs Max. # Size of

(n) terminals (d) 2D grid
tseng 1047 52 122 246 33× 33
ex5p 1064 8 63 75 33× 33
apex4 1262 9 19 84 36× 36
dsip 1370 229 197 450 54× 54
misex3 1397 14 14 49 38× 38
diffeq 1497 64 39 196 39× 39
alu4 1522 14 8 24 40× 40
des 1591 256 245 227 63× 63
bigkey 1707 229 197 449 54× 54
seq 1750 41 35 90 42× 42
apex2 1878 38 3 86 44× 44
s298 1931 4 6 244 44× 44
frisc 3556 20 116 124 60× 60
elliptic 3604 131 114 292 61× 61
spla 3690 16 46 155 61× 61
pdc 4575 16 40 238 68× 68
ex1010 4598 10 10 260 68× 68
s38417 6406 29 106 236 81× 81
s38584.1 6447 38 304 188 81× 81
clma 8383 62 82 457 92× 92

5.6.1 Quality of placement

For completeness sake of this chapter, we reproduce the characteristics of twenty
MCNC benchmark circuits given in Table 4.1 once again in Table 5.1 here. The

102 Ch 5. Efficient FPGA Placement using Space Filling Curves: Theory Meets Practice

columns 2 to 5 present the number of CLBs, primary inputs, primary outputs and
the maximum degree (d) of a net respectively, in the given circuit. Column 6 gives
the minimum square array required to place all CLBs and IOBs.

Table 5.2 shows the quality of placement and the speedup achieved by our
method (called SFC in the tables) over the simulated annealing based method of
VPR. We report the sum of half-perimeter of the bounding box of all nets, namely
HPWL cost, by our method in column 2 and the same obtained by VPR in column
3. We ran VPR with all default parameters for place_only option. Assuming the
result obtained by VPR to be the optimum, the ratio HPWL(SFC)

HPWL(V PR) , is reported in
column 6. The time taken in seconds by our method and the placement method
of VPR are shown in columns 4 and 5. Column 7 shows the speedup achieved by
our method. We observed that the HPWL placement cost of our method is 1.31×
of VPR on an average and lies in the range of 0.96 to 1.65 in practice, whereas
the theoretical upper bound on the approximation ratio (O(4

√
log n

√
kd log log n))

derived by us in Corollary 5.1 is not a constant factor. But, as can be observed from
column 6 of Table 5.2, the quality of our practical method is almost independent of
n, showing that the placement quality produced by our method is scalable, just as
its run-time performance. It is to be noted that the ratio remains almost the same
if BB cost is computed as reported in Table 4.4 of Chapter 4. The circuit s298 has
a positive gain in placement cost, possibly because it has very few input and output
terminals, and mostly two terminal nets which lead to short, local connections in
the linear arrangement. The gain in speed is very significant. The speedup is about
33× on an average. Thus, our placement method can serve well in the cases where
speed and scalability are of greater importance than optimal quality.

We have also observed the routability of the placement by routing its output
using VPR router. The columns 8 and 9 of Table 5.2 report the critical path delay
(in 10−8 secs.) obtained for our placement method and that for VPR. Our placement
is routable with a fixed channel width, and on the average the critical path delay is
about 1.97× of that obtained by VPR. To the best of our knowledge, no earlier work
has reported the routability of benchmark circuits with deterministic heuristics.

The simulated annealing based methods (say VPR) do not scale up well for large
circuits. In order to verify this fact, we carried out another set of experiments on
the same set of benchmark circuits. First, we noted the CPU time t taken by our
method (as shown in Algorithm 5.2). Next, we tuned VPR with appropriate values
for parameters such as init_t, exit_t to let it naturally terminate within time very
close to t (with a positive bias in favor of VPR) and noted the HPWL cost for
each circuit. Let this said HPWL cost be denoted as HPWL(V PRt). The ratios

5.6. Experimental results 103

Table 5.2: Comparison of HPWL cost, speedup and critical path delay

1 2 3 4 5 6 7 8 9 10
HPWL CPU time (s) SFC/VPR Delay (10−8s)

Ckt SFC VPR SFC VPR HPWL Speedup SFC VPR SFC
V PR

tseng 9653 7302 5 152 1.32 30.4 12.6 5.71 2.21
ex5p 17089 13395 5 169 1.27 33.8 14.0 6.55 2.13
apex4 18241 14217 6 222 1.28 37.0 15.6 7.85 1.99
dsip 18037 11666 15 248 1.54 16.5 7.6 6.55 1.16
misex3 17550 13430 7 218 1.30 31.1 12.4 7.53 1.65
diffeq 13714 10913 8 247 1.25 30.8 14.1 6.27 2.25
alu4 16669 12197 8 242 1.30 30.2 14.4 8.02 1.80
des 28288 18441 22 312 1.53 14.2 13.2 9.02 1.46
bigkey 18100 13167 16 331 1.37 20.7 8.4 6.79 1.24
seq 22905 17747 9 312 1.29 34.7 13.2 7.87 1.67
apex2 25527 18816 10 339 1.29 33.9 16.8 10.00 1.68
s298 11207 11635 10 321 0.96 32.1 27.2 13.10 2.07
frisc 40942 40655 23 969 1.00 42.1 35.1 12.70 2.77
elliptic 34492 29760 24 846 1.15 35.2 31.3 10.80 2.90
spla 49545 37006 23 961 1.33 41.8 22.3 12.90 1.74
pdc 74087 55269 31 1280 1.34 41.3 34.7 14.10 2.46
ex1010 71669 43327 32 1161 1.65 36.3 45.8 18.30 2.51
s38417 62404 47179 51 1700 1.32 33.3 20.0 9.40 2.13
s38584.1 64510 44597 52 1930 1.44 37.1 19.2 10.10 1.90
clma 114271 81412 69 3200 1.40 46.4 37.2 22.40 1.66
Avg: 1.31 32.9 1.97

HPWL(SFC)
HPWL(V PR) and HPWL(V PRt)

HPWL(V PR) are plotted, as shown in Figure 5.4. It can be noted
that our method always outperforms VPR.

5.6.2 Effect of low temperature SA

Although it is not the main focus of our work, for completeness sake, a low temper-
ature simulated annealing was applied to the solutions obtained by our Algorithm
5.2 to overcome the local optima and compared the performance of the benchmarks
with respect to the HPWL cost, CPU time and the critical path delay.

Table 5.3 reports the HPWL cost obtained after execution of the low temperature
SA on our SFC based method (SFC + SA) and default V PR in columns 2 and 3.
The CPU time taken by SFC+SA and V PR are then reported in columns 4 and 5.
The last column shows the ratio of CPU time taken by V PR to SFC + SA. Thus,
SFC+SA is about 2× faster than V PR as opposed to 33× when a post processing

104 Ch 5. Efficient FPGA Placement using Space Filling Curves: Theory Meets Practice

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 1000 2000 3000 4000 5000 6000 7000 8000 9000

R
at

io
 -

--
>

No. of blocks (n) --->

BB(SFC):BB(VPR)
BB(VPR(t)):BB(VPR)

Figure 5.4: Effectiveness of our proposed Algorithm 5.2: comparison of the ratios
HPWL(SFC)
HPWL(V PR) and HPWL(V PRt)

HPWL(V PR) , where t is the time taken by Algorithm 5.2, and
HPWL(V PRt) is the HPWL cost of the solution produced by VPR run only for
time t.

step of low temperature SA is executed along with the proposed deterministic island-
style FPGA placement method.

Table 5.4 shows the routability of our method with respect to the critical path
delay obtained. In columns 2 and 3 we report the critical path delay CP (SFC) and
CP (SFC+SA) achieved by Algorithm 5.2 given in Section 5.5 (SFC), and the same
method followed by low temperature simulated annealing SFC + SA respectively.
The critical path delay obtained by VPR CP (V PR) is reported in column 4. The
comparison of the critical path delay achieved by our proposed method, namely
SFC, SFC + SA with that of V PR are reported in columns 5 and 6 as ratios
CP (SFC)
CP (V PR) and CP (SFC+SA)

CP (V PR) respectively. We observed that, on an average, the critical
path delay obtained by SFC and SFC + SA is 1.97× and 1.03× respectively of
V PR. As stated earlier, due to execution of SA in SFC + SA, we achieve a much
lower speedup of 2×, as opposed to 33× for our proposed method SFC (Algorithm
5.2) based on linear arrangement followed by space filling curve.

5.7 Conclusion

In this chapter, we presented a very simple and effective yet fast placement ap-
proach for island-style FPGAs with theoretical bounds on the quality of the so-

5.7. Conclusion 105

Table 5.3: Comparison of HPWL cost and CPU time for SFC + SA and V PR
1 2 3 4 5 6

HPWL cost CPU time(s)
Ckt SFC + SA V PR SFC + SA V PR V PR

(SFC+SA)

tseng 7587 7302 87 152 1.74
ex5p 13265 13395 89 169 1.89
apex4 13470 14217 101 222 2.19
dsip 14589 11666 176 248 1.40
misex3 13020 13430 113 218 1.92
diffeq 12271 10913 122 247 2.02
alu4 12402 12197 121 242 2.00
des 18708 18441 187 312 1.66
bigkey 15612 13167 200 331 1.65
seq 17291 17747 160 312 1.95
apex2 18813 18816 167 339 2.02
s298 11812 11635 169 321 1.89
frisc 40476 40655 451 969 2.14
elliptic 32847 29760 474 846 1.78
spla 38836 37006 494 961 1.94
pdc 56319 55269 645 1280 1.98
ex1010 43409 43327 624 1161 1.86
s38417 50202 47179 985 1700 1.72
s38584.1 47047 44597 928 1930 2.07
clma 84214 81412 1337 3200 2.39
Avg: 1.91

lution. First we extended the theoretical results for graph optimal linear arrange-
ment (GOLA) and graph embedding on grid (GPG) to optimal linear arrangement
(HOLA) and embedding (HPG) for hypergraphs respectively. Next, we designed
an O(4

√
log n

√
kd log log n) approximation algorithm. It is needless to say that this

bound automatically improves along with tighter approximation bound on GOLA,
as it is derived from that for GOLA. Our algorithm is easy to implement; it uses
only an approximate linear arrangement and a recursive space filling curve. The
theoretical algorithm proposed by us works for real-life benchmark circuits with
practical implementations. The running time is near-linear in the number of CLBs
and hence is scalable for large circuits. As per our knowledge, this is the first at-
tempt in bringing into practice a method for placement that has theoretical bounds
of approximation. Applying our method to a set of benchmark circuits, we observed
that on the average, the quality of our solution is 1.31× of the popular simulated
annealing based tool VPR while the speedup is 33×. The quality of solutions, as

106 Ch 5. Efficient FPGA Placement using Space Filling Curves: Theory Meets Practice

Table 5.4: Comparison of critical path delay

1 2 3 4 5 6
Critical Path(CP)(10−8 s) Comparison of CP

Ckt CP (SFC) CP (SFC + SA) CP (V PR) CP (SFC)
CP (V PR)

CP (SFC+SA)
CP (V PR)

tseng 12.6 5.83 5.71 2.21 1.02
ex5p 14.0 7.00 6.55 2.13 1.07
apex4 15.6 8.22 7.85 1.99 1.05
dsip 7.6 6.79 6.55 1.16 1.04
misex3 12.4 7.99 7.53 1.65 1.06
diffeq 14.1 6.84 6.27 2.25 1.09
alu4 14.4 7.96 8.02 1.80 0.99
des 13.2 9.32 9.02 1.46 1.03
bigkey 8.4 6.56 6.79 1.24 0.97
seq 13.2 8.95 7.87 1.67 1.14
apex2 16.8 10.10 10.00 1.68 1.00
s298 27.2 13.60 13.10 2.07 1.04
frisc 35.1 13.30 12.70 2.77 1.05
elliptic 31.3 11.70 10.80 2.90 1.08
spla 22.3 13.50 12.90 1.74 1.05
pdc 34.7 15.00 14.10 2.46 1.06
ex1010 45.8 16.50 18.30 2.51 0.90
s38417 20.0 11.10 9.40 2.13 1.18
s38584.1 19.2 9.41 10.10 1.90 0.93
clma 37.2 20.00 22.40 1.66 0.89
Avg: 1.97 1.03

observed from experiments on benchmark circuits, stays within a constant range and
do not depend on the number of CLBs. The placements obtained are routable with
fixed channel width. This justifies the applicability of our method for fast FPGA
placement.

Chapter 6

Unified Floorplan Topology
Generation and Sizing on

Heterogeneous FPGAs

Contents
6.1 Introduction . 108

6.2 Background . 109

6.2.1 Architecture . 109

6.2.2 FPGA floorplanning problem 109

6.2.3 Proposed floorplanning method 111

6.2.4 Basic tile of a FPGA architecture 113

6.2.5 Clustering step for large number of small modules 117

6.3 Phase I: Generation of partition tree 117

6.4 Phase II: Floorplan topology generation 118

6.4.1 Generation of module shapes 118

6.4.2 Generation of slicing trees . 120

6.5 Phase III: Realization of slicing tree on target FPGA . . . 122

6.5.1 Greedy allocation of rectangular region (GARR) 122

6.5.2 Allocation of RAM and MUL 123

6.5.3 Time complexity of HeteroFloorplan 127

6.6 An example . 128

6.7 Experimental results . 131

6.8 How good is our GARR? . 136

6.8.1 Max-flow formulation for CLB allocation 136

6.8.2 Comparison of GARR with network flow method 138

6.9 Conclusion . 140

108 Ch 6. Unified Floorplan Topology Generation and Sizing on Heterogeneous FPGAs

6.1 Introduction

Modern FPGA architectures are significantly different from those that were available
in the last decade. Earlier, CLBs were a homogeneous resource and arranged in rows
and columns uniformly, with primary input and output blocks (IOB) on the periphery
of the chip. Recent FPGA architecture comprises not only the CLBs and IOBs, but
also Multipliers (MUL), Block RAMs, DSP and microprocessor cores. Few columns
of RAM-MUL pairs and even IOB are interspersed among CLB columns. Moreover,
a large design with millions of gates is partitioned into a smaller number of functional
modules to reduce the place-and-route time, and to achieve better quality of solution.
This necessitates a floorplanning step for hierarchical designs in the physical design
flow of FPGAs. Although a large volume of work on ASIC floorplanning exists, these
are generally not employed while mapping designs even on to the earlier sea-of-gates
style FPGAs. Hence there is a pressing need for fast floorplanning techniques that
consider the heterogeneous logic and routing resources of modern FPGAs.

The literature on FPGA floorplanning (both homogeneous and heterogeneous) is
merely a handful. Moreover, most of them are SA based and hence has large run-
time. Unlike SA based methods [Cheng 2004], [Feng 2006], and [Singhal 2007b],
we propose a deterministic method like [Yuan 2005], for unified floorplan topology
generation and sizing to place the netlist of soft modules on to a target FPGA
architecture with pre-placed heterogeneous resources. The proposed method Het-
eroFloorplan is further supported by various experimental results and theoretical
analysis. The experimental results indicate that HeteroFloorplan is fast and can pro-
duce floorplans with improved half-perimeter wirelength (HPWL) when compared
to very few existing methods.

In this chapter, first we briefly describe the heterogeneous FPGA architecture,
define the floorplanning problem for such FPGAs, and give an outline of the pro-
posed three phase floorplanning method HeteroFloorplan in Section 6.2. The three
phases of HeteroFloorplan are detailed in Sections 6.3, 6.4 and 6.5 respectively. This
method is then illustrated with an example in Section 6.6. Experimental results are
reported in Section 6.7. Section 6.8 validates the greedy allocation of rectangular
regions (GARR) of Phase III by comparing it with a network flow formulation for
the floorplanning problem. Finally, the concluding remarks appear in Section 6.9.

6.2. Background 109

(0,0)

(87,103)

1

2

3

13

26

Basic Tile

CLB

RAM

MUL

Figure 6.1: Spartan-3 XC3S5000 FPGA architecture, tessellated with basic tiles
indicated by thick-lined rectangles, each having 4 rows × 20 columns of CLBs and
1 pair of RAM-MUL blocks; (0, 0,W,H) = (0, 0, 87, 103).

6.2 Background

6.2.1 Architecture

In modern FPGAs, CLBs and routing resources are arranged in rows and columns
as before, but there are also other types of resources placed in certain patterns, to
satisfy a wider range of design requirements. Figure 6.1 shows a Xilinx Spartan-3
[Xilinx] FPGA where the CLBs are arranged in columns interleaved with columns of
RAM-MUL pair at certain intervals. Each small square represents a CLB. A RAM
block paired with a MUL block, and spanning a height of four rows of CLBs, is
indicated by an empty and a shaded rectangle respectively. Henceforth, we assume
this architecture for this chapter as well as the next one, although the methodology
is applicable to other similar ones presented in Chapter 1.

6.2.2 FPGA floorplanning problem

First, the basic terminology is given below.

Definition 6.1 (Modules and Signal nets:) Let M = {m1, m2, . . ., mn} be a
set of n distinct modules. Let S = {S1, S2, . . ., Sq} be a set of q signal nets. Each
signal net Si ∈ S is associated with a set of distinct modules MSi = {mj | mj ∈M},

110 Ch 6. Unified Floorplan Topology Generation and Sizing on Heterogeneous FPGAs

and the set S is called a netlist. If MSi = MSj , then the two distinct signal nets Si

and Sj connect the same set of modules.

Essentially, the set of CLBs C, defined in Problem 3.1 of Chapter 3 is now a set
of modules M , where each module has many CLBs along with RAMs and MULs.

Definition 6.2 (Resource requirement vector [Cheng 2004]:) For a module
m, a 3-tuple vector ρm = (mclb, mram, mmul) represents the number of CLBs,
RAMs and MULs required by module m.

Definition 6.3 (Target architecture:) Let W and H be the width and height of
a target FPGA architecture (also referred as chip), where the units are the width and
height of a CLB respectively. A coordinate system (0, 0,W,H) with top-left corner
at (0, 0) and bottom-right corner at (W,H), is assumed for the given chip.

In Figure 6.1, it is (0, 0, 87, 103). Each resource on the architecture is identified
by its coordinate position (x, y), where 0 ≤ x ≤W and 0 ≤ y ≤ H.

Problem 6.1 (FPGA Floorplanning) Given

• a target architecture(0, 0,W,H) with its resource locations,

• a digital circuit design D consisting of

– a set of soft (flexible in shape) modules M ,

– the resource requirement vectors ρmi for each mi ∈M ,

– the netlist S,

find a floorplan by assigning a connected region Ri = (xmin
i , ymin

i , xmax
i , ymax

i) to
each module mi on the target architecture having an optimal value of a certain cost
function, such that

(i) 0 ≤ xmin
i ≤ xmax

i ≤W and 0 ≤ ymin
i ≤ ymax

i ≤ H,

(ii) region for no two modules overlap with each other,

(iii) resource requirement ρmi is satisfied within its region Ri

A floorplan is said to be feasible if it satisfies the three conditions (i), (ii)
and (iii) listed above. The cost function to be optimized is typically the wire-
length [Kahng 2000, Roy 2006] for which the popular metric HPWL (half-perimeter

6.2. Background 111

wirelength), i.e., the sum of the semi-perimeter of the bounding box of each net,
is chosen as in most of the prior works on FPGA heterogeneous floorplanning
[Feng 2006, Cheng 2006]. The net terminals on a soft module are assumed to be at
the center of the module in the absence of information on the position of its termi-
nals. The problem formulation as stated above is a generalization of that given in
[Kahng 2000, Feng 2006, Feng 2004], and as such is NP-hard.

6.2.3 Proposed floorplanning method

In our work, we begin from a point where neither the slicing topology nor the shape of
the modules are given; only the netlist and the resource requirements after technol-
ogy mapping are known. Our floorplanning methodology HeteroFloorplan consists
of three phases, namely,

• construction of a recursive partition tree as a template for possible slicing
topologies,

• generation of slicing topologies with sizing [Sarrafzadeh 1996, Dasgupta 1998]

• feasible realization of the topology on a given FPGA architecture.

A flowchart of our proposed method HeteroFloorplan is given in Figure 6.2.

The target FPGA architecture is represented as a 2D array of rectangular ba-
sic tiles (defined below), each consisting of a predefined number of each type of
resources. The resource requirements of a module is converted accordingly in terms
of the number of basic tiles required. It is possible that, the size of a basic tile is
too large for a module requiring very few resources. Allocation of an entire basic
tile to such a module results in fragmented under-utilized resources, which may be
required elsewhere. For a design with many small modules, we employ a clustering
step to pack as many small modules as possible in a basic tile. In the first phase, we
recursively bi-partition the netlist in a balanced manner to obtain a binary partition
tree with modules and clusters at the leaves. This partition tree is used as a template
for slicing topology generation in the next phase.

In the second phase, for each module, we generate a set of possible rectangular
shapes in terms of tiles satisfying its resource requirements. The template partition
tree is traversed bottom-up, exploring both horizontal and vertical cut directions at
the internal nodes. This combined sizing leads to generation of a list of candidate
floorplan slicing topologies, called slicing trees [Sarrafzadeh 1996], in polynomial
time [Stockmeyer 1983].

112 Ch 6. Unified Floorplan Topology Generation and Sizing on Heterogeneous FPGAs

Module Netlist,
Resource requirement ,

 FPGA Basic Tile Architecture

Bi-Partition module netlist
based on balanced min-cut

Partition
Tree

Generate shapes in terms
of number of tiles

Phase I

Phase II

Report
feasible floorplan

Set of
Slicing
Trees

For each module find
number of tiles required

Generate shapes by vertical
and horizontal node sizing

while traversing the tree postorder

For each slicing tree

Allocate rectangular region to each
module by level-order traversal

Phase III

Allocate coordinates to RAM/MUL
by min-cost max-flow

total tiles >
available tile

Cluster modules
till a tile can accomodate

Yes

No

Figure 6.2: Flow of our floorplanning method HeteroFloorplan.

In the third phase, for each slicing topology obtained in the previous phase,
a rectangular region within the target boundary (0, 0,W,H) is assigned to each
module which respects the cut direction and the resource requirements in a top-
down manner. Finally, among all the feasible floorplans obtained, the realization
with acceptable aspect ratios of modules and the best HPWL is reported.

6.2. Background 113

The notion of a basic tile relevant to our method, is discussed next, followed by
a related pre-processing step for clustering of small modules.

6.2.4 Basic tile of a FPGA architecture

Definition 6.4 (Basic tile:) A basic tile A of a given FPGA architecture is an
indivisible contiguous unit having a fixed rectangular shape and containing minimum
number of each type of resource, such that the architecture can be represented as a
2D array of these units.

Although the number of each type of resource in any basic tile remains constant,
the relative positions of these resources may vary within the rectangular boundary
of the tile depending on its indices in the 2D array of basic tiles. Let the given
architecture be thus composed of (Wt ∗Ht) basic tiles, arranged in Ht rows and Wt

columns. In the first two phases, we represent the FPGA by (Wt, Ht). For the
typical architectures with CLBs, RAMs and MULs, let us denote a basic tile by a
3-tuple vector A = (aclb, aram, amul). In Figure 6.1, the basic tile A = (80, 1, 1)
consists of 20 ∗ 4 CLBs placed in 20 columns and 4 rows, and a pair of 1 RAM and
1 MUL, placed in two adjacent columns. A basic tile A is indicated by a thick-lined
rectangle in Figure 6.1. The entire architecture (Spartan-3) shown in Figure 6.1 can
be covered by (100

4 =) 26 rows and 4 columns of the basic tile A, i.e., (Wt, Ht) =

(4, 26).
Assuming the RAMs and MULs to occur in pairs, let there be r columns of such

pairs of RAM/MUL in a given FPGA. Let xi (i = 2 . . . r) be the number of CLB
columns between the (i− 1)th and ith column of RAM/MUL. There may be x1 and
xr+1 number of CLB columns respectively to the left of the first pair and to the
right of the rth pair of RAM/MUL columns. The width W of the FPGA can be
expressed as

W = 2r +
r+1∑
i=1

xi (6.1)

Therefore, the width wA of a basic tile is given by wA ≃ W
r , with one RAM-MUL

pair in a tile. The two columns of RAM and MUL are consecutive but their indices
may vary within the width of a tile.

The maximum number of CLB columns between two consecutive pairs of RAM/MUL
columns on the target chip is maxr

i=2{xi}. This situation can occur if for two hor-
izontally adjacent tiles, the RAM/MUL columns for the left tile is located at its
left-most, and that for the right tile is located at its right-most positions, as shown

114 Ch 6. Unified Floorplan Topology Generation and Sizing on Heterogeneous FPGAs

xi+1

wmax
A

xi

(b)

max{xi}

wmin
A

(a)

wmax
A

(c) (d)

x1 x2

wmin
A

wmax
A

xr xr+1

wmin
A

Figure 6.3: The width wA of a basic tile: (a) lower bound, (b) upper bound, (c) for
the CLB columns to the left of the left-most RAM/MUL column pair, (d) for the
CLB columns to the right of the right-most RAM/MUL column pair.

in Figure 6.3(a). So, we have two inequalities,

maxr
i=2{xi} ≤ 2(wA)− 4; with 4 RAM-MUL columns at two ends

or,
maxr

i=2{xi}
2

+ 2 ≤ wA

For the left-most CLB columns x1 and the right-most CLB columns xr+1, we have

x1 + 2 ≤ wA

xr+1 + 2 ≤ wA (6.2)

as shown in Figures 6.3(c) and (d) respectively.

Since a basic tile has only one pair of RAM/MUL columns, the width of the basic
tile wA cannot exceed the number of columns between the (i − 1)th and (i + 1)th

RAM/MUL pairs, for i = 2, . . . , r. From Figure 6.3(b), we have

minr
i=1{xi + xi+1 + 2} ≥ wA

Combining all the above inequalities, we have

6.2. Background 115

(b)(a)

(c) (d)

x1 xk

wmin
A

wmax
A wmax

A
wmin

A

xr-(k-1) xr+1

ik+1

wmin
A

ik+1

wmax
A

ik+k ik+2k ik+2k

Figure 6.4: The width wA of a basic tile for γ > 1: (a) lower bound, (b) upper
bound, (c) for the left-most CLB columns (d) for the right-most CLB columns.

maxr
i=2{x1,

xi

2
, xr+1}+ 2 ≤ wA ≤ minr

i=1{xi + xi+1 + 2} (6.3)

This formulation can be generalized for the case where it may be necessary to
have more than one pair of RAM-MUL columns per tile as wA ≃ γW

r , where γ (> 1)
is the number of RAM-MUL pairs in a tile. Figure 6.4(a) shows the condition for
lower bound on wA, where the first RAM/MUL column for the left tile is located
at its left-most, and that for the last RAM/MUL column of the right tile is located
at its right-most positions in two horizontally adjacent tiles. Figures 6.4(c) and (d)
depict the case for the left-most and the right-most tiles on the chip. Thus we have
three equations corresponding to the three conditions shown in Figures 6.4(a), (c)
and (d).

max
r
γ −1

i=1 {
2γ∑

j=2

x(i−1)γ+j} ≤ 2 · wA − 2 · 2γ

or,max
r
γ −1

i=1 {
∑2γ

j=2 x(i−1)γ+j

2
}+ 2γ ≤ wA (6.4)

γ∑
j=1

xj + 2γ ≤ wA (6.5)

r+1∑
j=r−γ+2

xj + 2γ ≤ wA (6.6)

116 Ch 6. Unified Floorplan Topology Generation and Sizing on Heterogeneous FPGAs

Since the basic tile has only γ pairs of RAM-MUL columns, the width of the basic
tile wA cannot exceed the number of columns between the (i · γth and (i + 1) · γth

RAM-MUL pairs, for i = 1, . . . , r
γ as shown in Figure 6.4(b). This gives us,

min
r
γ

i=1{
γ+1∑
j=1

x(i−1)γ+j + 2γ} ≥ wA (6.7)

Combining the inequalities 6.6 to 6.7 above for γ > 1, we have

max
r
γ
−1

i=1 {
∑γ

j=1 xj ,
P2γ

j=2 x(i−1)γ+j

2 ,
∑r+1

j=r−γ+2 xj}+ 2γ ≤ wA,

wA ≤ min
r
γ

i=1{
∑γ+1

j=1 x(i−1)γ+j + 2γ} (6.8)

For any FPGA architecture satisfying Equation 6.8, we can have a basic tile of
width wA. The Spartan-3 board shown in Figure 6.1 satisfies inequality 6.3. Thus,
the width of the basic tile is 88

4 = 22. The basic tile of width 22 consists of 20

columns of CLBs, 1 RAM and 1 MUL.

If it is not possible to derive such a basic tile tessellating the entire chip, a tile
that covers at least all the minority resources like RAM-MUL uniformly, and most of
the majority resource like CLBs, can be computed. There may be a few fractional
tiles, consisting of fewer CLBs. Our floorplanning method can still be used for
architectures requiring fractional tiles, as Phase III of our method takes care of this
situation. For the target FPGA architecture used in this chapter, fractional tiles
are not required.

Definition 6.5 (Tile requirement:) For a given basic tile A of target FPGA ar-
chitecture, the tile requirement Tm of a module m with resource requirement vector
ρm, is the minimum number of basic tiles satisfying ρm. This is given by

Tm = ⌈max(m
clb

aclb
,
mram

aram
,
mmul

amul
)⌉ (6.9)

Let Ttot =
∑n

i=1 Tmi be the total number of tiles required by all the modules.
It may happen that in terms of tiles Ttot > (Wt ∗ Ht), yet the sum of resource
requirements in terms of CLB, RAM, MUL is less than the total resources available
on the chip. This occurs if there are many small modules with resource requirement
much less than a basic tile. For such circuits, we employ a greedy pre-processing
step of clustering. This facilitates the third phase of HeteroFloorplan to generate
a feasible floorplan of a connected region for each module satisfying the respective
resource requirements.

6.3. Phase I: Generation of partition tree 117

6.2.5 Clustering step for large number of small modules

In a given design D, the set of small modules Msmall ⊆M , each having requirement
of one or zero RAM and/or MUL, and mclb less than or equal to aclb in a basic tile are
clustered by modeling Msmall along with their signal nets as a graph Gc = (Vc, Ec).
Each vertex vi ∈ Vc corresponds to a small module mi ∈ Msmall. Each net Si ∈ S
of D is modeled as a clique of vertices that constitute the net. Thus, an edge
e = (vi, vj) is in Ec if the vertices vi and vj in Vc belong to MSk

for net Sk ∈ S.

First, the elements of Msmall are sorted in ascending order of their CLB re-
quirements. In each iteration, the smallest module mc is chosen as seed from this
sorted list. A new cluster is grown around mc by packing as many adjacent modules
from the graph Gc as possible into a basic tile, in increasing order of their CLB
requirements. The modules included in this new cluster are deleted from the sorted
list of modules, and the new cluster is inserted into the sorted list according to
its size. This process is repeated until no more packing is possible based on net
connectivity. Then we pack the rest of the modules/clusters by best-fit bin packing
strategy, minimizing the number of bins. Thus we arrive at a new reduced netlist
of modules/clusters which has to be floorplanned on the given chip (Wt, Ht). The
time complexity of this greedy clustering method is O(n2

s), where ns ≤ n, is the
number of small modules in Msmall.

6.3 Phase I: Generation of partition tree

In order to bring connected modules closer such that the wirelength is minimized
in the feasible floorplan, we obtain a linear arrangement of modules similar to the
linear arrangement of CLBs described in Chapters 4 and 5. Even et al. [Even 2000]
established the fact that, left to right ordering of the leaves of a decomposition tree
B is a good estimate of an optimal linear arrangement. Hence, we use the state-
of-the-art hypergraph partitioning tool hMetis [hMetis , Karypis 1999b] to obtain a
partition tree B. The linear arrangement of modules can very well reduce the final
wirelength and hence, the delay. Moreover, the min-cut based balanced partitioner
helps in distributing the modules evenly on the FPGA board on the basis of RAM-
MUL. The partitions are also weight balanced across the cut edges according to the
tile requirements of each module, such that less white spaces are generated during
node sizing of almost equal sized modules in Phase II. This partitioning yields the
relative ordering of the circuit modules which is the template for generating a set of
slicing floorplan topologies.

118 Ch 6. Unified Floorplan Topology Generation and Sizing on Heterogeneous FPGAs

The input to the hMetis tool is a netlist, which is a hypergraph H = (V,E).
Each vertex v ∈ V corresponds to a module mi, i = 1, 2, . . . , n. A hyperedge
ei = {v1, v2,} ∈ E corresponds to the modules in MSi for Si ∈ S. The weight
of ei is the number of nets associated with the modules in MSi . The weight of a
vertex v ∈ V is Tmi for module mi corresponding to vi. The hypergraph H thus
generated, is bi-partitioned recursively into n parts, generating a binary partition
tree or a decomposition tree B with its leaves corresponding to n modules and/or
clusters.

6.4 Phase II: Floorplan topology generation

In this step of unified topology generation and sizing, a set of sliceable floorplan
topologies (i.e., slicing trees) is generated by appropriate horizontal and vertical
node sizing of a set of possible shapes (in terms of basic tiles) for each module.
While the work of Otten and Stockmeyer [Otten 1982, Stockmeyer 1983] assumes a
slicing topology to be given, and finds the shape of each module for an area optimal
floorplan, in our work neither the slicing topology nor the shape of the modules
are given – only the netlist S, the resource requirements ρmi , i = 1 · · ·n, and the
partition tree B are known.

6.4.1 Generation of module shapes

Definition 6.6 (Irreducible list of shapes:) A list D = {(w1, h1), (w2, h2),
. . . (wt, ht)} of irredundant shapes of a module m, is a list of t possible shapes of
m, where (wi, hi) denotes the width and height of the ith shape of m in terms of
basic tiles. D is said to be irredundant if each individual wi and hi are distinct
[Sarrafzadeh 1996], and, for any i ̸= j, wi < wj ⇐⇒ hi > hj.

By making individual wi and hi distinct as in Definition 6.6, a shape with smaller
height, and hence a better shape is chosen from the two implementations with the
same width. Given the maximum aspect ratio αmax, a set of possible irredundant
rectangular shapes with aspect ratio 1 ≤ α ≤ αmax for mi is created with all possible
pairs of integers whose product is Tmi . If Tmi is a prime, we consider the shapes
corresponding to (Tmi +1) to generate a few extra shapes. As the size of each cluster
(discussed in Section 6.2.5) is a single tile, only one shape (w, h) = (1, 1), is possible.
For each module mj , j = 1, 2, . . . , n, we generate a set of tj possible irredundant
shapes Dj = {(w1, h1), (w2, h2), . . ., (wi, hi), . . . (wtj , htj)}. The time complexity
for generating all distinct shapes is given by the following lemma.

6.4. Phase II: Floorplan topology generation 119

Lemma 6.1 If κ = max{tj} is the maximum number of shapes generated for any
module mj, then it requires O(nκ) time to find the values of all the shapes for n
modules.

Proof: Obvious. �

Lemma 6.2 The upper bound on the value of κ is given by O((log ν)log ν), where ν
denotes the maximum number of basic tiles that a module may require.

Proof: Let ν denote the maximum number of basic tiles that a module may
require. This implies that if each of (n − 1) modules has only one tile, then the
remaining one module can have at most ν = ⌈W×H

c ⌉ − (n− 1) tiles, where c is the
size of a basic tile A defined for a given floorplan problem.

Let the size (number of CLBs) of the basic tile be c. So, the number of basic tiles
being targeted on to the W ∗H chip is ⌈W∗H

c ⌉. Thus, ν the maximum number of
tiles that a rectangular module can take is ⌈W×H

c ⌉− (n− 1), where n is the number
of modules in the floorplan.

The maximum number of rectangular shapes κ that can be generated for such a
module is equal to the number of distinct factor pairs of ν. From basic number theory
[Hardy 1979, Niven 1991], any natural number ν has a unique prime factorization
given by

ν = f r1
1 .f r2

2 f
rµ
µ (6.10)

where each fi is a prime with f1 < f2 < . . . < fµ. Then, η the number of all possible
integer factors of ν is given by

η = (r1 + 1).(r2 + 1). . . . (rµ + 1). (6.11)

By taking logarithm of both sides of Equation 6.10, we get

log ν =
µ∑

i=1

ri log fi (6.12)

As each ri and fi are positive, for all i, we have 1 ≤ ri ≤ O(log ν), i.e, ri ≤ O(log ν).
So, Equation 6.11 becomes η = O((log ν)µ). Moreover, both sides of Equation 6.12
tally only if the number of terms on the right hand side, i.e., the number of primes
µ ≤ O(log ν). Hence, the upper bound on the number of factor pairs of ν, and
therefore κ is given by O((log ν)log ν). �

Typically the value of κ is very small, ranging between 6 to 10 and hence practical
for the proposed method.

120 Ch 6. Unified Floorplan Topology Generation and Sizing on Heterogeneous FPGAs

6.4.2 Generation of slicing trees

By an extension of the node sizing algorithm of [Otten 1982, Stockmeyer 1983], a
set of slicing trees is next derived at every node p of B, the partition tree obtained in
Phase I. Let the list of irredundant shapes, each corresponding to a sub-floorplan,
at the left (l) child of p be denoted by

Dl = {(wl1 , hl1), (wl2 , hl2), . . . , (wls , hls)}

and at the right (r) child of p be

Dr = {(wr1 , hr1), (wr2 , hr2), . . . , (wrt , hrt)}

If the node l or r is a leaf corresponding to a module mj , then Dl or Dr is
Dj itself. The shapes of a subfloorplan at node p are (wll +wrr ,max{hll , hrr}) and
(max{wll , wrr}, hll +hrr) when the left and right subfloorplans are abutted vertically
and horizontally respectively [Sarrafzadeh 1996]. Dl and Dr are sorted in increasing
order of width when shapes from Dl and Dr are abutted vertically, and, in increasing
order of height when abutted horizontally. Two lists V p and Hp at every node p
(excluding leaf nodes) are generated by abutting the ith member (wi, hi) of Dl with
the jth member (wj , hj) of Dr vertically and horizontally respectively, using the node
sizing algorithms [Sarrafzadeh 1996, Stockmeyer 1983]. The cardinalities of both
the irredundant lists V p and Hp at node p are at most s+ t− 1 [Sarrafzadeh 1996,
Stockmeyer 1983], where s = |Dl| and t = |Dr|.

Next, a combined list Mp of irredundant shapes at node p is computed by
merging V p and Hp such that the widths are in strictly increasing order. If the
same shape (w, h) is generated in both V p and Hp, typically the horizontal cut is
chosen to preserve the contiguity of the RAM-MULs within the region allocated to
a module. The algorithm for node sizing [Stockmeyer 1983, Sarrafzadeh 1996] to
generate irredundant shapes at a node assumed a given slicing topology, whereas,
our method HeteroFloorplan generates not a single, but a set of slicing topologies as
we traverse the partition tree in post-order by considering cuts in both directions.

Lemma 6.3 For a node p, if s and t are the respective cardinalities of the lists Dl

and Dr of its left and right subfloorplans, then the number of shapes in Mp is no
more than 2(s+ t− 1).

Proof: The cardinalities of both the irredundant lists V p and Hp at node p are at
most s + t − 1 [Sarrafzadeh 1996, Stockmeyer 1983], where s = |Dl| and t = |Dr|.

6.4. Phase II: Floorplan topology generation 121

p

Ml<-Vl || Hl
l r

Vp <- Ml * Mr

Hp <- Ml + Mr

Mp <- Vp || Hp

Mr <- Vr || Hr

Figure 6.5: Lists of shapes created at an internal node p of partition tree B by post-
order traversal. ’∗’ and ’+’ represent abutment of shapes by vertical and horizontal
cut respectively. ’||’ denotes merging of two lists of shapes obtained by vertical and
horizontal node sizing.

Thus, by merging the vertical and horizontal lists V p and Hp in increasing order
of width, the size of Mp can grow at most by a factor of 2 compared to that in
[Sarrafzadeh 1996]. �

The combined lists M l and M r created at the left and right children l and r of
the node p are used for sub-floorplan generation at its parent node p, as shown in
Figure 6.5. Thus, the nodes of the tree B are processed in post-order to generate a
set of subfloorplans at every internal node p. We store a subfloorplan at p as a 5-
tuple (wi, hi, cuti, lσ, rτ), where (wi, hi) is the ith shape of node p which is generated
by merging (lσ)th shape of left child l and (rτ)th shape of right child r using cuti ∈
{vertical, horizontal}.

Theorem 6.1 By horizontal or vertical node sizing, at most O(κn2) shapes (slicing
trees) can be generated at the root of the tree, where n is the number of modules and
κ is the maximum number of irredundant shapes for a module.

Proof: Let the level of a leaf farthest from the root be 1. For any node at level i
(i = 1, . . . , log2 n+1) of the slicing tree, the size of the list is 4i−1(κ− 2

3)+ 2
3 . Using

Lemma 6.3, one can prove this result by induction. The number of nodes at a level i
is n

2i−1 . So, the number of shapes at any level i is bounded by n
2i−1 (4i−1(κ− 2

3)+ 2
3).

As i = O(log2 n) at the root, the number of shapes/slicing trees generated at the
root is (nκ

∑log2 n
i=1 2i−1), i.e., O(κn2). �

One such slicing tree with its vertical and horizontal cut lines marked at every
internal node, is shown later on in Figure 6.9. During the post-order processing of
nodes, we also calculate the resource requirement ρp = (pclb, pram, pmul) at every
node p by summing the resources ρl and ρr required by its left and right child

122 Ch 6. Unified Floorplan Topology Generation and Sizing on Heterogeneous FPGAs

respectively. The requirement vector is used for realization of the slicing tree in
Phase III.

Corollary 6.1 The time taken to generate the O(κn2) slicing trees is at most
O(κn2).

Proof: The number of slicing trees generated is O(κn2) by Theorem 6.1. The
slicing trees at level i are produced in O(κ4i−1) time. With O(n

2i−1) nodes at level i,
the generation of slicing trees at that level requires O(κn2i−1) time. Therefore, the
worst case time complexity of generating all O(κn2) slicing tree is

∑log2 n
i=1 (κn2i−1)

= O(κn2). �
In summary, we process the tree bottom-up only once, generating a set of slicing

trees F = {(Twi ,Thi
)} at the root. F is in increasing order of width and decreasing

order of height by our method of construction. We say that (Twi , Thi
) ≤ (Wt,Ht) if

Twi ≤Wt and Thi
≤ Ht, and (Twi , Thi

) > (Wt,Ht) otherwise. If (Twi ,Thi
)≤ (Wt,Ht)

and the aspect ratio is permissible, the ith slicing tree gives a feasible floorplan.
There may be slicing trees with (Twi ,Thi

) > (Wt, Ht), (i.e., apparently infeasible)
due to (i) rounding off of heterogeneous resource requirements of modules to tiles, and
(ii) white spaces generated by node sizing of rectangular shapes. However, if the sum
of the individual type of resource requirements of all modules is less than the total
resources available on the target chip, Phase III becomes necessary for reallocation
of different types of resources by appropriate re-positioning of horizontal and vertical
cut lines of the slicing topology. The shape of some of the modules may ultimately
become rectilinear in order to get a feasible floorplan. Further, if the definition of
the basic tile for a target chip needs a few fractional tiles to cover it entirely, Phase
III is necessary to produce a feasible floorplan.

6.5 Phase III: Realization of slicing tree on target FPGA

For every slicing tree in F generated in Phase II, we determine the coordinates of
the regions assigned to the modules. There are two steps: (i) Greedy Allocation of a
Rectangular Region (GARR) to each module satisfying the CLB requirements, and
(ii) allocation of RAM/MUL blocks of a module in and around this region.

6.5.1 Greedy allocation of rectangular region (GARR)

Each slicing tree is traversed top-down, level by level (level order), in left to right
order from root towards the leaves. During this traversal, a rectangular region Rp =

6.5. Phase III: Realization of slicing tree on target FPGA 123

(xmin
p , ymin

p , xmax
p , ymax

p) is allocated to every node p by proportionate distribution
of available CLB rows and columns using the CLB requirements at p, its sibling and
their parent across the given cut line. The entire floorplan rectangle (0, 0,W,H) is
allocated to the root node of the slicing tree. Let the CLB requirements at node p,
its left child l and its right child r be pclb, lclb and rclb respectively. Let the number
of CLB columns (rows) in the rectangle assigned to p be pcol (prow). At the root,
pcol and prow are the number of CLB columns and rows in the chip, e.g. 80 and 104

respectively for Spartan-3 FPGA chip XC3S5000. For a vertical cut at p,

lcol =
lclb

pclb
.pcol; lrow = prow;

rcol = pcol − lcol; rrow = prow;

For a horizontal cut at p,

lrow =
lclb

pclb
.prow; lcol = pcol;

rrow = prow − lrow; rcol = pcol.

The rectangular region (xmin
p , ymin

p , xmax
p , ymax

p) for each node p is computed
from respective lcol (rcol) and lrow (rrow), depending on the direction of the cut.
Realization of each module (exact requirement) is made compact within the assigned
region by allocation of individual CLBs from top to bottom (left to right) for vertical
(horizontal) cut. We estimate the quality of this method of greedy allocation using
a minimum cost max flow formulation (MCMF) in Section 6.8.

6.5.2 Allocation of RAM and MUL

A rectangle assigned as above to a module mi is guaranteed to have adequate CLBs
but it may not have enough RAM/MUL blocks required by mi. The deficit may
have to be met by RAM/MULs located above or below the rectangle of mi. But,
another module may also require the same RAM/MUL block. So, the RAM/MUL
requirement constraints are resolved globally by formulating it as a minimum cost
maximum flow (MCMF) problem [Ahuja 1993], such that a module is not realized
in discontinuous regions. For the ease of understanding, without loss of generality
we demonstrate below with only RAMs.

We define a flow network G = (U,Z) as follows. Let the set of vertices U =

{s, t}∪UL∪UR where s and t are the source and the sink respectively, and UL∩UR =

ϕ. If a module mi has RAM requirements, then there is a vertex ui ∈ UL. Each

124 Ch 6. Unified Floorplan Topology Generation and Sizing on Heterogeneous FPGAs

mi

mid point Region allocated to mi

RAM
Strip1

RAM
Strip 2

1a

1b

1c

1d

1e

1f

1g

Modules
requiring RAM

RAM
locations

d =1

d =2

d =3

2a

2b

2c

2d

2e

2f

2g

d =1

d =2

d =3 UL

UR 1a 1b 1c 1d 1e 1f 1g 2a 2b 2c 2d 2e 2f 2g

(a) (b)

mi m2 m3

(mram
i , 1)

s

t

d =4

d =4

(1, 4)
(1, 4)

(1, 1)

(1, 1) (1, 1)

Figure 6.6: Candidate RAM/MUL locations for a module mi with requirement of
3 RAM blocks, but having only 2 RAM blocks within its allocated rectangular
region. The 7 RAM blocks within each of RAM strip 1 and RAM strip 2 are the
candidate RAM locations; (b) portion of the min-cost flow network corresponding
to RAM/MUL allocation for module mi showing arcs to all 14 candidate RAM
locations 1a, . . . 1g, 2a, . . . , 2g; the pair of numbers on each arc indicate its capacity
and cost respectively.

vertex vj ∈ UR corresponds to a candidate RAM location on the target FPGA.

Let the RAM requirement for a module mi be mram
i . Suppose, the rectangle Ri

= (xmin
i , ymin

i , xmax
i , ymax

i) has been assigned to mi as in Section 6.5.1 above. Then,
for each column of RAMs intersecting Ri, a module mi is said to have a RAM strip
comprising all the RAM locations within Ri, along with mram

i locations above ymax
i ,

and mram
i locations below ymin

i . The set of arcs is Z = Z1 ∪ Z2 ∪ Z3, where

Z1= {(s, ui)|ui ∈ UL}; the capacity c(s, ui) of arc (s, ui) is mram
i and its cost is 1.

Z2= {(ui, vj)|ui ∈ ULand vj ∈ UR} such that there is an edge between a vertex ui

corresponding to a module mi and a vertex vj belonging to the RAM strip
of the module mi. The capacity c(ui, vj) of arc (ui, vj) is 1 and its cost is a
rational number representing the vertical distance d between the center of the
rectangle Ri and that of the RAM location for vj .

Z3= {(vj , t)|vj ∈ UR}; the capacity c(vj , t) of arc (vj , t) is 1 and its cost is 1.

6.5. Phase III: Realization of slicing tree on target FPGA 125

1
2

2
1

2
3

1
1

mk

mi

RAM for mi

RAM for mk

ve
rt

. d
is

t.
fr

om
 m

i

ve
rt

. d
is

t.
fr

om
 m

k

Figure 6.7: Example of an allocation of RAM/MUL which is not order-preserving.

Figure 6.6 shows an example. We solve MCMF on G to assign RAMs to available
RAM locations. We say the RAM assignment is order-preserving if two modules mi

and mk vying for a RAM column where module mi is placed above mk, have their
RAM allocations also in the same order.

Lemma 6.4 If the min-cost max-flow fmax in the flow network G is equal to the
total RAM requirement

∑n
i=1m

ram
i of a given FPGA floorplanning problem, then

there exists a feasible floorplan for the input. Moreover, a min-cost max-flow in G

is order-preserving.

Proof: For the first part, consider a cut C = ({s}, {UL∪UR∪ t}). The flow f across
C signifies the RAM requirement of all modules that have been met by the RAM
locations. Thus, f ≤

∑
ui∈UL

c(s, ui) =
∑n

i=1m
ram
i . The capacity constraint of each

incoming arc to vj ∈ UR and the outgoing edge (vj , t) is 1. As flow is conserved at
vj , a RAM location can be assigned to only one RAM required by a module. Now,
if fmax =

∑n
i=1m

ram
i in G, the RAM requirements of all modules are satisfied.

For the second part, let module mi lie above module mk. Suppose, there exists
at least one RAM allocation for mk (say yi) above that of RAM implementation for
mi corresponding to the MCMF solution fmax (vide Figure 6.7 for such an instance).
As module mi is above mk, the cost of the arc into the vertex for yi in G is more
for mk than for mi. This implies that we can swap yi with any of the RAM blocks
below it for mi, thereby resulting in the same flow value but with a reduced cost.

126 Ch 6. Unified Floorplan Topology Generation and Sizing on Heterogeneous FPGAs

This implies that the flow fmax is not of minimum cost and hence, we arrive at a
contradiction. �

Excessively large RAM requirements of adjacent modules might yield an infea-
sible MCMF. This implies that the chosen slicing topology is inappropriate for a
feasible realization and is hence rejected. If there is no slicing tree with feasible
MCMF, a different relative ordering of modules in Phase I is required. The MUL
units are also assigned to the physical locations in a similar manner by solving a
separate MCMF.

Lemma 6.5 The MCMF takes O(H2 log2H) time for an FPGA architecture with
co-ordinates (0, 0,W,H).

Proof: Let Ri be the rectangle assigned to module mi having li RAMs. So, the
number of edges from vertex ui corresponding to mi is (li+2∗mram

i). Therefore, the
total number of edges in G is

∑n
i=1(li +2 ∗mram

i). Both the total number of RAMs
enclosed within the non-overlapping rectangles and the total RAM required by all
the modules are O(H). So, |Z| = O(H). Also, |U | = O(H). The MCMF can be
solved inO(|Z| log |U |(|Z|+|U | log |U |)) time [Ahuja 1993]. With |Z| = |U | = O(H),
the time complexity of our MCMF is O(H2 log2H). �

The RAM/MUL allocation as done here by solving an MCMF is conceptually
similar to the network flow formulation of Feng and Mehta [Feng 2006]. But our for-
mulation, based on one-dimensional geometry, ensures order-preserving assignment
(vide Lemma 6.4). Further, our formulation leads to a network of size linear in H

because we use a RAM strip, whereas the size of the flow network in [Feng 2006] is
O(R), R being the total number of CLBs, RAMs and MULs on the FPGA chip.
In our formulation, the CLBs, which are in majority, are excluded from the time
complexity.

Allocation of regions to modules of a cluster : At the end of Phase III, the shapes
of modules within each cluster are to be decided. The region for a cluster is at most
the size of a basic tile consisting of 80 CLBs, 1 RAM and 1 MUL. Hence, a greedy
heuristic is employed to place the modules inside this region. We first place any
module having RAM and/or MUL requirement next to the RAM/MUL column in
the region, and then the other modules of the cluster in the remaining space. Fast
placement methods of Chapters 3 or 4 can also be employed.

The process of CLB assignment followed by RAM and MUL assignment is car-
ried out for every slicing tree generated in Phase II. The HPWL is calculated for each
floorplan generated. Since RAM/MUL columns are pre-placed on FPGA, 2D com-
paction of the entire floorplan keeping the wirelength to be minimal, is a challenging

6.5. Phase III: Realization of slicing tree on target FPGA 127

Algorithm 6.1: HeteroFloorplan
Input : Module netlist S, list of resource requirements ρm of modules,

FPGA architecture (0, 0,W,H) and its basic tile A
Output: A feasible floorplan

Preprocessing:1

Compute Wt and Ht;2

for each module mi do3

find the minimum number of tiles required (Tmi) from the resource4

requirement vector ρmi ;
if Ttot, total tiles required > (Wt ∗Ht), and, yet sum of resource requirements5

is less than that available on the FPGA then
cluster small modules with resource requirement less than that in basic6

tile A, into a set of clusters
Phase I: Generation of Partition Tree7

Recursively bipartition the netlist of modules/clusters based on balanced8

min-cut;
/* This tree is used as template for slicing topologies */

Phase II: Generation of Floorplan Topologies9

Enumerate shapes (w, h) in terms of the number of tiles;10

Determine slicing topology and shapes by vertical and horizontal node sizing11

using post-order traversal of the partition tree of Phase I.
/* The output is a set of slicing topologies */

Phase III: Realization of Slicing Tree on FPGA12

for each slicing tree do13

GARR: Traverse in level order and allocate rectangular region to each14

module based on CLB requirement;
Allocate pre-placed RAM/MULs to modules by minimum-cost15

maximum-flow (MCMF);
Report feasible floorplans;16

task. However, compaction such as in [Cheng 2006] can be applied to HeteroFloor-
plan as well, although it might change the aspect ratio of modules and thereby the
wirelength. The floorplans with minimal wirelength and no discontinuity of modules
are reported as feasible floorplans.

6.5.3 Time complexity of HeteroFloorplan

The overview of our floorplanner is given in Algorithm 6.1.

Theorem 6.2 The time complexity of HeteroFloorplan, excluding recursive bal-
anced bi-partitioning in Phase I is O(κn3 + κn2H2 log2H), where H is the height
of the chip, n is the number of modules and κ is the maximum number of shapes

128 Ch 6. Unified Floorplan Topology Generation and Sizing on Heterogeneous FPGAs

generated for any module.

Proof: The clustering step takes O(n2). By Corollary 6.1, the time taken for
generating O(κn2) slicing trees is O(κn2). For each of the slicing trees, we traverse
the tree of size O(n) from root to leaves in order to fix the rectangular regions of the
CLBs in O(n) time. Then, we solve a MCMF to assign RAM/MULs in O(H2 log2H)

time by Lemma 6.5. The total time complexity is thus O(κn2(n +H2 log2H)), or
O(κn3 + κn2H2 log2H). �

The authors of hMetis in [Karypis 1999b] claim that in spite of its iterative
nature, the time taken by hMeTis is almost linear in the number of hyperedges, i.e.,
netlists. It may be noted that the value of κ is very small, typically 6 to 10 for a
floorplanning problem with hundreds of modules. The reason is that as the value of
n increases, the maximum value of κ decreases. Thus, our O(κn3 + κn2H2 log2H)

method compares favorably against that of [Yuan 2005] which the authors claim
to take O(W 2n5 log n) time (although as per [Berg 2000] the log n term should
be replaced by

√
n). It may be noted here that as the other two methods, viz.

[Cheng 2004] and [Feng 2006], use simulated annealing, it is not possible to compare
our time complexity with that of those two methods.

6.6 An example

Here, we demonstrate our floorplanning method with a synthetic example circuit
taken from [Cheng 2004, Cheng 2006]. Cheng and Wong [Cheng 2004] devised an
experiment as follows. They took XC3S5000 which is the largest chip in the Xilinx
[Xilinx] Spartan 3 family. They divided the XC3S5000 almost evenly into 20 blocks,
each corresponding to a module. Of the 20 modules, 16 need 400 CLBs, 5 RAMs
and 5 MULs each, and the rest of the 4 modules need 480 CLBs, 6 RAMs and 6

MULs each. The authors claim this to be a very tight problem. A little bit of
inefficiency on the part of the floorplanning method could render the floorplan to
be infeasible. The method HeteroFloorplan is explained with this tight problem of
[Cheng 2004]. We considered the same circuit from [Cheng 2004] with 20 modules
and constructed an appropriate netlist for comparison purpose.

Figure 6.9 shows the binary partition tree obtained in Phase I of HeteroFloorplan.
The integers 0, . . . , 19 written below the leaves, indicate the indices of the modules.
A set of slicing trees is generated in Phase II. One such slicing tree with its vertical
and horizontal cut lines marked at every internal node, is shown here. Finally, the
realization of the slicing tree on to the coordinates of the target architecture in

6.6. An example 129

2

11

15

18

13 4

12 9

10 0

8

14
17 16

6
7 5

19
1 3

Figure 6.8: An example circuit with 20 modules [Cheng 2004]: floorplan produced
by HeteroFloorplan.

terms of (xmin, ymin, xmax, ymax) are reported in a vertical box below every node.
For example, the root is realized as (0,0,87,103), i.e., the entire target architecture.
Within the floorplan area, a module, say m11, is realized as (0, 64, 21, 83). Figure
6.8 shows the final allocation for each module on Spartan-3 XC3S5000.

Table 6.1: Floorplan results for 20-module example [Cheng 2004]

Index of slicing tree (Tw,Th) Wirelength(HPWL) Avg. aspect ratio
1 (1, 104) 392 17.01
2 (2, 52) 560 4.25
3 (3, 39) X X

4 (4, 26) 816 1.06
5 (5, 22) X X

6 (6, 20) X X

7 (7, 17) X X

8 (8, 14) X X

9 (9, 13) X X

10 (10, 11) X X

130 Ch 6. Unified Floorplan Topology Generation and Sizing on Heterogeneous FPGAs

*

*

+
*

*

+

+

+
+

+

*

+

+

0 0 43 10
3

44 0 87 10
3

0 0 87 10
3

0 0 43 63

0 64 43 10
3

44 0 87 79

44 80 87 10
3

0 0 43 19

0 20 43 63

0 64 21 10
3

22 64 43 10
3

44 0 65 79

66 0 87 79

44 80 87 10
3

*

+
*

+
+

+
+

0 20 21 63

22 20 43 63

44 0 65 39

44 40 65 79

66 0 87 39

66 40 87 79
13

4

18
15

12
19

11
2

6
14

10
9

1
7

0
8

3
5

17
16

0 0 21 19

22 0 43 19

0 64 21 83

0 84 21 10
3

22 64 43 83

22 84 43 10
3

44 80 65 10
3

66 80 87 10
3

0 20 21 39

0 40 21 63

22 20 43 43

22 44 43 63

44 0 65 19

44 20 65 39

44 40 65 59

44 60 65 79

66 0 87 19

66 20 87 39

66 40 87 59

66 60 87 79

F
ig

ur
e

6.
9:

A
n

ex
am

pl
e

ci
rc

ui
t

of
[C

he
ng

20
04

]:
on

e
of

it
s

sl
ic

in
g

tr
ee

s
an

d
th

e
bo

x
ne

xt
to

ea
ch

no
de

gi
ve

s
th

e
fo

ur
co

-o
rd

in
at

es
(x

m
in
,y

m
in
,x

m
a
x
,y

m
a
x
)

of
th

e
re

gi
on

al
lo

ca
te

d
to

th
e

no
de

.

6.7. Experimental results 131

The effectiveness of HeteroFloorplan is amply demonstrated with the 20-module
example circuit of [Cheng 2004] that covers the entire target architecture. Table
6.1 shows the result obtained by HeteroFloorplan for the example circuit. The
column (Tw, Th) is the width and height (in terms of basic tiles) of each floorplan
topology generated after phase II. The column marked wirelength (HPWL) shows
the wirelength obtained for each slicing tree realization after phase III. The X mark
in the column titlesHPWL indicates that the corresponding slicing tree is infeasible.

The 4th slicing tree has (Tw, Th) = (4, 26) = (Wt,Ht). Hence, for this topology,
we need not execute Phase III. However, we execute Phase III on all the slicing
topologies generated if their (Tw, Th) > (Wt,Ht). As mentioned in Section 6.4.2,
the tiles remain under utilized due to the mismatch in three different resource re-
quirements of a module. The topology can be rendered feasible by modifying the cut
lines. Thus, we execute phase III on all the topologies to get a set of feasible floor-
plans. Table 6.1 shows that the configurations 1 and 2 have (Tw, Th) > (Wt,Ht)

and they have become feasible after execution of Phase III. However, topologies
with Th < Ht and Tw > Wt usually lead to infeasible solutions. The time taken
by HeteroFloorplan to generate the floorplans for all the 10 slicing trees is 2.98 sec-
onds on a relatively slower 1.2GHz SunBlade 2000, which is far less than 88 seconds
taken by [Cheng 2004] on a faster 2.4GHz Intel (R) Xeon CPU. We observed that
HeteroFloorplan can construct the same floorplan of [Cheng 2004] with an appro-
priate partition tree. In Table 6.1, the topology in column 5 (slicing tree index 4), is
identical to that reported in [Cheng 2004]. Since [Cheng 2004] does not report the
wirelength for this 20 module example, we cannot compare it with ours. Further,
many of the slicing trees remained infeasible as the resource requirement is very
tight. Column 4 in Table 6.1 shows the average aspect ratio of module dimensions.
The first two floorplan realizations have smaller wirelength, but the average aspect
ratios are far away from 1. But the realization (4, 26) has the average aspect ratio
very close to 1 and we report this as the final feasible floorplan.

6.7 Experimental results

We have implemented the proposed method in ’C’ using LEDA [LEDA] on 1.2GHz
SunBlade 2000 workstation with SunOS Release 5.8. Our method is tested on
Xilinx XC3S5000 (Spartan-3) FPGA architecture with 8320 CLBs, 104 RAMs and
104 MULs. These are arranged in 88 columns (including 4 RAM-MUL column pairs)
and 104 rows of CLBs. The basic tile size is A = (20× 4, 1, 1).

Experimental results on nine benchmark circuits derived from MCNC [Cheng 2004]

132 Ch 6. Unified Floorplan Topology Generation and Sizing on Heterogeneous FPGAs

Table 6.2: Benchmark circuits, C: CLB, R:RAM, M:MUL

1 2 3 4
Circuit Characteristic

Circuit #Modules #Nets #(C, R, M)
ideal 20 18 (8320, 104, 104)
apte 9 44 (6614, 70, 70)
xerox 10 183 (6625, 66, 50)
hp 11 44 (6591, 66, 66)
ami33 33 84 (6289, 61, 60)
ami49 49 377 (6300, 63, 63)
n100a 100 576 (6352, 39, 38)
n200a 200 1585 (6342, 44, 34)
n300a 300 1893 (6399, 65, 54)

Table 6.3: Comparison of wirelength (HPWL a la ASIC): HeteroFloorplan vs.
[Feng 2006]; Case I: center-to-center; Case II: terminals on periphery

1 2 3 4 5 6 7
HeteroFloorplan Method in [Feng 2006] % Gain

HPWL HPWL
Circuit (Tw, Th) I II II I II
ideal (4, 26) 816 1605 − − −
apte (4, 22) 189720 441801 − − −
xerox (4, 28) 919485 1636096 − − −
hp (4, 26) 106170 194597 − − −
ami33 (4, 30) 42623 87592 89283 52 20
ami49 (3, 45) 950322 1242337 1173000 18 −5
n100a (4, 39) 209456 371339 358338 41 −3
n200a (4, 38) 439154 594254 700045 37 15
n300a (4, 42) 690391 886015 875602 21 −1
Average

and GSRC (Giga Scale Research Center) Bookshelf ASIC floorplanning benchmarks
[GSRC] are reported next. ASIC benchmarks are converted to FPGA benchmarks
as in [Feng 2006] by proportional CLB requirements. Table 6.2 has the details of
the 9 benchmark circuits, namely, the number of modules, the signal nets, the total
requirements of the three types of resources, in columns 2, 3 and 4 respectively.

Table 6.3 shows the comparative results of wirelength (HPWL) obtained by
HeteroFloorplan and by that in [Feng 2006]. The second column reports the (Tw, Th)

6.7. Experimental results 133

pair in Phase II, for which we obtained a feasible solution with aspect ratio closest
to 1. As explained in Section 6.4.2, (Tw, Th) > (Wt,Ht) in many of the cases. A
feasible floorplan of the circuit ami33 after Phase III is shown in Figure 6.10.

The HPWL is computed after scaling the FPGA board to ASIC dimension as
in [Feng 2006]. The wirelength HPWL can be computed with the assumptions that
the terminals are either (Case I) at the center of the modules, or (Case II) on the
periphery of the modules, as shown in Figure 6.11. As the locations of terminals
on the soft modules are not known for the benchmarks, the center-to-center HPWL
(case I) considering the terminals at the center of a module, is reported in column
3. Since the method in [Feng 2006] employs SA based PARQUET [Adya 2003,
PARQUET], the reported wirelength is assumed to be computed considering the
terminals on the periphery (Case II) of each module. For comparison purpose, we
take the worst case scenario by considering the terminals to be at the top-left and
bottom-right corner of the enclosing bounding box of the net. The worst case HPWL
thus obtained is reported in column 4 and as expected, the values are much larger
than center-to-center HPWL. Column 5 reports the wirelength (HPWL) directly
from [Feng 2006]. We observed that the percentage gain in HPWL (columns 6-7)
ranges between 18% to 52% in Case I (comparing columns 3 and 5) and −5% to
20% in Case II (comparing column 4 and 5). On the average, the improvement for

32 3

2
18

61

30

31

29

21

17

0

23

22

20

25

12

24 5 28

27

16

9

8

14

26

19
15

13

4

11

7

10

Figure 6.10: Floorplan of ami33 after phase III for (Tw, Th) = (4, 30).

134 Ch 6. Unified Floorplan Topology Generation and Sizing on Heterogeneous FPGAs

Empty space

 Center of module

Case II: Bounding box enclosing the center of
 modules with terminals of a net at center

Case I Bounding Box

Case II Bounding Box

Case I: Bounding box enclosing the periphery of
 modules with terminals of a net at periphery

A B

C

Figure 6.11: Computation of bounding box of a net with terminals on modules
marked A, B and C.

Table 6.4: Comparison of wirelengths (HPWL): HeteroFloorplan vs. [Cheng 2006]

1 2 3 4 5
HeteroFloorplan Method in [Cheng 2006]

Circuit (Tw, Th) HPWL HPWL % Gain
ideal (4, 26) 758 − −
apte (4, 22) 2599 2704 3
xerox (4, 28) 9187 10476 12
hp (4, 26) 2732 3123 12
ami33 (4, 30) 3644 4114 11
ami49 (3, 45) 13336 15311 12
n100a (4, 39) 25896 30295 14
n200a (4, 38) 58586 − −
n300a (4, 42) 72820 − −
Average

Case I and Case II are 34% and 5% respectively.

The center-to-center HPWL on the 88× 104 XC3S5000 board is also compared
with that of [Cheng 2006] in Table 6.4. Column 2 shows the same (Tw, Th) as in
Table 6.3. The center-to-center HPWL obtained by HeteroFloorplan is shown in
column 3. The wirelength obtained by [Cheng 2006] is reported in column 4. We
observed from column 5 that the percentage gain in HPWL ranges from 3% to 14%.

6.7. Experimental results 135

Figure 6.12 shows how the wirelength increases as the aspect ratios approach 1, for
a subset of circuits. The user can select a feasible floorplan from a set of slicing
trees with a trade-off between aspect ratio and wirelength as desired.

 9.5

 10

 10.5

 11

 11.5

 12

 12.5

 13

 13.5

 14

 14.5

 0 10 20 30 40 50 60 70 80

lo
g

(w
ire

le
ng

th
)

 -
--

>

aspect ratio --->

xerox
hp

ami33
ami49
n100a

Figure 6.12: Variation of HPWL (Case I) with average aspect ratio of a module.

Table 6.5 shows the CPU time (in secs.) taken by HeteroFloorplan to produce
the floorplans on SunBlade 2000 workstation which is much slower than the plat-
form reported in [Feng 2006, Cheng 2006]. For a fair comparison of CPU time with
simulated annealing based fixed outline ASIC floorplanner PARQUET [Adya 2003,
PARQUET], we report the CPU time taken by default PARQUET (without wire-
length minimization) on our platform in column 2. The min-cost max-flow based
Constrained Floorplanning (CF) step of [Feng 2006] is implemented using LEDA
[LEDA] and the time taken is reported in column 3. The number of slicing trees
generated in Phase II and the time taken by our method are given in columns 4

and 5 respectively. From the experiments, we conclude that the combined step of
PARQUET and CF is 2× to 373× slower depending on the size of the circuit. As
[Cheng 2006] is also based on simulated annealing followed by a compaction step, the
time taken must be more than the time taken by PARQUET. Hence HeteroFloorplan
must be faster than [Cheng 2006] by the same order of magnitude as [Feng 2006].
The CPU time taken by HeteroFloorplan can be further reduced by pruning some
slicing trees before realizations. In summary, the experimental results establish the
suitability of our method for fast FPGA floorplanning.

136 Ch 6. Unified Floorplan Topology Generation and Sizing on Heterogeneous FPGAs

Table 6.5: Comparison of CPU time; [CF: Constrained Floorplanning]

1 2 3 4 5
Time(s) [Feng 2006] HeteroFloorplan

Circuit Parquet CF #slicing trees Time(s)
ideal − − 20 2.98
apte 1.78 0.61 16 1.22
xerox 2.1 0.61 20 1.02
hp 2.57 0.61 18 0.96
ami33 19.9 0.55 23 1.39
ami49 43.12 0.61 23 3.84
n100a 92.31 0.95 24 1.16
n200a 695.92 0.92. 32 2.6
n300a 1605.07 1.02 39 4.3

6.8 How good is our GARR?

In this section, we evaluate our greedy heuristic of positioning the cut line in the
slicing topology based on the resource requirements on either side of that cut line,
against a network flow based formulation that is global in nature. Our greedy
strategy is locally optimal because it determines the location of a particular cut line
at node p from the ratio of the CLB requirements of its left child to that of its right
child.

6.8.1 Max-flow formulation for CLB allocation

The slicing trees generated in Phase II of our method may have shapes (Tw, Th)>
(Wt,Ht), as explained at the end of section 6.4.2. For a feasible floorplan within
the fixed outline of the target chip, the floorplan is linearly scaled down to the
target (0, 0,W,H) obtaining a realization S. Linear scaling may not guarantee
satisfaction of resource requirements of each module within the rectangle assigned to
it in S. But, there are white spaces generated in S due to tile estimation of resource
requirement of module and node sizing. To satisfy the CLB resource requirements of
each module contiguously by using white spaces available in the rectangles assigned
to the modules, a flow network is defined similar to [Feng 2004]. As shown in Figure
6.13(a), S is a rectangle dissection of the target chip (0, 0,W,H), n of which are
earmarked for the modules and the remaining are white spaces. For a rectangle Rj

earmarked for module mi, let the available resource in Rj be raj and the resource
requirement of mi be rri. For an empty rectangle Rk, only available resources raj

6.8. How good is our GARR? 137

raA=80 ra4=60

rr4=120

A

4

1

5

2 3
B

6

ra1=80

ra5=80

rr1=100

rr2=60 rr3=120 rr6=60

ra2=70 ra3=90 raB=100

rr5=90

ra6=50

(a)

s t

B

1

3

2

4

6

5

1

3

2

4

6

5

80

80

70

90

50

80

60

100

100

60

120

120

90

60

VL

A

VR

(b)

Figure 6.13: (a) A linearly scaled down realization S of a node-sized slicing tree
to fit an (0, 0,W,H) architecture. Rectangles marked 1, . . . , 6 denote the module
realizations; rai (rri) denotes resource available (requirement). (b) Flow network
corresponding to the realization shown in (a).

is defined.
We define the corresponding flow network G = (V,E) as follows. Let V =

{s, t}∪VL∪VR where s and t are the source and the sink vertices respectively. Each
vertex ui ∈ VL corresponds to module mi to be floorplanned. Each vertex vj ∈ VR

corresponds to the rectangle Rj . Certain rectangles are earmarked for modules;
the rest are white spaces that are to be utilized for reallocation of CLBs to satisfy
resource requirements. Again, there are three types of arcs in E, i.e. E = E1∪E2∪E3

where

E1 = {(s, ui)|ui ∈ VL}; capacity c(s, ui) of (s, ui) is rri.

E2 = {(ui, vj)|ui ∈ VL and vj ∈ VR} such that either i = j, or Ri and Rj are
adjacent horizontally, vertically or diagonally; capacity c(ui, vj) of (ui, vj) is
raj .

E3 = {(vj , t)|vj ∈ VR}; capacity c(vj , t) of (vj , t) is raj .

Figure 6.13(b) shows the flow graph for the realization in Figure 6.13(a). The
capacity for each edge from s to VL is shown next to the edge, and that for any edge
incident on a vertex in VR is marked beside the vertex. The capacity c(ui, vj) of an
edge (ui, vj) ∈ E2 is assigned in such a way that the flow f(ui, vj) is equal to either
the entire or a part of the CLB requirements of module mi met by rectangle Rj .

138 Ch 6. Unified Floorplan Topology Generation and Sizing on Heterogeneous FPGAs

Definition 6.7 (Feasible realization:) A realization S of b rectangles and n mod-
ules is said to be a feasible realization of a given floorplan problem if

∑n
i=1 rri ≤∑b

j=1 raj and the module requirements are met by the resource available with the
rectangles.

Along the lines of [Feng 2004], we have the following observation.

Observation 6.1 Let fmax be the maximum flow in the network G corresponding
to the realization S. If fmax =

∑n
i=1 rri, then S is feasible.

Proof: The proof follows as a general case of Lemma 6.4. Also, see [Feng 2004] for
details. �
By flow computation, if we obtain a feasible S, then a module mi can be assigned to
one or more neighboring rectangles (as per arc set E2 of network G above), with a
condition that it does not become discontinuous. It may be observed that each rect-
angle Rj has to be partitioned among the modules (part or whole) corresponding to
V s

L ⊆ VL (a set of vertices from which non-zero flow values originate), which itself is
again a floorplanning problem of smaller size. Hence, we adopted the greedy method
GARR and not this network flow approach in our HeteroF loorplan. Nevertheless,
this network flow formulation gives us a global picture of the realization of a slicing
tree, against which we can validate our greedy heuristic GARR.

6.8.2 Comparison of GARR with network flow method

Let M = {m1,m2, . . . ,mn} be a set of n distinct modules with CLB requirements
being {c1, c2, . . . , cn} respectively. Let coij and cnf

ij be the number of CLBs of module
mi that are contained in rectangle Rj by our method and the network flow based
method respectively. As both coij and cnf

ij may be 0, we introduce two new boolean
variables xo

ij and xnf
ij ; xo

ij = 0 (xnf
ij = 0) means modulemi is not implemented within

rectangle Rj by HeteroFloorplan (by network flow based method); similarly, xo
ij = 1

(xnf
ij = 1) means module mi or a part of it has been implemented in rectangle Rj by

HeteroFloorplan (by network flow based method). Figure 6.14 gives an illustration of
comparison of original slicing shapes generated and the ones obtained by adjusting
cut lines (dotted lines) as done by HeteroFloorplan.

In order to measure the similarity between the CLB distribution of our floorplan
and that by the network flow based method, we define a metric χ for percentage of
match as χ = (1− ψ).100, where,

ψ =
1
b

b∑
j=1

1∑n
i=1(x

o
ij ∨ x

nf
ij)

n∑
i=1

|coij − c
nf
ij |

ci
(6.13)

6.8. How good is our GARR? 139

80

80

70 90

60 80

100

50

1

2 3

4 5

6

A

B

100

60 120

120 90

60

Figure 6.14: A comparison with original slicing shapes generated (solid lines) and
the ones obtained by shifting cut lines (dotted lines) as done by HeteroFloorplan.

Table 6.6: Similarity of CLB allocation by GARR in HeteroFloorplan with network
flow based method

1 2 3
Circuit #rectangles χ %
ideal 20 96
apte 10.5 83
xerox 11.9 81
hp 12.8 76
ami33 41.4 75
ami49 57.8 63
n100a 110.0 65
n200a 219.5 63
n300a 219.1 62

The parameter ψ can take a real value in [0, 1]. While ψ = 0 indicates an
absolute match between the CLB distribution of our floorplan and the network flow
based one, ψ = 1 implies an absolute mismatch. Table 6.6 presents the value of χ
for the different circuits under consideration. Column 2 lists the average number of
rectangles and Column 3 gives χ. As can be observed from the values of χ ranging
from 62% to 96%, HeteroFloorplan follows to a great extent, resource allocation
in the network flow based method. Furthermore, due to inclusion of the diagonal
neighbors in the edge set E2, the CLBs of the modules may be distributed among all
its neighbors. But, HeteroFloorplan realizes the floorplans by horizontal and vertical
cut lines, thereby retaining mainly rectangular shapes. This explains why the value
of χ is not very close to 100% in some of the cases.

140 Ch 6. Unified Floorplan Topology Generation and Sizing on Heterogeneous FPGAs

6.9 Conclusion

In this chapter, we have reported a fast floorplanning methodology for FPGAs with
heterogeneous resources consisting of CLBs, RAMs and Multipliers as in Spartan-
3 FPGA architecture. We propose a deterministic three phase method for uni-
fied floorplan topology generation and sizing for such heterogeneous FPGAs. The
time complexity of our approach excluding the recursive balanced bi-partitioning by
hMetis in Phase I, is O(κn3 + κn2H2 log2H), where H is the height of the chip,
n is the number of modules and κ is the maximum number of shapes generated
for any module. This is an improvement over the other deterministic heuristic pre-
sented in [Yuan 2005]. Experimental results demonstrate a speed-up in the range
of 2× to 373×, depending on the size of circuit, over the existing methods, and
an improvement on the average, of 34% in wirelength. Further, we evaluated our
greedy resource allocation GARR against a network flow based formulation to es-
tablish that GARR measures up to the global allocation by max-flow method. A
two-dimensional compaction step in the presence of pre-placed resources without
sacrificing the wirelength is a challenging task and needs deeper investigation. Our
method can be used for other architectures by selecting appropriate tile structure.

Chapter 7

Floorplanning for Partial
Reconfiguration in FPGAs

Contents
7.1 Introduction . 141

7.2 Floorplanning for partial reconfiguration 143

7.2.1 Overview of proposed method 144

7.2.2 Basic tile on FPGA chip . 145

7.3 Phase I: Generation of partition trees 145

7.4 Phase II: Global floorplan topology generation 148

7.5 Phase III: Realization of slicing trees on the chip 151

7.5.1 Allocation of rectangular region to a module 151

7.5.2 Pruning the set of slicing trees 153

7.5.3 Grouping of slicing trees for global floorplan 154

7.5.4 Postprocessing for satisfying resource requirements 157

7.6 An example . 160

7.7 Experimental results . 164

7.8 Conclusion . 166

7.1 Introduction

Modern FPGA architectures like Xilinx Virtex series allow partial dynamic recon-
figuration [Xilinx]. This implies that inactive parts of a design implemented on
FPGA chip can be replaced by other designs while the remaining part of FPGA
continues to execute. Thus, partial reconfiguration helps executing a large applica-
tion in the same piece of hardware by swapping in and out the active and inactive
parts of design when the whole application does not fit completely on the chip.
This incurs an additional partial reconfiguration overhead each time the bitstream

142 Ch 7. Floorplanning for Partial Reconfiguration in FPGAs

for a new part is loaded on the FPGA chip. Hence, an appropriate scheduling
of task/application/design is necessary to reduce the partial reconfiguration over-
head such that common tasks/designs need not be programmed repeatedly. Given
a schedule of instances consisting of a set of common as well as other tasks, the
resources on the chip may get fragmented due to arbitrary placement of tasks on
the chip. The tasks of the consecutive instances may not fit contiguously in the
fragmented resources scattered across the chip. This may lead to reconfiguration
of the whole chip to make contiguous space for each task incurring a reconfigu-
ration overhead. This may defeat the whole purpose of partial reconfigurability.
Modern FPGAs are heterogeneous in nature with pre-placed blocks like RAM, Mul-
tipliers along with array of CLBs. For such FPGAs, the mapping of tasks allocating
heterogeneous resources contiguously for each instance, meeting the performance
objective, becomes more complex. In this chapter, we propose a fast performance
aware global floorplan generation method for the tasks/modules of each instance of
a given schedule such that the common tasks/modules across instances occupy the
same position and shape on the target FPGA chip resulting in minimal reconfigu-
ration overhead. As modules other than the common modules are placed relative
to the common modules depending on their connectivity, the total half-perimeter
wirelength (HPWL) over all instances is also optimized.

As most of the floorplanning methods such as [Singhal 2006] for partial reconfig-
uration are based on stochastic methods, they suffer from long execution time. We
overcome the long execution time of simulated annealing based approach and yet
arrive at a global floorplan with our fast deterministic global topology generation and
sizing method PartialHeteroFP. Our method places the common modules with same
shape across all instances at a specific position on the chip so that they need not be
reconfigured repeatedly. Moreover, the remaining modules are placed in such a way
that the total wirelength (HPWL) over the entire schedule is minimized globally.
Unlike the method in [Singhal 2006], where sequence-pair is used as floorplan rep-
resentation for simulated annealing moves, the method proposed here uses slicing
tree [Sarrafzadeh 1996] representation and node sizing for topology generation.

The rest of the chapter is organized as follows. In Section 7.2, we formulate the
problem for partial reconfiguration and describe our three phase method in brief. The
steps of the proposed method are detailed in Sections 7.3, 7.4 and 7.5 respectively.
The method is illustrated with an example in Section 7.6. Section 7.7 reports the
experimental results. Concluding remarks appear in Section 7.8.

7.2. Floorplanning for partial reconfiguration 143

7.2 Floorplanning for partial reconfiguration

The resource requirement vector of a module ρm is defined as in Definition 6.2 of
Chapter 6.

Definition 7.1 (Static and Dynamic modules:) In a schedule of instances, mod-
ules which are common and remain active in all instances are called static modules.
The rest of the modules of an instance, which are swapped in and out, are called
dynamic modules.

The floorplanning problem for partial reconfiguration is essentially the generation
of a global floorplan where each floorplan corresponding to each instance of a schedule
is a feasible floorplan. The common modules are placed at the same location with
same shape in each of the instances, while the total HPWL across all instances is
minimal. We build upon the single instance floorplanning problem for heterogeneous
FPGAs of Chapter 6 as follows.

In a given schedule, let there be

• q instances I1, I2, · · · Iq,

• SM = {σ1, σ2, · · ·σm}, be the m static modules that remain active in all
instances,

• DMi = {δi1, δi2, · · · δini} be the ni modules of an instance Ii, 1 ≤ i ≤ q,

• the netlist of CLBs Si for each instance of Ii, 1 ≤ i ≤ q

The objective is to find floorplans for all instances, such that

• the resource requirement of a module (either static or dynamic) ρm is satisfied
within a region (xmin, ymin, xmax, ymax) in each instance without overlap,

• the location and shape (i.e., width and height) of each static module is same
across all instances,

• the half-perimeter wirelength (HPWL) of netlist for all instances is minimized.

Floorplanning for partial reconfiguration is also NP-hard and thus needs design of
very fast and effective heuristic in practice to utilize the benefit of reconfigurability.

144 Ch 7. Floorplanning for Partial Reconfiguration in FPGAs

For each instance, find linear arrangement of modules
by recursive min-cut bi-partition of module netlist

Global topology generation and node sizing with
static modules placed at bottom-left and top-right

corners of the chip for all instances

(a) For each slicing tree of each instance
 reallocation of cut lines satisfying CLB requirement

(b) pruning the set of slicing trees
(c) grouping slicing trees across instances

(d) postprocessing for allocation of all resources

Choose a group with
minimum overall wirelength

A partition tree
for each instance

A set of slicing trees
for each instance

a netlist of modules for
each instance of

a schedule

A list of groups, having one
floorplan from each instance

Phase III

Phase II

Phase I

Figure 7.1: Flow of the proposed method PartialHeteroFP.

7.2.1 Overview of proposed method

Our method PartialHeteroFP consists of three phases as shown in Fig. 7.1.

In the first phase, we obtain a linear arrangement of modules for each instance
in order to bring heavily connected modules closer, minimizing the wirelength. The
linear arrangement is obtained by recursive bi-partitioning based on min-cut for
each of the q instances separately, where the positions of the static modules are kept
invariant across all instances. The partition trees obtained are used as the templates
for topology generation.

7.3. Phase I: Generation of partition trees 145

In the second phase, a list of global slicing topologies is generated for each instance
such that the positions of static modules are fixed at diagonally opposite corners of
all floorplans leaving as much contiguous space for dynamic modules as possible.

Finally, on the basis of similarity between slicing trees of different instances, a
set of groups, each group having a set of slicing trees, is generated. For each slicing
tree in each group, a rectangular region is assigned to every module, which respects
the cut direction and the actual resource requirement of the modules. The group
with least total wirelength is the final solution.

7.2.2 Basic tile on FPGA chip

For soft modules with homogeneous resource requirement such as only CLBs, the
requirement can be factorized to generate a set of possible shapes (i.e, width and
height), which can be later used for node sizing in traditional topology generation
when floorplans are represented as slicing trees [Sarrafzadeh 1996]. For heteroge-
neous resource requirements, where each resource type has specific location on the
board, shapes cannot be generated from the resource requirement vector ρm directly.
A uniform entity, termed as basic tile and defined earlier in Definition 6.4 of Chap-
ter 6, is used to compute the resource requirement of each module and is used for
generation of shapes during node sizing.

Once the basic tile is imposed on the given target architecture, the chip is con-
sidered to be composed of Wt×Ht basic tiles arranged in Ht rows and Wt columns.
In Figure 7.2, the basic tile A = (80, 1, 1) consists of 20 × 4 CLBs, 1 RAM and 1

MUL. The entire architecture (Spartan-3 XC3S5000) in Fig. 7.2 can be covered by
26 rows and 4 columns of basic tile A.

7.3 Phase I: Generation of partition trees

In order to minimize the wirelengths over all instances, we obtain a linear arrange-
ment of modules, taking the left to right order of the leaves of a partition tree
obtained by recursive partitioning of module netlist. For each instance of the given
schedule, we use a balanced min-cut bi-partitioning tool hMetis [hMetis] to partition
the modules of a netlist (represented as hypergraphs) by an extension of the parti-
tioning method described in Section 6.3 of Chapter 6. The partition trees generated
in this phase serve as the baseline of slicing tree generation in the next phase.

As static modules must have the same shape and location across all instances,
it is beneficial to place all the static modules at two diagonally opposite corners of

146 Ch 7. Floorplanning for Partial Reconfiguration in FPGAs

(0,0)

(87,103)

1

2

3

13

26

Basic Tile

CLB

RAM

MUL

Figure 7.2: Spartan-3 XC3S5000 FPGA Architecture, tessellated with a basic tile,
indicated by a rectangle of 4 rows and 20 columns of CLBs and 1 pair of RAM-MUL
blocks (Figure 6.1 reproduced for convenience).

the floorplan. This provides the maximal contiguous space to place the rest of the
dynamic modules.

Observation 7.1 In a slicing tree representation of a floorplan, the modules at the
left-most and the right-most leaves always correspond to the two diagonally opposite
corners, the bottom-left and the top-right corner respectively, of the floorplan.

Proof: By convention of the recursive construction of slicing tree, the module at
left child of a node always goes below the horizontal cut and the right child of a
node above the cut. Similarly, for a vertical cut, a module at left child of the node
goes to the left of the cut line and the right child goes to the right of the cut. As a
result, during bottom-up construction of the slicing tree, the module corresponding
to the left-most leaf node is always at the left of all other subtrees of the nodes
which lie in the path from root to this left-most leaf node due to vertical cuts. This
left-most node is below all the nodes due to horizontal cut and to the left of all
other nodes due to vertical cut. Similarly, for the right-most leaf, it is to the right
of all the modules in the subtrees rooted at nodes in the path from the root to
the right-most leaf and above them due to vertical and horizontal cut respectively.
Figure 7.3 shows the conditions. �

From Observation 7.1, if the static modules are placed at the left-most and
right-most ends of the partition tree, the modules will definitely be on the opposite

7.3. Phase I: Generation of partition trees 147

σL σR

(a) σL is to the left of all modules
 in subtrees A, B, C

(b) σR is to the right of all modules
 in subtrees D, E, F

A

B

C D F

E

Figure 7.3: Modules at the left-most and the right-most leaves go to the bottom-left
and top-right corner of the floorplan.

corners, i.e., at the bottom-left and top-right corners on the floorplan. If the netlist
of modules of each instance is considered separately for linear arrangement, the
static modules may go anywhere in the linear arrangement of each instance. We
apply a constraint to the linear arrangement problem for each instance such that,
in every instance, the positions of static modules are same in the partition tree and
thus in the linear arrangement.

First we extract the static modules and the corresponding netlist from the given
schedule. Then, we bi-partition the static modules into two partitions σL and σR

and call each of them a super module. For each instance, the two super modules
along with dynamic modules and their netlist is bi-partitioned recursively based on
balanced min-cut until each partition contains at most one module/super module
per partition. In the first level of recursive bi-partitioning, we force σL and σR to

c

a

b c

e f

d a

b

d

ef

Before Swapping After Swapping

σL σR σL σR

Figure 7.4: Swapping of static super modules to extreme ends of the partition tree;
the arrow indicates the partitions to be exchanged.

148 Ch 7. Floorplanning for Partial Reconfiguration in FPGAs

σL σR

....δ1j ...

Instance I1

σL σR

....δ2j ...

Instance I2

σL σR

....δqj ...

Instance Iq

......................

Figure 7.5: One partition tree for each instance.

be in different partitions for every instance, so that they can be pushed to extreme
left and right positions respectively during further recursive partitioning. Since
swapping of partitions in a partition tree does not affect the min-cut in the tree,
during each recursive bi-partition, the left and right partitions are swapped such
that partitions σL and σR are always pushed to the extreme left and extreme right
of the partition tree. The swapping of partitions with static super modules is shown
in Figure 7.4. Thus, we get one partition tree Bi, i = 1 · · · q, for each instance of
the given schedule where the static super modules are at the extreme left and right
leaves of each partition tree as shown in Figure 7.5.

Lemma 7.1 The recursive bi-partitioning phase for an instance i takes O(ni) time,
where ni is the total number of modules to be partitioned in the ith instance.

Proof: The authors of hMetis [Karypis 1999b] claim that, although iterative, the
time complexity of hMetis is almost O(n), n being the number of hyperedges in the
graph. Since, the number of hyperedges corresponding to each instance Ii is O(ni),
the construction of the partition tree takes O(ni) time for each instance, where ni

is the number of modules in instance Ii. We perform a number of swaps to shift
the static modules to the extreme left and right of the partition tree which takes
O(log ni) time if the tree is balanced. The number of swaps for unbalanced tree is
O(ni), as the number of internal nodes is proportional to the number of leaf nodes.
Thus the overall time complexity of the partitioning step is O(ni). �

The first phase of the proposed method PartialHeteroFP is given in Algorithm
7.1.

7.4 Phase II: Global floorplan topology generation

In this step, a set of sliceable floorplan topologies is generated for each instance
simultaneously by appropriate horizontal and vertical node sizing starting from a
set of possible shapes (in terms of tiles) of each module.

7.4. Phase II: Global floorplan topology generation 149

Algorithm 7.1: PartialHeteroFP: Phase I
Input : schedule of q instances I = {I1 · · · Iq}, with static modules SM ,

dynamic modules DM and netlist Si for each instance Ii,
list of module resource requirements ρm,
FPGA architecture (0, 0,W,H) and its basic tile A

Output: A feasible floorplan for each instance with all σi ∈ SM having same
position and shape

Preprocessing:1

Compute Wt and Ht for target architecture with basic tile A;2

for each module m ∈ SM ∪DM do3

Find minimum number of tiles required (Tm) from the resource4

requirement vector ρm;
Phase I: Generation of Partition Tree5

Extract static modules and the netlist from each instance and partition them6

into two super modules, say σL and σR;
for each instance Ii do7

Bi-partition the netlist of dynamic and super modules of the instance8

once such that σL goes to left partition and σR goes to the right;
Balanced min-cut recursive bi-partitioning of the netlist of modules (both9

dynamic and super modules) of an instance till there is only one module
per partition;
p ← parent of partition having σL;10

while σL is not at the extreme left of partition tree do11

if σL belongs to the right child of the subtree rooted at node p then12

Swap the left and right child of the subtree rooted at node p ;13

p ← parent of node p;14

p ← parent of partition having σR;15

while σR is not at the extreme right of partition tree do16

if σR belongs to the left child of the subtree rooted at node p then17

Swap the left and right child of the subtree rooted at node p ;18

p ← parent of node p;19

/* A template partition tree Bi for each instance Ii for slicing

topology generation */

As described in Section 6.4.1, a list of irredundant shapes are generated for each
dynamic and the super modules by factorizing the tile requirement of the module Tm.
Thus, each leaf node of the partition tree corresponding to a module contains a list
of possible shapes, i.e., (width, height) pair in terms of tiles. For all instances, the
corresponding partition trees are traversed simultaneously bottom-up, level by level,
generating a set of irredundant sub-floorplans by combining the available shapes of
its left and right children with vertical or horizontal cut as described in Section 6.4.2

150 Ch 7. Floorplanning for Partial Reconfiguration in FPGAs

σL σR
....δ1j ...

Instance I1

....δ2j ...

Instance I2

....δqj ...

Instance Iq

......................

*

* *

.....

* * *+ + + + + +

+

+*

+

+*

....δ1jδ2jδqj ...

......................

*

* *
.....

* *+ +

+

+ +

++*

+

*

....δ1jδ2jδqj ...

......................
*

* *

.....

* * *

+

+ +

+

+ +

+

*

+

+ *

+

*

*

*

t11

t12

t1η1

t21

t22

t2η2

tq1

tq2

tqηq

Group g1

Group gf

σL σR σL σR

σL σRσL σR
σL σR

σL σR σL σRσL σR

Figure 7.6: Set of slicing trees for each instance; vertical and horizontal cuts are
denoted by * and +; the dotted polygon indicated the group g1 of slicing trees and
the dashed polygon, another group gf .

of Chapter 6.

At the end of this phase, a set of slicing trees Fi = {tij |i = 1 · · · q, j = 1 · · · ηi}
for each instance i, is generated with static super modules at two opposite corners
of the floorplan as shown in Figure 7.6. A tij corresponds to the jth slicing tree of
ith instance, and ηi is the number of slicing trees generated for ith instance. The
final shape of the floorplan as a result of node sizing, is stored at the root of each
slicing tree. These final shapes (width, height) may not fit the target FPGA chip
when the shapes are considered in terms of tiles. Here, the target chip is 4×26 tiles.
All shapes that are either wider or longer than the target chip may not be useful
to satisfy the exact requirements of all modules as described at the end of Section
6.4.2. Thus we select only those slicing trees with final shape of width between 3

and 6 as there is a high possibility of obtaining a feasible floorplan on this target

7.5. Phase III: Realization of slicing trees on the chip 151

Algorithm 7.2: PartialHeteroFP: Phase II
Phase II: Generation of Floorplan Topologies1

Input : Set of partition trees
Output: Set of slicing trees Fi generated for each instance Ii
for each instance Ii do2

for each module do3

Enumerate shapes (w, h) by factorizing (Tm);4

Determine slicing topology and shapes by vertical and horizontal node5

sizing by post-order traversal of the partition tree Bi of Phase I.

board for those shapes in the third phase.
The second phase of the proposed method PartialHeteroFP is given in Algorithm

7.2.

Lemma 7.2 The time complexity of slicing tree generation for all instances is
O(
∑q

i=1κni
2), where κ is the maximum number of shapes generated for any module.

Proof: By Theorem 6.1, the number of slicing trees generated in an instance is
O(κn2). So, the total number of slicing trees generated for the q instances is
O(
∑q

i=1κni
2)), κ and ni being the maximum number of shapes generated for a

module and the number of modules in instance Ii respectively. Hence, the result for
q instances. �

7.5 Phase III: Realization of slicing trees on the chip

For the selected slicing trees Fi = {tij} of each instance i, coordinate positions
are assigned to each module and static super modules respecting the cut lines and
satisfying the exact CLB and RAM/MUL requirements. One or more solutions are
generated in this phase. Each solution consists of one feasible floorplan for each
instance in the schedule.

7.5.1 Allocation of rectangular region to a module

Each selected slicing tree of every instance is traversed top down and a rectangu-
lar region is assigned to every node using the cut direction at its parent and the
number of CLBs required at that node. The root node of the slicing tree corre-
sponds to the target board with 80 CLB columns and 104 CLB rows in it. Let the
region xmin

p , ymin
p , xmax

p , ymax
p allocated to a parent node p contain prow rows and

152 Ch 7. Floorplanning for Partial Reconfiguration in FPGAs

l

r+

l r

(a)

l r
*

l r

(b)

Figure 7.7: The convention used for allocation of CLBs for (a) vertical cut (b)
horizontal cut; the shaded part shows the free regions; unshaded part represents the
allocated region; ’+’ denotes horizontal cut and ’*’ denotes vertical cut.

pcol columns of CLBs. Similarly, we can define these terms for the left child l and
the right child r of p. Let the CLB requirements at node p, its left child l and its
right child r be pclb, lclb and rclb respectively. The rectangular region assigned to the
left child l of parent p is determined by the following equations (which are slightly
different from the ones of GARR in Section 6.5.1).

For a vertical cut at p,

• lcol = lclb

prow
; rcol = rclb

prow
; lrow = rrow = prow,

• xmin
l = xmin

p ; ymin
l = ymin

p ,

• xmax
l = xmin

p + lcol − 1; ymax
l = ymax

p

For a horizontal cut at p,

• lrow = lclb

pcol
; rrow = rclb

pcol
; lcol = rcol = pcol,

• xmin
l = xmin

p ; ymin
l = ymin

p ,

• xmax
l = xmax

p ; ymax
l = ymin

p + lrow − 1

The coordinate positions of the rectangle for the right child r is computed in
a manner similar to that for the left child l. Essentially, the vertical cut line is
positioned by counting the CLB columns from left to right for the left child, and
right to left for the right child. Similarly for horizontal cut, it is positioned by
counting the rows from bottom to top for the left child, and top to bottom for the
right child as shown in Figure 7.7. Although Figure 7.7 shows only free regions, there
can also be overlapping regions if the resource requirement is not met. Positioning
of cut lines in this fashion generates two types of regions:

7.5. Phase III: Realization of slicing trees on the chip 153

• two allocated regions corresponding to two modules at opposite sides within
the rectangle assigned to the parent node

• an overlapping or free region at the middle of the parent region.

The overlapping region is generated when a column or row has to be shared by both
modules and a free rectangular region is generated when resource requirement of
both modules are much less than the available resources in the parent region. We
allocate the CLBs required by a module to the allocated region of the rectangles
assigned to the corresponding module. The remaining CLB requirement of a mod-
ule, called deficit, has to be satisfied either by the overlapping rectangle or by the
neighboring rectangles assigned to other modules. This deficit of each module (if
any exists), is satisfied during post processing described later in Section 7.5.4.

Thus, a set of floorplans are generated corresponding to each selected slicing tree
of each instance by allocation of rectangular regions to each module / super module
satisfying the CLB requirements either completely or partially. The conflicts for
CLB requirements of more than one module need to be resolved in the overlapping
or free rectangles.

As given in Lemma 7.2, the time complexity of finding the rectangular realization
is also O(

∑k
i=1κni

2).

7.5.2 Pruning the set of slicing trees

While allocating the rectangular regions to modules in different instances, their
RAM/MUL requirements are not considered. To check whether the RAM/MUL
requirement of each module and super modules are satisfied within the rectangular
region allocated, we define the following condition.

Definition 7.2 (Major Violation:) If a module has RAM/MUL requirement and
has been assigned a rectangular region such that no RAM/MUL column passes
through it, then the module is said to have the major violation.

We discard all the floorplans from each instance if there is at least one module
with major violation. These floorplans are discarded because a module with major
violation has to borrow all its required RAM/MUL resources from its neighboring
regions allocated to different modules. This may make a module non contiguous
and the shape of the module can be severely affected.

154 Ch 7. Floorplanning for Partial Reconfiguration in FPGAs

σL

*

*

* *+ + + +

*

+

+*

σL σR

+

σR

+

σL σL

σR σR

vertical: 1
horizontal:0

1100100 0110100distance: 2

Figure 7.8: Distance between two slicing trees.

7.5.3 Grouping of slicing trees for global floorplan

The floorplans in the pruned set for each instance of the given schedule have static
modules placed in the same topological location but may not necessarily have the
exact same shape after the rectangular region allocation. Thus, the question of se-
lecting a single floorplan for each of the instances arises, where not only the position
but the shapes of each static modules match. So, we find a set of groups P = {gf},
where gf = {tij |i = 1 · · · q, j ∈ 1 · · · ηi, each i is distinct}. In other words, each
group gf consists of a single tree from Fi corresponding to each instance and the
floorplans in each group are similar with respect to their cut lines or aspect ratios
of static modules (vide Figure 7.6).

Definition 7.3 (Distance between two slicing trees:) Let a and b be the strings
representing level order traversal of nodes from root till the last but one level (i.e.,
the level above that of the leaves) of two given slicing trees respectively, with hori-
zontal (vertical) cut represented as 0 (1). Let λ = min{length(a),length(b)} and the
length of the longer string be truncated till λ from right. Then, the distance between
these two trees is the number of ones in a⊕b, ⊕ denoting the exclusive-or operation.

This measures the closeness among two slicing trees in terms of slicing topology
as shown in Figure 7.8. It may be argued that, two slicing trees may become equiv-
alent by flipping the subtrees of the slicing trees. But, in case of PartialHeteroFP,
flipping the subtrees may change the positions of the static modules. Thus, oriented
slicing trees are considered here rather than the equivalent slicing tree obtained by
flipping its subtrees. In the context of partial reconfiguration, a schedule implies the
ordering of the instances on the time line. To have same shapes of static modules

7.5. Phase III: Realization of slicing trees on the chip 155

t11

t12

t1η1

 t
21

t22

t2n2

t
q1

tq2

tqηq

wt(t11,t21
)

I
1

I2 Iq

wt(a,b) : distance between
slicing trees a and b

time

wt(t1n1
,t

21
)

Figure 7.9: Grouping of slicing trees by finding shortest path in the associated
digraph.

from one instance to its consecutive one, the change in slicing tree must be min-
imum. Let F1 < F2 < · · · Fq be the q sets of slicing trees for the q instances in
a given schedule, where the set F1 and Fq have the trees for the first and the last
instances in the schedule. The ’<’ sign denotes the sequence of the instances in a
schedule. An associated distance digraph Gd = (V,E) is defined as follows:

• vertex v ∈ V corresponds to a slicing tree tij for jth tree of instance i as shown
in Figure 7.9.

• there exists a weighted edge e ∈ E, between u, v ∈ V , if u and v corresponds
to the slicing trees in consecutive instances, i.e., u and v correspond to Fi and
Fj respectively while the relationship Fi < Fi+1 holds.

• the weight is the distance between u and v as in Definition 7.3.

If there are q instances, we find a minimum weighted path of length q−1, starting
from a vertex corresponding to t1j . There may be more than one such minimum
weighted path. Each of them corresponds to a group and hence yields a global

156 Ch 7. Floorplanning for Partial Reconfiguration in FPGAs

floorplan. A minimum weighted (q − 1) length path is obtained by keeping a heap
with the edge weights at every node and selecting the minimum weighted edge from
the node till there is no more edge to traverse.

7.5.3.1 Complexity of grouping the set of slicing trees for q instances

Lemma 7.3 The construction of graph Gd = (V,E) takes O(
∑q−1

i=1 li,i+1 · ηi · ηi+1),
where li,i+1 = min{length(tij), length(t(i+1)j)}, where length(tij) represents the
length of the string corresponding to slicing tree tij.

Proof: There exists a vertex v corresponding to each slicing tree tij of each instance
i. Let there be ti1, · · · , tiηi slicing trees in instance Ii. There is an edge from each
vertex corresponding to tij to all vertices t(i+1)k, where j = 1 · · · ηi and k = 1 · · · ηi+1.
The ith instance has ηi slicing trees and (i+1)th instance has ηi+1 slicing trees. The
number of edges in the graph is

∑q−1
i=1 ηi ·ηi+1) and the number of vertices is

∑q
i=1 ηi.

The edge weight is the distance between the slicing trees corresponding to the end
vertices of the edge. This distance is calculated by truncating the longer string
corresponding to the tree to the length of the shorter string. Thus for each edge of
Gd, li,i+1 = min{length(ηi), length(ηi+1)} is computed. Hence the time complexity
of the graph formation is O(

∑q−1
i=1 li,i+1 · ηi · ηi+1). �

Note that, this graph Gd is constructed only once before the post-processing
step of satisfying the remaining resource requirements, discussed in Section 7.5.4.

Lemma 7.4 The number of groups generated from Gd is O(κ.n2
1) when all edge

weights of the graph are distinct and O(
(

Pq
i=1 κn2

i
q

)q
) when all the edges have same

weights.

Proof: If all the edge weights of the graph Gd are distinct, the number of distinct
paths from each vertex corresponding to each tree of instance 1 to the vertices
corresponding to qth instance is simply the number of vertices corresponding to the
trees t1j for instance I1 in graph Gd. Thus, in the best case, the number of groups
generated is the number of slicing trees generated for instance I1, i.e., O(κ.n2

1).

In the worst case, all edge weights are same. If ηi is the number of vertices
corresponding to each instance, then the number of q length paths is Πq

i=1ηi each
representing a group. Let AM and GM denote the arithmetic and geometric mean

7.5. Phase III: Realization of slicing trees on the chip 157

σL

σR

Floorplan Rectangular dual graph

a

bc

d e f

a

c

d

e
f

b

σR

σL

Figure 7.10: Rectangular dual graph (RD) corresponding to a floorplan.

respectively of a set of q values. Then,

GM ≤ AM

or, (Πq
i=1ηi)

1
q ≤

∑q
i=1 ηi

q

or,Πq
i=1ηi ≤

(∑q
i=1 ηi

q

)q

or,Πq
i=1ηi ≤

(∑q
i=1 κn

2
i

q

)q

Thus, the result follows. �

7.5.4 Postprocessing for satisfying resource requirements

The slicing trees selected for each instance in a group have static modules with
nearly equal aspect ratios but not exactly the same shape. We consider all pair of
shapes, taking one from the list of σL and the other from σR. For all instances, we
impose the respective shape in a shape pair to static modules at bottom-left and
top-right corner of the floorplan. This requires reallocation of CLBs of some of the
dynamic modules which are neighbors of static modules in each floorplan due to
new overlaps generated by imposition of the exact shape of static modules in each
floorplan. We next reallocate CLBs of these dynamic modules along with the deficits
generated earlier (described in Section 7.5.1) by utilizing the free regions available
on the chip. We formulate a minimum cost maximum flow (MCMF) formulation for
each floorplan in a group to resolve all the deficits in CLB requirements of modules
in the floorplan.

158 Ch 7. Floorplanning for Partial Reconfiguration in FPGAs

sN

tN

LN
RN

u1

u2

un

v1

v2

vm

cap: available(v1)

cost: length (u1,v1) in RD cap: available(v
1)

cost: 1

cap: deficit (
u 1)

cost:
1

Figure 7.11: Postprocessing by min-cost max-flow for satisfying CLB requirements.

A network flow graph N = (VN , EN) is generated for each floorplan of the group
as follows. Here, N is a bipartite graph with a source node sN and a sink node tN .
Let VN = LN ∪RN , and LN ∩RN = ϕ. Each v ∈ LN corresponds to a module that
has deficit of CLBs. Each v ∈ RN corresponds to the rectangular region if it has any
free CLBs, described in Section 7.5.1. For each floorplan, a rectangular dual graph
RD [Sarrafzadeh 1996] is generated from the adjacency relationship of rectangles as
shown in Figure 7.10. Let EN = Es ∪Euv ∪ Et.

• For each u ∈ LN , there exists an edge e ∈ Es, e = (sN , u) with capacity
as the short-fall in the requirement of CLBs of a module, i.e., the deficit,
corresponding to u and cost as 1.

• For each v ∈ RN there exists an edge e ∈ Et, e = (v, tN) with capacity as the
number of free / unallocated CLBs in the rectangle corresponding to v and
cost as 1.

• For each u ∈ LN , and for each v ∈ RN , there exists an edge e ∈ Euv with
capacity equal to the number of free CLBs in the rectangle corresponding to
v. The cost is the length of the shortest path in RD from the vertex in RD

corresponding to u to the vertex in RD corresponding to v.

Figure 7.11 shows one such network flow graph. By solving MCMF, if the amount
of flow is equal to the total deficit of CLBs, then these deficit CLBs corresponding to
each u ∈ LN is satisfied by its neighboring rectangles. If there is a positive flow f in
an edge e = (u, v) ∈ Euv having cost c, then the module corresponding to u borrows

7.5. Phase III: Realization of slicing trees on the chip 159

f CLBs from the rectangle corresponding to v following a c length path in the graph
RD, from vertex u to vertex v. This results in rectilinear shape of a module in a
floorplan. If MCMF does not have a solution for any one of the floorplan in a group,
this group is rejected as a candidate solution for the partial reconfiguration problem.

Lemma 7.5 The time complexity of solving MCMF for each group is

O(
q∑

i=1

n4
i log ni + n3

i (log ni)2)

and for all the groups it is

O(
g∑

j=1

q∑
i=1

n4
i logni + n3

i (log ni)2),

where g is the total number of groups.

Proof: Each flow graph N = (VN , EN) has |V | = O(ni) and |E| = O(n2
i) corre-

sponding to the instance Ii. The time complexity of the MCMF is O(|Z| log |U |(|Z|+
|U | log |U |)) [Ahuja 1993], where |Z| and |U | are the number of edges and vertices
in the flow graph. Thus, for a group the time complexity is

O(
q∑

i=1

n4
i log ni + n3

i (log ni)2).

The overall time complexity to solve the MCMF for all g groups is

O(
g∑

j=1

q∑
i=1

n4
i logni + n3

i (log ni)2).

�
Finally, the RAM/MULs of each module are allocated by minimum weighted

bipartite matching (MWBM) formulation as described in Section 6.5.2 for that group
of floorplans, where each floorplan is feasible in terms of CLBs. This produces the
final floorplans for each instance in the partial reconfiguration problem. Since there
may be more than one group with feasible solution, we choose a group with feasible
floorplans of all instances having the minimum sum of HPWL over all instances.

Theorem 7.1 The time complexity of PartialHeteroFP is O(n2q+4 log n), when the
edge weights of the distance graph Gd are all same and it is O(n2

1n
4 log n) when Gd

has distinct edge weights, n1 being the number of modules in the first instance, n,

160 Ch 7. Floorplanning for Partial Reconfiguration in FPGAs

the total number of modules across all instances, and q the number of instances in
a schedule.

Proof: Solving the MCMF is the dominant computation compared to the slicing
tree generation, grouping, graph formation for our method PartialHeteroFP. From
Lemma 7.5, the time complexity of solving the MCMF for a group is O(n4 log n).
From Lemma 7.4, there are O(n2q) groups when distance graph Gd has same edge
weights. Hence, the total time complexity of the method is O(n2q+4 log n) for this
case. With distinct edge weights of Gd, the number of groups is O(κn2

1), n1 be-
ing the number of modules in the first instance. Hence, the time complexity of
PartialHeteroFP is O(n2

1n
4 log n). �

With q being a constant for all practical purposes, the time complexity is a poly-
nomial in n. Algorithm 7.3 gives the third phase of our method PartialHeteroFP.

7.6 An example

The three phases of our floorplanner PartialHeteroFP are given in Algorithms 7.1,
7.2 and 7.3 respectively. The method proposed in this chapter is illustrated through
an example here. We consider a synthetic benchmark that fits on a Spartan 3 Xilinx
FPGA chip XC3S5000. This benchmark has two instances 0 and 1 with 26 and 20

modules respectively. It has 4 static modules numbered 0, . . . , 3. Instance 0 has the
static modules 0, . . . , 3 and dynamic modules numbered from 4 to 25 and instance
1 has dynamic modules 26 to 41 with the same static modules. Instance 0 requires
8141 CLBs, 84 RAMs and 84 Multipliers while instance 1 requires 8226 CLBs, 83

RAMs and 83 Multipliers.

We partition the static modules into two partitions, called super modules. The
modules numbered 0 and 1 form one partition, and the ones numbered 2 and 3

form another. σR contains modules 0 and 1 while σL contains modules 2 and 3.
Next, we partition the dynamic modules of each instance by the balanced min-cut
bi-partitioner recursively, fixing the static modules to their respective partitions as
described in Section 7.3. The left to right order of the leaves of the partition tree
gives the linear arrangement of modules as shown in Figure 7.12.

Then we generate a list of irredundant shapes (width, height) for each of the
module from the requirements in terms of basic tiles. Here, both the static super
modules require 5 tiles. The shapes generated are 1 × 5, 5 × 1. Two more shapes
2 × 3, 3 × 2 are also included. We build up the slicing trees for both the instances
as described in Section 7.4. Out of the many slicing trees generated in this phase

7.6. An example 161

Algorithm 7.3: PartialHeteroFP: Phase III
Phase III: Realization of Slicing Tree on FPGA1
for each instance Ii do2

for each slicing tree do3
Allocate rectangular region to modules satisfying CLB requirement ;4

Discard floorplans not satisfying the RAM/MUL requirements;5

Grouping slicing trees across instances:6
Construct the directed graph Gd = (V,E) to find similar trees from different7
instances;
Find a minimum weighted path of length q − 1 starting from the nodes8
corresponding to I1 to Iq;
/* Output: list of groups each having one slicing tree from each

instance */

Processing for satisfying resource requirements:9
for each group do10

for all pair of shapes σL, σR do11
Impose a shape pair of σL, σR;12

for the slicing tree corresponding to each instance do13
Construct an adjacency graph corresponding to the floorplan with free and14
allocated regions;
for each module do15

Find the shortest path from a vertex corresponding to a module with16
unallocated CLBs to a vertex corresponding to a free region;

Employ min-cost max-flow to satisfy the unresolved CLB requirements;17
if there is no feasible flow then18

continue with next pair of shapes19

else20
Allocate RAM/MULs to modules by min-cost max-flow (MCMF);21

/* for a group, more than one set of feasible floorplans corresponding

to q instances may be generated */

if the group has one or more set of q feasible floorplans then22
report each set of floorplans as feasible solution with total wirelength across23
instances;

else24
Discard that group;25

/* Choose the set of floorplans with minimum total wirelength */

for each instance, one slicing tree for each instance is shown in Figure 7.12. The
internal nodes represent the cuts used to join the child subtrees at parent node.
The shapes, i.e. (width, height) pair, of the module/super module/internal node,
are shown beside the corresponding node in the slicing tree. The shape at the root
for both the trees is 4 × 28. Since this width equals that of the target chip, these
slicing trees are possible candidates for generating feasible floorplans.

162 Ch 7. Floorplanning for Partial Reconfiguration in FPGAs

2,
3

1,
5

5 1,
3

19 1,
5

10 1,
2

25 2,
10

*
*

*
*

*
*

*
*

13 2,
2

22 2,
3

17 1,
5

16 1,
5

11 1,
3

8 1,
3

23 1,
5

21 1,
5

15 1,
2

18 1,
5

9 1,
2

12 1,
3

20 1,
5

24 1,
5

4 1,
2

6 1,
3

7 1,
3

14 1,
2

0,
1

1,
5

2,
3

1,
5

29 1,
3

30 1,
5

27 1,
3

*
*

*
*

*
*

*
31 1,

5

36 1,
10

0,
1

1,
5

32 1,
5

34 1,
5

35 1,
5

28 1,
3

33 1,
5

26 2,
2

*
*

*
*

*
*

*
37 1,

9

39 1,
9

40 1,
8

38 1,
9

v:
v

h:
h

v:
v

h:
v

h:
v

h:
h:

v

v:
h

:h
:v

h:
h:

h:
h:

v
h:

v

h:
h

h:
h

:h
:v

:h
:v

v:
v:

:
h:

h:
h:

h:
h:

h:
h

h:
h

(4
,2

8)
(4

,2
8)

(2
,2

8)
(2

,2
8)

(2
,2

8)
(2

,2
6)

(2
,1

8)
(2

,1
6)

(2
,8

)
(1

,1
6)

(1
,8

)
(1

,8
)

(1
,7

)
(1

,8
)

(2
,1

0)
(1

,8
)

(
,)

(1
,5

)
(

,)
(1

,8
)

(2
,5

)
(2

,2
)

(1
,8

)
(

,)

(1
,7

)
(

,)
(1

,7
)

(1
,9

)
(1

,7
)

(1
,1

5)
(2

 ,
2)

(1
,1

0)
(2

,3
)

(
,

)
(1

,5
)

(
,)

(1
,5

)
(

,)

(1
,8

)
(1

,9
)

(1
,6

)
(1

,1
7)

(2
,1

0)
(1

,1
3)

(2
,2

)
(2

,1
0)

(2
,8

)
(2

,2
)

(1
,1

3)
(

,)
(1

,1
2)

(
,)

(1
,1

5)
(2

,9
)

(1
,1

3)
(2

,1
7)

(2
,1

0)
(2

,1
2)

(1
,2

5)
(

,)
(1

,2
8)

(2
,2

6)

41 1,
3

in
st

 0

in
st

 1
m

od
ul

e

(w
,h

)

cu
t:

v:
ve

rt
ic

al
h:

ho
ri

zo
nt

al

in
st

 0
in

st
 1 F
ig

ur
e

7.
12

:
Sl

ic
in

g
tr
ee

s
fo

r
tw

o
in

st
an

ce
s;
v

an
d
h

re
pr

es
en

t
ve

rt
ic

al
an

d
ho

ri
zo

nt
al

cu
t
lin

es
;t

he
cu

t
lin

e
di

re
ct

io
ns

fo
r
tw

o
in

st
an

ce
s

ar
e

se
pa

ra
te

d
by

a
’:’

at
a

no
de

;s
ha

pe
of

a
m

od
ul

e
is

gi
ve

n
as

(w
id

th
,h

ei
gh

t)
pa

ir
.

7.6. An example 163

2,3

0,1
17

16
9

18

15

11

8

23

21
19

105

25

13

22

12

20

24

4

6

7

14

(a)

2,3

26

35

34

30

29

41 31

32

28

33
38

40

37

0,1

36

39

(b)

Figure 7.13: Floorplan after greedy allocation of CLBs: (a) instance 0, (b) instance
1.

The realization of the two floorplans corresponding to the slicing trees of Figure
7.12, after rectangular region allocation to each module, are shown in Figures 7.13(a)
and 7.13(b). The rectangles with module numbers in the figures, show the non-
overlapping regions, which may or may not have free CLBs, and the rectangular
strips without any module numbers indicate the regions which are either unallocated
(free) or shared by more than one module. The shapes of σL and σR, in terms of
actual resources and not tiles, are respectively 19 × 19 and 21 × 18 in instance 0,
and 21× 18 and 19× 20 in instance 1. Thus, we have four possible shape pairs for
static modules for the above two instances. Imposing each of the shape pairs on the
static modules may cause some overlap of CLBs with the neighboring modules. So,
minor re-allocation is needed.

We choose the common shape for σL and σR to be 21×18 and 21×18 respectively
and impose the shape on each floorplan for the static modules. A rectangular dual
graph for each instance is drawn as shown in Figure 7.14(a) and 7.14(b), where
numbered vertices correspond to the modules with same number and vertices labeled
with letters correspond to the free or overlapped region. From these graphs, we
draw a network flow graph described in Section 7.5.4 for both the floorplans shown.
After solving MCMF as described in Section 7.5.4, we obtain the floorplans with
all the CLB requirements satisfied. The final floorplan may contain modules with
rectilinear shapes as shown in Figures 7.15(a) and 7.15(b) for the example instances.

164 Ch 7. Floorplanning for Partial Reconfiguration in FPGAs

sl

a

5 l

25

b

13

17 m 16

10

d

19

k

9

18

h

15

11

g

8

f

23

21
12

e

20

24

4

6

7

i

13
j

0,1

2,3

22

c

(a)

2,3

41

29

A

30

B

34

35 F

26

33

C

28

32

G

31

27

H

37

D

41

38 0,1

S2

I 39

E

36

S1

(b)

Figure 7.14: Rectangular dual graph for (a) instance 0 (b) instance 1; letters repre-
sent a rectangular region either unallocated or shared by two modules, and numerals
denote the modules with deficit in CLB requirements within its allocated rectangular
region.

7.7 Experimental results

We implemented the proposed method in C on Unix platform using hMetis [hMetis]
and LEDA [LEDA] library on 1.2 GHz SunBlade 2000 workstation with SunOS
Release 5.8. The method has been tested for 9 different synthetic benchmarks.

2,3

0,1
17

16
9

18

15

11

8

23

21
19

105

25

13

22

12

20

24

4

6

7

14

(a)

2,3

26

35

34

30

29

41

27

31

32

28

33
38

40

37

0,1

36

39

(b)

Figure 7.15: Final floorplan for (a) instance 0, (b) instance 1.

7.7. Experimental results 165

Table 7.1: Characteristics of benchmark; [SM: Static modules]
1 2 3 4
Benchmark # instances # SM max # modules, nets
bench1 5 4 31,660
bench2 5 2 31,527
bench3 6 3 33,510
bench4 6 4 29,486
bench5 6 2 31,450
bench6 7 3 30,510
bench7 8 3 34,500
bench8 9 5 30,420
bench9 10 3 29,544

Table 7.2: Comparison of HPWL, CPU time and reconfiguration overhead; Partial-
HeteroFP gives 100% overlap of SM

1 2 3 4 5 6 7
HPWL CPU time(s) Overlap of

SM (%)
Benchmark Global Indiv. Avg. Global Indiv. Indiv.

Inc.(%)
bench1 268184 212094 26 6.5 5.3 2
bench2 186247 141391 31 6.6 5.0 0
bench3 285659 232910 22 7.9 6.5 9
bench4 223642 180048 24 7.6 5.8 8
bench5 264308 200501 31 7.9 5.9 1
bench6 308010 247481 24 8.9 6.9 7
bench7 330114 237856 38 9.8 8.3 7
bench8 379354 287604 31 11.4 9.2 1
bench9 326026 257314 26 12.2 8.6 17

Table 7.1 shows the number of instances, the number of static modules, maximum
number of modules and signal nets in each benchmark in our experiment.

In Table 7.2, the total wirelength obtained by summing up the HPWL over all
instances is compared with the total wirelength obtained if each individual instance
is floorplanned independently. Column 4 shows the average increase in wirelength.
Over the nine benchmark circuits, the average increase in wirelength is 28%, while
the time taken to generate the global floorplans for all instances is 1.27× of the total
time taken for floorplanning each of the instances individually. These CPU times are
shown in columns 5 and 6 for global and individual floorplan generation respectively.
Although the worst case time complexity of the proposed method is O(n2q+4 log n),
the number of groups is very small in practice as evident from the time taken. Our

166 Ch 7. Floorplanning for Partial Reconfiguration in FPGAs

global floorplan generation method places the static modules of same shape at the
same location thereby yielding the overlap of static modules of consecutive instances
to 100%. Whereas, in case of floorplanning individual instances consecutively, the
overlap for static modules is very less, about 5.8% on the average, over nine bench-
marks. This shows that, with a small increase in wirelength and running time, it is
possible to generate a set of floorplans for a given schedule satisfying all its resource
requirement and yet causing least partial reconfiguration overhead. This shows the
suitability of our fast deterministic floorplanning method for partial reconfiguration.

7.8 Conclusion

In this chapter, we proposed a fast deterministic floorplanning method in the con-
text of partial reconfiguration for FPGAs with heterogeneous resources. In order to
reduce the reconfiguration overhead, the static modules are placed on the chip at
a fixed location with same shapes for each instance of a given schedule, while the
remaining contiguous space is used for placing the dynamic modules. Experiments
on a set of benchmarks show that being a deterministic method, it is fast and it
can generate feasible floorplans for each of the instances of each benchmark with a
small increase in wirelength compared to the near-optimal floorplan of individual
instances. Relaxing the constraint on positions of static modules is under study.

Chapter 8

Concluding Remarks

Contents
8.1 Summary of the contributions 167

8.2 Future directions . 168

8.1 Summary of the contributions

In this thesis, we proposed a set of deterministic and fast placement methods for
island-style FPGAs without sacrificing the quality compared to the existing meth-
ods of placement. First, three bottom-up greedy methods have been designed and
implemented for placement of CLBs and IOBs. The key facets of these methods are
ease of implementation and considerable speedup over the popular tool VPR, which
serves as the yardstick for most researchers in this area. The quality of the place-
ment solutions produced, assessed by bounding box cost, is sacrificed nominally.
Hence, these methods are very useful for fast reconfiguration.

Next, we have also addressed top-down partitioning based placement by not only
proposing a novel and fast algorithm employing space filling curves but also for the
first time to the best of our knowledge, we have derived analytical upper bounds on
the quality of the placement obtained by our approach in order to bridge the gap
between theory and practice.

Since our placement methods perform very well for medium scale circuits, this
can well be applied in modern FPGA architectures for placing the CLBs of a module
in the islands of CLBs defined naturally by the pre-placed heterogeneous resources
on the chip.

Owing to the need of the floorplanning step in the physical design phase for
modern FPGAs with pre-placed heterogeneous resources, we have also proposed
an unified floorplan topology generation and sizing method for a given netlist of
modules which consist of several CLBs and other types of resources such as RAM,
MUL blocks. The deterministic method is based on basic tile of the target FPGA

168 Ch 8. Concluding Remarks

architecture, and is very fast. It improves the total wirelength significantly compared
to that produced by the handful of existing floorplanning methods for FPGAs.

Lastly, we have also designed a fast global floorplan generation method in the
context of partial reconfigurability to place modules of a sequence of instances (tasks)
in a schedule such that the total wirelength over all floorplans is minimized. More-
over, our algorithm places the modules which are common across all instances, at
same fixed positions and having the same shape so that the reconfiguration overhead
is also minimized.

8.2 Future directions

In this thesis, we restricted to the objective of optimizing the total half-perimeter
wirelength throughout in the design of efficient floorplaning and placement methods.
Our main focus was to develop faster methods without sacrificing the quality. With
a variety of different FPGA architecture coming up, the simple half-perimeter wire-
length metric may not suffice for the new architectures. Other parameters such as
power, critical path delay, also need to be incorporated in an integrated framework of
floorplanning and placement for the latest fabrication technology with diminishing
feature size along with higher clock speeds.

In the context of floorplanning for modern FPGAs, the definition of a basic
tile is going to be more complex with increasing irregularities in the FPGA fabric.
This may require the use of more than one type of tile to handle the situation.
Non-slicing mosaic and even general floorplan topologies may have to be considered
which is likely to call for devising a different floorplan representation. For the
partial reconfiguration case, constraints on the positions of common modules to the
two diagonally opposite corners, or in fact to positions decided a priori, may have
to be relaxed in order to improve upon the total wirelength of the floorplans.

Finally, instead of considering placement and floorplanning as a separate step in
the design flow, an integrated framework for floorplanning and placement approach
is possibly needed to achieve better quality of solution. Applicability of the methods
proposed in this thesis to other array style architectures is also an issue worth
pursuing. To mention a few very recent ones, there are Field-programmable Object
Arrays (FPOAs) where the objects are small procesing elements, or even multi-core
systems having cores which may be heterogeneous in functionality as well as in size
and shape.

Bibliography

[Abramowitz 1972] M. Abramowitz and I. A. Stegun, editeurs. Handbook of math-
ematical functions with formulas, graphs, and mathematical tables. Dover,
New York, 1972.

[Achronix] Achronix. Achronix Semiconductor Corporation. http://www.achronix.
com/.

[Actel] Actel. Actel Corporation. http://www.actel.com/.

[Adolphson 1973] D. Adolphson and T. C. Hu. Optimal Linear Ordering. SIAM
Journal Applied Math, vol. 25, no. 3, pages 403–423, 1973.

[Adya 2003] S. N. Adya and I. L. Markov. Fixed Outline Floorplanning: Enabling
Hierarchical Design. IEEE Transaction on CAD of Integrated Circuits and
Systems, vol. 11, no. 6, pages 1120–1135, 2003.

[Ahmadinia 2007] A. Ahmadinia, C. Bobda, S. P. Fekete, J. Teich and J. C. van der
Veen. Optimal Free-Space Management and Routing-Conscious Dynamic
Placement for Reconfigurable Devices. IEEE Transaction on Computers,
vol. 56, no. 5, pages 673–680, 2007.

[Ahuja 1993] R. Ahuja, T. Magnanti and J. Orlin. Network flows: Theory, algo-
rithms and applications. NJ: Prentice Hall, Englewood Cliffs, 1993.

[Alexander 1998] M. J. Alexander, J. P. Cohoon, J. L. Ganley and G. Robins. Place-
ment and Routing for Performance-Oriented FPGA Layout. VLSI Design,
vol. 87, no. 1, pages 97–110, 1998.

[Alpert 1995] C. J. Alpert and A. B. Kahng. Recent directions in netlist partitioning:
A Survey. Integration, the VLSI Journal, vol. 19, pages 1–81, 1995.

[Alsuwaiyel 1999] M. H. Alsuwaiyel. Algorithms: Design techniques and analysis.
World Scientific, 1999.

[Altera] Altera. Stratix II Device Handbook. http://www.altera.com/literature/hb/
stx2/stratix2.handbook.pdf.

[Altera 2003] Altera. FLEX 10K embedded programmable logic device family,DS-
F10K-4.2,. http://www.altera.com/literature/ds/dsf10k.pdf, January 2003.

170 Bibliography

[Anderson 2000] J. H. Anderson, J. Saunders, S. Nag, C. Madabhushi and R. Ja-
yaraman. A Placement Algorithm for FPGA Designs with Multiple I/O Stan-
dards. In FPL ’00: 10th International Workshop on Field-Programmable
Logic and Applications, pages 211–220, London, UK, 2000. Springer-Verlag.

[ARM] ARM. ARM INC. http://www.arm.com/.

[Asano 1997] T. Asano, D. Ranjan, T. Roos, E. Welzl and P. Widmayer. Space-
filling curves and their use in the design of geometric data structures. The-
oretical Computer Science, vol. 181, no. 1, pages 3–15, 1997.

[Bazargan 2000] K. Bazargan, R. Kastner and M. Sarrafzadeh. Fast Template Place-
ment for Reconfigurable Computing Systems. IEEE Design and Test, vol. 17,
no. 1, pages 68–83, 2000.

[Berg 2000] M. D. Berg, M. V. Kreveld, M. Overmars and O. Schwarzkopf. Com-
putational geometry: Algorithms and application. Springer, 2000.

[Betz 1997] V. Betz and J. Rose. VPR: A new Packing, Placement and Routing
Tool for FPGA Research. In Wayne Luk, Peter Y. K. Cheung and Manfred
Glesner, editeurs, FPL ’97: International Conference on Field-Programmable
Logic and Applications, pages 213–222. Springer-Verlag, Berlin, 1997.

[Betz 1999] V. Betz, J. Rose and A. Marquardt. Architecture and CAD for deep-
submicron FPGAs. Kluwer Academic Publishers, Feb 1999.

[Bhasker 1987] J. Bhasker and S. Sahni. Optimal Linear Arrangement of Circuit
Components. Journal of VLSI & Computer Systems, vol. 2, pages 87–109,
1987.

[Breinholt 1998] G. Breinholt and C. Schierz. Generating Hilbert’s Space-Filling
Curve by Recursion. ACM Transaction on Mathematical Software, vol. 24,
no. 2, pages 184–189, June 1998.

[Brown 1995] S. Brown, R. Francis, J. Rose and Z. Vranesic, editeurs. Field pro-
grammable gate arrays. The Springer International Series in Engineering
and Computer Science, 1995.

[Chang 2000] Y. W. Chang and Y. T. Chang. An architecture-driven metric for
simultaneous placement and global routing for FPGAs. In DAC ’00: 37th
Design Automation Conference, pages 567–572, New York, NY, USA, 2000.
ACM.

Bibliography 171

[Chen 2006] D. Chen, J. Cong and P. Pan. FPGA Design Automation: A Survey.
Foundation and Trends in Electronic Design Automation, vol. 1, no. 3, pages
139–169, 2006.

[Cheng 2004] L. Cheng and M. D. F. Wong. Floorplan Design for Multi-Million
Gate FPGAs. In ICCAD ’04: International Conference on Computer Aided
Design, pages 292–299, 2004.

[Cheng 2006] L. Cheng and M. D. F. Wong. Floorplan Design for Multimillion Gate
FPGAs. IEEE Transaction on CAD of Integrated Circuits and Systems,
vol. 25, no. 12, pages 2795–2805, 2006.

[Cormen 2003] T. H. Cormen, C. E. Leiserson and R. L. Rivest. Introduction to
algorithms. McGraw-Hill Publisher, Dec 2003.

[Dasgupta 1998] P. Dasgupta, S. Sur-Kolay and B. B. Bhattacharya. A Unified
Approach to Topology Generation and Optimal Sizing of Floorplans. IEEE
Transaction on CAD of Integrated Circuits and Systems, vol. 17, no. 2, pages
126–135, 1998.

[Eisenmann 1998] H. Eisenmann and F. M. Johannes. Generic global placement and
floorplanning. In DAC ’98: 35th annual Conference on Design Automation,
pages 269–274, New York, NY, USA, 1998. ACM.

[Emmert 1998] J. M Emmert, A. Randhar and D. Bhatia. Fast Floorplanning for
FPGAs. In FPL ’98: International Conference on Field Programmable Logic
and Applications, pages 129–138, 1998.

[Emmert 1999a] J. M. Emmert and D. Bhatia. A Methodology for Fast FPGA
Floorplanning. In ACM/SIGDA International Symposium in FPGAs, pages
47–56, 1999.

[Emmert 1999b] J. M. Emmert and D. K. Bhatia. Tabu Search: Ultra-Fast Place-
ment for FPGAs. In FPL ’99: International Conference on Field Pro-
grammable Logic and Applications, pages 81–90, Berlin / Heidelberg, 1999.
Springer.

[Even 2000] G. Even, J. S. Naor, S. Rao and B. Schieber. Divide-and-conquer ap-
proximation algorithms via spreading metrics. Journal of the ACM (JACM),
vol. 47, no. 4, pages 585–616, July 2000.

172 Bibliography

[Farbarik 1997] R. Farbarik, X. Liu, M. Rossman, P. Parakh, T. Basso and
R. Brown. CAD Tools for Area-Distributed I/O Pad Packaging. In MCMC
’97: IEEE Multi-Chip Module Conference, page 125, Washington, DC, USA,
1997. IEEE Computer Society.

[Feige 2007] U. Feige and J. R. Lee. An improved approximation ratio for the mini-
mum linear arrangement problem. Information Processing Letters, vol. 101,
no. 1, pages 26–29, 2007.

[Feng 2004] Y. Feng, D. P. Mehta and H. Yang. Constrained Floorplanning Using
Network Flows. IEEE Transaction on Computer-Aided Design of Integrated
Circuits and Systems, vol. 23, no. 4, pages 572–580, 2004.

[Feng 2006] Y. Feng and D. P. Mehta. Heterogeneous Floorplanning for FPGAs. In
VLSID 06’: IEEE International Conference on VLSI Design, 2006.

[Fiduccia 1982] C. M. Fiduccia and R. M. Mattheyses. A linear-time heuristic for
improving network partitions. In DAC ’82: IEEE/ACM Design Automation
Conference, pages 175–181, 1982.

[Galil 1977] Z. Galil and N. Megiddo. Cyclic Ordering is NP-Complete. Theoretical
Computer Science, vol. 5, pages 179–182, 1977.

[Garey 1979] M. R. Garey and D. S. Johnson. Computers and intractability: A
guide to theory of NP-completeness. W. H. Freeman & Co., San Francisco,
CA, 1979.

[Goldberg 1988] A. V. Goldberg and R. E. Tarjan. A New Approach to the
Maximum- Flow Problem. Journal of ACM, vol. 35, no. 4, pages 921–940,
1988.

[Golub 1983] G.H. Golub and C. Loan. Matrix computations. JHU, 1983.

[Gopalakrishnan 2006] P. Gopalakrishnan, X. Li and L. T. Pileggi. Architecture-
aware FPGA placement using metric embedding. In DAC ’06: Design Au-
tomation Conference, pages 460–465, 2006.

[Gotsman 1996] C. Gotsman and M. Lindenbaum. On the Metric Properties of
Discrete Space-Filling Curves. IEEE Transaction on Image Processing, vol. 5,
no. 5, pages 794–797, 1996.

[GSRC] GSRC. http://www.cse.ucsc.edu/research/surf/GSRC/progress.html.

Bibliography 173

[Hardy 1979] G. H. Hardy and E. M. Wright. An introduction to the theory of
numbers. Oxford, England, 5 édition, 1979.

[Hilbert 1891] D. Hilbert. Über stetige Abbildung einer Linie auf ein Flächenstück.
Mathematische Annalen, vol. 38, pages 459–460, 1891.

[hMetis] hMetis. http://www-users.cs.umn.edu/ karypis/metis/hmetis.

[IBM] IBM. IBM Corporation. http://www.ibm.com/.

[IEEE 1987] IEEE. IEEE Standard VHDL Language Reference Manual, 1987.

[Kahng 2000] A. B. Kahng. Classical Floorplanning Harmful? In ISPD ’00: Inter-
national Symposium on Physical Design, pages 207–213, 2000.

[Karypis 1999a] G. Karypis, R. Aggarwal, V. Kumar and S. Shekhar. Multilevel
Hypergraph Partitioning: Applications in VLSI Domain. IEEE Transaction
on Very Large Scale Integration (VLSI) Systems, vol. 7, no. 1, pages 69–79,
1999.

[Karypis 1999b] G. Karypis, R. Aggarwal, V. Kumar and S. Shekhar. Multilevel
Hypergraph Partitioning: Applications in VLSI domain. IEEE Transaction
on VLSI, vol. 7, no. 1, pages 69–79, 1999.

[Kernighan 1970a] B. W. Kernighan and S. Lin. An efficient heuristic procedure for
partitioning graphs. Bell System Technical Journal, vol. 49, pages 291–307,
1970.

[Kernighan 1970b] W. Kernighan and S. Lin. An Efficient Heuristic Procedure for
Partitioning Graphs. Bell System Technical Journal, vol. 49, pages 291–307,
1970.

[Khalid 1995] M. Khalid and J. Rose. The Effect of Fixed I/O Pin Positioning on
The Routability and Speed of FPGAs. In FPD ’95: Canadian Workshop of
Field-Programmable Devices, pages 94–102, 1995.

[Kong 2002] T. Kong. A novel net weighting algorithm for timing-driven placement.
In ICCAD ’02: IEEE/ACM International Conference on Computer-aided
design, pages 172–176, New York, NY, USA, 2002. ACM.

[Kuon 2007] I. Kuon, R. Tessier and J. Rose. FPGA Architecture: Survey and
Challenges. Foundation and Trends in Electronic Design Automation, vol. 2,
no. 2, pages 135–253, 2007.

174 Bibliography

[Lattice] Lattice. Lattice Semiconductor Corporation. http://www. lattice-
semi.com/.

[LEDA] LEDA. http://www.algorithmic-solutions.com/.

[Liberatore 2002] V. Liberatore. Circular Arrangements. LNCS: Automata, Lan-
guages and Programming, vol. 2380/2002, pages 782–783, 2002.

[Maidee 2003] P. Maidee, C. Ababei and K. Bazargan. Fast Timing-driven
Partitioning-based Placement for Island style FPGAs. In DAC ’03: ACM
/IEEE Design Automation Conference, pages 598–603, 2003.

[Maidee 2005] P. Maidee, C. Ababei and K. Bazargan. Timing-driven partitioning-
based placement for island style FPGAs. IEEE Transaction on CAD of Inte-
grated Circuits and Systems, vol. 24, no. 3, pages 395–406, 2005.

[Mak 2004] W. K. Mak. I/O Placement for FPGAs With Multiple I/O Standards.
IEEE Transaction on CAD of Integrated Circuits and Systems, vol. 23, no. 2,
pages 315–320, 2004.

[Mak 2005] W. K. Mak. Modern FPGA constrained placement. In ASP-DAC ’05:
International Conference on Asia South Pacific Design Automation, pages
779–784, New York, NY, USA, 2005. ACM.

[Manimegalai 2007] R. Manimegalai. Efficient logic synthesis and placement tech-
niques for modern FPGA architectures. Ph. D Thesis, Dept. of Computer
Science, Indian Institute of Technology, Madras, June 2007.

[Marquardt 2000] A. Marquardt, V. Betz and J. Rose. Timing-driven placement
for FPGAs. In FPGA ’00: ACM/SIGDA eighth International Symposium
on Field Programmable Gate Arrays, pages 203–213, New York, NY, USA,
2000. ACM.

[Matousek 2002] J. Matousek. Lectures on discrete geometry. Springer, May 2002.

[Mokbel 2002] Mohamed F. Mokbel, Walid G. Aref and Ibrahim Kamel. Perfor-
mance of multi-dimensional space-filling curves. In Proceedings of the 10th
ACM international Symposium on Advances in Geographic Information Sys-
tems, pages 149–154, New York, NY, USA, 2002. ACM.

[Mulpuri 2001] C. Mulpuri and S. Hauck. Runtime and quality tradeoffs in FPGA
placement and routing. In FPGA ’01: ACM/SIGDA International Sympo-
sium on Field Programmable Gate Arrays, pages 29–36, 2001.

Bibliography 175

[Nag 1998] S. K. Nag and R. A. Rutenbar. Performance-Driven simultaneous place-
ment and Routing for FPGAs. IEEE Transaction on CAD of Integrated
Circuits and Systems, vol. 17, no. 6, pages 499–518, 1998.

[Nandy 1997] S. C. Nandy, G. N. Nandakumar and B. B. Bhattacharya. Efficient
Algorithms for Single and Two-layer Linear Placement of Parallel Graphs.
Computers and Mathematics with Application, vol. 34, no. 12, pages 121–
135, 1997.

[Ngai 1995] T. Ngai, J. Rose and S. Wilton. An SRAM-programmable field-
configurable memory. In IEEE Custom Integrated Circuits Conference, pages
499–502, Santa Clara, CA, May 1995.

[Niven 1991] I. Niven, H. S. Zuckerman and H. L. Montgomery. An introduction to
the theory of numbers. Wiley, Singapore, 5 édition, 1991.

[Otten 1982] R. H. J. M. Otten. Automatic Floorplan Design. In DAC ’82: Design
Automation Conference, pages 261–267, 1982.

[Papadimitriou 2006] C. H. Papadimitriou and K. Steiglitz. Combinatorial opti-
mization: Algorithms and complexity. Prentice Hall of India, New Delhi,
2006.

[PARQUET] PARQUET. http://vlsicad.eecs.umich.edu/BK/parquet/.

[Peano 1890] G. Peano. Sur une courbe qui remplit toute une aire plaine. Mathe-
matische Annalen, vol. 36, pages 157–160, 1890.

[QuickLogic] QuickLogic. QuickLogic Corporation. http://www.quicklogic.com/.

[Rao 1998] S. Rao and A. W. Richa. New Approximation Techniques for Some Or-
dering Problems. In ACM-SIAM Symposium on Discrete Algorithms, pages
211–218, 1998.

[Roy 2006] J. A. Roy, S. N. Adya, David A. Papa and I. L. Markov. Min-Cut Floor-
placement. IEEE Transaction on CAD of Integrated Circuits and Systems,
vol. 25, no. 7, pages 1313–1326, 2006.

[Sagan 1994] H. Sagan. Space-filling curves. Springer Verlag, ISBN 0-387-94265-3,
1994.

176 Bibliography

[Sankar 1999] Y. Sankar and J. Rose. Trading quality for compile time: ultra-fast
placement for FPGAs. In FPGA ’99: ACM/SIGDA International Sympo-
sium on Field Programmable Gate Arrays, pages 157–166, New York, NY,
USA, 1999. ACM.

[Sarrafzadeh 1996] M. Sarrafzadeh and C.K. Wong. An introduction to VLSI phys-
ical design. Mcgraw Hill, 1996.

[Sarrafzadeh 2001] M. Sarrafzadeh, E. Bozorgzadeh, R. Kastner and A. Srivas-
tava. Design and analysis of physical design algorithms. In ISPD ’01:
ACM/SIGDA International Symposium on Physical Design, pages 82–89,
2001.

[Schrijver 1998] A. Schrijver. Theory of linear and integer programming. John
Wiley & Sons, June 1998.

[Sechen 1988] C. Sechen. VLSI placement and global routing using simulated an-
nealing. Kluwer Academic Publishers, Boston, USA, 1988.

[Shahookar 1991] K. Shahookar and P. Mazumdar. VLSI Cell Placement Tech-
niques. ACM Computing Surveys, vol. 23, no. 2, pages 143–220, June 1991.

[Sherwani 1993] N. A. Sherwani. Algorithms for VLSI physical design automation.
Kluwer Academic Publishers, Boston/Dordrecht/London, 1993.

[Shiloach 1979] Y. Shiloach. Minimum linear arrangement algorithm for undirected
trees. SIAM Journal on Computing, vol. 8, no. 1, pages 15–32, 1979.

[SiliconBlue] SiliconBlue. SiliconBlue Technologies Corporation. http://www. sili-
conbluetech.com/.

[Singhal 2006] L. Singhal and E. Bozorgzadeh. Multi-layer Floorplanning on a Se-
quence of Reconfigurable Designs. In FPL ’06: IEEE International Conference
on Field Programmable Logic and Applications, pages 1–8, 2006.

[Singhal 2007a] L. Singhal and E. Bozorgzadeh. Heterogeneous Floorplanner
for FPGA. In FCCM ’07: 15th Annual IEEE Symposium on Field-
Programmable Custom Computing Machines, pages 311–312, Washington,
DC, USA, 2007. IEEE Computer Society.

[Singhal 2007b] L. Singhal and E. Bozorgzadeh. Novel multi-layer floorplanning for
Heterogeneous FPGAs. In FPL ’07: IEEE International Conference on Field
Programmable Logic and Applications, pages 613–616, 2007.

Bibliography 177

[Stockmeyer 1983] L. J. Stockmeyer. Optimal Orientations of Cells in Slicing Floor-
plan Designs. Information and Control, vol. 57, no. 2/3, pages 91–101, 1983.

[Taghavi 2004] T. Taghavi, S. Ghiasi, A. Ranjan, S. Raje and M. Sarrafzadeh. Inno-
vate or perish: FPGA physical design. In ISPD ’04: International Symposium
on Physical design, pages 148–155, New York, NY, USA, 2004. ACM.

[Tessier 2002] R. Tessier. Fast Placement Approaches for FPGAs. ACM Transaction
on Design Automation of Electronic Systems, vol. 7, no. 2, pages 284–305,
2002.

[Vazirani 2001] V. V. Vazirani. Approximation algorithms. Springer, Heidelberg,
Germany, 2001.

[Vempala 1998] S. Vempala. Random projection: a new approach to VLSI layout.
In IEEE Symposium on Foundations of Computer Science, 1998.

[Verilog International 1993] Verilog International. Verilog Hardware Description
Reference, March 1993.

[Vicente 2004] J. D. Vicente, J. Lanchares and R. Hermida. Annealing Placement by
Thermodynamic Combinatorial Optimization. ACM Transaction on Design
Automation of Electronic Systems, vol. 9, no. 3, pages 310–332, July 2004.

[Vorwerk 2009] K. Vorwerk, A. Kennings and J. W. Greene. Improving Simulated
Annealing-Based FPGA Placement With Directed Moves. IEEE Transaction
on Computer-Aided Design of Integrated Circuits and Systems, vol. 28, no. 2,
pages 179–192, February 2009.

[Vygen 2007] J. Vygen. New theoretical results on quadratic placement. Integration,
the VLSI Journal, vol. 40, no. 3, pages 305–314, 2007.

[Wang 2003] M. Wang, A. Ranjan and S. Raje. Multi-Million Gate FPGA Physical
Design Challenges. In ICCAD ’03: International Conference on Computer
Aided Design, pages 891–898, 2003.

[Wong 1988] D. F. Wong, H. W. Leong and C. L. Liu. Simulated annealing for VLSI
design. Kluwer Academic Publishers, Boston, USA, 1988.

[Wood 1987] D. Wood. Theory of computation. Harper & Row, 1987.

[Xilinx] Xilinx. http://www.xilinx.com.

178 Bibliography

[Xilinx 2005] Xilinx. Virtex-II platform FPGAs: Complete data sheet. DS031(v3.4).
http://direct.xilinx.com/bvdocs/publications/ds031.pdf, 2005.

[Xu 2005] Y. Xu and M.A.S. Khalid. QPF: Efficient Quadratic Placement for FP-
GAs. In FPL ’05: IEEE International Conference on Field Programmable
Logic and Applications, pages 555–558, 2005.

[Yuan 2005] J. Yuan, S.Q. Dong, X.L. Hong and Y.L. Wu. LFF Algorithm for Het-
erogeneous FPGA Floorplanning. In ASP-DAC ’05: International Conference
on Asia South Pacific Design Automation, pages 1123–1126, 2005.

Publications from the Thesis

Refereed Journals

(J1) Pritha Banerjee, Susmita Sur-Kolay and Arijit Bishnu, “Fast Unified Floorplan
Topology Generation and Sizing on Heterogeneous FPGAs”, in IEEE Trans. on Com-
puter Aided Design of Integrated Circuits and Systems, vol. 28, no. 5., May 2009, pp.
651-661.

(J2) Pritha Banerjee, Susmita Sur-Kolay, Arijit Bishnu, Sandip Das, Subhas C. Nandy
and Subhasis Bhattacharjee, “FPGA Placement using Space Filling Curves: Theory
Meets Practice”, in Special issue on Configuring Algorithms, Processes and Architec-
ture (CAPA), ACM Trans. on Embedded Computing Systems, vol. 9, no. 2, October
2009, pp. 12:1-12:23.

(J3) Pritha Banerjee, Debasri Saha and Susmita Sur-Kolay, "Cone-based placement for
field programmable gate arrays", to appear in IET Computers and Digital Techniques.

(J4) Pritha Banerjee, Megha Sangtani and Susmita Sur-Kolay, "Floorplanning for Par-
tially Reconfigurable FPGAs", to appear in IEEE Trans. on Computer Aided Design
of Integrated Circuits and Systems.

Refereed Conference Proceedings

(C1) Pritha Banerjee and Susmita Sur Kolay, “An Accelerator for FPGA Placement”,
in Progress in VLSI Design and Test, 6th VLSI Design and Test Workshops, pp.
340-347, August 2002, Bangalore, India.

(C2) Pritha Banerjee, Subhais Bhattacharjee, Susmita Sur-Kolay, Sandip Das and Sub-
has C. Nandy, “Fast FPGA Placement using Space-filling Curve”, in Proc. of the
15th International Conference on Field Programmable Logic and Applications (FPL),
IEEE CS Press, pp. 415-420, August 2005, Tampere, Finland.

(C3) Pritha Banerjee, Susmita Sur-Kolay and Arijit Bishnu, “Floorplanning in Modern
FPGAs” in Proc. of the 20th International Conference on VLSI Design, IEEE CS
Press, pp. 893-898, January 2007, Bangalore, India.

(C4) Pritha Banerjee and Susmita Sur-Kolay, “Faster Placer for Island-style FPGAs”,
in Proc. of International Conference on Computing: Theory and Applications, IEEE
CS Press, pp. 117-121, March 2007, Kolkata, India.

(C5) Debasri Saha, Pritha Banerjee and Susmita Sur Kolay, “Fast I/O Pad Placement
in FPGAs”, in Progress in VLSI Design and Test, 11th VLSI Design And Test Sym-
posium, pp. 153-161, August 2007, Kolkata, India.

(C6) Pritha Banerjee, Megha Sangtani and Susmita Sur-Kolay, “Floorplanning for Par-
tial Reconfiguration in FPGAs”, in Proc. of the 22nd International Conference on
VLSI Design, IEEE CS Press, January 2009, New Delhi, India.

	Introduction
	FPGA
	Components of a basic FPGA chip
	Types of FPGA
	Structural classification
	Programming technology based classification
	Modern FPGAs

	Design flow for FPGA
	Scope of the thesis
	Placement of CLBs on island-style homogeneous FPGAs
	Floorplanning for heterogeneous FPGAs
	Floorplanning for partial reconfiguration in heterogeneous FPGAs

	Organization

	Previous Works
	Placement on island-style FPGAs
	Stochastic methods
	Partitioning based placement
	Analytical placement
	Other placement techniques
	Summary

	Floorplanning for heterogeneous FPGAs
	Summary

	Floorplanning for partial reconfiguration
	Summary

	Conclusion

	Bottom-up Cone based Placement for Island-style FPGAs
	Introduction
	Background
	Overview of our method

	ConeCLBPlace: Cone based CLB placement
	Placement of output blocks
	Construction of an output cone for placement of CLBs
	Placement of CLBs and input blocks
	Illustration of CLB placement by ConeCLBPlace
	Time complexity of ConeCLBPlace
	Iterative improvement of placement

	ConeIOBPlace: Cone based IOB placement
	Phase I: Generation of circular arrangement of IOBs
	Phase II: Computation of separation between adjacent IOB positions
	Illustration of IOB placement by ConeIOBPlace
	Time complexity of ConeIOBPlace
	Placement of CLBs

	ConePlace: Cone based IOB and CLB placement
	Experimental results
	Placement obtained by ConeCLBPlace
	Placement obtained by ConeIOBPlace
	Placement obtained by ConePlace

	Conclusion

	Top-Down Deterministic FPGA Placement
	Introduction
	Overview
	Coarse grain placement
	Partitioning of CLB netlist
	Allocation of netlist partitions to regions
	Reallocation in overloaded regions
	Placement of IOBs
	Time complexity of Coarse grain method

	Fine grain placement
	Fine grain partitioning
	Recursive space filling curve
	Placement using space filling curve
	Time Complexity of Fine grain method

	Experimental results for top-down deterministic FPGA placement
	Conclusion

	Efficient FPGA Placement using Space Filling Curves: Theory Meets Practice
	Introduction
	FPGA placement: theory and practice

	Our contribution
	Graph embedding and approximation algorithms
	Approximation algorithms for FPGA placement
	Extending approximation algorithms for graphs to hypergraphs
	Approximation algorithm for HPG using space filling curve

	The algorithm in practice
	Computation of linear arrangement
	Placement by space filling curves
	Placement of IOBs

	Experimental results
	Quality of placement
	Effect of low temperature SA

	Conclusion

	Unified Floorplan Topology Generation and Sizing on Heterogeneous FPGAs
	Introduction
	Background
	Architecture
	FPGA floorplanning problem
	Proposed floorplanning method
	Basic tile of a FPGA architecture
	Clustering step for large number of small modules

	Phase I: Generation of partition tree
	Phase II: Floorplan topology generation
	Generation of module shapes
	Generation of slicing trees

	Phase III: Realization of slicing tree on target FPGA
	Greedy allocation of rectangular region (GARR)
	Allocation of RAM and MUL
	Time complexity of HeteroFloorplan

	An example
	Experimental results
	How good is our GARR?
	Max-flow formulation for CLB allocation
	Comparison of GARR with network flow method

	Conclusion

	Floorplanning for Partial Reconfiguration in FPGAs
	Introduction
	Floorplanning for partial reconfiguration
	Overview of proposed method
	Basic tile on FPGA chip

	Phase I: Generation of partition trees
	Phase II: Global floorplan topology generation
	Phase III: Realization of slicing trees on the chip
	Allocation of rectangular region to a module
	Pruning the set of slicing trees
	Grouping of slicing trees for global floorplan
	Postprocessing for satisfying resource requirements

	An example
	Experimental results
	Conclusion

	Concluding Remarks
	Summary of the contributions
	Future directions

	Bibliography
	Publications from the Thesis

