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1.1 Introduction

In our every day life, we make decisions consciously or unconsciously. This

decision can be very simple such as selecting the color of dress or deciding the

menu for lunch, or may be as difficult as those involved in designing a missile

or in selecting a career. The former decision is easy to take, while the latter

one might take several years due to the level of complexity involved in it. The

main goal of most kinds of decision-making is to optimize one or more crite-

ria in order to achieve the desired result. In other words, problems related

to optimization galore in real life. Development of optimization algorithms

has therefore been of great challenge in computer science. The problem

is compounded by the fact that in many situations one may need to opti-

mize several objectives simultaneously. These specific problems are known as

multiobjective optimization problems (MOOP). In this regard, a multitude

of metaheuristic single objective optimization techniques like genetic algo-

rithms, simulated annealing, differential evolution, and their multiobjective

versions have been developed.

Computational pattern recognition can be viewed as a two fold task, com-

prising learning the invariant properties of a set of samples characterizing a

class, and of deciding that a new sample is a possible member of the class by

noting that it has properties common to those of the set of samples [20]. The

latter classification task can be either supervised or unsupervised depending

on the availability of labelled patterns. Clustering is an important unsuper-

vised classification technique where a number of patterns, usually vectors

in a multi-dimensional space, are grouped into clusters in such a way that

patterns in the same cluster are similar in some sense and patterns in differ-

ent clusters are dissimilar in the same sense. Cluster analysis is a difficult

problem due to a variety of ways of measuring the similarity and dissimilar-

ity concepts, which do not have any universal definition. Therefore, seeking

for an appropriate cluster is experiment-oriented with the assumption that

clustering algorithms capable of performing as per the demand are yet to be

investigated. A good review of clustering can be found in [97].

For partitioning a data set, one has to define a measure of similarity or
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proximity based on which cluster assignments are done. The measure of

similarity is usually data dependent. It may be noted that, in general, one of

the basic features of shapes and objects is symmetry which is considered to be

important for enhancing their recognition [10]. As symmetry is commonly

found in the natural world, it may be interesting to exploit this property

while clustering a data set [24][25][26][43][169][187].

The problem of clustering requires appropriate parameter selection (e.g.,

model and model order) and efficient search in complex and large spaces

in order to attain optimal solutions. Moreover, defining a single measure

of optimality is often difficult in clustering, leading to the need of defining

multiple objectives that are to be simultaneously optimized. This makes

the process not only computationally intensive, but also leads to a possibil-

ity of losing the exact solution. Therefore, the application of sophisticated

metaheuristic optimization techniques, both single and multiobjective, that

provide robust, fast and close approximate solutions, seems appropriate and

natural.

The first part of the present thesis deals with development of a complex

multiobjective optimization (MOO) algorithm based on simulated annealing

(SA), a well known search and optimization technique. It is called archived

multiobjective simulated annealing based technique or AMOSA. Thereafter

a symmetry based similarity measurement is developed. Subsequently some

single objective clustering techniques (using genetic algorithm and related

methods as the underlying optimization tools) and multiobjective cluster-

ing techniques (using AMOSA and related methods as the underlying opti-

mization tools) using the symmetry based distance are proposed. Finally, a

multi-seed based clustering technique is proposed, exploiting both the mul-

tiobjective approach as well as symmetry property. Before we describe the

scope of the thesis, we provide an overview of optimization techniques, both

single and multiobjective, as well as of the different clustering approaches.

Section 1.2 presents a description of the basic concepts, features and tech-

niques of both single and multiobjective optimization. A short description

of the use of simulated annealing technique for solving multiobjective opti-

mization problems is also provided in Section 1.2. In Section 1.3, we have
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provided a detailed description of the clustering problem along with various

methods of solving it. This section also discusses about the use of symmetry

as a measure of similarity. Thereafter the clustering problem is formulated

as one of multiobjective optimization. Finally Section 1.4 discusses the scope

of the present thesis.

1.2 Overview of Optimization Techniques

In decision science, optimization is a quite an obvious and important tool

[144]. In the optimization process, development of an appropriate model,

which involves identifying objectives, variables and constraints for a given

problem, is the first and the most important step. If a model is too simple, it

may not provide useful insights into the optimization process. On the other

hand, a complex model will make the problem difficult to solve.

An optimization algorithm can be used to search for the solution after the

model is fixed. In general, it is difficult to design an universally accepted

optimization technique. Each of the existing algorithms is applicable to a

particular type of optimization problem. The choice of the appropriate algo-

rithm for a particular application depends upon the user. Depending on the

number of objectives, the optimization technique can be single or multiob-

jective. Evolutionary algorithms and simulated annealing, from the family

of metaheuristic search and optimization techniques, have shown promise in

solving complex single as well as multiobjective optimization problems in a

wide variety of domains [14][18][19][39][131][134][147].

1.2.1 Single Objective Optimization Problem

Optimization is the process of minimizing or maximizing a function subject

to several constraints on its variables [144]. Generally the following notations

are used:

x is the vector of variables, also called unknowns or parameters.

f is the objective function, a function of x that has to be minimized or maxi-
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mized.

c is the vector of constraints that the variables must satisfy. This is a vector

function of x.

The single objective optimization problem can be written as

min
x∈R∗

f(x) subject to







ci(x) = 0 if i ∈ ξ

ci(x) ≥ 0 if i ∈ I
(1.1)

Here f and ci are scalar valued functions of the variable x, and ξ and I are

sets of indices.

Some popular single objective meta heuristic optimization techniques in-

clude genetic algorithm [78], simulated annealing [108], evolutionary strate-

gies [156] etc. Genetic algorithms (GAs) [78] [83] are randomized search and

optimization techniques guided by the principles of evolution and natural

genetics. GAs mimic some of the processes observed in natural evolution,

which include operations like selection, crossover and mutation. They per-

form multimodal search in complex landscapes and provide near optimal so-

lutions for objective or fitness function of an optimization problem. They are

efficient, adaptive and robust search processes with a large amount of implicit

parallelism [78]. Genetic algorithms have diversified applications in solving

problems requiring efficient and effective search, in business, scientific and

engineering circles [16][21]. Genetic algorithms find plenty of applications

in bioinformatics, computational science, engineering, economics, chemistry,

manufacturing, mathematics, physics and other fields. A detailed discussion

on genetic algorithm is found in Chapter 2 of the present thesis.

Simulated annealing (SA) [108] belongs to a class of local search algorithm.

It utilizes the principles of statistical mechanics, regarding the behaviour of a

large number of atoms at low temperature, for finding minimal cost functions

to large optimization problems by minimizing the associated energy. SA has

been applied in diverse areas [18][39][134] by optimizing a single criterion.

A detailed discussion on simulated annealing is found in Chapter 2 of the

present thesis.
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1.2.2 Multiobjective Optimization Problem

We encounter numerous real life scenarios where multiple objectives need

to be satisfied in the course of optimization. Finding a single solution in

such cases is very difficult, if not impossible. In such problems, referred

to as multiobjective optimization problems (MOOPs), it may also happen

that optimizing one objective leads to some unacceptably low value of the

other objective(s). Some definitions and basic concepts related to MOOPs

are given below.

Formal Definition of MOOP

The multiobjective optimization (MOO) can be formally stated as [48]: Find

the vector x∗ = [x∗
1, x

∗
2, . . . , x

∗
n]T of decision variables which will satisfy the

m inequality constraints :

gi(x) ≥ 0, i = 1, 2, . . . , m, (1.2)

the p equality constraints

hi(x) = 0, i = 1, 2, . . . , p, (1.3)

and simultaneously optimize the M objective values

f1(x), f2(x), . . . , fM(x). (1.4)

The constraints given in Eqns. (1.2) and (1.3) define the feasible region F
which contains all the admissible solutions. Any solution outside this region is

inadmissible since it violates one or more constraints. The vector x∗ denotes

an optimal solution in F . In the context of multiobjective optimization,

the difficulty lies in the definition of optimality, since it is only rarely that

a situation can be found where a single vector x∗ represents the optimum

solution to all the M objective functions.

Dominance Relation and Pareto Optimality

An important concept of multiobjective optimization is that of domination.

Below a formal definition of domination is given in context of the maximiza-
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tion problem. The definition is easily extended to minimization problems.

A solution xi is said to dominate xj if [60]

∀k ∈ 1, 2, . . . , M, fk(xi) ≥ fk(xj) and ∃k ∈ 1, 2, . . . , M such that fk(xi) > fk(xj).

This concept can be explained using a two-objective optimization problem.

It has five different solutions, as shown in the figure below. Let us assume

that the objective function f1 needs to be maximized while f2 needs to be

minimized. Five solutions having different values of the objective functions

are shown in Figure 1.1. Evidently solution 1 dominates solution 2 since the

former is better than the latter on both the objectives. Again solution 5

dominates 1, but 5 and 3 do not dominate each other. Intuitively, we can

say that if a solution ‘a’ dominates another solution ‘b’, then the solution ‘a’

is better than ‘b’ in the parlance of multiobjective optimization. Thus the

concept of domination allows us to compare different solutions with multi-

ple objectives. It may be noted that the dominance relation is irreflexive,

asymmetric and transitive in nature.

f1(maximize)

f2(minimize)

2

1

4

3

5

Figure 1.1: Example of dominance and Pareto optimality

Assume a set of solutions P. The solutions of P that are not dominated by

any other solution in P comprise the non-dominated set [60]. The rank of a

solution x in P is defined as the number of solutions in P that dominate x

[60]. In Figure 1.1, solutions 3 and 5 are in the non-dominated set, and their
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ranks are 0.

The non-dominated set of the entire search space S is the globally Pareto

optimal set [60].

Performance Measures

In order to evaluate the performance of different MOO algorithms, several

measures have been proposed in the literature. Some such measures are con-

vergence measure γ [61], Purity [22], Spacing [176] and Minimal Spacing [22].

The convergence measure γ indicates how close an obtained non-dominated

front is from the true Pareto optimal front. Purity of an MOO algorithm mea-

sures the fraction of the non-dominated solutions that remain non-dominated

with respect to the solutions obtained using several other MOO techniques.

Spacing and Minimal Spacing measure the diversity of the solutions in the

final non-dominated set. These measures have been used in this thesis for

comparing the performance of different MOO algorithms. There are many

other measures available in the literature. Details can be found in [47][60].

1.2.3 Various Methods to Solve MOOP

A large number of approaches exist in the literature to solve multiobjective

optimization problems [48][60]. These are aggregating, population based non-

Pareto and Pareto based techniques. In case of aggregating techniques, the

different objectives are generally combined into one using weighting or goal

based method. One of the techniques in the population based non-Pareto

approach is Vector evaluated genetic algorithm (VEGA). Here, different sub-

populations are used for the different objectives. Pareto based approaches in-

clude Multiple objective GA (MOGA), non-dominated sorting GA (NSGA),

niched Pareto GA. Note that all these techniques were essentially non-elitist

in nature. Some recent elitist techniques are NSGA-II [60], SPEA [212] and

SPEA2 [211].

Simulated annealing (SA) performs reasonably well in solving single-objective

optimization problems. But its application for solving multiobjective prob-
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lems has been limited mainly because it finds a single solution in a single

run instead of a set of solutions. This appears to be a critical bottleneck in

MOOP. However, SA has been found to have some favorable characteristics

for multimodal search. The advantage of SA stems from its good selection

technique. Another reason behind the good performance of SA is annealing

(the gradual temperature reduction technique). However, the disadvantage

of SA is the long annealing time. There are some algorithms, namely Fast

Simulated Annealing (FSA), Very Fast Simulated Re-annealing (VFSR), New

Simulated Annealing (NSA) etc. [92][195][208], that take care of this crucial

issue very effectively [142]. In this thesis a new multiobjective version of

the standard simulated annealing algorithm is proposed. In this context the

next section reviews some existing multiobjective simulated annealing based

techniques in detail.

1.2.4 MOOP and SA

As already mentioned, one of the major obstacles of using SA for MOOPs is

that it produces only a single solution at a time. Since solving multiobjective

problem generally requires finding all the solutions at the same time, some

researchers have thought of using multiple search agents at the same time.

Good reviews of multiobjective simulated annealing techniques can be found

in Chapter 9 of [47] and in [192]. A part of the following discussion is based

on [47] and [192].

In most of the earlier attempts, a single objective function

is constructed by combining the different objectives into one

[52][65][82][143][177][194][200][201]. In general, a weighted sum ap-

proach is used, where the objectives are combined as:
∑M

i=1 wifi(x). Here

fi(x), 1 ≤ i ≤ M , are the M different objective functions defined on the

solution vector x, and wi’s are the corresponding weights. This composite

objective is then used as the energy to be minimized in a scalar SA

optimization method. The problem here is how to choose the weights in

advance. Some alternative approaches have also been used in this regard.

For example, in [65], sum of logfi(x) has been taken.
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Multiobjective simulated annealing with a composite energy clearly converges

to the true Pareto front if the objectives have ratios given by w−1
i , if such

points, in general, exist. In [53], it has been proved that part of the front

will be inaccessible with fixed weights. In [99] several different schemes were

explored for adapting the wis during the annealing process to encourage

exploration along the front. However, a proper choice of the wis remains a

challenging task.

An integration of the weighted sum approach and the concept of Pareto

optimality was introduced in [52]. The algorithm, called Pareto Simulated

Annealing (PSA), uses a population instead of a single solution at each itera-

tion. The non-dominated vectors are stored in an external file and quad-trees

are used to store and retrieve them efficiently. Another new approach taken

into consideration in PSA is that when a new solution f(x′) is generated in

the neighborhood of f(x) (f(x′) denotes the closest neighborhood solution of

f(x)), the weights are incremented or decremented for those objectives de-

pending upon whether f(x) dominates f(x′) or f(x′) dominates f(x). The

main goal is to increase the probability of moving far from f(x) as much

as possible. The concept of parallelism is applicable to this approach as

the computations required at each step can be parallelized. Experimental

studies demonstrate the fact that PSA generates more solutions on the true

Pareto optimal front and the solutions are also well-distributed. PSA has

been applied to solve various real world problems.

SA is used with an energy function that transforms the MOO problem into

a single objective min-max problem in [41]. Here the problem is to minimize

the maximum deviations of each objective with respect to a set of user defined

goals.

Suppapitnarm et al. [193] have used an approach where the non dominated

solutions are stored in an external file. This algorithm basically employs a

single-point search. In order to add in the external file, a new solution has to

be non-dominated with respect to all the solutions of the external file. This

external population takes the role of a population. If the newly generated

solution is archived then it is selected as the new search starting point. Oth-
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erwise, the acceptance probability is given by p =
∏k

i=1 exp
{

−fi(x)−fi(x
′ )

Ti

}

where k is the number of objective functions, Ti is the temperature associ-

ated with objective fi(x), and x and x′ denote the current and new solution,

respectively. A potential solution will be evaluated based on this acceptance

criterion. It is treated as the new starting point of search once accepted, else

the previous solution is considered again as the starting point. There is also

a strategy called “return to base” strategy by which the currently accepted

solution is replaced by some randomly chosen solution from the external file.

This helps the SA to maintain diversity and avoid convergence to a local

optimal front. However authors have shown that their approach does not

provide good results as compared to MOGA but its only advantage is its

simplicity.

In [143] and [201] different non-linear and stochastic composite energy func-

tions have been investigated. In [143] six different criteria for energy dif-

ference calculation for MOSA are suggested and evaluated. These are i)

minimum cost criterion, ii) maximum cost criteria, iii) random cost criteria,

iv) self cost criteria, v) average cost criteria, and vi) fixed cost criteria. Since

each run of the SA provides just a single solution, the algorithm attempts

to evolve the set of PO solution by using multiple SA runs. As a result of

the independent runs, the diversity of the set of solutions suffered. After

performing some comparative study, the authors conclude that the criteria

that work best are the random, average and fixed criterion [47]. For com-

parison with respect to some existing multiobjective evolutionary algorithms

(MOEAs), the average criterion is taken into consideration. Authors have

compared their approach with respect to NPGA [85]. The proposed approach

presents a competitive performance but has some diversity problems. The

use of niches is suggested to deal with this problem.

A modified multiobjective simulated annealing named Pareto Cost Simulated

Annealing (PCSA) is proposed in [142]. Here, the cost of a state is computed

by sampling either the neighborhood or the whole population. These tech-

niques are very similar to the tournament selection of the NPGA with a small

tournament size in the first case and the whole population size in the second

case. PCSA is compared with the existing MOEA techniques, MOGA [72],
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NPGA [85] and NSGA [185] for 18 test problems. These problems are basi-

cally two-objective problems, having 2-4 number of variables. Authors have

shown that in 67% of the cases PCSA performs better than MOEAs.

A multiobjective version of simulated annealing based on Pareto dominance

is proposed by Suman [188][189][190][191]. An external archive and a scheme

to handle constraints within the expression used to determine the probabil-

ity of moving to a different state are also proposed in [188][189][190][191]. A

weight vector is calculated for the acceptance criterion. Each weight vector

considers the number of constraints satisfied by a particular solution. In

another work, five multiobjective extensions of SA, SMOSA [189], UMOSA

[190], PSA [191], WMOSA [188] and PDMOSA are compared for several

constrained multiobjective optimization problems. The selection criterion

adopted by SPEA [212] is used in PDMOSA. Here, solutions stored in the

external archive take part in the selection process. Constraints are handled

through the penalty function approach. Results show that PSA [191] pro-

vides the best qualitative results where as PDMOSA provides best results

with respect to diversity. Some more recent Pareto dominance based mul-

tiobjective SA methods are proposed in [181][182][188]. Since the technique

in [181][182] has been used in this thesis for the purpose of comparison, it is

described in detail in Chapter 2.

In the Pareto domination based multiobjective SAs developed relatively re-

cently [181][182][188], the acceptance criterion between the current and a new

solution has often been formulated in terms of the difference in the number of

solutions that they dominate. In this thesis, a new multiobjective SA is pro-

posed, hereafter referred to as AMOSA (Archived Multiobjective Simulated

Annealing), which incorporates a concept of amount of dominance in order

to determine the acceptance of a new solution as well as situation specific

acceptance probabilities. It is described in detail in Section 2.4 of Chapter

2.
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1.3 Clustering

1.3.1 Definition of Clustering

Clustering [96][197], also known as unsupervised classification, is an impor-

tant problem in data-mining and pattern recognition. It has applications in a

large number of fields. In clustering, a set of unlabeled patterns, usually vec-

tors in a multi-dimensional space, are grouped into clusters in such a way that

patterns in the same cluster are similar in some sense and patterns in different

clusters are dissimilar in the same sense. Mathematically clustering parti-

tions the input space into K regions based on some similarity/dissimilarity

metric where the value of K may or may not be known a priori. The aim

of any clustering technique is to evolve a partition matrix U(X) of the given

data set X (consisting of, say, n patterns, X = {x1, x2, . . . , xn}) such that

∑n
j=1 ukj ≥ 1 for k = 1, . . . , K,

∑K
k=1 ukj = 1 for j = 1, . . . , n and ,

∑K
k=1

∑n
j=1 ukj = n.

The partition matrix U(X) of size K × n may be represented as U = [ukj],

k = 1, . . . , K and j = 1, . . . , n, where ukj is the membership of pattern xj to

cluster Ck. In crisp partitioning ukj = 1 if xj ∈ Ck, otherwise ukj = 0.

1.3.2 Some Clustering Techniques

There exists a large number of clustering techniques in the literature [97].

Traditional clustering algorithms are classified into three classes [96]: hier-

archical, partitional and density-based. Some examples of hierarchical clus-

tering methods are Single Linkage Clustering Algorithm, Average Linkage

Clustering Algorithm and Complete Linkage Clustering Algorithm. K-means

clustering algorithm is an example of the partitional method [197]. DB scan

clustering algorithm is an example of the density-based clustering technique.

In this section two well-known clustering techniques, K-means and single

linkage clustering technique are described in detail since these two have been

used in the present thesis.
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K-means Clustering Technique

The K-means algorithm [68][96] is an iterative clustering technique that

evolves K crisp, compact and hyperspherical clusters in a data set such that

the measure:

J =
n

∑

j=1

K
∑

k=1

ukj × ‖xj − zk‖2 (1.5)

is minimized. Here ukj is equal to 1 if the jth point belongs to cluster k, and 0

otherwise; zk denotes the center of the cluster k and xj denotes the jth point

of the data. In K-means, K cluster centers are first initialized to K randomly

chosen points from the data set. The initial partitioning is formed using the

minimum distance criterion. The cluster centers are subsequently updated

with the means of the respective clusters. The process of partitioning followed

by updating centers are repeated until one of the following becomes true: (a)

the cluster centers do not change in subsequent iterations (b) the J value

becomes smaller than a threshold (c) maximum number of iterations have

been exhausted. The different steps of K-means algorithm are enumerated in

Figure 1.2. In general, if the process does not terminate in step 4 normally,

then it is executed for a maximum fixed number of iterations.

Step1: Choose K cluster centers z1, z2, . . . zK randomly from the

n points x1, x2, ....xn.

Step2: Assign point xi, i = 1, 2, ....n to cluster Cj, j ∈ 1, 2, ....K iff

‖xi − zj‖ < ‖xi − zp‖, p = 1, 2, . . .K, and j 6= p

Ties are resolved arbitrarily.

Step3: Compute new cluster centers z∗
1, z

∗
2, ....., z

∗
K as follows:

z∗
i =

∑

xj∈Ci
xj

ni
, i = 1, 2, ....K.

where ni is the number of elements belonging to cluster Ci.

Step4: If z∗
i = zi, i = 1, 2, ....K than terminate.

Otherwise continue from step2.

Figure 1.2: The K-means algorithm

In order to improve the performance of the K-means algorithm, several im-
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proved versions have been developed in the past several years [40][101][113].

Single-linkage Clustering Algorithms

The single-linkage clustering technique is a non-iterative method based on a

local connectivity criterion [97]. Instead of using one single data point x in a

data set, single linkage processes sets of n2 relationships, say {rjk}, between

pairs of objects represented by the data. The value of rjk represents the

extent to which the object j and k are related in the sense of some binary

relation ρ. It starts by considering each point in a cluster of its own. Single

linkage computes the distance between two clusters Ci and Cj as

δSL(Ci, Cj) = min
x∈Ci,y∈Cj

{d(x, y)}, (1.6)

where d(x, y) is some distance measure defined between objects x and y.

Based on these distances, it merges two clusters whose distance is the mini-

mum and then replaces these two clusters by the merged cluster. The distance

of the merged cluster from the other clusters are recomputed. The process

continues until the desired number of clusters (K) is found. The advantages

of this clustering technique are as follows: 1) it is independent of the shape of

the clusters 2) it works with both numeric or categorical attributes. The dis-

advantages of this approach are its computational complexity and inability

to handle overlapping clusters. ♣

Several clustering algorithms with different distance measures have

been developed for clustering data sets with different geometric shapes

[54][55][76][80][84][128]. These algorithms were used to detect compact clus-

ters [76], straight lines [54][76], ring shaped clusters [128], or contours with

polygonal boundaries [55][84]. However the performance of these algo-

rithms were poor when the data had clusters of other shapes. In [12] a

clustering technique is proposed which can automatically detect any num-

ber of well-separated clusters which may be of any shape, convex and/or

non-convex. But it fails for overlapping clusters. Many fuzzy clustering

techniques can be found in [28][35][36][42][123] [150][151][152][154][155][186].

Some other recent clustering techniques can be found in [6][7][8][9] [100][149]

[153][202][203][204].
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1.3.3 Distance Measures in Clustering

The main goal of clustering is to maximize both the homogeneity within each

cluster and the heterogeneity among different clusters [67][89] irrespective of

the type of clustering algorithm (partitional, hierarchical or overlapping).

Alternatively, the different objects that belong to the same cluster should be

more similar to each other than objects belonging to different clusters. Dis-

tance measures are mostly used to quantify the amount of similarity between

two objects. Several measures have been employed in the literature for clus-

tering [96][207]. One commonly used measure of similarity is the Euclidean

distance D between two patterns x and z defined by D = ‖x − z‖. Smaller

Euclidean distance means better similarity and vice versa. This measure has

been used in the K-means clustering algorithm [96] in which hyperspherical

clusters of almost equal sizes can be easily identified. This measure fails

when clusters tend to develop along principal axes. In order to detect hy-

perellipsoidal shaped clusters from data sets the Mahalanobis distance from

x to m, D(x, m) = (x − m)T ∑−1(x − m), is commonly used [129]. Here

x represents an input pattern, the matrix
∑

is the covariance matrix of a

pattern population constituting a particular cluster, m is the mean vector of

the vectors which are in the same cluster. A disadvantage of Mahalanobis

distance as a similarity measure is that one has to recompute the inverse of

the sample covariance matrix every time a pattern changes its cluster domain

[187]. But this is a computationally expensive task. Each measure has its

own advantages and disadvantages that make it more or less suitable to a

given domain or application areas such as bioinformatics, text clustering or

document categorization.

Symmetry is considered as an important feature in recognition and recon-

struction of shapes and objects [10][187]. Almost every interesting area

around us consists of some generalized form of symmetry. As symmetry

is so common in the natural world, it can be assumed that some kind of sym-

metry exists in the clusters also. Based on this idea, some symmetry based

similarity measurements and clustering algorithms have been developed in

[43][45][46][122][187]. It is also one of the main focusses of this thesis. A

detailed discussion is provided in Chapter 3.
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1.3.4 Some Evolutionary Approaches to Clustering

Clustering can be treated as a particular kind of NP-hard grouping problem

[69] from an optimization perspective. Evolutionary algorithms are meta-

heuristics that are generally used for solving NP-hard problems. The ability

of these algorithms to provide near-optimal solutions in a reasonable time

stimulates their use in solving clustering problems [89].

Algorithms for a Fixed Value of the Number of Clusters

Several papers use evolutionary algorithms to solve clustering problems with

fixed number of clusters (K), such as Bandyopadhyay and Maulik [15]; Castro

and Murray [66]; Fränti et al. [73], Krishna and Murty [114]; Krovi [115];

Kuncheva and Bezdek [116]; Lu et al. [124][125], Lucasius et al. [126]; Maulik

and Bandyopadhyay [131]; Merz and Zell [136]; Murthy and Chowdhury

[141], Sheng and Liu [178]. A good review of these clustering techniques is

available in [89].

Genetic algorithms have been used for finding globally optimal solutions to

clustering problems [34]. But it has been pointed out in [114] that these

GA-based methods are computationally inefficient as they either use complex

crossover operators or computationally hard fitness functions. To avoid these

problems, Krishna and Murty [114] have proposed a new GA based algorithm

(GKA). This algorithm uses K-means algorithm instead of crossover to reach

the locally optimal partitions and a biased mutation to widen the search

space to reach the global optimum. Theoretical proof has been provided to

show that this algorithm converges to the global optimum. But experimental

results are shown only for small data sets (four-dimensional data with n = 50,

a two dimensional data with n = 59), where n is the size of the data set, and

for small number of clusters (K ≤ 10). They have noted that as the number

of clusters increases, the size of the search space increases combinatorially

and the problem of finding the global solution becomes very difficult. This

problem occurs because of employing only the mutation operator to widen

the search space. It has to be applied several times to search the whole space

but this grows exponentially with n and K. This shows that GKA is not
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suitable for partitioning large data sets with huge number of clusters.

GAs have been used for the selection of the initial centers in the K-means

algorithm in [11]. For a d-dimensional problem, a candidate set of K centers

are selected from the vertices of d-dimensional hyperboxes formed by divid-

ing each dimension into (2B − 1) segments. A chromosome is a bit string of

length KdB formed by the concatenation of K B-bit strings for each of the

d dimensions. Thus the resulting search space is of size 2KdB. Results are

shown for small data sets. But note that for large data sets with high num-

ber of dimensions as the search space increases exponentially, this algorithm

becomes computationally intractable.

Maulik and Bandyopadhyay [131] have used center based encoding in chro-

mosome while performing clustering using GA. GA is used to evolve the

appropriate set of cluster centers. The crossover operators [131] exchange

randomly selected sub strings. Experimental results showed the effectiveness

of the proposed approach. Using this same representations they have also

used variable length strings to vary the number of clusters over a range [16].

Laszlo and Mukherjee [120] have proposed a new genetic algorithm based

K-means clustering technique. Here GA is used to evolve centers in the K-

means algorithm that simultaneously identifies good partitions for a range of

values around a specified K. The set of centers is represented using a hyper-

quadtree constructed on the data. This representation is used in the proposed

genetic clustering technique to generate an initial population of good centers

and to support a novel crossover operation that selectively passes good sub-

sets of neighboring centers from parents to offspring by swapping subtrees.

Experimental results show that the proposed technique is well-suited for large

data sets as well as small ones.

Algorithms with Variable Number of Clusters

Evolutionary algorithms which automatically determine the number of clus-

ters (K) present in a data set are described in the works by Cole [49], Cowgill

et al. [51], Bandyopadhyay and Maulik [14][16], Hruschka and Ebecken [90],

Hruschka et al. [86][87][88], Ma et al. [127], Alves et al. [180]. But all the
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above mentioned algorithms use Euclidean distance for computing similarity

measures. Thus none of these algorithms are able to detect clusters having

shapes other than hyperspheres.

In GCUK-clustering [16], variable string length Genetic Algorithm (VGA)

[83] was applied with real parameter representation as the underlying search

tool. The chromosome encodes the centers of a number of clusters, whose

value may vary. Modified versions of crossover and mutation are used.

Davies-Bouldin cluster validity index [56] is utilized for computing the fitness

of the chromosomes.

In Hybrid Niching Genetic Algorithm (HNGA) [179], a weighted sum va-

lidity function (WSVF), which is a weighted sum of several normalized

cluster validity functions, is used for optimization to automatically evolve

the proper number of clusters and the appropriate partitioning of the data

set. Within the HNGA, a niching method is developed to prevent prema-

ture convergence during the search. Additionally, in order to improve the

computational efficiency, a hybridization between the niching method with

the computationally attractive K-means is made. Here WSVF is defined

as WSV F =
∑m

i=1 wifi(x) where m is the number of component functions,

specifically m = 6 is used here. wis are the non-negative weighting coefficients

representing the relative importance of the functions such that
∑m

i=1 wi = 1,

and fi(x) are component functions (as used in [179]) corresponding to 1/(DB-

index [56]), SIL-index [102], Dunn-index [64], Generalized Dunn-index [32],

CH-index [38] and I-index [132], respectively. Here weighting coefficients are

chosen as w1 = w2 = . . . = wm = 1/m.

In [121] an algorithm for evolutionary clustering with self adaptive genetic

operators (ECSAGO) is developed. This algorithm is based on the Unsuper-

vised Niche Clustering (UNC) and Hybrid Adaptive Evolutionary (HNEA)

algorithms. The UNC is a genetic clustering algorithm which is robust to

noise and can determine the appropriate number of clusters from data sets

automatically. HNEA is a parameter adaptation technique that automat-

ically learns the rates of its genetic operators at the same time that the

individuals are evolved in an Evolutionary Algorithm (EA). In ECSAGO,

real-encoding and real genetic operators are used.
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1.3.5 Some Cluster Validity Indices

The two fundamental questions that need to be addressed in any typical

clustering scenario are: (i) how many clusters are actually present in the

data, and (ii) how real or good is the clustering itself. That is, whatever may

be the clustering technique, one has to determine the number of clusters

and also the validity of the clusters formed [63]. The measure of validity

of clusters should be such that it will be able to impose an ordering of the

clusters in terms of its goodness. In other words, if U1, U2, . . . , Um be the

m partitions of X, and the corresponding values of a validity measure be

V1, V2, . . . Vm, then Vk1 ≥ Vk2 ≥ . . . Vkm, ∀ki ∈ 1, 2, . . . , m, i = 1, 2, . . . , m

will indicate that Uk1 ↑ . . . ↑ Ukm. Here ‘Ui ↑ Uj ’ indicates that partition Ui

is a better clustering than Uj. Note that a validity measure may also define

a decreasing sequence instead of an increasing sequence of Vk1, . . . , Vkm.

Several cluster validity indices have been proposed in the literature e.g.,

Davies-Bouldin (DB) index [56], Dunn’s index [64], Xie-Beni (XB) index

[206], I-index [132], CS-index [44], XB∗ index [105], index proposed in

[104][106], fuzzy cluster validity indices proposed in [205][209] etc., to name

just a few. A good review of the cluster validity indices and their catego-

rization can be found in [105]. Some of these indices have been found to be

able to detect the correct partitioning for a given number of clusters, while

some can determine the appropriate number of clusters as well. Milligan

and Cooper [139] have provided a comparison of several validity indices for

data sets containing distinct non-overlapping clusters while using only hier-

archical clustering algorithms. Maulik and Bandyopadhyay [132] evaluated

the performance of four validity indices, namely, the Davies-Bouldin index

[56], Dunn’s index [64], Calinski-Harabasz index [132], and an index I, in

conjunction with three different algorithms viz., the well-known K-means

[68], single-linkage algorithm [68] and an SA-based clustering method [132].

Several researchers have used a cluster validity index as the optimizing cri-

terion in evolutionary approaches to clustering [14][16][179]. However, since

a single validity index is seldom able to capture different characteristics of

the partitioning, using a set of indices along with MOO is attracting the

attention of researchers in recent times.
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1.3.6 MOO and Clustering

Clustering is considered to be a difficult task as no unambiguous partition-

ing of the data exists for many data sets. Most of the existing clustering

techniques are based on only one criterion which reflects a single measure

of goodness of a partitioning. However, a single cluster quality measure is

seldom equally applicable for different kinds of data sets with different charac-

teristics. Hence, it may become necessary to simultaneously optimize several

cluster quality measures that can capture the different data characteristics.

In order to achieve this the problem of clustering a data set has been posed

as one of multiobjective optimization in literature.

In Ref. [81], a multiobjective clustering technique called MOCK is developed

which outperforms several single-objective clustering algorithms, a modern

ensemble technique, and two other methods of model selection. Two clus-

ter quality measures, one measuring the total Euclidean compactness of the

obtained partitioning and other measuring the total “connectedness” of the

obtained partitioning are optimized simultaneously. Although the objectives

of [81] are very useful, it can only handle clusters either having hyperspherical

shape or “connected” but well-separated structures. It fails for datasets hav-

ing overlapping clusters which do not contain any hyperspherical shape, e.g.,

the data sets in Figures 3.6(a) and 3.6(b) of Chapter 3. Moreover MOCK

uses locus-based adjacency representation as proposed in Ref. [148]. As a

result when the number of data points is too large the string length becomes

high too and convergence becomes slow. Here “Gap-statistics” [119] is used

to select a single solution from the set of final Pareto optimal solutions ob-

tained by MOCK. In [130], a scalable data clustering algorithm is developed

for web-mining based on MOCK. Here a scalable automatic K-determination

scheme is developed to automatically determine the number of clusters with

a lower computational cost than the original version. The proposed scheme

reduces the Pareto-size and the appropriate number of clusters can usually

be determined.

An EA for MOO clustering is proposed in [112]. Here two objectives are

minimized simultaneously. These are total intra cluster variation (computed
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over all the clusters) and the number of clusters. These two objectives are

conflicting with each other. Using MOO, the EA manages to provide a

set of non-dominated solutions. Here for each different number of clusters,

the algorithm manages to provide the smallest possible total intra-cluster

variance. Users can then make a more informed choice about the solution to

be used in practice.

A multiobjective evolutionary algorithm for fuzzy clustering has been pro-

posed in [17]. Here again, two objectives are simultaneously optimized. The

first one is the objective function optimized in Fuzzy C-means algorithm [31]

and the other is the well-known Xie-Beni index [206]. This is defined as a

ratio between a global measure of intracluster variation and a local measure

of cluster separation. The separation between clusters is measured using the

distance between the two closest clusters. Although the numerator of the

second objective is similar to the first objective, the denominator measures

a qualitative aspect of the clustering, which is eventually not captured by

the first objective. The minimum value of the second objective corresponds

to the partitioning where all clusters have an intra-cluster variation as small

as possible and the two closest clusters are as far away from each other as

possible.

Another multiobjective evolutionary clustering algorithm with two objectives

is proposed in [158]. The first objective function is again a kind of measure

of average intracluster variation computed over all clusters. Rather than us-

ing the total summation across clusters, its average value across clusters was

used. This is done in order to produce a normalized value of the measure

taking into account the number of clusters, that varies across different in-

dividuals in the evolutionary algorithm’s population. The second objective

measures the inter-cluster distance which is the average distance between a

pair of clusters computed over all pairs of clusters.
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1.4 Scope of the Thesis

The present thesis deals with the development of some single and multiobjec-

tive clustering techniques based on a newly proposed definition of point sym-

metry. A new MOO algorithm based on simulated annealing called AMOSA

is also proposed. In order to solve the single objective clustering problem

genetic algorithm [78] is used, while AMOSA is used for the multiobjective

version. A symmetry based cluster validity index is also developed. The

proposed symmetry distance is incorporated in some existing cluster valid-

ity indices to develop the symmetry versions of these indices. In order to

automatically determine the appropriate number of clusters from the data

sets, the concept of variable length representations is incorporated. Finally a

multicenter based multiobjective clustering technique is developed which can

detect any type of clusters from data sets having either symmetrical shapes

(convex or non-convex, overlapping or non-overlapping) or asymmetrical but

well-separated structures. The results of investigation are summarized below

on the basis of chapter headings.

1.4.1 Some Single and Multi Objective Optimization

Techniques

In Chapter 2, some existing single and multiobjective optimization techniques

are first discussed in detail. Then this chapter introduces a new simulated

annealing based algorithm that solves the MOOP. As already mentioned,

although SA has a strong theoretical background, it has seldom been used

in MOOPs primarily because of its search from a point nature.

The newly proposed algorithm incorporates the concept of amount of domina-

tion, and obtains the Pareto optimal solutions in an archive. This algorithm

is hereafter referred to as AMOSA (Archived Multiobjective Simulated An-

nealing). A new concept of the amount of dominance is introduced that is

utilized in AMOSA in order to determine the acceptance of a new solution.

The results of binary-coded AMOSA are compared with those of two exist-

ing well-known multiobjective optimization algorithms - NSGA-II (binary-
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coded) [61] and PAES [110] for a suite of seven 2-objective test problems

having different complexity levels. In a part of the investigation, comparison

of the real-coded version of the proposed algorithm is conducted with a very

recent multiobjective simulated annealing algorithm MOSA [181] and real-

coded NSGA-II for six 3-objective test problems. Real-coded AMOSA is also

compared with real-coded NSGA-II for some 4, 5, 10 and 15 objective test

problems. Several different comparison measures like Convergence, Purity,

MinimalSpacing, and Spacing, and the time taken are used. In this regard, a

measure called displacement has also been used that is able to reflect whether

a front is close to the PO front as well as its extent of coverage. A complexity

analysis of AMOSA has also been performed.

It has been observed from the given results that the performance of the

proposed AMOSA is better than that of MOSA and NSGA-II in a majority

of the cases, while PAES performs poorly in general. AMOSA is found

to provide more distinct solutions than NSGA-II in each run for all the

problems; this is a desirable feature in MOO. AMOSA is less time consuming

than NSGA-II for complex problems like ZDT1, ZDT2 and ZDT6. Moreover,

for problems with many objectives, the performance of AMOSA is found to

be much better than that of NSGA-II. This is an interesting and appealing

feature of AMOSA since Pareto ranking-based MOEAs, such as NSGA-II

[61] do not work well on many-objective optimization problems as pointed

out in some recent studies [91][93]. An interesting feature of AMOSA, as

in other versions of multiobjective SA algorithms, is that it has a non-zero

probability of allowing a dominated solution to be chosen as the current

solution in favour of a dominating solution. This makes the problem less

greedy in nature; thereby leading to better performance for complex and/or

deceptive problems. Note that it may be possible to incorporate this feature

as well as the concept of amount of domination in other MOO algorithms in

order to improve their performance.
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1.4.2 A Point Symmetry Based Distance Measure and

its Application to Single and Multi Objective

Clustering

In Chapter 3 a symmetry based similarity measurement [24] has been defined.

Kd-tree [4] has been used to reduce the computational cost of symmetry

based distance calculation. Thereafter the problem of clustering a data set

is formulated as one of optimization of the total symmetry of a partitioning.

Genetic algorithm is used to solve this optimization problem. This yields a

new clustering technique named GAPS (genetic algorithm with point sym-

metry based clustering technique) [24] which is able to detect any type of

cluster possessing the property of point symmetry. The global convergence

property of the proposed GAPS clustering is established.

Experimental results of GAPS are demonstrated for four artificial data sets

and four real-life data sets. Results demonstrate the superiority of GAPS as

compared to SBKM [187], Mod-SBKM [43], K-means algorithm, genetic al-

gorithm based K-means clustering technique (GAK-means), average linkage

clustering technique (AL) and Expectation Maximization clustering tech-

nique (EM).

As already mentioned, for appropriate clustering it often becomes necessary

to simultaneously optimize several cluster quality measures that can capture

different data characteristics. In order to achieve this, in Chapter 3 the prob-

lem of clustering a data set into a fixed number of clusters is posed as one

of the multiobjective optimization (MOO), where search is performed over a

number of objective functions [160]. The newly proposed simulated annealing

based multiobjective optimization technique, AMOSA, has been used as the

underlying optimization technique. Two cluster quality measures, the total

Euclidean compactness and the total symmetrical compactness are optimized

simultaneously exploiting the search capability of AMOSA. This enables the

algorithm to detect clusters that are well characterized by Euclidean com-

pactness as also those which are not compact in the conventional sense, but

are symmetric about a point. In the proposed multiobjective clustering tech-

nique with point symmetry based distance, MOPS, assignment of points to
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different clusters is done based on the point symmetry based distance rather

than the Euclidean distance. The performance of MOPS is compared with

GAPS in order to establish its effectiveness.

1.4.3 Validity Index Based on Symmetry

In Chapter 4 the newly proposed symmetry based distance is first used to

develop a cluster validity index called Sym-index [162][168]. It is shown ex-

perimentally that the Sym-index is not only able to find the proper number

of clusters from a given data set but is also able to detect the proper clus-

tering algorithm suitable for that data set. An elaborate description of the

different components of Sym-index along with an intuitive explanation of how

they compete with each other to identify a proper clustering are provided.

A mathematical justification of the newly proposed Sym-index is derived by

establishing the relationship of the Sym-index with the well-known Dunn’s

index. (However, note that Sym-index is not a generalization of the Dunn’s

index.) The effectiveness of Sym-index is demonstrated for four artificially

generated and three real life data sets. GAPS, GAK-means, average linkage

algorithm, two versions of the EM algorithm and Self Organizing Map are

used as the underlying partitioning methods. The experimental results es-

tablish the superiority of the newly proposed Sym-index as compared to four

existing validity indices, namely, PS index, I-index, CS-index and XB-index

as long as the clusters present in it have point-based symmetrical structures

irrespective of their geometrical shapes and convexities.

The concept of point symmetry is thereafter incorporated into several well-

known cluster validity indices [172]. Point symmetry versions of eight cluster

validity indices are developed which mimic eight existing cluster validity in-

dices. These indices exploit the property of point symmetry to indicate both

the appropriate number of clusters as well as the appropriate partitioning.

The effectiveness of these indices in comparison with Sym-index and eight

existing cluster validity indices are provided for two artificially generated and

three real-life data sets. Results show that incorporation of point symmetry

distance in the definitions of the existing eight cluster validity indices make
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them more effective in determining the proper number of clusters and the

appropriate partitioning from data sets having clusters of different shapes

and sizes as long as they possess the property of point symmetry.

Finally, the application of the newly proposed symmetry based cluster va-

lidity index, Sym-index and GAPS-clustering technique is described for im-

age segmentation [169]. Its effectiveness, vis-a-vis, other well-known validity

indices is first established for segmenting one artificially generated image.

Thereafter, it is used for classifying the different land covers in two multi-

spectral satellite images.

1.4.4 Symmetry Based Automatic Clustering

In Chapter 5, a variable string length genetic algorithm based clustering tech-

nique (VGAPS clustering) is proposed that can automatically determine the

appropriate number of clusters and the appropriate partitioning from a data

set having symmetrical shaped clusters [26]. The newly proposed cluster va-

lidity index, Sym-index, which is capable of detecting both the proper parti-

tioning and the proper number of clusters present in a data set, is used as the

fitness of the chromosomes. In VGAPS-clustering, the assignment of points

to different clusters is done based on the point symmetry distance rather than

the Euclidean distance when the point is indeed symmetric with respect to

a center. Moreover, the use of adaptive mutation and crossover probabilities

helps VGAPS-clustering to converge faster. The global convergence prop-

erty of the proposed VGAPS-clustering is also established. The effectiveness

of the VGAPS-clustering, as compared to two recently proposed automatic

clustering techniques, namely, GCUK-clustering and HNGA-clustering, is

demonstrated on five artificially generated and three real-life data sets of dif-

ferent characteristics. Results on the eight data sets establish the fact that

VGAPS-clustering is well-suited to detect the number of clusters and the

proper partitioning from data sets having clusters of widely varying charac-

teristics, irrespective of their convexity, or overlap or size, as long as they

possess the property of symmetry.

The corresponding MO version of VGAPS clustering technique utilizing the
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AMOSA algorithm is also developed [171] which simultaneously optimizes

Sym-index and an Euclidean distance based cluster validity index, XB-index

[206]. Thus it can automatically detect the proper partitioning and the

proper number of partitions of a data set having clusters of either symmet-

rical or hyperspherical shape. The effectiveness of the proposed clustering

technique (VAMOSA) in detecting the proper number of partitions and the

proper partitioning is shown for four artificial and four real-life data sets

and the results are compared with those obtained by another MO cluster-

ing technique, MOCK [81], two single objective automatic genetic clustering

techniques, GCUK clustering optimizing XB-index [16] and VGAPS cluster-

ing [26] optimizing Sym-index [169].

1.4.5 A Generalized Automatic Clustering Algorithm

in a Multiobjective Framework

Chapter 6 deals with the development of a MO clustering technique [25]

using AMOSA which can automatically determine any type of clusters hav-

ing either symmetrical (may be convex or non-convex, overlapping or non-

overlapping) or asymmetric but well-separated structures from a data set.

Here each cluster is divided into several nonoverlapping small hyperspherical

sub-clusters and the centers of these sub-clusters are encoded in the states of

AMOSA. For the assignment of points, all these sub-clusters are considered

individually. However, for objective function calculation, the sub-clusters

corresponding to each cluster are identified based on a proximity measure

and these are merged together. Three cluster validity indices, an Euclidean

distance based cluster validity index, a point symmetry distance based cluster

validity index, and a connectivity based cluster validity index are optimized

simultaneously. Relative neighborhood graph [198] is utilized to compute the

connectivity index. The performance of the proposed algorithm called Gen-

ClustMOO is compared with the existing multiobjective clustering technique,

MOCK, another multiobjective clustering technique developed in this thesis,

VAMOSA and a single objective clustering technique, VGAPS, for several

data sets having different characteristics. Results show that the proposed
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technique is well-suited to detect the appropriate partitioning from data sets

having either the point symmetric clusters or well-separated clusters.

1.4.6 Conclusions and Scope of Future Research

The conclusions and possible directions of future research in this field have

been explored in Chapter 7.

1.5 Contributions of the Thesis

This thesis contributes to the current understanding of the benefits of single

and multiobjective optimizations for unsupervised classification while ex-

ploiting the property of symmetry within the clusters. The contributions are

enlisted below

1. The development of a simulated annealing based multiobjective opti-

mization technique (AMOSA) (in Chapter 2) which is used later to

develop some multiobjective clustering techniques (Chapters 3, 5, 6).

2. Development of a symmetry based distance measure. This new dis-

tance is then used to develop some single and multiobjective clustering

techniques based on symmetry where the number of clusters is assumed

to be known apriori (Chapter 3).

3. Development of a symmetry based cluster validity index. Application

of this index in automatic image segmentation. Thereafter the new

point symmetry based distance is incorporated in several existing clus-

ter validity indices to develop the symmetry versions of these indices

(Chapter 4).

4. Development of some point symmetry based automatic clustering tech-

niques using both single and multiobjective optimization methods.

These can automatically detect the appropriate number of clusters and

the appropriate partitioning from the data sets (Chapter 5).
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5. Development of a generalized multiobjective multicenter based clus-

tering technique which can determine any type of clusters from data

sets having either symmetrical shapes (convex or non-convex, overlap-

ping or non-overlapping) or asymmetrical but well-separated structures

(Chapter 6).
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Chapter 2

Some Single and Multi

Objective Optimization

Techniques
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2.1 Introduction

Optimization deals with the study of those kinds of problems in which one

has to minimize or maximize a real function. This is executed in a system-

atic way by choosing the proper values of real or integer variables within

an allowed set. It is represented by a scalar real valued objective function.

Given a defined domain, the main goal of optimization is to study the means

of obtaining the best values of some objective function. Here, the elabora-

tion depends on the types of functions, conditions and nature of the objects

present in the problem domain.

An optimization problem [144] can be represented in the following way:

Given: a function f : A→ R from some set A to the real numbers.

Sought: an element x0 in A such that f(x0) ≤ f(x) ∀x ∈ A (“minimization”)

or such that f(x0) ≥ f(x) ∀x ∈ A (“maximization”).

Here, A denotes a subset of the Euclidean space Rn that is denoted in terms

of a set of entities like constraints, equalities or inequalities. The members

of A should satisfy these entities. A, the domain of f is called the search

space and the elements of A are called candidate or feasible solutions. The

function f is called an objective function/cost function/energy function. A

feasible solution that optimizes the objective function is called an optimal

solution.

Multiobjective optimization [60] (multi-criteria or multi-attribute optimiza-

tion) can be regarded as the process of simultaneously optimizing two or

more conflicting objectives with respect to a set of certain constraints. Often

we come across these types of problems in several fields including product

and process design, finance, aircraft design, oil and gas industry, automobile

design etc.

In this chapter at first we discuss some existing single and multiobjective

optimization techniques. Thereafter a new simulated annealing based mul-

tiobjective optimization technique named AMOSA (archived multiobjective

simulated annealing based optimization technique) is proposed in the present

paper.
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Figure 2.1: The different search and optimization techniques

2.2 Single Objective Optimization Tech-

niques

Different optimization techniques that are found in the literature can be

broadly classified into three categories (Figure 2.1) [78]:

• Calculus based techniques

• Enumerative techniques

• Random techniques

Numerical methods, also called calculus-based methods, use a set of neces-

sary and sufficient conditions that must be satisfied by the solution of the

optimization problem. They can be further subdivided into two categories,

viz., direct and indirect. Direct search methods perform a hill climbing on

the function space by moving in a direction related to the local gradient. In
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indirect methods, the solution is sought by solving a set of equations result-

ing from setting the gradient of the objective function to zero. The calculus

based methods are local in scope and also assume the existence of deriva-

tives. These constraints severely restrict their application in many real-life

problems, although they can be very efficient in a small class of unimodal

problems.

Enumerative techniques involve evaluating each and every point of the finite,

or discretized infinite, search space in order to arrive at the optimal solution.

Dynamic programming is a well-known example of enumerative search. It

is obvious that enumerative techniques will break down even on problems of

moderate size and complexity because it may become simply impossible to

search all the points in the space.

Guided random search techniques are based on enumerative methods, but

they use additional information about the search space to guide the search

to potential regions of the search space. These can be further divided into two

categories, namely, single-point search and multiple-point search, depending

on whether it is searching just with one point or with several points at a time.

Simulated annealing is a popular example of single-point search technique

that uses thermodynamic evolution to search for the minimum energy states.

Evolutionary algorithms like genetic algorithms are the popular examples of

multiple-point search, where random choice is used as a tool to guide a highly

explorative search through a coding of the parameter space. The guided

random search methods are useful in problems where the search space is

huge, multi modal and discontinuous, and where a near-optimal solution is

acceptable. These are robust schemes, and they usually provide near-optimal

solutions across a wide spectrum of problems. In the remaining part of this

thesis, we focus on such methods of optimization for both single and multiple

objectives.

2.2.1 Overview of Genetic Algorithms

Genetic algorithms (GAs), which are efficient, adaptive and robust search

and optimization processes, use guided random choice as a tool for guiding
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the search in very large, complex and multimodal search spaces. GAs are

modeled on the principles of natural genetic systems, where the genetic in-

formation of each individual or potential solution is encoded in structures

called chromosomes. They use some domain or problem dependent knowl-

edge for directing the search in more promising areas; this is known as the

fitness function. Each individual or chromosome has an associated fitness

function, which indicates its degree of goodness with respect to the solution

it represents. Various biologically inspired operators like selection, crossover

and mutation are applied on the chromosomes to yield potentially better

solutions.

Note that the classical gradient search techniques perform efficiently when

the problems under consideration satisfy tight constraints. But when the

search space is discontinuous, noisy, high dimensional and multimodal, then

GAs have been found to consistently outperform both the gradient descent

method and various forms of random search [79].

Genetic Algorithms: Basic Principles and Features

Genetic algorithms (GAs) [58][78][138] are adaptive computational proce-

dures modeled on the mechanics of natural genetic systems. They express

their ability by efficiently exploiting the historical information to speculate

on new offspring with expected improved performance [78].

As mentioned before, GAs encode the parameters of the search space in

structures called chromosomes (or strings). They execute iteratively on a

set of chromosomes, called population, with three basic operators: selec-

tion/reproduction, crossover and mutation. They are different from most of

the normal optimization and search procedures in four ways:

• GAs work with the coding of the parameter set, not with the parameter

themselves.

• GAs work simultaneously with multiple points, and not a single point.

• GAs search via sampling (a blind search) using only the payoff infor-

mation.
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• GAs search using stochastic operators, not deterministic rules.

Since a GA works simultaneously on a set of coded solutions it has very little

chance of getting stuck at a local optimum when used as an optimization

technique. Again, the search space need not be continuous, and no auxiliary

information, like derivative of the optimizing function, is required. Moreover,

the resolution of the possible search space is increased by operating on coded

(possible) solutions and not on the solutions themselves.

A schematic diagram of the basic structure of a genetic algorithm is shown

in Fig. 2.2. The evolution starts from a set of chromosomes (representing a

potential solution set for the function to be optimized) and proceeds from

generation to generation through genetic operations. Replacement of an old

population with a new one is known as generation (or iteration) when gener-

ational replacement technique (where all the members of the old population

are replaced with the new ones) is used. Another population replacement

technique, called steady state reproduction may be used, where one or more

individuals are replaced at a time, instead of the whole population [58]. GAs

require only a suitable objective function, which is a mapping from the chro-

mosomal space to the solution space, in order to evaluate the suitability or

fitness of the derived solutions.

A GA typically consists of the following components:

• A population of binary strings or coded possible solutions (biologically

referred to as chromosomes).

• A mechanism to encode a possible solution (mostly as a binary string).

• Objective function and associated fitness evaluation techniques.

• Selection/reproduction procedure.

• Genetic operators (crossover and mutation).

• Probabilities to perform genetic operations.

These components are now briefly described.
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Initialize the population

?

Perform the job with decoded versions of the strings

?

Compute fitness values
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����������� Termination criterion attained?
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- Stop

Yes

No

Reproduce/select strings to create new mating pool

?

Generate new population by crossover and mutation

-

Figure 2.2: Basic steps of a genetic algorithm
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Population: To solve an optimization problem, GAs start with the chromo-

somal representation of a parameter set. The parameter set is to be coded

as a finite length string over an alphabet of finite length. Usually, the chro-

mosomes are strings of 0’s and 1’s. For example, let {a1, a2, . . . , ap} be a

realization of the set of p parameters, and the binary representation of a1,

a2, . . ., ap be 10110, 00100, . . ., 11001, respectively. Then the string

10110 00100 . . . 11001

is a chromosomal representation of the parameter set. It is evident that

the number of different chromosomes (or strings) is 2l, where l is the string

length. Each chromosome actually refers to a coded possible solution. A set

of such chromosomes in a generation is called a population, the size of which

may be constant or may vary from one generation to another. A common

practice is to choose the initial population randomly.

Encoding/decoding mechanism: This is one of the primary tasks in GAs. It

is the mechanism of converting the parameter values of a possible solution

into strings, resulting in the chromosomal representation. If the solution of a

problem depends on p parameters and if we want to encode each parameter

with a string of length q, then the length, l, of each chromosome will be

l = p ∗ q.

Decoding is the task of retrieving the parameter values from the chromo-

somes. It proceeds in a manner that is just the reverse of the encoding

process.

One commonly used principle for coding is known as the principle of mini-

mum alphabet [78]. It states that for efficient coding, the smallest alphabet

set, that permits a natural expression of the problem, should be chosen. In

general, it has been found that the binary alphabet offers the maximum

number of schemata per bit of information of any coding [78]. Hence, binary

encoding is one of the commonly used strategies, although other techniques

like floating point coding [62][138] are also popular.

Objective function and associated fitness evaluation techniques: The fit-

ness/objective function is chosen depending on the problem to be solved, in
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such a way that the strings (possible solutions) representing good points in

the search space have high fitness values. This is the only information (also

known as the payoff information) that GAs use while searching for possible

solutions.

Selection/reproduction procedure: The selection/reproduction process copies

individual strings (called parent chromosomes) into a tentative new popula-

tion (known as mating pool) for genetic operations. Number of copies that

an individual receives for the next generation is usually taken to be directly

proportional to its fitness value; thereby mimicking the natural selection

procedure to some extent. This scheme is commonly called the proportional

selection scheme. Roulette wheel parent selection [78] and linear selection [58]

are two of the most frequently used selection procedures.

As proved in [159], one problem with proportional selection is that this proce-

dure cannot guarantee asymptotic convergence to the global optima. There

is no assurance that any improvement made upto a given generation will be

retained in future generations. To overcome this, a commonly used strategy

known as the elitist selection [79] is adopted, thereby providing an elitist GA

(EGA), where the best chromosome of the current generation in retained in

the next generation.

Genetic operators are applied on parent chromosomes and new chromosomes

(also called offspring) are generated. The frequently used genetic operators

are described below.

Crossover: The main purpose of crossover is to exchange information be-

tween randomly selected parent chromosomes by recombining parts of their

corresponding strings. It recombines genetic material of two parent chromo-

somes to produce offspring for the next generation. Single point crossover is

one of the most commonly used schemes. Here, first of all, the members of

the reproduced strings in the mating pool are paired at random. Then an

integer position k, (known as the crossover point) is selected uniformly at

random between 1 and l−1, where l is the string length greater than 1. Two

new strings are created by swapping all characters from position (k + 1) to

l. For example, let
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a = 11000 10101 01000 . . . 01111 10001

b = 10001 01110 11101 . . . 00110 10100

be two strings (parents) selected from the mating pool for crossover. Let the

randomly generated crossover point be 11 (eleven). Then the newly produced

offspring (swapping all characters after position 11) will be

a′ = 11000 10101 01101 . . . 00110 10100

b′ = 10001 01110 11000 . . . 01111 10001.

Some other common crossover techniques are the multiple point crossover,

shuffle-exchange crossover, uniform crossover [58].

Mutation: The main aim of mutation is to introduce genetic diversity into

the population. Sometimes, it helps to regain the information lost in earlier

generations. In case of binary representation it negates the bit value and is

known as bit mutation. Like natural genetic systems, mutation in GAs is

usually performed occasionally. A random bit position of a randomly selected

string is replaced by another character from the alphabet. For example, let

the third bit of string a, given above, be selected for mutation. Then the

transformed string after mutation will be

11100 10101 01000 . . . 01111 10001.

High mutation rate can lead the genetic search to a random one. It may

change the value of an important bit, and thereby affect the fast convergence

to a good solution. Moreover, it may slow down the process of convergence

at the final stage of GAs.

Probabilities to perform genetic operations: Both the crossover and muta-

tion operations are performed stochastically. The probability of crossover is

chosen in a way so that recombination of potential strings (highly fit chromo-

somes) increases without any disruption. Generally, the crossover probability

lies in between 0.6 to 0.9 [58][78].

Since mutation occurs occasionally, it is clear that the probability of perform-

ing mutation operation will be very low. Typically the value lies between 1/l

and 0.1 [58][78].
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As shown in Fig. 2.2, the cycle of selection, crossover and mutation is repeated

a number of times till one of the following occurs :

1. the average fitness value of a population becomes more or less constant

over a specified number of generations,

2. a desired objective function value is attained by at least one string in

the population,

3. the number of generations (or iterations) is greater than some thresh-

old.

2.2.2 Simulated Annealing: Basic Principles

Introduction

Simulated Annealing (SA) [108] is another popular search algorithm which

utilizes the principles of statistical mechanics regarding the behavior of a

large number of atoms at low temperature, for finding minimal cost solu-

tions to large optimization problems by minimizing the associated energy. In

statistical mechanics investigating the ground states or low energy states of

matter is of fundamental importance. These states are achieved at very low

temperatures. However, it is not sufficient to lower the temperature alone

since this results in unstable states. In the annealing process, the temper-

ature is first raised, then decreased gradually to a very low value (Tmin),

while ensuring that one spends sufficient time at each temperature value.

This process yields stable low energy states. SA has been applied in diverse

areas [18][39][134] by optimizing a single criterion.

Basic Principles of Simulated Annealing

Application of techniques having physical or natural correspondence for solv-

ing difficult optimization problems has been receiving widespread attention

for the last two decades. It has been found that these techniques consistently

outperform classical methods like gradient descent search when the search
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space is large, complex and multimodal. Simulated annealing (SA) is one

such paradigm having its foundation in statistical mechanics, which studies

the behavior of a very large system of interacting components in thermal

equilibrium.

In statistical mechanics, if the system is in thermal equilibrium, the proba-

bility πT (s) that the system is in state s, s ∈ S, S being the state space, at

temperature T , is given by

πT (s) =
e

−E(s)
kT

∑

w∈S e
−E(w)

kT

(2.1)

where k is the Boltzmann’s constant and E(s) is the energy of the system in

state s.

Metropolis [137] developed a technique to simulate the behaviour of the sys-

tem in thermal equilibrium at temperature T as follows : Let the system be

in state q at time t. Then the probability p that it will be in state s at time

t + 1 is given by the equation

p =
πT (s)

πT (q)
= e

−(E(s)−E(q))
kT (2.2)

If the energy of the system in state s is less than that in state q, then p > 1

and the state s is automatically accepted. Otherwise it is accepted with

probability p. Thus it is also possible to attain higher energy values. It can

be shown that for T → ∞, the probability that the system is in state s is

given by πT (s) irrespective of the starting configuration [77].

When dealing with a system of particles, it is important to investigate very

low energy states, which predominate at extremely low temperatures. To

achieve such states, it is not sufficient to lower the temperature. An an-

nealing schedule is used, where the temperature is first increased and then

decreased gradually, spending enough time at each temperature in order to

reach thermal equilibrium.

In this thesis the annealing process of the Boltzmann machine is used, which

is a variant of the Metropolis algorithm. Here, at a given temperature T , the

new state is chosen with a probability

pqs =
1

1 + e
−(E(q,T )−E(s,T ))

T

. (2.3)
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The parameters of the search space are usually encoded in the form of strings

of fixed length. The objective value associated with the string is computed

and mapped to its energy. The string with the minimum energy value pro-

vides the solution to the problem. The initial string (say q) of 0s and 1s is

generated randomly and its energy value is computed. Keeping the initial

temperature high (say T = Tmax), a neighbor of the string (say s) is gener-

ated by randomly flipping one bit. The energy of the new string is computed

and it is accepted in favour of q with a probability pqs mentioned earlier.

This process is repeated a number of times (say k) keeping the temperature

constant. Then the temperature is decreased using the equation T = rT ,

where 0 < r < 1, and the k loops, as earlier, are executed. This process is

continued till a minimum temperature (say Tmin) is attained. The simulated

annealing steps are shown in Figure 2.3.

Begin

generate the initial state q

T = Tmax

Let E(q, T ) be the associated energy

while (T ≥ Tmin)

for i = 1 to k

Perturb q to yield s

Let E(s, T ) be the associated energy

Set q ← s with probability 1
1+e−(E(q,T )−E(s,T ))/T

end for

T = rT

end while

Decode q to provide the solution of the problem.

End

Figure 2.3: Steps of Simulated Annealing

Simulated Annealing has been successfully applied in various domains [57].

The domains include computer design [108][109], image restoration and seg-

mentation [183], contour detection [33][39][134], edge detection [117], com-
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binatorial problems such as traveling salesman problem [107] and artificial

intelligence [18][23]. It is, however, not always trivial to map an optimization

problem into the simulated annealing framework. The difficulties come from

constructing an objective function that encapsulates the essential properties

of the problem and that can be efficiently evaluated. It is necessary to de-

termine a concise description of the parameter configurations as well as an

efficient method for generating configurations. Moreover, it is important to

select an effective and efficient annealing schedule.

2.3 Some Multiobjective Optimization Tech-

niques

The multiobjective optimization (MOO) problem has a rather different per-

spective compared to one having a single objective. In single-objective opti-

mization there is only one global optimum, but in multiobjective optimiza-

tion there is a set of solutions, called the Pareto optimal (PO) set, which are

considered to be equally important; all of them constitute global optimum

solutions. Over the decade, a number of multiobjective Evolutionary Algo-

rithms (MOEAs) have been suggested (see, [47][60] for some reviews). The

main reason for the popularity of Evolutionary algorithms (EAs) for solving

multiobjective optimization is their population based nature and ability of

finding multiple optima simultaneously.

Simulated Annealing (SA) [108] is another popular search algorithm. Though

simulated annealing has been in the literature for a longer time than evolu-

tionary algorithms, it has been rarely used in the study of MOOP. The perfor-

mance of the earlier SA based MOOP solving algorithms are not comparable

with those of the existing multiobjective evolutionary algorithms [61][110].

In this thesis an attempt in this direction has been made by proposing an

algorithm using simulated annealing as its underlying tool.
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2.3.1 Recent MOEA Algorithms

During 1993-2003, a number of different evolutionary algorithms were sug-

gested to solve multiobjective optimization problems. Among these, two

well-known ones namely, PAES [110] and NSGA-II [61], are described first

since these are used in this chapter for the purpose of comparison.

Knowles and Corne [110] suggested a simple MOEA using a single parent,

single child evolutionary algorithm which is similar to (1+1) evolutionary

strategy. Here binary representation and bit-wise mutation are used while

creating offspring. At first the child is created, then the objective functions

are computed. Thereafter it is compared with respect to the parent. A child

is accepted as the next parent if it dominates the parent, and the iteration

continues. Otherwise, the child is discarded and a new mutated solution (a

new solution) is generated from the parent if the parent dominates the child.

However, it is also possible that the parent and the child are nondominating

to each other. In such cases, both child and the parent are compared with an

archive of best solutions found so far in order to find an appropriate choice.

The child is compared with all members of the archive to check if it dominates

any member of the archive. If yes, the child is accepted as the new parent and

all the dominated solutions are eliminated from the archive. If the archive

does not have any member that is dominated by the child then both the

parent and the child are checked for their nearness with the solutions of the

archive. The child is accepted as a parent if it resides in a less crowded region

in the parameter space. A copy of child is also added to the archive. In order

to implement the concept of crowding the whole solution space is divided

into dM subspaces where d is the depth parameter and M is the number of

objective functions. The subspaces are updated dynamically.

NSGA-II proposed by Deb et al. [61] is the other popular algorithm for multi-

objective optimization. Here, initially a random parent population P0 of size

N is created. Then the population is sorted based on the non-domination

relation. Each solution of the population is assigned a fitness which is equal

to its non-domination level. A child population Q0 is created from the parent

population P0 by using binary tournament selection, recombination, and mu-
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tation operators. In general, initially a combined population Rt = Pt + Qt is

formed of size Rt, which is 2N . Now all the solutions of Rt are sorted based

on their non-domination status. If the total number of solutions belonging to

the best non-dominated set F1 is smaller than N , F1 is completely included

into P(t+1). The remaining members of the population P(t+1) are chosen from

subsequent non-dominated fronts in the order of their ranking. To choose

exactly N solutions, the solutions of the last included front are sorted using

the crowded comparison operator and the best among them (i.e., those with

larger values of the crowding distance) are selected to fill in the available

slots in P(t+1). The new population P(t+1) is now used for selection, crossover

and mutation to create a new population Q(t+1) of size N , and the process

continues. The crowding distance operator is also used in the parent selec-

tion phase in order to break a tie in the binary tournament selection. This

operator is basically responsible for maintaining diversity in the Pareto front.

2.3.2 Recent MOSA Algorithm

One of the recently developed MOSA algorithm is by Smith et al. [181][182].

Here a dominance based energy function is used. If the true Pareto front is

available then the energy of a particular solution x is calculated as the total

number of solutions that dominates x. However as the true Pareto front is not

available all the time a proposal has been made to estimate the energy based

on the current estimate of the Pareto front, F
′
, which is the set of mutually

non-dominating solutions found thus far in the process. Then the energy of

the current solution x is the total number of solutions in the estimated front

which dominates x. If ‖F ′

x′‖ is the energy of the new solution x′ and ‖F ′

x‖
is the energy of the current solution x, then energy difference between the

current and the proposed solution is calculated as δE(x′ , x) =
(‖F ′

x
′
‖−‖F ′

x
‖)

‖F ′‖ .

Division by ‖F ′‖ ensures that δE is always less than unity and provides some

robustness against fluctuations in the number of solutions in F
′
. If the size of

F
′
is less than some threshold, then attainment surface sampling method is

adopted to increase the number of solutions in the final Pareto front. Authors

have perturbed a decision variable with a random number generated from
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the Laplacian distribution. Two different sets of scaling factors, traversal

scaling which generates moves to a non-dominated proposal within a front,

and location scaling which locates a front closer to the original front, are

kept. These scaling factors are updated with the iterations.

2.4 A New Multiobjective Simulated Anneal-

ing Based Technique: AMOSA

2.4.1 Introduction

Simulated Annealing (SA) [108] is a popular search algorithm. However

there have been only a few attempts in extending SA to multiobjective op-

timization, primarily because of its search-from-a-point nature. In most

of the earlier attempts, a single objective function is constructed by com-

bining the different objectives into one using a weighted sum approach

[52][82][143][194][200][201]. In addition to the earlier aggregating approaches

of multiobjective SA, there have been a few techniques that incorporate the

concept of Pareto dominance. Some such methods are proposed in [181][188],

which use Pareto domination based acceptance criterion in multiobjective

SA. A good review of several multiobjective simulated annealing algorithms

and their comparative performance analysis can be found in [192].

In Pareto domination based multiobjective SAs developed so far, the accep-

tance criterion between the current and a new solution has been formulated in

terms of the difference in the number of solutions that they dominate [181]

[188]. In this chapter, a new multiobjective SA is proposed, hereafter re-

ferred to as AMOSA (Archived Multiobjective Simulated Annealing), which

incorporates a concept of amount of dominance in order to determine the

acceptance of a new solution [27]. The Pareto optimal (PO) solutions are

stored in an archive. A complexity analysis of the proposed AMOSA has

been provided. The performance of the newly proposed AMOSA has been

compared to the two other well-known MOEA’s, namely NSGA-II [61] and

PAES [110] (described earlier) for several function optimization problems
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when binary encoding is used. The comparison has been made in terms

of several performance measures, namely Convergence [61], Purity [22][94],

Spacing [176] and MinimalSpacing [22]. Another measure called displacement

[52][95], that reflects both the proximity to and the coverage of the true PO

front, is also used here for the purpose of comparison. This measure is es-

pecially useful for discontinuous fronts where we can estimate if the solution

set is able to approximate all the sub-fronts. Many existing measures are

unable to achieve this.

It may be noted that the multiobjective SA methods developed in [181][188]

are on lines similar to ours. The concept of archive or a set of potentially

PO solutions is also utilized in [181][188] for storing the non-dominated so-

lutions. Instead of scalarizing the multiple objectives, a domination based

energy function is defined. However there are notable differences. Firstly,

while the number of solutions that dominate the new solution x determines

the acceptance probability of x in the earlier attempts, in the present chapter

this is based on the amount of domination of x with respect to the solutions

in the archive and the current solution. In contrast to the works in [181][188]

where a single form of acceptance probability is considered, the present chap-

ter deals with different forms of acceptance probabilities depending on the

domination status, the choice of which are explained intuitively later on.

In [181] an unconstrained archive is maintained. Note that theoretically, the

number of Pareto optimal solutions can be infinite. Since the ultimate pur-

pose of an MOO algorithm is to provide the user with a set of solutions to

choose from, it is necessary to limit the size of this set for it to be usable

by the user. Though maintaining unconstrained archives as in [181] is novel

and interesting, it is still necessary to finally reduce it to a manageable set.

Limiting the size of the population (as in NSGA-II) or the Archive (as in

AMOSA) is an approach in this direction. Clustering appears to be a nat-

ural choice for reducing the loss of diversity, and this is incorporated in the

proposed AMOSA. Clustering has also been used earlier in [212].

For comparing the performance of real-coded AMOSA with that of the mul-

tiobjective SA (MOSA) [181], six three objective test problems, namely,

DTLZ1-DTLZ6 are used. Results demonstrate that the performance of
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AMOSA is comparable to, often better than, that of MOSA in terms of

Purity, Convergence and Minimal Spacing. Comparison is also made with

real-coded NSGA-II for the above mentioned six problems, as well as for some

4, 5, 10 and 15 objective test problems. Results show that the performance

of AMOSA is superior to that of NSGA-II specially for the test problems

with many objective functions. This is an interesting and the most desirable

feature of AMOSA since Pareto ranking-based MOEAs, such as NSGA-II

[61] do not work well on many-objective optimization problems as pointed

out in some recent studies [91][93].

2.4.2 Archived Multiobjective Simulated Annealing

(AMOSA) [27]

AMOSA incorporates the concept of an Archive where the non-dominated

solutions seen so far are stored. In [70], the use of unconstrained Archive

size to reduce the loss of diversity is discussed in detail. In our approach we

have kept the archive size limited since finally only a limited number of well

distributed Pareto optimal solutions are needed. Two limits are kept on the

size of the Archive: a hard or strict limit denoted by HL, and a soft limit

denoted by SL. During the process, the non-dominated solutions are stored

in the Archive as and when they are generated until the size of the Archive

increases to SL. Thereafter if more non-dominated solutions are generated,

these are added to the Archive, the size of which is thereafter reduced to HL

by applying clustering. The structure of the proposed simulated annealing

based AMOSA is shown in Figure 2.4. The parameters that need to be set

a priori are mentioned below.

• HL: The maximum size of the Archive on termination. This set is equal

to the maximum number of non-dominated solutions required by the

user.

• SL: The maximum size to which the Archive may be filled before clus-

tering is used to reduce its size to HL.

• Tmax: Maximum (initial) temperature.
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Algorithm AMOSA
Set Tmax, Tmin, HL, SL, iter, α, temp=Tmax.

Initialize the Archive.

current-pt = random(Archive). /* randomly chosen solution from Archive*/

while (temp > Tmin)

for (i=0; i< iter; i++)

new-pt=perturb(current-pt).

Check the domination status of new-pt and current-pt.

/* Code for different cases */

if (current-pt dominates new-pt) /* Case 1*/

∆domavg =

(
∑

k

i=1
(∆domi,new−pt)+∆domcurrent−pt,new−pt

)

(k+1)
.

/* k=total-no-of points in the Archive which dominate new-pt, k ≥ 0. */

Set new-pt as current-pt with probability calculated using Equation 2.3

with (−(E(q, T ) − E(s, T )) replaced by ∆domavg .

if (current-pt and new-pt are non-dominating to each other) /* Case 2*/

Check the domination status of new-pt and points in the Archive.

if (new-pt is dominated by k (k ≥1) points in the Archive) /* Case 2(a)*/

∆domavg =

(
∑

k

i=1
∆domi,new−pt

)

k
.

Set new-pt as current-pt with probability calculated using Equation 2.3

with (−(E(q, T ) − E(s, T )) replaced by ∆domavg .

if (new-pt is non-dominating w.r.t all the points in the Archive) /* Case 2(b)*/

Set new-pt as current-pt and add new-pt to the Archive.

if Archive-size > SL

Cluster Archive to HL number of clusters.

if (new-pt dominates k, (k ≥1) points of the Archive) /* Case 2(c)*/

Set new-pt as current-pt and add it to Archive.

Remove all the k dominated points from the Archive.

if (new-pt dominates current-pt) /* Case 3 */

Check the domination status of new-pt and points in the Archive.

if (new-pt is dominated by k (k ≥1) points in the Archive) /* Case 3(a)*/

∆dommin = minimum of the difference of domination amounts between the new-pt

and the k points

prob= 1
1+exp(−∆dommin)

.

Set point of the archive which corresponds to ∆dommin as current-pt with probability=prob.

else set new-pt as current-pt

if (new-pt is non-dominating with respect to the points in the Archive) /* Case 3(b) */

select the new-pt as the current-pt and add it to the Archive.

if current-pt is in the Archive, remove it from Archive.

else if Archive-size> SL.

Cluster Archive to HL number of clusters.

if (new-pt dominates k other points in the Archive ) /* Case 3(c)*/

Set new-pt as current-pt and add it to the Archive.

Remove all the k dominated points from the Archive.

End for

temp = α ∗ temp.

End while

if Archive-size > SL

Cluster Archive to HL number of clusters.

Figure 2.4: The AMOSA Algorithm
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• Tmin: Minimal (final) temperature.

• iter: Number of iterations at each temperature.

• α: The cooling rate in SA.

The different steps of the algorithm are now explained in detail.

2.4.3 Archive Initialization

The algorithm begins with the initialization of a number γ× SL (γ > 1) of

solutions. Each of these solutions is refined by using a simple hill-climbing

technique, accepting a new solution only if it dominates the previous one.

This is continued for a number of iterations. Thereafter the non-dominated

solutions (ND) that are obtained are stored in the Archive, up to a maximum

of HL. In case the number of non-dominated solutions exceeds HL, clustering

is applied to reduce the size to HL (the clustering procedure is explained

below). That means initially Archive contains a maximum of HL number of

solutions.

In the initialization phase it is possible to get an Archive of size one. In MOSA

[181], in such cases, other newly generated solutions which are dominated

by the archival solution will be indistinguishable. In contrast, the amount

of domination as incorporated in AMOSA will distinguish between “more

dominated” and “less dominated” solutions. However, in future we intend

to use a more sophisticated scheme, in line with that adopted in MOSA.

2.4.4 Clustering the Archive Solutions

Clustering of the solutions in the Archive has been incorporated in AMOSA

in order to explicitly enforce the diversity of the non-dominated solutions.

In general, the size of the Archive is allowed to increase up to SL (> HL),

after which the solutions are clustered for grouping the solutions into HL

clusters. Allowing the Archive size to increase upto SL not only reduces

excessive calls to clustering, but also enables the formation of more spread
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out clusters and hence better diversity. Note that in the initialization phase,

clustering is executed once even if the number of solutions in the Archive is

less than SL, as long as it is greater than HL. This enables it to start with

atmost HL non-dominated solutions and reduces excessive calls to clustering

in the initial stages of the AMOSA process.

For clustering, the well-known Single linkage algorithm [96] has been used.

Here, the distance between any two clusters corresponds to the length of the

shortest link between them. This is similar to the clustering algorithm used

in SPEA [212], except that they have used average linkage method [96]. Af-

ter HL clusters are obtained, the member within each cluster whose average

distance to the other members is the minimum, is considered as the represen-

tative member of the cluster. A tie is resolved arbitrarily. The representative

points of all the HL clusters are thereafter stored in the Archive.

2.4.5 Amount of Domination

As already mentioned, AMOSA uses the concept of amount of domination in

computing the acceptance probability of a new solution. Given two solutions

a and b, the amount of domination is defined as

∆doma,b =
∏M

i=1,fi(a)6=fi(b)
|fi(a)−fi(b)|

Ri
where M = number of objectives and

Ri is the range of the ith objective. Note that in several cases, Ri may

not be known a priori. In these situations, the solutions present in the

Archive along with the new and the current solutions are used for computing

it. The concept of ∆doma,b is illustrated pictorially in Figure 2.5 for a two

objective case. ∆doma,b is used in AMOSA while computing the probability

of acceptance of a newly generated solution.

2.4.6 The Main AMOSA Process

One of the points, called current-pt, is randomly selected from Archive as

the initial solution at temperature temp=Tmax. The current-pt is perturbed

to generate a new solution called new-pt. The domination status of new-pt

is checked with respect to the current-pt and solutions in the Archive.
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Figure 2.5: Total amount of domination between the two solutions A and B

= the area of the shaded rectangle

Based on the domination status between current-pt and new-pt three different

cases may arise. These are enumerated below.

• Case 1: current-pt dominates the new-pt and k (k ≥ 0) points from

the Archive dominate the new-pt.

This situation is shown in Figure 2.6. Here Figure 2.6(a) and 2.6(b)

denote the situations where k = 0 and k ≥ 1 respectively. ( Note that

all the figures correspond to a two objective maximization problem.)

In this case, the new-pt is selected as the current-pt with a probability

calculated using Equation 2.3 with (−(E(q, T )− E(s, T )) replaced by

∆domavg where

∆domavg = (
k

∑

i=1

(∆domi,new−pt) + ∆domcurrent−pt,new−pt)/(k + 1).

Note that ∆domavg denotes the average amount of domination of the

new-pt by (k + 1) points, namely, the current-pt and k points of the

Archive. Also, as k increases, ∆domavg will increase since here the dom-

inating points that are further away from the new-pt are contributing

to its value.

Lemma: When k = 0, the current-pt is on the archival front.

Proof: If this is not the case, then some point, say A, in the Archive

dominates it. Since current-pt dominates the new-pt, by transitivity,

A will also dominate the new-pt. However, we have considered that
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Figure 2.6: Different cases when New is dominated by Current (a) New is

non-dominating with respect to the solutions of Archive except Current if it

is in the Archive (b) Some solutions in the Archive dominate New

no other point in the Archive dominates the new-pt as k = 0. Hence

proved.

However if k ≥ 1, this may or may not be true.

• Case 2: current-pt and new-pt are non-dominating with respect to each

other.

Now, based on the domination status of new-pt and members of

Archive, the following three situations may arise.

1. new-pt is dominated by k points in the Archive where k ≥ 1. This

situation is shown in Figure 2.7(a). The new-pt is selected as the

current-pt with a probability calculated using Equation 2.3 with

(−(E(q, T )− E(s, T )) replaced by ∆domavg where

∆domavg =
k

∑

i=1

(∆domi,new−pt)/k.

Note that here the current-pt may or may not be on the archival

front.

2. new-pt is non-dominating with respect to the other points in the

Archive as well. In this case the new-pt is on the same front as

the Archive as shown in Figure 2.7(b). So the new-pt is selected
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Figure 2.7: Different cases when New and Current are non-dominating (a)

Some solutions in Archive dominates New (b) New is non-dominating with

respect to all the solutions of Archive (c) New dominates k (k ≥ 1) solutions

in the Archive

.

as the current-pt and added to the Archive. In case the Archive

becomes overfull (i.e., the SL is exceeded), clustering is performed

to reduce the number of points to HL.

3. new-pt dominates k (k ≥1) points of the Archive. This situation

is shown in Figure 2.7(c). Again, the new-pt is selected as the

current-pt, and added to the Archive. All the k dominated points

are removed from the Archive. Note that here too the current-pt

may or may not be on the archival front.

• Case 3: new-pt dominates current-pt

Now, based on the domination status of new-pt and members of

Archive, the following three situations may arise.

1. new-pt dominates the current-pt but k (k ≥ 1) points in the

Archive dominate this new-pt. Note that this situation (shown

in Figure 2.8(a)) may arise only if the current-pt is not a member

of the Archive. Here, the minimum of the difference of domi-

nation amounts between the new-pt and the k points, denoted

by ∆dommin, of the Archive is computed. The point from the

Archive which corresponds to the minimum difference is selected
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Figure 2.8: Different cases when New dominates the Current (a) New is

dominated by some solutions in Archive (b) New is non-dominating with

respect to the solutions in the Archive except Current, if it is in the Archive

(c) New dominates some solutions of Archive other than Current

as the current-pt with prob = 1
1+exp(−∆dommin)

. Otherwise the new-

pt is selected as the current-pt. Note that according to the SA

paradigm, the new-pt should have been selected with probability

1. However, due to the presence of Archive, it is evident that solu-

tions still better than new-pt exist. Therefore the new-pt and the

dominating points in the Archive that are closest to the new-pt

(corresponding to ∆dommin) compete for acceptance. This may

be considered a form of informed reseeding of the annealer only

if the Archive point is accepted, but with a solution closest to

the one which would otherwise have survived in the normal SA

paradigm.

2. new-pt is non-dominating with respect to the points in the Archive

except the current-pt if it belongs to the Archive. This situation

is shown in Figure 2.8(b). Thus new-pt, which is now accepted

as the current-pt, can be considered as a new non-dominated so-

lution that must be stored in Archive. Hence new-pt is added

to the Archive. If the current-pt is in the Archive, then it is re-

moved. Otherwise, if the number of points in the Archive becomes

more than the SL, clustering is performed to reduce the number
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of points to HL.

Note that here the current-pt may or may not be on the archival

front.

3. new-pt also dominates k (k ≥ 1), other points, in the Archive (see

Figure 2.8(c)). Hence, the new-pt is selected as the current-pt

and added to the Archive, while all the dominated points of the

Archive are removed. Note that here the current-pt may or may

not be on the archival front.

The above process is repeated iter times for each temperature (temp). Tem-

perature is reduced to α × temp, using the cooling rate of α till the mini-

mum temperature, Tmin, is attained. The process thereafter stops, and the

Archive contains the final non-dominated solutions.

Note that in AMOSA, as in other versions of multiobjective SA algorithms,

there is a possibility that a new solution worse than the current solution may

be selected. In most other MOEAs, e.g., NSGA-II, PAES, if a choice needs to

be made between two solutions x and y, and if x dominates y, then x is always

selected. It may be noted that in single objective EAs or SA, usually a worse

solution also has a non-zero chance of surviving in subsequent generations;

this leads to a reduced possibility of getting stuck at suboptimal regions.

However, most of the MOEAs have been so designed that this characteristics

is lost. The present simulated annealing based algorithm provides a way of

incorporating this feature.

2.4.7 Complexity Analysis

The complexity analysis of AMOSA is provided in this section. The basic

operations and their worst case complexities are as follows:

1. Archive initialization: O(SL).

2. Procedure to check the domination status of any two solutions: O(M),

M = number of objectives.
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Figure 2.9: The final non-dominated front for SCH2 obtained by (a) AMOSA

(b) PAES (c) NSGA-II

3. Procedure to check the domination status between a particular solution

and the Archive members: O(M ×SL).

4. Single linkage clustering: O(SL2 × log(SL)) [199].

5. Clustering procedure is executed

• once after initialization if |ND| > HL

• after each (SL−HL) number of iterations.

• at the end if final |Archive| > HL

So maximum number of times the Clustering procedure is called=

(TotalIter/(SL−HL))+2.

Therefore, total complexity due to Clustering procedure is

O((TotalIter/(SL−HL)) × SL2 × log(SL)).

Total complexity of AMOSA becomes

(SL + M + M × SL)× (TotalIter) +
TotalIter

SL−HL
× SL2 × log(SL). (2.4)

Let SL= β×HL where β ≥ 2 and HL = N where N is the population size

in NSGA-II and archive size in PAES. Therefore overall complexity of the
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Figure 2.10: The final non-dominated front for Deb4 obtained by (a) AMOSA

(b) PAES (c) NSGA-II

AMOSA becomes

(TotalIter)× (β ×N + M + M × β ×N + (β2/(β − 1))

×N × log(βN)), (2.5)

or,

O(TotalIter ×N × (M + log(N))). (2.6)

Note that the total complexity of NSGA-II is O(TotalIter×M × N2) and

that of PAES is O(TotalIter ×M × N). NSGA-II complexity depends on

the complexity of non-dominated procedure. With the best procedure, the

complexity is O(TotalIter×M ×N × log(N)).

Table 2.1: Convergence and Purity Measures on the test functions for binary

encoding

Test Convergence Purity

Problem AMOSA PAES NSGA-II AMOSA PAES NSGA-II

SCH1 0.0016 0.0016 0.0016 0.9950(99.5/100) 0.9850(98.5/100) 1(94/94)

SCH2 0.0031 0.0015 0.0025 0.9950(99.5/100) 0.9670(96.7/100) 0.9974(97/97.3)

ZDT1 0.0019 0.0025 0.0046 0.8350(83.5/100) 0.6535(65.4/100) 0.970(68.64/70.6)

ZDT2 0.0028 0.0048 0.0390 0.8845(88.5/100) 0.4050(38.5/94.9) 0.7421(56.4/76)

ZDT6 0.0026 0.0053 0.0036 1(100/100) 0.9949(98.8/99.3) 0.9880(66.5/67.3)

Deb1 0.0046 0.0539 0.0432 0.91(91/100) 0.718(71.8/100) 0.77(71/92)

Deb4 0.0026 0.0025 0.0022 0.98(98/100) 0.9522(95.2/100) 0.985(88.7/90)
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Figure 2.11: The final non-dominated front obtained by (a) AMOSA (b)

MOSA for the test problems (1) DTLZ1 (2) DTLZ2 (3) DTLZ3
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Figure 2.12: The final non-dominated front obtained by (a) AMOSA (b)

MOSA for the test problems (1) DTLZ5 (2) DTLZ6

2.5 Simulation Results

In this section, we first describe comparison metrics used for the experiments.

The performance analysis of both the binary-coded AMOSA and the real-

coded AMOSA are also provided in this section.

2.5.1 Comparison Measures

In multiobjective optimization, there are basically two functionalities that

an MOO strategy must achieve regarding the obtained solution set [60]. It

should converge as close to the true PO front as possible and it should main-

tain as diverse a solution set as possible.

The first condition clearly ensures that the obtained solutions are near opti-
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Table 2.2: Spacing and MinimalSpacing measures on the test functions for

binary encoding

Test Spacing MinimalSpacing

Problem AMOSA PAES NSGA-II AMOSA PAES NSGA-II

SCH1 0.0167 0.0519 0.0235 0.0078 0.0530 0.0125

SCH2 0.0239 0.5289 0.0495 N.A. N.A. N.A.

ZDT1 0.0097 0.0264 0.0084 0.0156 0.0265 0.0147

ZDT2 0.0083 0.0205 0.0079 0.0151 0.0370 0.0130

ZDT6 0.0051 0.0399 0.0089 0.0130 0.0340 0.0162

Deb1 0.0166 0.0848 0.0475 0.0159 0.0424 0.0116

Deb4 0.0053 0.0253 0.0089 N.A. N.A. N.A.

Table 2.3: New measure displacement on the test functions for binary encod-

ing

Algorithm SCH2 Deb4 ZDT1 ZDT2 ZDT6

AMOSA 0.0230 0.0047 0.0057 0.0058 0.0029

PAES 0.6660 0.0153 0.0082 0.0176 0.0048

NSGA-II 0.0240 0.0050 0.0157 0.0096 0.0046

mal and the second condition ensures that a wide range of trade-off solutions

is obtained. Clearly, these two tasks cannot be measured with one perfor-

mance measure adequately. A number of performance measures have been

suggested in the past. Here we have mainly used three such performance

measures. The first measure is the Convergence measure γ [61]. It measures

the extent of convergence of the obtained solution set to a known set of PO

solutions. Lower the value of γ, better is the convergence of the obtained

solution set to the true PO front. The second measure called Purity [22][94]

is used to compare the solutions obtained using different MOO strategies.

It calculates the fraction of solutions from a particular method that remains

nondominating when the final front solutions obtained from all the algorithms

are combined. A value near to 1(0) indicates better (poorer) performance.
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Table 2.4: Time taken by different programs (in sec) for binary encoding

Algorithm SCH1 SCH2 Deb1 Deb4 ZDT1 ZDT2 ZDT6

AMOSA 15 14.5 20 20 58 56 12

PAES 6 5 5 15 17 18 16

NSGA-II 11 11 14 14 77 60 21

Table 2.5: Convergence, Purity and Minimal Spacing measures on the 3

objective test functions while Archive is bounded to 100

Test Convergence Purity MinimalSpacing

Problem AMOSA MOSA NSGA-II AMOSA MOSA NSGA-II AMOSA MOSA NSGA-II

DTLZ1 0.01235 0.159 13.695 0.857 0.56 0.378 0.0107 0.1529 0.2119

(85.7/100) (28.35/75) (55.7/100)

DTLZ2 0.014 0.01215 0.165 0.937 0.9637 0.23 0.0969 0.1069 0.1236

(93.37/100) (96.37/100) (23.25/100)

DTLZ3 0.0167 0.71 20.19 0.98 0.84 0.232 0.1015 0.152 0.14084

(93/95) (84.99/100) (23.2/70.6)

DTLZ4 0.28 0.21 0.45 0.833 0.97 0.7 0.20 0.242 0.318

(60/72) (97/100) (70/100)

DTLZ5 0.00044 0.0044 0.1036 1 0.638 0.05 0.0159 0.0579 0.128

(97/97) (53.37/83.6) (5/100)

DTLZ6 0.043 0.3722 0.329 0.9212 0.7175 0.505 0.1148 0.127 0.1266

(92.12/100) (71.75/100) (50.5/100)

The third measure named Spacing was first proposed by Schott [176]. It

reflects the uniformity of the solutions over the non-dominated front. It is

shown in [22] that this measure will fail to give adequate result in some sit-

uations. In order to overcome the above limitations, a modified measure,

named MinimalSpacing is proposed in [22]. Smaller values of Spacing and

MinimalSpacing indicate better performance.

It may be noted that if an algorithm is able to approximate only a portion of

the true PO front, not its full extents, none of the existing measures, will be

able to reflect this. In case of discontinuous PO front, this problem becomes

severe when an algorithm totally misses a sub-front. Here a performance

measure which is very similar to the measure used in [52] and [95] named

displacement is used that is able to overcome this limitation. It measures

how far the obtained solution set is from a known set of PO solutions. In

order to compute displacement measure, a set P ∗ consisting of uniformly

spaced solutions from the true PO front in the objective space is found (as
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Table 2.6: Convergence, Purity and Minimal Spacing measures on the 3

objectives test functions by AMOSA and MOSA while Archive is unbounded

Test Convergence Purity MinimalSpacing

Problem AMOSA MOSA AMOSA MOSA AMOSA MOSA

DTLZ1 0.010 0.1275 0.99(1253.87/1262.62) 0.189(54.87/289.62) 0.064 0.083.84

DTLZ2 0.0073 0.0089 0.96(1074.8/1116.3) 0.94(225/239.2) 0.07598 0.09595

DTLZ3 0.013 0.025 0.858(1212/1412.8) 0.81(1719/2003.9) 0.0399 0.05

DTLZ4 0.032 0.024 0.8845(88.5/100) 0.4050(38.5/94.9) 0.1536 0.089

DTLZ5 0.0025 0.0047 0.92(298/323.66) 0.684(58.5/85.5) 0.018 0.05826

DTLZ6 0.0403 0.208 0.9979(738.25/739.75) 0.287(55.75/194.25) 0.0465 0.0111

is done while calculating γ). Then displacement is calculated as

displacement =
1

|P ∗| ×
|P ∗|
∑

i=1

(min
|Q|
j=1d(i, j)) (2.7)

where Q is the obtained set of final solutions, and d(i, j) is the Euclidean

distance between the ith solution of P ∗ and jth solution of Q. Lower the

value of this measure, better is the convergence to and extent of coverage of

the true PO front.

2.5.2 Comparison of Binary Encoded AMOSA with

NSGA-II and PAES

Firstly, we have compared the binary encoded AMOSA with the binary-coded

NSGA-II and PAES algorithms. For AMOSA binary mutation is used. Seven

test problems have been considered for the comparison purpose. These are

SCH1 and SCH2 [60], Deb1 and Deb4 [59], ZDT1, ZDT2, ZDT6 [60]. All

the algorithms are executed ten times per problem and the results reported

are the average values obtained for the ten runs. In NSGA-II the crossover

probability (pc) is kept equal to 0.9. For PAES the depth value d is set equal

to 5. For AMOSA the cooling rate α is kept equal to 0.8. The number of

bits assigned to encode each decision variable depends on the problem. For

example in ZDT1, ZDT2 and ZDT6 which all are 30-variable problems, 10

bits are used to encode each variable, for SCH1 and SCH2 which are single

variable problems and for Deb1 and Deb4 which are two variable problems,

20 bits are used to encode each decision variable. In all the approaches,
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binary mutation applied with a probability of pm = 1/l, where l is the string

length, is used as the perturbation operation. We have chosen the values

of Tmax (maximum value of the temperature), Tmin (minimum value of

the temperature) and iter (number of iterations at each temperature) so

that total number of fitness evaluations of the three algorithms becomes

approximately equal. For PAES and NSGA-II, identical parameter settings

as suggested in the original studies have been used. Here the population

size in NSGA-II, and archive sizes in AMOSA and PAES are set to 100.

Maximum iterations for NSGA-II and PAES are 500 and 50000 respectively.

For AMOSA, Tmax = 200, Tmin = 10−7, iter = 500. The parameter values

were determined after extensive sensitivity studies, which are omitted here

to restrict the size of the chapter.

Discussions of the Results

The Convergence and Purity values obtained using the three algorithms are

shown in Table 2.1. AMOSA performs best for ZDT1, ZDT2, ZDT6 and

Deb1 in terms of γ. For SCH1 all three are performing equally well. NSGA-

II performs well for SCH2 and Deb4. Interestingly, for all the functions,

AMOSA is found to provide more number of overall non-dominated solutions

than NSGA-II. (This is evident from the quantities in parentheses in Table 2.1

where x
y

indicates that on an average the algorithm produced y solutions

of which x remained good even when solutions from other MOO strategies

are combined.) AMOSA took 10 seconds to provide the first PO solution

compared to 32 seconds for NSGA-II in case of ZDT1. From Table 2.1 it

is again clear that AMOSA and PAES are always giving more number of

distinct solutions than NSGA-II.

Table 2.2 shows the Spacing and MinimalSpacing measurements. AMOSA

is giving the best performance of Spacing most of the times while PAES

performs the worst. This is also evident from Figures 2.9 and 2.10 which show

the final PO fronts of SCH2 and Deb4 obtained by the three methods for the

purpose of illustration. With respect to MinimalSpacing the performances of

AMOSA and NSGA-II are comparable.
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Table 2.3 shows the value of displacement for five problems, two with discon-

tinuous and three with continuous PO fronts. AMOSA performs the best in

almost all the cases. The utility of the new measure is evident in particular

for Deb4 where PAES performs quite poorly (see Figure 2.10). Interestingly

the Convergence value for PAES (Table 2.1) is very good here, though the

displacement correctly reflects that the PO front has been represented very

poorly.

Table 2.4 shows the time taken by the algorithms for the different test func-

tions. It is seen that PAES takes less time in six of the seven problems be-

cause of its smaller complexity. AMOSA takes less time than NSGA-II in 30

variable problems like ZDT1, ZDT2, 10 variable problem ZDT6. But for sin-

gle and two variable problems SCH1, SCH2, Deb1 and Deb4, AMOSA takes

more time than NSGA-II. This may be due to complexity of its clustering

procedure. Generally for single or two variable problems this procedure dom-

inates the crossover and ranking procedures of NSGA-II. But for 30 variable

problems the scenario is reversed. This is because of the increased complexity

of ranking and crossover (due to increased string length) in NSGA-II.

2.5.3 Comparison of Real-coded AMOSA with the Al-

gorithm of Smith et al. [181] and Real-coded

NSGA-II

The real-coded version of the proposed AMOSA has also been implemented.

The mutation is done as suggested in [181]. Here, a new string is generated

from the old string x by perturbing only one parameter or decision variable of

x. The parameter to be perturbed is chosen at random and perturbed with a

random variable ǫ drawn from a Laplacian distribution, p(ǫ) ∝ e−
|ǫ−µ|

δ , where

the scaling factor δ sets the magnitude of perturbation. Here, µ is the value

at the position which is to be perturbed. A fixed scaling factor equals to 0.1

is used for mutation. The initial temperature is selected by the procedure

mentioned in [181]. That is, the initial temperature, Tmax, is calculated by

using a short ‘burn-in’ period during which all solutions are accepted and set-

ting the temperature equal to the average positive change of energy divided

66



by ln(2). Here Tmin is kept equal to 10−5 and the temperature is adjusted

according to Tk = αkTmax, where α is set equal to 0.8. For NSGA-II popula-

tion size is kept equal to 100 and total number of generations is set such that

the total number of function evaluations of AMOSA and NSGA-II are the

same. For AMOSA the archive size is set equal to 100. (However, in a part of

investigations, the archive size is kept unlimited as in [181]. The results are

compared to those obtained by MOSA [181] and provided in [1].) AMOSA

is executed for a total of 5000, 1000, 15000, 5000, 1000, 5000 and 9000 run

lengths respectively for DTLZ1, DTLZ2, DTLZ3, DTLZ4, DTLZ5, DTLZ5

and DTLZ6. Total number of iterations, iter, per temperature is set ac-

cordingly. We have run real-coded NSGA-II (code obtained from KANGAL

site: http://www.iitk.ac.in/kangal/codes.html). For NSGA-II the following

parameter setting is used: probability of crossover =0.99, probability of mu-

tation=(1/l), where l is the string length, distribution index for the crossover

operation=10, distribution index for the mutation operation=100.

In MOSA [181] authors have used unconstrained archive size. Note that the

archive size of AMOSA and the population size of NSGA-II are both 100.

For the purpose of comparison with MOSA that has an unlimited archive

[181], the clustering procedure (adopted for AMOSA), is used to reduce

the number of solutions of [1] to 100. Comparison is performed in terms

of Purity, Convergence and Minimal Spacing. Table 2.5 shows the Purity,

Convergence, Minimal Spacing measurements for DTLZ1-DTLZ6 problems

obtained after application of AMOSA, MOSA and NSGA-II. It can be seen

from this table that AMOSA performs the best in terms of Purity and Con-

vergence for DTLZ1, DTLZ3, DTLZ5 and DTLZ6. In DTLZ2 and DTLZ4

the performance of MOSA is marginally better than that of AMOSA. NSGA-

II performs the worst among all. Table 2.5 shows the Minimal Spacing values

obtained by the 3 algorithms for DTLZ1-DTLZ6. AMOSA performs the best

in all the cases.

As mentioned earlier, for comparing the performance of MOSA (by consid-

ering the results reported in [1]), a version of AMOSA without clustering

and with unconstrained archive is executed. The results reported here are

the averages over 10 runs. Table 2.6 shows the corresponding Purity, Con-
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vergence and Minimal Spacing values. Again AMOSA performs much better

than MOSA for all the test problems except DTLZ4. For DTLZ4, the MOSA

performs better than that of AMOSA in terms of both Purity and Conver-

gence values. Figure 2.11 shows the final Pareto optimal front obtained by

AMOSA and MOSA for DTLZ1-DTLZ3 while Figure 2.12 shows the same for

DTLZ5 and DTLZ6. As can be seen from the figures, AMOSA appears to be

able to better approximate the front with more dense solutions as compared

to MOSA.

It was mentioned in [210] that for a particular test problem, almost 40%

of the solutions provided by an algorithm with truncation of archive got

dominated by the solutions provided by an algorithm without archive trun-

cation. However, the experiments we conducted did not adequately justify

this finding. Let us denote the set of solutions of AMOSA with and with-

out clustering as Sc and Swc respectively. We found that for DTLZ1, 12.6%

of Sc were dominated by Swc, while 4% of Swc were dominated by Sc. For

DTLZ2, 5.1% of Swc were dominated by Sc while 5.4% of Sc were dominated

by Swc. For DTLZ3, 22.38% of Swc were dominated by Sc while 0.53% of

Sc were dominated by Swc. For DTLZ4, all the members of Swc and Sc are

non-dominating to each other and the solutions are same. Because execution

of AMOSA without clustering doesn’t provide more than 100 solutions. For

DTLZ5, 10.4% of Swc were dominated by Sc while 0.5% of Sc were dominated

by Swc. For DTLZ6, all the members of Swc and Sc are non-dominating to

each other.

To have a look at the performance of the AMOSA on a four-objective prob-

lem, we apply AMOSA and NSGA-II to the 13-variable DTLZ2 test problem.

This is referred to as DTLZ2 4. The problem has a spherical Pareto front in

four dimensions given by the equation: f 2
1 + f 2

2 + f 2
3 + f 2

4 = 1 with fi ∈ [0, 1]

for i = 1 to 4. Both the algorithms are applied for a total of 30,000 func-

tion evaluations (for NSGA-II popsize=100 and number of generations=300)

and the Purity, Convergence and Minimal Spacing values are shown in Ta-

ble 2.7. AMOSA performs much better than NSGA-II in terms of all the

three measures.

The proposed AMOSA and NSGA-II are also compared for DTLZ1 5 (9-
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variable 5 objective version of the test problem DTLZ1), DTLZ1 10 (14-

variable 10 objective version of DTLZ1) and DTLZ1 15 (19 variable 15 ob-

jective version of DTLZ1). The three problems have a spherical Pareto front

in their respective dimensions given by the equation
∑M

i=1 fi = 0.5 where M

is the total number of objective functions. Both the algorithms are executed

for a total of 1,00,000 function evaluations for these three test problems (for

NSGA-II popsize=200, number of generations=500) and the corresponding

Purity, Convergence and Minimal Spacing values are shown in Table 2.7.

Convergence value indicates that NSGA-II doesn’t converge to the true PO

front where as AMOSA reaches the true PO front for all the three cases.

The Purity measure also indicates this. The results on many-objective op-

timization problems show that AMOSA performs much better than NSGA-

II. These results support the fact that Pareto ranking-based MOEAs such

as NSGA-II do not work well on many-objective optimization problems as

pointed out in some recent studies [91][93].

Table 2.7: Convergence, Purity and Minimal Spacing measures on the

DTLZ2 4, DTLZ1 5, DTLZ1 10 and DTLZ1 15 test functions by AMOSA

and NSGA-II

Test Convergence Purity MinimalSpacing

Problem AMOSA NSGA-II AMOSA NSGA-II AMOSA NSGA-II

DTLZ2 4 0.2982 0.4563 0.9875(98.75/100) 0.903(90.3/100) 0.1876 0.22

DTLZ1 5 0.0234 306.917 1 0 0.1078 0.165

DTLZ1 10 0.0779 355.957 1 0 0.1056 0.2616

DTLZ1 15 0.193 357.77 1 0 0.1 0.271

2.5.4 Discussion on Annealing Schedule

The annealing schedule of an SA algorithm consists of (i) initial value of

temperature (Tmax), (ii) cooling schedule, (iii) number of iterations to be

performed at each temperature and (iv) stopping criterion to terminate the

algorithm. Initial value of the temperature should be so chosen that it allows

the SA to perform a random walk over the landscape. Some methods to select

the initial temperature are given in detail in [192]. In this chapter, as in [181],

we have set the initial temperature to achieve an initial acceptance rate of
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approximately 50% on derogatory proposals. This is described in Section

2.5.3.

The functional form of the change in temperature required in SA is deter-

mined by the cooling schedule. The most frequently used decrement rule,

also used in this chapter, is the geometric schedule given by: Tk+1 = α× Tk,

where α (0 < α < 1) denotes the cooling factor. Typically the value of α

is chosen in the range between 0.5 and 0.99. This cooling schedule has the

advantage of being very simple. Some other cooling schedules available in the

literature are logarithmic, Cauchy and exponential. More details about these

schedules are available in [192]. The cooling schedule should be so chosen

that it is able to strike a good balance between exploration and exploita-

tion of the search space. In order to investigate the performance of AMOSA

with another cooling schedule, the following is considered (obtained from

http://members.aol.com/btluke/simanf1.htm):

Ti = T0

(

TN

T0

)i/N

.

Here N is the total number of iterations, TN is the final temperature and

T0 is the initial temperature. Ti is the temperature at iteration i. AMOSA

with the above cooling schedule is applied on ZDT1. The Convergence and

Minimal Spacing values obtained are 0.008665 and 0.017 respectively. Com-

paring with the corresponding values in Table 2.1 and Table 2.2 it is found

that the results with this cooling schedule are somewhat poorer. However,

an exhaustive sensitivity study needs to be performed for AMOSA.

The third component of an annealing schedule is the number of iterations

performed at each temperature. It should be so chosen that the system

is sufficiently close to the stationary distribution at that temperature. As

suggested in [192], the value of the number of iterations should be chosen

depending on the nature of the problem. Several criteria for termination

of an SA process have been developed. In some of them, the total number

of iterations that the SA procedure must execute is given, where as in some

other, the minimum value of the temperature is specified. Detailed discussion

on this issue can be found in [192].
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2.6 Discussion and Conclusions

This chapter first describes some existing single and multiobjective opti-

mization techniques. Thereafter in this chapter a simulated annealing based

multiobjective optimization algorithm has been proposed. The concept of

amount of domination is used in solving the multiobjective optimization

problems. In contrast to most other MOO algorithms, AMOSA selects dom-

inated solutions with a probability that is dependent on the amount of dom-

ination measured in terms of the hypervolume between the two solutions in

the objective space. The results of binary-coded AMOSA are compared with

those of two existing well-known multiobjective optimization algorithms -

NSGA-II (binary-coded) [61] and PAES [110] for a suite of seven 2-objective

test problems having different complexity levels. In a part of the investi-

gation, comparison of the real-coded version of the proposed algorithm is

conducted with a very recent multiobjective simulated annealing algorithm

MOSA [181] and real-coded NSGA-II for six 3-objective test problems. Real-

coded AMOSA is also compared with real-coded NSGA-II for some 4, 5, 10

and 15 objective test problems. Several different comparison measures like

Convergence, Purity, MinimalSpacing, and Spacing, and the time taken are

used for the purpose of comparison. In this regard, a measure called dis-

placement has also been used that is able to reflect whether a front is close

to the PO front as well as its extent of coverage. A complexity analysis of

AMOSA is performed. It is found that its complexity is more than that of

PAES but smaller than that of NSGA-II.

It is seen from the given results that the performance of the proposed AMOSA

is better than that of MOSA and NSGA-II in a majority of the cases, while

PAES performs poorly in general. AMOSA is found to provide more distinct

solutions than NSGA-II in each run for all the problems; this is a desirable

feature in MOO. AMOSA is less time consuming than NSGA-II for complex

problems like ZDT1, ZDT2 and ZDT6. Moreover, for problems with many

objectives, the performance of AMOSA is found to be much better than that

of NSGA-II. This is an interesting and appealing feature of AMOSA since

Pareto ranking-based MOEAs, such as NSGA-II [61] do not work well on
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many-objective optimization problems as pointed out in some recent studies

[91][93]. An interesting feature of AMOSA, as in other versions of multi-

objective SA algorithms, is that it has a non-zero probability of allowing a

dominated solution to be chosen as the current solution in favor of a dominat-

ing solution. This makes the problem less greedy in nature; thereby leading

to better performance for complex and/or deceptive problems. Note that it

may be possible to incorporate this feature as well as the concept of amount

of domination in other MOO algorithms in order to improve the performance.

Clustering [96][197] is an important problem in data-mining and pattern

recognition. It has applications in a large number of fields. In this thesis the

problem of clustering a data set is posed as an optimization problem. Next

chapter uses some of the single and multi objective approaches used in this

chapter to solve the problem of clustering a data set.
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Chapter 3

A Point Symmetry Based

Distance Measure and its

Application to Single and Multi

Objective Clustering
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3.1 Introduction

Clustering [96][197] is an important problem in data-mining and pattern

recognition. It has applications in a large number of fields. For partitioning

a data set, one has to define a measure of similarity or proximity based on

which cluster assignments are done. The measure of similarity is usually

data dependent. Symmetry is considered an important feature, use of which

enhances the recognition of different structures [10]. Therefore incorporating

symmetry while searching for cluster structures in the data appears to be

natural.

Based on the above observations, a new point symmetry based distance (PS-

distance) is proposed in this chapter which incorporates both the Euclidean

distance as well as a measure of symmetry. For reducing the complexity

of computing the PS-distance, use of Kd-tree [4] is proposed in this chap-

ter. As already mentioned, K-means is a widely used clustering algorithm.

However K-means is known to get stuck at sub-optimal solutions depending

on the choice of the initial cluster centers. In order to overcome this lim-

itation, genetic algorithms have been used as the underlying optimization

technique [131]. Genetic Algorithms (GAs) [83] are randomized search and

optimization techniques guided by the principles of evolution and natural ge-

netics, and having a large amount of implicit parallelism. GAs perform search

in complex, large and multimodal landscapes, and provide near-optimal so-

lutions for objective or fitness function of an optimization problem. In view

of the advantages of the GA-based clustering method [131] over the stan-

dard K-means, the former has been used in this work. In the proposed GA

with point symmetry distance (GAPS) based clustering technique, the as-

signment of the points to the different clusters is done based on the newly

proposed point symmetry distance rather the Euclidean distance. This en-

ables the proposed algorithm to detect both convex and non-convex clusters

of any shape and sizes as long as the clusters do have some symmetry prop-

erty. The convergence of the proposed GAPS clustering technique is also

established in the present chapter.

Note that a single cluster quality measure is seldom equally applicable for dif-
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ferent kinds of data sets with different characteristics. Hence, it is necessary

to simultaneously optimize several cluster quality measures that can capture

the different data characteristics. In order to achieve this the problem of clus-

tering a data set has been posed as one of multiobjective optimization. Based

on this observation a multiobjective clustering technique for fixed number of

clusters is also proposed in the present chapter. This technique again uses

the point symmetry based distance for assignment of points to different clus-

ters and the AMOSA algorithm, described in Chapter 2, as the underlying

MOO technique.

3.2 Some Existing Symmetry Based Distance

Measures

As discussed in Chapter 1, Section 1.3.3 a point symmetry distance was

proposed by Su and Chou in [187]. This is defined as follows: Given N

patterns, xj, j = 1, . . .N , and a reference vector c (e.g., a cluster centroid),

the point symmetry distance (PS-distance) between a pattern xj and the

reference vector c is defined as

ds(xj, c) = min
i=1,...N and i6=j

‖(xj − c) + (xi − c)‖
‖(xj − c)‖+ ‖(xi − c)‖ (3.1)

where the denominator term is used to normalize the distance so as to make

it insensible to the Euclidean distances ‖xj − c‖ and ‖xi − c‖. It may be

noted that the numerator of Equation 3.1 is actually the distance between

the mirror image point of xj with respect to c and its nearest neighbor in the

data set. If the right hand term of the above equation is minimized when

xi = xj∗ , then the pattern xj∗ is denoted as the symmetrical pattern relative

to xj with respect to c. Here it can be easily seen that the above equation

is minimized when the pattern xi = (2× c − xj), the mirror image point of

xj , exists in the data set (i.e., ds(xj , c) = 0). This idea of point symmetry

is very simple and intuitive. Based on this point symmetry based distance,

Su and Chou have proposed a clustering algorithm called SBKM clustering

which mimics the K-means algorithm but assigns the patterns to a particular
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cluster depending on the symmetry based distance ds rather than Euclidean

distance [187], only when ds is greater than some user specified threshold

θ. Otherwise, assignment is done according to the Euclidean distance, as in

normal K-means. The algorithm is discussed in detail in Figure 3.1 and the

process of cluster assignment is clearly stated in step 3 of the figure.

It is evident from Equation 3.1 that this similarity measure can be useful to

detect clusters which have symmetrical shapes. But this clustering algorithm

will fail for data sets where clusters themselves are symmetrical with respect

to some intermediate point. Note that minimization of ds(xj , c) means mini-

mization of its numerator and maximization of its denominator. In effect, if

a point xj is almost equally symmetrical with respect to two centroids c1 and

c2, it will be assigned to that cluster that is the farthest. This is intuitively

unappealing. In the example shown in Figure 3.2, there are three clusters

which are well separated. The centers of the clusters are denoted by c1, c2

and c3, respectively. Let us take the point x. After application of K-means

algorithm point x is assigned to the cluster 1. But when SBKM is applied

on the result given by K-means algorithm, the following will happen. The

symmetrical point of x with respect to c1 is x1, since it is the first nearest

neighbor of the point x∗
1 = (2 × c1 − x), the mirror image point of x. Let

the Euclidean distance between x∗
1 and x1 be d1. Therefore, the symmetrical

distance of x with respect to c1 is

ds(x, c1) =
d1

de(x, c1) + de(x1, c1)
, (3.2)

where de(x, c1), and de(x1, c1) are the Euclidean distances of x and x1 from

c1 respectively. Similarly the symmetrical point of x with respect to c2 is x2.

And the symmetrical distance of x with respect to c2 becomes

ds(x, c2) =
d2

de(x, c2) + de(x2, c2)
(3.3)

Let d2 < d1; and obviously (de(x, c2) + de(x2, c2)) ≫ (de(x, c1) + de(x1, c1)).

Therefore ds(x, c1)≫ ds(x, c2) and x is assigned to c2. This will happen for

the other points also, finally resulting in merging of the three clusters after

application of SBKM.
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Chou et al. have noted the above mentioned limitation of the measure

proposed in [187], and have suggested a modified measure dc in [43] that is

defined as follows:

dc(xj, c) = ds(xj, c)× de(xj, c) (3.4)

where ds(xj , c) is the point symmetry (PS) distance of xj with respect to

c, and de(xj, c) denotes the Euclidean distance between xj and c. No ex-

perimental results are provided in [43] corresponding to this new measure.

A little thought will show that even this modification will not work for the

situation shown in Figure 3.2. Let x∗
j be the symmetrical point of xj with

respect to c. Therefore from Equation 3.4 we obtain

dc(xj , c) =
dsymm(xj, c)

de(xj, c) + de(x∗
j , c)

de(xj, c) (3.5)

where dsymm(xj, c) = ‖(xj−c)+(x∗
j−c)‖. It can be also noted that de(xj , c) ≈

de(x
∗
j , c). Therefore from Equation 3.5, we obtain

dc(xj, c) ∝ dsymm(xj , c). (3.6)

As a result there is no impact of Euclidean distance, only symmetrical dis-

tance plays an important role in assignment of points to different clusters.

Moreover, if the term ds(xj , c) becomes 0 then there will be no effect of

the Euclidean distance. We refer to the clustering algorithm based on this

modified measure as Mod-SBKM algorithm. It has been shown experimen-

tally that Mod-SBKM with this measure will also fail for several data sets

considered in Section 3.8.1 of this chapter.

The most limiting aspect of the measures suggested in [187] and [43] is that

in cases where K-means provides reasonably good clusters, application of the

fine-tuning phase (see algorithm in Figure 3.1) will destroy this structure.

Another limitation of the SBKM is that it requires a prior specification of a

parameter θ, based on which assignment of points to clusters is done either

on the basis of the PS distance or the Euclidean distance. Su and Chou

have chosen θ equals to 0.18. However we have observed that clustering

performance is significantly affected by the choice of θ, and its best value is
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dependent on the data characteristics. No guidelines for the choice of θ is

provided in [187].

In the following section we propose a new definition of the PS-based distance

that can overcome the limitations of both the measures ds and dc.

3.3 A New Definition of the Point Symmetry

Distance [24]

As discussed in Section 3.2, both the symmetry based distances, ds and

dc, will fail when the clusters themselves are symmetrical with respect to

some intermediate point. In order to overcome this limitation, we propose

a new point symmetry (PS) distance in this chapter which is called dps(x, c)

associated with point x with respect to a center c. The proposed point

symmetry distance is defined as follows: Let a point be x. The symmetrical

(reflected) point of x with respect to a particular centre c is 2×c−x . Let us

denote this by x∗. Let knear unique nearest neighbors of x∗ be at Euclidean

distances of dis, i = 1, 2, . . . knear such that the dis are all distinct. Then

dps(x, c) = dsym(x, c)× de(x, c), (3.7)

=

∑knear
i=1 di

knear
× de(x, c), (3.8)

where de(x, c) is the Euclidean distance between the point x and c and

dsym(x, c) is a symmetry measure of x with respect to c. It can be seen

from Equation 3.8 that knear cannot be chosen equal to 1, since if x∗ ex-

ists in the data set then dps(x, c) = 0 and hence there will be no impact of

the Euclidean distance. On the contrary, large values of knear may not be

suitable because it may underestimate the amount of symmetry of a point

with respect to a particular cluster center. Here knear is chosen equal to 2,

though its proper choice is an important issue that needs to be addressed in

the future.

The concept of point symmetry based distance is further illustrated by using

Figure 3.3. Here a particular point is x. The cluster center is denoted by
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Step 1: Initialization: Randomly choose K data points from the data set

to initialize K cluster centroids, c1, c2, . . . cK .

Step 2: Coarse-Tuning: Use K-means algorithm to

update the K cluster centroids.

After the K cluster centroids converge or

some terminating criterion is satisfied,

go to next step.

Step 3: Fine-Tuning: For each data point x compute,

k∗ = argmink=1...Kds(x, ck)

where ds(x, ck) is computed using Equation 3.1.

If ds(x, ck∗) < θ /*θ is a user specified parameter*/

assign x to the k∗th cluster.

else, compute k∗ = argmink=1,...Kde(x, ck)

where de(x, ck) is the Euclidean distance between

x and the cluster centroid ck.

assign x to the k∗th cluster

Step 4: Updation: Compute the new centroids of the

K clusters as follows:

ck(t + 1) =

∑

xi∈Sk(t)
xi

Nk
, k = 1 . . .K

where Sk(t) is the set of elements that are assigned

to the kth cluster at time t

and Nk = |Sk|.
Step 5: Continuation If no point changes category,

or the number of iterations

has reached a specified maximum number then stop

else go to step 3.

Figure 3.1: Steps of SBKM algorithm
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Figure 3.2: Example of a data set having some symmetrical interclusters

Figure 3.3: Example of point symmetry distance

c. Then the reflected point of x with respect to c is x∗, i.e., x∗ = 2× c− x.

The two nearest neighbors of x∗ are at an Euclidean distances of d1 and d2,

respectively. Then the point symmetry based distance between x and c is

calculated as dps(x, c) = d1+d2

2
× de(x, c).

The basic differences between the PS based distances in [187] and [43], and

the proposed point symmetry distance, dps(x, c), are as follows:

1. Here since the average distance between x∗ and its knear unique nearest

neighbors have been taken, this term will never be equal to 0, and the

effect of de(x, c), the Euclidean distance, will always be considered.

This will reduce the problems discussed in Figure 3.2. Note that if

only the nearest neighbor of x∗ is considered as in ds of [187], and

this happens to coincide with x∗, then this term will be 0, making the

distance insensitive to de(x, c). This in turn would indicate that if a
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point is marginally more symmetrical to a far off cluster than to a very

close one, it would be assigned to the farthest cluster. This often leads

to undesirable results for ds as demonstrated in Section 3.2.

2. Considering the knear nearest neighbors in the computation of dps

makes it more robust and noise resistant. From an intuitive point of

view, if this term is less, then the likelihood that x is symmetrical

with respect to c increases. This is not the case when only the first

nearest neighbor is considered which could mislead the method in noisy

situations.

3. Consideration of both the symmetry component (
∑knear

i=1
di

knear
) and the Eu-

clidean distance de(x, c) in the computation of dps helps to strike a bet-

ter balance between these two. Thus even though a point is marginally

more symmetrical to a far off cluster than to a closer one, it will not

necessarily be assigned to the former (as happened for the distances in

[43][187]). This will depend on certain conditions discussed in detail in

the next section.

4. We also provide a rough guideline of the choice of θ, the threshold

value on the dps which is used for symmetry based cluster assignment.

It is to be noted that if a point is indeed symmetric with respect to

some cluster center then the symmetrical distance computed in the

above way will be small. Let dmax
NN be the maximum nearest neighbor

distance in the data set. That is

dmax
NN = maxi=1,...NdNN(xi), (3.9)

where dNN(xi) is the nearest neighbor distance of xi. Ideally, a point

x is exactly symmetrical with respect to some c if d1 = 0. However

considering the uncertainty of the location of a point as a sphere of

radius dmax
NN /2 around it, we can bound d1 as d1 ≤ dmax

NN

2
and d2 ≤ 3×dmax

NN

2
,

resulting in
d1 + d2

2
≤ dmax

NN

Thus, we have kept the threshold θ equals to dmax
NN , making its compu-

tation automatic and without user intervention.
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3.4 Some Properties of dps(x, c)

It is to be noted that dps(x, c) is a non-metric. It is a way of measuring the

amount of point symmetry between a point and a cluster center, rather than

the distance like any Minkowski distance.

In this section, some properties of the newly proposed measure are estab-

lished. For this purpose, some terms are also defined.

Definition 1: The Euclidean distance ratio (EDR) property is defined as

follows:

Let x be a data point, c1 and c2 be two cluster centers, and ∆ be a distance

measure. Here, a point is assigned to cluster i according to the following

assignment rule i = argminv∆(x, cv), where cv is the center of cluster v. Let

∆1 = ∆(x, c1), ∆2 = ∆(x, c2), de1 = de(x, c1) and de2 = de(x, c2). Then ∆ is

said to satisfy EDR property if and only if for ∆1

∆2
< de2

de1
, point x is assigned

to c1, otherwise it is assigned to c2.

Observation 1: The proposed symmetry measure satisfies the Euclidean

distance ratio property.

Proof : Let us assume that there are two clusters, having cluster cen-

ters c1 and c2. Let x be a particular data point. Let the knear near-

est neighbors of the reflected point of x with respect to center c1 and c2

be at distances of d
(1)
i and d

(2)
i , respectively for i = 1, . . . , knear. Then

dps(x, c1) = dsym(x, c1) × de1 =
∑knear

i=1
d
(1)
i

knear
× de1, and similarly dps(x, c2) =

dsym(x, c2)× de2 =
∑knear

i=1
d
(2)
i

knear
× de2, where de1 and de2 are the Euclidean dis-

tances between x, c1 and x, c2, respectively. Now in order to preserve the

EDR property, given that

dsym(x, c1)

dsym(x, c2)
<

de2

de1

, (3.10)

the point x is assigned to center c1. Point x is assigned to cluster of c1 if

dps(x, c1) < dps(x, c2). This indicates that
∑knear

i=1
d
(1)
i

knear
× de1 <

∑knear

i=1
d
(2)
i

knear
×

de2 →
∑knear

i=1
d
(1)
i

knear
∑knear

i=1
d
(2)
i

knear

< de2

de1
→ dsym(x,c1)

dsym(x,c2)
< de2

de1
. It therefore becomes evident that

the dsym satisfies the EDR property defined in Definition 1. ♣
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It may be noted that for data sets having convex clusters of different

densities, the newly proposed point symmetry based distance will detect the

appropriate clustering as long as the condition in Equation 3.10 holds well

for the points.

Definition 2: If two clusters are symmetrical to each other with respect to

a third cluster center, then these clusters are called “symmetrical interclus-

ters”.

Observation 2: The proposed dps measure is able to detect the symmetrical

interclusters properly as long as dsym(x,c1)
dsym(x,c2)

< de(x,c2)
de(x,c1)

.

Proof: Let us assume that there are three clusters, having cluster centers c1,

c2 and c3. Let cluster 1 and cluster 3 be symmetrical to each other with

respect to the 2nd cluster center. Thus, clusters 1 and 3 are symmetrical

interclusters. Let x be a particular data point in cluster 1. For this data

point dsym(x,c1)
dsym(x,c2)

< de(x,c2)
de(x,c1)

is satisfied. This means, dsym(x,c1)
dsym(x,c2)

< de(x,c2)
de(x,c1)

⇒
dsym(x, c1)×de(x, c1) < dsym(x, c2)×de(x, c2)⇒ dps(x, c1) < dps(x, c2). Thus

point x will be assigned to cluster of c1. This will happen for all the points

of cluster 1. Similarly points which should belong to cluster 3 will form

cluster 3. Thus, the proposed dps measure is able to detect the symmetrical

interclusters properly.♣

The above observation is also evident from Figure 3.2. In Figure 3.2, the

first and the third clusters are “symmetrical interclusters” with respect to

the middle one. As explained in the above example, though there exists a

symmetrical point of x with respect to cluster center c2, but x is assigned

to the first cluster as the newly developed dps distance satisfies the EDR

property. As a result, the three clusters present in Figure 3.2 are identified

properly. Thus it is proved that the proposed point symmetry based distance

is able to detect symmetrical interclusters properly.

It is evident that the symmetrical distance computation is very time consum-

ing because it involves the computation of the nearest neighbors. Compu-

tation of dps(xi, c) is of complexity O(nD), where D is the dimension of the

data set and n is the total number of points present in the data set. Hence
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for K clusters, the time complexity of computing point symmetry distance

between all points to different clusters is O(n2KD). In order to reduce the

computational complexity, an approximate nearest neighbor search using the

Kd-tree approach is adopted in this chapter.

3.5 Kd-tree Based Nearest Neighbor Compu-

tation

A space-partitioning data structure used for arranging points in K dimen-

sional space is Kd-tree or K-dimensional tree [4]. Splitting planes used by

Kd-tree are only those which are perpendicular to one of the coordinate axes.

In case of nearest neighbor problem a set of data points in d-dimensional

space is given. These points are preprocessed into a data structure, so that

given any query point q, the nearest or generally k nearest points of p to q can

be reported efficiently. ANN (Approximate Nearest Neighbor) is a library

developed in C++ . The usage of the data structures and algorithms impro-

vised for finding precise as well as comparative nearest neighbors in arbitrary

high dimensional space are supported by ANN. In this chapter ANN is used

to find d1 and d2 in Equation 3.8 efficiently. ANN library devices various

data structures established using Kd-trees and box-decomposition trees. It

also uses different types of search schemes. The Kd-tree data structure has

been used in this chapter.

The function performing the k-nearest neighbor search in ANN is given a

query point q, a nonnegative integer k, an array of point indices, nnidx, and

an array of distances, dists. Both arrays are assumed to contain at least

k elements. This procedure computes the k nearest neighbors of q in the

point set, and stores the indices of the nearest neighbors in the array nnidx.

Optionally a real value ǫ ≥ 0 may be supplied. If so, then ith nearest neighbor

is (1 + ǫ) approximation to the true ith nearest neighbor. That is, the true

distance to this point may exceed the true distance to the real ith nearest

neighbor of q by a factor of (1+ ǫ). If ǫ is omitted then the nearest neighbors

will be computed exactly.
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For computing dps(x, c) in Equation 3.8, d1 and d2, the first two nearest

neighbors of x∗ (where x∗ = 2 ∗ c − x), need to be computed. This is a

computation intensive task that can be speeded up by using the Kd-tree

based nearest neighbor search. For the purpose of this chapter, the exact

nearest neighbor is computed; so the ǫ is set equal to 0. The query point q

in ANN is set equal to x∗ and k is set to 2.

The next section describes a genetic algorithm based clustering technique

that uses a measure of cluster symmetry, computed using the proposed

dps(x, c), for optimization.

3.6 GAPS: The Genetic Clustering Scheme

with the Proposed PS Distance [24]

A genetic algorithm based clustering technique which uses the point sym-

metry based distance is proposed in this section. The method is referred

to as GAPS clustering [24]. Here the number of clusters is assumed to be

known apriori, and dps(x, c) is used to compute a clustering metric which is

optimized by a genetic algorithm. The basic steps of GAPS, which closely

follow those of the conventional GA, are described in Figures 3.4 and 3.5.

3.6.1 Chromosome Representation and Population

Initialization

In GAPS center based chromosome encoding is used. Each string is a se-

quence of real numbers representing K cluster centers. The K cluster centers

encoded in each chromosome are initialized to K randomly chosen points from

the data set. This process is repeated for each of the Popsize chromosomes

in the population, where Popsize is the size of the population. Thereafter

five iterations of the K-means algorithm is executed with the set of centers

encoded in each chromosome. The resultant centers are used to replace the

centers in the corresponding chromosomes. This makes the centers separated

initially.
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3.6.2 Fitness Computation

In order to compute the fitness of the chromosomes, the clustering procedure

clustering-PS() (as shown in Figure 3.5) is called. Here a point xi, 1 ≤ i ≤ n,

is assigned to cluster k iff dps(xi, ck) ≤ dps(xi, cj), j = 1, . . . , K, j 6= k and

(dps(xi, ck)/de(xi, ck)) ≤ θ. For (dps(xi, ck)/de(xi, ck)) > θ, point xi is as-

signed to some cluster m iff de(xi, cm) ≤ de(xi, cj), j = 1, 2 . . .K, j 6= m.

In other words, point xi is assigned to that cluster with respect to whose

center its dps is the minimum, provided the corresponding dsym value is less

than some threshold θ. Otherwise assignment is done based on the mini-

mum Euclidean distance criterion as normally used in [16] or the K-means

algorithm. The reason for doing such an assignment is as follows: In the

intermediate stages of the algorithm, when the centers are not yet properly

evolved, then the minimum dps value for a point is expected to be quite large,

since the point might not be symmetric with respect to any center. In such

cases, using Euclidean distance for cluster assignment appears to be intu-

itively more appropriate. In contrast when dps values are reasonably small,

cluster assignment based on symmetry becomes more meaningful.

The value of θ is kept equal to the maximum nearest neighbor distance

among all the points in the data set as explained in Section 3.3 of the present

chapter. Thus the computation of θ is automatic and does not require user

intervention. After the assignments are done, the cluster centers encoded in

the chromosome are replaced by the mean points of the respective clusters.

Subsequently for each chromosome clustering metric,M, is calculated as

defined below:

M =
K

∑

i=1

ni
∑

j=1

dps(x
i
j, ck), (3.11)

where ni is the number of points assigned to cluster i, and xi
j denotes the

jth point of the ith cluster. The fitness function of that chromosome, F (si),

is then defined as the inverse of M , i.e.,

F (si) =
1

M
(3.12)

This fitness function, F (si), will be maximized by using genetic algorithm.
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(Note that there could be other ways of defining the fitness function).

3.6.3 Selection

Roulette wheel selection [78] is used to implement the proportional selection

strategy.

3.6.4 Crossover

Here, we have used the normal single point crossover [83]. Crossover proba-

bility is selected adaptively as in [184]. The expressions for crossover proba-

bilities are computed as follows. Let fmax be the maximum fitness value of

the current population, f be the average fitness value of the population and

f
′
be the larger of the fitness values of the solutions to be crossed. Then the

probability of crossover, µc, is calculated as:

µc = k1 ×
(fmax − f

′
)

(fmax − f)
, if f

′

> f, (3.13)

µc = k3, if f
′ ≤ f. (3.14)

Here, as in [184], the values of k1 and k3 are kept equal to 1.0. Note that,

when fmax=f , then f
′
= fmax and µc will be equal to k3. The aim behind

this adaptation is to achieve a trade-off between exploration and exploitation

in a different manner. The value of µc is increased when the better of the

two chromosomes to be crossed is itself quite poor. In contrast when it is a

good solution, µc is low so as to reduce the likelihood of disrupting a good

solution by crossover.

3.6.5 Mutation

Each chromosome undergoes mutation with a probability µm. The mutation

probability is also selected adaptively for each chromosome as in [184]. The

expression for mutation probability, µm, is given below:

µm = k2 ×
(fmax − f)

(fmax − f)
if f > f, (3.15)
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µm = k4 if f ≤ f. (3.16)

Here, values of k2 and k4 are kept equal to 0.5. This adaptive mutation

helps GA to come out of local optimum. When GA converges to a local

optimum, i.e., when fmax − f decreases, µc and µm both will be increased.

As a result GA will come out of local optimum. It will also happen for the

global optimum and may result in disruption of the near-optimal solutions.

As a result GA will never converge to the global optimum. But as µc and

µm will get lower values for high fitness solutions and get higher values for

low fitness solutions, while the high fitness solutions aid in the convergence

of the GA, the low fitness solutions prevent the GA from getting stuck at

a local optimum. The use of elitism will also keep the best solution intact.

For a solution with the maximum fitness value, µc and µm are both zero.

The highest scoring individual of a population is copied intactly to the next

generation. Usage of both elitism and selection may cause exponential growth

of the solution in the population compelling the GA to converge prematurely.

To overcome the above stated problem, a default mutation rate (of 0.02) is

kept for every solution in the GAPS.

Here, each position in a chromosome is mutated with probability µm in the

following way. The value is replaced with a random variable drawn from

a Laplacian distribution, p(ǫ) ∝ e−
|ǫ−µ|

δ , where the scaling factor δ sets the

magnitude of perturbation. Here µ is the value at the position which is to

be perturbed. The scaling factor δ is chosen equal to 2. The old value at the

position is replaced with the newly generated value.

3.6.6 Termination

In GAPS, the processes of fitness computation, selection, crossover, and mu-

tation are executed for a maximum number of generations. The best string

seen upto the last generation provides the solution to the clustering prob-

lem. Elitism has been implemented at each generation by preserving the best

string seen upto that generation in a location outside the population. Thus

on termination, this location contains the centers of the final clusters.
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Begin

1. t = 0

2. initialize population P (t) /* Popsize = |P | */

3. for i = 1 to Popsize

call clustering PS() procedure for P (i) and

stores the inverse of the result in M [i]

/* M [i] stores the fitness of chromosome P [i] */

4. t = t + 1

5. If termination criterion achieved go to step 10

6. select (P )

7. crossover (P )

8. mutate (P )

9. go to step 3

10. output best chromosome and stop

End

Figure 3.4: Basic steps of GAPS
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Procedure: clustering PS()

Assignment of data points:

1.For all data points xi, 1 ≤ i ≤ n, compute

k∗ = argmink=1...Kdps(xi, ck)

2.If (dps(xi, ck∗)/de(xi, ck) < θ)

/*de(xi, ck) is the Euclidean distance between the point xi

and cluster centroid ck*/

assign the data point xi to the k∗th cluster.

3.Otherwise, the data point is assigned to the k∗ cluster where

k∗ = argmink=1...Kde(x, ck)

Clustering metric calculation:

Clustering metric =
∑K

i=1

∑ni
j=1 dps(x

i
j , ck)

where niis the total number of points in cluster i and

xi
j is the jth point of the ith cluster.

Update of centers:

Compute the new centroids of the K clusters as follows:

ck(t + 1) =

∑

i∈Sk(t)
xi

Nk

where k = 1, . . .K and Sk(t) is the set of elements that are assigned

to the kth cluster at generation t and Nk = |Sk|.

Figure 3.5: Main steps of clustering PS() procedure
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3.6.7 Complexity Analysis

Below we analyze the complexity of the proposed GAPS clustering.

1. As discussed in Section 3.5, Kd-tree data structure has been used in or-

der to find the nearest neighbor of a particular point. The construction

of Kd-tree requires O(nlogn) time and O(n) space [4].

2. Initialization of GA needs Popsize× stringlength time where Popsize

and stringlength indicate the population size and the length of each

chromosome in the GA, respectively. Note that for K clusters in d

dimensional space, stringlength will become K × d.

3. Fitness is computed by calling the clustering PS procedure.

(a) In order to assign each point to a cluster we have to calculate

the minimum symmetrical distance of that point with respect to

all clusters. For this purpose the Kd-tree based nearest neighbor

search is used. If the points are roughly uniformly distributed,

then the expected case complexity is O(cd + logn), where c is

a constant depending on dimension and the point distribution.

This is O(logn) if the dimension d is a constant [30]. Friedman et

al. [74] also reported O(logn) expected time for finding the nearest

neighbor. So in order to find the minimal symmetrical distance of

a particular point, O(Klogn) time is needed.

For n points, the total complexity becomes O(Knlogn).

(b) The complexity for updating the centers is O(K).

So the overall complexity for fitness evaluation is=O(Popsize ×
Knlogn).

4. Selection step of the GA requires O(Popsize× stringlength) time.

5. Mutation and Crossover require O(Popsize× stringlength) time each.

So, in general, the overall time complexity becomes O(Knlogn×Popsize) per

generation. For maximum maxgen number of generations, the overall com-
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plexity becomes O(Knlogn× Popsize ×maxgen). As Popsize is constant,

the overall complexity of GAPS clustering is O(nKlogn×maxgen).

3.7 On the Convergence Property of GAPS

[165]

It has been shown using the finite Markov chain theory that the canonical

genetic algorithms converge to the global optimum [159]. In [114], it has

also been proved along the lines of [159] that Genetic K-means algorithm

also converges to the global optimum of the square-error (SE) depending on

some conditions on its parameters. Here the global convergence of GAPS-

clustering to minimum symmetrical compactness is proved along similar lines

by deriving some conditions on the parameters of GAPS-clustering that en-

sure the global convergence.

3.7.1 Preliminaries

Consider the process {P(t)}, t ≥ 0, where P(t) represents the population

maintained by GAPS at tth generation. The state space, S, of this process

refers to the space of all possible populations. The states of this state space

can be numbered from 1 to |S|. Moreover, the state space is restricted to

the populations containing valid strings, i.e., strings representing different

partitions with K non-empty clusters. Therefore according to the definition

of GAPS, P(t + 1) can be completely determined by P(t) as the following:

Pr{P(t) = pt|P(t− 1) = pt−1, . . . ,P(0) = p0}
= Pr{P(t) = pt|P(t− 1) = pt−1}.

Hence {P(t)}, t ≥ 0 is a Markov chain. The transition probabilities are

independent of the time instant, i.e., if

pij(t) = Pr{P(t) = pj|P(t− 1) = pi}

then pij(s) = pij(t) for all pi, pj ∈ S and for all s, t ≥ 1. Thus it can be

concluded that {P(t)}, t ≥ 0 is a time-homogeneous finite Markov chain. Let
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P = (pij) be the transition matrix of the process {P(t)}, t ≥ 0. The entries

of the matrix P satisfy pij ∈ [0, 1] and
∑|S|

j=1 pij = 1, ∀i ∈ S. Satisfaction

of the above mentioned condition is the required qualification of a stochastic

matrix. Since P satisfies it therefore it can be considered as a stochastic

matrix. A few terms are defined below which will be further used in the rest

of this section.

A square matrix Am×m is said to be positive, if aij > 0, ∀i, j ∈ {1, 2, . . . , m}
and is said to be primitive, if there exists a positive integer k such that Ak

gives a positive value. A column-allowable matrix is a square matrix with at

least one positive entry in each column.

The requirement of the following theorem is that the matrix, P, should be a

primitive matrix. So, firstly investigation is necessary to find the conditions

on the operators needed for the matrix P to be primitive. The probabilistic

changes of the chromosome within the population caused by the operators

used in GAPS are captured by the transition matrix P, which can be decom-

posed in a natural way into a product of stochastic matrices

P = K×C×M× S, (3.17)

where K, C, M and S describe the intermediate transitions caused by K-

means like update center operator, crossover operator, mutation and selection

operators, respectively. It is easy to consider that all these matrices are

stochastic matrices.

Proposition 1: Stochastic matrices form a group under matrix multiplication.

Thus for the two stochastic matrices, K and C, by proposition 1, C
′
= K×C

is also a stochastic matrix. Therefore Equation 3.17 can be written as

P = C
′ ×M× S, (3.18)

where C
′
, M and S are all stochastic matrices.

Proposition 2: Let C
′
, M and S be stochastic matrices, where M is positive

and S is column-allowable. Then the product C
′ ×M× S is positive.

A positive matrix is always a primitive matrix. Therefore to make the matrix

P primitive the product of C
′ ×M × S has to be positive. For the before
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mentioned product of the stochastic matrices being positive, M needs to be

positive and S needs to be column-allowable.

To Check Whether the Mutation Matrix is Positive

The matrix M is positive if any valid string s ∈ S can be obtained from any

another valid string after application of the corresponding mutation operator.

In GAPS-clustering technique, during mutation operation, a particular center

is modified by a value generated using Laplacian distribution. Hence there is

a non-zero probability of generating any valid position from any other valid

position, while the probability of generating a value near the old value is

more. This implies that the above defined mutation operation can change any

valid string to any other valid string with some nonzero probability. Hence,

the transition matrix M corresponding to the above mutation operator is

positive.

Conditions on Selection

The probability of survival of a string in the current population depends on

the fitness value of the string; so is the transition matrix due to selection, S.

In GAPS, the fitness function of each chromosome is defined as in Equation

3.12. So, the fitness value of each chromosome in the population is strictly

positive. Therefore, the probability that the selection does not alter the

present state, sii can be bounded as follows:

sii ≥
F (s1)

∑P
l=1 F (sl)

× F (s2)
∑P

l=1 F (sl)
× . . .× F (sP )

∑P
l=1 F (sl)

(3.19)

=

∏P
l=1 F (sl)

(
∑P

l=1 F (sl))P
> 0 ∀i ∈ S. (3.20)

Here sl represents the lth string of the current population and F (sl) is the

fitness value associated with the lth string. Even though this bound changes

with the generation but still it is always strictly positive; hence selection

matrix S is column-allowable.

3.7.2 Convergence Proof

Theorem: Let X(t) = F (s∗(t)), where s∗(t) is the string with maximum
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fitness value, encountered during the evolution of GAPS-clustering till the

time instant t. Let the mutation operator be the same as defined in Section

3.6.5, and the fitness function be as defined in Equation 3.12. Then

lim
t→∞

Pr{X(t) = S∗} = 1 (3.21)

where S∗ = max{F (i)|i ∈ T }, T is the set of all legal/valid strings.

Proof: According to the proof provided in [Ref. [159], Theorem 6], a canon-

ical GA whose transition matrix is primitive and which maintains the best

solution found over time converges to the global optimum in the sense given

in Equation 3.21. It is proved in Proposition 2 that the transition matrix of

the GAPS-clustering with the mutation operator defined in Section 3.6.5 is

positive. Since every positive matrix is primitive, thus the transition matrix

of GAPS is also primitive. It may be noted that GAPS-clustering uses an

elitist model of GA i.e., it maintains the best solution obtained upto the

present time. Thus, the theorem follows from [Ref. [159], Theorem 6].

The above theorem implies that X(t), the maximum fitness value of the

strings found by GAPS-clustering till the instant t, converges to the global

optimum S∗, with probability 1 when t goes to infinity.
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Figure 3.6: (a) Mixed 3 2 (b) Sym 3 2 (c) AD 5 2 (d) Bensaid 2 2
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Figure 3.7: Clustering of Mixed 3 2 for K = 3 after application of (a)K-means

(b) SBKM (c) Mod-SBKM (d) GAPS

3.8 Experimental Results of GAPS

3.8.1 Data Sets Used

A short description of the data sets used for the experiments is provided

below.

1. Artificial Data Sets: Four artificial data sets are used.

(a) Mixed 3 2: This data set consists of 600 data points distributed

over three clusters as shown in Figure 3.6(a), where each cluster

consists of 200 data points.
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Figure 3.8: Clustered Mixed 3 2 for K = 3 after application of (a) GAK-

means clustering technique (b) Average Linkage clustering technique (c) Ex-

pectation Maximization clustering technique

(b) Sym 3 2: This data set is a combination of ring-shaped, compact

and linear clusters shown in Figure 3.6(b). The total number of

points in it is 350.

(c) AD 5 2: This data set consists of 250 data points distributed

over 5 spherically shaped clusters as shown in Figure 3.6(c). The

clusters present here are highly overlapping, each consisting of 50

data points.

(d) Bensaid 3 2: This is a two-dimensional data set consisting of 49

points distributed in three clusters as shown in Figure 3.6(d). This

data set, used in Ref. [29], consists of two small clusters (one has

six elements and the other has three) separated by a large (40

element) cluster.

2. Real-life data sets: The four real life data sets were obtained from [2].

(a) Iris: Iris data set consists of 150 data points distributed over 3

clusters. Each cluster consists of 50 points. This data set rep-

resents different categories of irises characterized by four feature

values [71]. It has three classes Setosa, Versicolor and Virginica.

It is known that two classes (Versicolor and Virginica) have a large

amount of overlap while the class Setosa is linearly separable from

the other two.

(b) Breast Cancer: This Wisconsin Breast Cancer data set consists
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Figure 3.9: Clustering of Sym 3 2 for K = 3 after application of (a)K-means

(b) SBKM (c) Mod-SBKM (d) GAPS

of 683 sample points. Each pattern has nine features correspond-

ing to clump thickness, cell size uniformity, cell shape uniformity,

marginal adhesion, single epithelial cell size, bare nuclei, bland

chromatin, normal nucleoli and mitoses. There are two categories

in the data: malignant and benign. The two classes are known to

be linearly separable.

(c) Newthyroid: The original database from where it has been col-

lected is titled as Thyroid gland data (‘normal’, ‘hypo’ and ‘hyper’

functioning). Five laboratory tests are used to predict whether

a patient’s thyroid belongs to the class euthyroidism, hypothy-

roidism or hyperthyroidism. There are a total of 215 instances

and the number of attributes is five.
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Figure 3.10: Clustered Sym 3 2 for K = 3 after application of (a) GAK-

means clustering technique (b) Average Linkage clustering technique (c) Ex-

pectation Maximization clustering technique

(d) LungCancer: This data consists of 32 instances having 56 features

each. The data describes 3 types of pathological lung cancers.

3.8.2 Discussion on Parameter Values

The proper choice of parameters in genetic algorithm, e.g., population size,

number of generations, probabilities of crossover and mutation, etc., is cru-

cial for its good performance. Different parameter values might yield very

different results. A good setting may result in convergence of the algorithm

to the best solution within a reasonable time period. In contrast, a poor set-

ting might cause the algorithm to execute for a very long time before finding

a good solution. Sometimes it may so happen that it is not able to find a

good solution at all. Theoretical results indicating the optimal values of the

parameters and their best combination have proved difficult to derive in the

past. Below we provide a short discussion on the choice of parameter values

in genetic algorithm.

1. Population size: Selecting the appropriate population size is a very

crucial problem in genetic algorithm. The population size is mainly

related to the problem’s difficulty. For a more difficult problem, larger

population size should be used in order to reliably achieve a good so-

lution. It is also intuitive to spend more resources for GA in order to
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Figure 3.11: Clustering of AD 5 2 for K = 5 after application of (a)K-means

(b) SBKM (c) Mod-SBKM (d) GAPS

solve the larger problems. Thus, in general, larger population size is

necessary when the search space grows.

Goldberg [78] has theoretically analyzed the population size in GAs.

According to his analysis the optimal population size increases expo-

nentially and is rather large for even moderate chromosome lengths. It

has been shown in [78] that the number of schemata processed effec-

tively is proportional to n3, where n is the population size. This seems

to justify the selection of large population size. It is also evident from

nature that large populations are more stable and resist evolution more

than small populations perhaps founded by only a few colonists. How-

ever, the larger the population size, the longer the genetic algorithm

takes to compute each generation. A large population size is also less

appealing if fast convergence and great divergence are aimed at[78].
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Figure 3.12: Clustered AD 5 2 for K = 5 after application of (a) GAK-means

clustering technique (b) Average Linkage clustering technique (c) Expecta-

tion Maximization clustering technique

2. Number of generations: A burning issue in GAs is the number of gen-

erations to execute before terminating the algorithm. A simple GA

generally converges within a few generations. The pure selection con-

vergence times are O(log N) generations, where N is the size of the

population [78]. Thus GA generally searches fairly quickly. This can

be thought of as a strength of GA if the population size is made larger

and/or GA is restarted with a new random initial population upon

detection of population convergence.

In [78] it is mentioned that for a given adequate population size if

some linkage knowledge is incorporated into the chromosomes then it

is expected that“mixing” of good building blocks can take place before

convergence. Thus it is important to detect near-uniformity of the

population and terminate the GA, before wasting function evaluations

on an inefficient, mutation-based search. Useful diversity can also be

maintained in the population using some niching method which can

balance convergence. There exists a number of estimates of population

convergence. One most commonly used measure is “bit-wise average

convergence measure” which is used in some of the experiments in [78].

Generally, this convergence is measured at each loci (i.e., the percentage

of the population with a single allele at that locus) and averaged over all

loci. When this average exceeds some threshold, say 90%, the algorithm

is terminated.
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Figure 3.13: Change of the cluster centers obtained by SBKM on AD 5 2

after (a) application of the K-means algorithm (b) 1 iteration (c) 10 iterations

(d) 20 iterations.

3. Initialization of population: It is customary to initialize genetic algo-

rithm with a population of random individuals. But sometimes previ-

ously known (good) solutions can be used to initialize a fraction of the

population and this results in faster convergence of GA. In the proposed

GAPS, after randomly generating the cluster centers, some iterations

of K-means algorithm are executed to separate the cluster centers as

much as possible.

4. Selection of crossover and mutation probabilities: These are two basic

parameters of GA.

Crossover probability (µc) determines how often the crossover opera-

tion can be performed. If µc = 0, then offspring is the exact copy of

parents. If µc > 0 then the offspring is made from parts of parents’

chromosome. If µc = 100%, then all offspring are made by crossover.

102



0 20 40 60 80 100 120
25

30

35

40

45

50

55

60

65

70

0 20 40 60 80 100 120
25

30

35

40

45

50

55

60

65

70

(a) (b)

0 20 40 60 80 100 120
25

30

35

40

45

50

55

60

65

70

0 20 40 60 80 100 120
25

30

35

40

45

50

55

60

65

70

0 20 40 60 80 100 120
25

30

35

40

45

50

55

60

65

70

(c) (d) (e)

Figure 3.14: Clustered Bensaid 3 2 for K = 3 after application of (a)K-

means (b) SBKM (c) Mod-SBKM (d) GAPS/Average Linkage/ Expectation

Maximization clustering techniques (e) GAK-means clustering technique

Crossover operation is executed in the hope that good building blocks

of the parent chromosomes get combined in the offspring to result in

potentially improved solutions. However, it is good to leave some parts

of population to survive for the next generation.

Mutation probability (µm) determines how often parts of a chromosome

are mutated. If there is no mutation, offspring is taken after crossover

(or copy) without any change. If mutation is performed (i.e., µm > 0),

a part of a chromosome is changed. If mutation probability is 100%, the

whole chromosome is changed, if it is 0%, nothing is changed. Mutation

is made to prevent GA from falling into a local extrema. But it should

not occur very often; otherwise GA will change to random search.

103



Table 3.1: Best Minkowski Score obtained by the seven algorithms for all

data sets. Here EM and AL denote ‘Expectation Maximization’ and ‘Average

Linkage’ clustering techniques, respectively.

Data set K-means SBKM Mod-SBKM GAK-means EM AL GAPS

Mixed 3 2 0.40 0.11 0.08 0.42 0.76 0.52 0.18

Sym 3 2 0.91 1.28 0.85 0.83 0.58 0.80 0.12

AD 5 2 0.25 1.33 0.72 0.47 0.50 0.44 0.51

Bensaid 3 2 0.68 0.87 0.39 0.72 0.0 0.0 0.0

Iris 0.68 0.96 0.65 0.60 0.60 0.70 0.59

Cancer 0.37 0.37 0.37 0.36 0.43 0.45 0.36

Newthyroid 0.94 0.63 0.76 0.81 0.85 0.88 0.59

LungCancer 1.46 1.09 1.09 1.24 0.96 0.96 0.89

5. Dependencies among the parameter values: The parameters of GAs

are interdependent on each other. With a very small population size,

the required number of generations is too large to solve the problem

with comparable number of function evaluations needed for moderate

population size. This supports the observation that micro-GAs work

nicely on simpler problems with a population size of 5 or more, but

does not work as well with smaller population size. Whereas for a GA

with a very large population size, the number of allowed generations is

not enough to find the optimum.

John J. Grefenstelle has used genetic algorithm to determine the op-

timal parameters of genetic algorithms [78]. According to his investi-

gations, the best parameter values for GA are: population size = 30,

number of generations = not specified, crossover type = typically two

point, crossover rate of 0.9, mutation type = bit flip, mutation rate of

0.01. However, the selection of optimal parameters in GA is domain-

dependent and relies on the specific application areas. Determining the

appropriate parameter settings for GAs is still an open problem.

6. Parameters in GAPS: Inspired by the above discussed studies, and af-
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Table 3.2: Estimated marginal means and pairwise comparisons of different

algorithms on Minkowski Score obtained by ANOVA testing for Iris data

(GAPS:GP, K-means:KM, Mod-SBKM:MSB, SBKM:SB, GAK-means:GAK,

Expectation Maximization:EM, Average Linkage:AL )
Algo. Comparing Mean Significance

Name (I) Algo.(J) Difference (I-J) Value

GP KM −9E − 02 ± 0.00163 < 0.01

MSB −6.0E − 02 ± 0.004 < 0.01

SB −0.37 ± 0.023 < 0.01

GAK −1.00E − 02 ± 0.0001 0.54

EM −1.00E − 02 ± 0.02 0.59

AL −0.11 ± 0.015 < 0.01

KM GP 9E − 02 ± 0.00163 < 0.01

MSB 3.73E − 02 ± 0.004 < 0.01

SB −0.27864 ± 0.01 < 0.01

GAK 8.0E − 02 ± 0.021 < 0.01

AL −2.0E − 02 ± 0.015 0.45

EM 0.08 ± 0.025 < 0.01

MSB GP 6.0E − 02 ± 0.004 < 0.01

KM −3.73E − 02 ± 0.004 < 0.01

SB −0.3132 ± 0.0012 < 0.01

GAK 5.0E − 02 ± 0.005 < 0.01

AL −5.0E − 02 ± 0.0041 < 0.01

EM 0.05 ± 0.003 < 0.01

SB GP 0.37 ± 0.023 < 0.01

KM 0.27864 ± 0.01 < 0.01

MSB 0.3132 ± 0.0012 < 0.01

GAK 0.36 ± 0.021 < 0.01

AL 0.26 ± 0.018 < 0.01

EM 0.36 ± 0.001 < 0.01

GAK GP 1.00E − 02 ± 0.0001 0.54

KM −8.0E − 02 ± 0.021 < 0.01

SB −0.36 ± 0.021 < 0.01

MSB −5.0E − 02 ± 0.005 < 0.01

AL 0.28 ± 0.02 < 0.01

EM 0.00 ± 0.001 1.00

EM GP 1.00E − 02 ± 0.02 0.59

KM −0.08 ± 0.025 < 0.01

SB −0.36 ± 0.001 < 0.01

MSB −0.05 ± 0.003 < 0.01

GAK 0.00 ± 0.001 1.00

AL −0.10 ± 0.02 < 0.01

AL GP 0.11 ± 0.015 < 0.01

KM 2.0E − 02 ± 0.015 0.45

SB −0.26 ± 0.018 < 0.01

MSB 5.0E − 02 ± 0.0041 < 0.01

GAK −0.28 ± 0.02 < 0.01

EM 0.10 ± 0.02 < 0.01
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ter thorough experimentation, we set the following parameter values of

GAPS: population size = 100, number of generations = 50 (executing

GAPS further did not improve its performance). Initially the muta-

tion probability, µm, and crossover probability, µc, were kept fixed.

Good results were obtained with some combinations of [µc, µm], e.g.,

[0.8,0.02], [0.8, 0.05] [0.8, 0.008], while the performance was not up to

the mark for other combinations like [0.99, 0.02], [0.7, 0.02] etc. More-

over, the appropriate combination was also dependent on the data set

being considered. Consequently, we decided to keep these two proba-

bilities adaptive in this thesis as described in Section 3.6.4 and Section

3.6.5, respectively.

3.8.3 Implementation Results

The experimental results comparing the performance of GAPS, SBKM [187],

Mod-SBKM [43], K-means algorithm, genetic algorithm based K-means clus-

tering technique (GAK-means) [131], average linkage clustering technique

(AL) [97] and Expectation Maximization clustering technique (EM) [97] are

provided for the four artificial and four real-life data sets. For SBKM al-

gorithm, θ is set equal to 0.18 as suggested in [187]. For Mod-SBKM, θ is

chosen as 0.5. In contrast, for the newly developed GAPS-clustering, the

value of θ is determined from the data set as discussed in Section 3.3.

The eight data sets used for comparison are divided into four groups. In or-

der to compare the obtained clustering results quantitatively, the Minkowski

Scores [98] are reported for each algorithm. This is a measure of the quality

of a solution given the true clustering. Let T be the “true” solution and S the

solution we wish to measure. Denote by n11 the number of pairs of elements

that are in the same cluster in both S and T. Denote by n01 the number of

pairs that are in the same cluster only in S, and by n10 the number of pairs

that are in the same cluster in T. Minkowski Score (MS) is then defined as:

MS(T,S) =

√

n01 + n10

n11 + n10
. (3.22)

For MS, the optimum score is 0, with lower scores being “better”. Here
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each algorithm is executed five times on each data set. The best MS scores

obtained for these five runs are reported in Table 3.1 for all data sets.

1. Mixed 3 2 and Sym 3 2: The clusters present in these two data sets

are internally symmetrical but clusters themselves are not symmetrical

with respect to any intermediate point.

The final clustering results obtained by K-means, SBKM, Mod-SBKM,

GAPS, GAK-means, AL, EM clustering techniques for Mixed 3 2 are

given in Figures 3.7(a), 3.7(b), 3.7(c), 3.7(d), 3.8(a), 3.8(b) and 3.8(c)

respectively. All the above mentioned algorithms except K-means,

GAK-means, AL and EM are able to find out the proper clustering for

this data. As expected K-means and GAK-means show poor perfor-

mance for this data since the clusters are not hyperspherical in nature.

Average Linkage performs poorly as clusters are overlapping with each

other. These results are also evident from the MS values reported in

Table 3.1.

The final results obtained after application of K-means, SBKM, Mod-

SBKM, GAPS, GAK-means, AL and EM for Sym 3 2 are shown in

Figures 3.9(a), 3.9(b), 3.9(c), 3.9(d), 3.10(a), 3.10(b) and 3.10(c), re-

spectively. Both SBKM and Mod-SBKM (Figures 3.9(b) and 3.9(c))

are not able to detect the appropriate partitioning from this data set.

In contrast, the proposed GAPS (Figure 3.9(d)) groups the points that

are lying inside the ring, but actually belong to the elongated elliptic

cluster, with those of the ring. In absence of any class information

about the points, such a grouping is not really surprising. K-means,

GAK-means, AL and EM clustering techniques are found to fail in pro-

viding the proper clustering. These results are also evident from the

MS values attained by the seven clustering techniques as reported in

Table 3.1.

It is to be noted that for the above data sets, K-means is unable to pro-

vide the correct clustering. However, the use of PS-distance in GAPS

enables it to detect such clusters properly.

2. AD 5 2: The clusters present in this data set, used earlier in [16],
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are internally symmetrical and clusters are also symmetrical with re-

spect to some intermediate point. Figures 3.11(a), 3.11(b), 3.11(c),

3.11(d), 3.12(a), 3.12(b), 3.12(c) show the clustering results for K-

means, SBKM, Mod-SBKM, GAPS, GAK-means, AL and EM respec-

tively. As is evident, K-means performs the best for this data. Al-

though GAPS is also able to detect the clusters reasonably well, it

is found to somewhat over-approximate the central cluster (which ex-

tends to the left). The reason is as follows. Let us take a point p which

actually belongs to left cluster but after application of GAPS it is in-

cluded in the central cluster (it is shown in Figure 3.11(d)). It can be

seen from the figure that the point p is more symmetrical with respect

to the central cluster, c2. Here even though de(p, c2) is greater than

de(p, c1) but due to less symmetry with respect to c1, p is assigned to

the central cluster.

Both SBKM and Mod-SBKM fail in detecting the proper clustering

here because data points are more symmetrical with respect to some

other cluster center than the actual cluster center (because of the limita-

tions in the definitions of ds and dc). The point to be noted here is that

the SBKM method destroys the proper clustering achieved by the K-

means method. This is demonstrated in Figures 3.13(a)-(d) that show

how the cluster centers move with iterations during the application of

SBKM. Evidently because of the presence of symmetrical interclusters

SBKM is trying to bring all the cluster centers at the center of the

whole data set thereby providing very poor performance. GAK-means

and average linkage clustering techniques perform moderately for this

data set (refer to Table 3.1).

3. Bensaid 3 2: This data set, used in [29], is taken in order to show

that the proposed GAPS-clustering algorithm is able to find the proper

clustering from a data set where clusters are of significantly differ-

ent sizes. (Note that clusters of widely varying sizes may be present

in several real-life domains, e.g., medical images, satellite images,

fraud detection.) Figures 3.14(a), 3.14(b), 3.14(c), 3.14(d) and 3.14(e)

show the partitionings obtained by K-means, SBKM, Mod-SBKM and
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GAPS/AL/EM and GAK-means, respectively. GAPS along with AL

and EM clustering techniques are able to find out the proper partition-

ing, while the other four algorithms fail (refer to Table 3.1).

4. Real-life Data Sets: This category consists of four real life data sets:

Iris, Cancer, Newthyroid and LungCancer. These data sets are obtained

from [2]. Statistical analysis of variance (ANOVA) [5] is performed for

the real-life data sets on the combined MS values of the seven algo-

rithms when each is executed five times. ANOVA results are reported

in detail for Iris (Table 3.2) for the purpose of illustration.

(a) Iris: As seen from Table 3.1, the MS-scores of GAPS is the best

for Iris, followed by GAK-means and EM. However, it can be seen

from Table 3.2 that the differences in the means of the MS scores

of GAPS with GAK-means and EM are not significant indicating

their similar performances. The performance of SBKM algorithm

is found to be the poorest.

(b) Cancer: As can be seen from Table 3.1, the performance of K-

means, SBKM, Mod-SBKM, GAK-means and GAPS are similar.

ANOVA tests show that the differences in mean MS scores of

GAPS with respect to these four algorithms are not statistically

significant. The results indicate that the two clusters are convex

as well as highly symmetrical.

(c) Newthyroid (or, Thyroid gland data): From Table 3.1, it is ev-

ident that GAPS performs the best (providing the lowest MS

score), while K-means performs the worst. The improvement in

performance obtained by GAPS as compared to each of the other

six clustering techniques is statistically significant. SBKM is also

found to provide improved performance over K-means and Mod-

SBKM, and these improvements are also significant.

(d) LungCancer: The MS scores, reported in Table 3.1, demonstrate

the superior performance GAPS clustering technique. ANOVA

statistical analysis is also done here. The analysis shows that the
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mean MS differences of all the algorithms are statistically signifi-

cant.

3.8.4 Summary of Results

It can be seen from the above results that proposed GAPS is able to find out

the proper clustering where SBKM and Mod-SBKM succeed while K-means

fails as well as where K-means succeeds while SBKM and Mod-SBKM fail.

The results on Bensaid 3 2 show that GAPS is able to detect symmetric

clusters irrespective of their sizes where SBKM, Mod-SBKM and K-means

all fail. The superiority of GAPS is also established on four real-life data

sets. These real-life data sets are of different characteristics with the number

of dimensions varying from 4 to 56. Results on eight artificial and real-life

data sets establish the fact that GAPS is well-suited to detect clusters of

widely varying characteristics. The improved performance of GAPS can be

attributed to the fact that in the newly proposed point symmetry based

distance, dps, there is an impact of both the symmetrical distance as well as

the Euclidean distance. This was lacking in the earlier definitions of the point

symmetry based distances [43][187], which resulted in some serious problems

as discussed in Section 3.2 and displayed pictorially in Figure 3.2.

The K-means, SBKM and Mod-SBKM are based on local search and hence

may often get stuck at local optima depending on the choice of the initial

cluster centers. The use of genetic algorithm in GAPS in order to minimize

the total symmetrical distance overcomes this problem. Moreover, the use

of adaptive mutation and crossover probabilities helps GAPS to converge

faster. GAPS also performs better than GAK-means clustering technique

which, being based on the principles of K-means clustering technique, can

only detect hyperspherical shaped clusters. Thus it also fails for data sets of

type Sym 3 2, etc. AL is able to detect proper partitioning for well-separated

clusters only while EM is able to detect clusters that are normally distributed.

The experimental results on a wide variety of data sets show that GAPS is

able to detect any type of clusters, irrespective of their geometrical shape and

overlapping nature, as long as they possess the characteristic of symmetry.
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In other words, GAPS can detect clusters of different shapes and sizes that

is a superset of the types captured by most of the other methods considered.

Based on this observation, and the fact that the property of symmetry is

widely evident in many real-life situations, application of GAPS in most

clustering tasks seems justified.

3.9 MOPS: Multiobjective Clustering Using

Point Symmetry Distance [160]

The newly proposed point symmetry based clustering technique, GAPS, op-

timizes only the total symmetrical compactness for clustering. However, as

already mentioned in Section 3.1, a single cluster quality measure is seldom

equally applicable for different kinds of data sets with different characteris-

tics. Hence it is necessary to simultaneously optimize several cluster quality

measures that can capture the different data characteristics. In order to

achieve this, in this chapter the problem of clustering a data set is posed as

one of multiobjective optimization (MOO) [60], where search is performed

over a number of, often conflicting, objective functions. The newly developed

simulated annealing based multiobjective optimization technique AMOSA

[27], described in detail in Chapter 2, is used to determine the K cluster

centers and the corresponding partitioning. The resulting clustering tech-

nique, ia called multiobjective clustering with point symmetry based distance

(MOPS).

The encoding of a fixed number of cluster centers, and the assignment of

the points to the different clusters is done as explained in detail for GAPS

in Section 3.6.2 of this chapter. Two objectives are computed for each so-

lution. The first objective function measures the total symmetry present in

a partitioning of the data and the second objective function measures the

degree of goodness in terms of total compactness of the partitioning. These

are explained below:

Let K cluster centers be denoted by ci where 1 ≤ i ≤ K and U(X) = [uij]K×n

be a partition matrix for the data. Then the first objective function for
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AMOSA based multiobjective clustering technique is defined as follows:

totalSym(K) =
K

∑

i=1

Ei, (3.23)

where K is the number of clusters. Here,

Ei =
ni
∑

j=1

dps(x
i
j, ci), (3.24)

where ni denotes the total number of points present in the ith cluster and

xi
j denotes the jth point of the ith cluster. dps(x

i
j , ci) is computed by Equa-

tion 3.8. Note that totalSym(K) measures the within cluster total symmet-

rical distance. For clusters which have good symmetrical structure, Ei value

will be less. This, in turn, indicates that formation of symmetrical shaped

clusters would be encouraged. Thus totalSym(K) needs to be minimized for

achieving better partitioning.

The second objective function is the total variation σ. Here σ is written as:

σ(K) =
K

∑

i=1

ni
∑

k=1

de(ci, x
i
k),

where de(ci, x
i
k) is the Euclidean distance between the kth point of the ith

cluster, xi
k, and the cluster center ci. Note that when the partitioning is

compact and good, the total deviation (σ) should be low. Thus, σ(K) needs

to be minimized for achieving better clustering.

MOPS provides a set of non-dominated solutions [60] in the Archive. Each

of these solutions provides a way of clustering the given data set. All the

solutions are equally important from the algorithmic point of view. But

sometimes the user may want only a single solution. Consequently, in this

chapter a method of selecting a single solution from the set of solutions, is

now developed.

3.9.1 Selection of a Solution from the Archive

This method is a semi-supervised one, where we assume that the class labels

of some (p%)of the points (denoted as test patterns) are known to us. The
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proposed MOPS algorithm is executed on the unlabeled data sets for which

no class information is known beforehand. A set of Pareto optimal solutions

is generated. For each clustering associated with a solution from the final

Pareto optimal set, the test patterns are also assigned cluster labels based

on the nearest center criterion, and the amount of misclassification is cal-

culated by computing the Minkowski Score values (see Equation 3.22). The

solution with the minimum Minkowski Score calculated over the test patterns

is selected as the best solution. Note that this is only one possible way of

selecting an appropriate solution from the Archive. There may be other ways

of the same. Here p is chosen equal to 10.
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Figure 3.15: Clustered AD 5 2 for K = 5 after application of (a) MOPS

clustering technique (b) GAPS clustering technique

3.9.2 Experimental Results

The parameters of the proposed AMOSA with symmetry based multiobjec-

tive clustering algorithm (MOPS) are as follows: Tmax = 100, Tmin =

0.00001, α = 0.8, SL = 200 and HL = 100. Here K is set equal to the

actual number of clusters present in the data set. MOPS produces a num-

ber of non-dominated solutions on the final non-dominated front. The best

solution is identified by the method proposed earlier. The performance of

MOPS is compared with that of GAPS for the four artificial and four real-

life data sets (described in Section 3.8.1 of this chapter). In order to compare

the performance of the algorithms quantitatively, the Minkowski Scores (MS)

[98] corresponding to their final partitionings are also computed. These are
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Table 3.3: Best Minkowski Scores (MS) obtained by the proposed AMOSA

with symmetry based multiobjective clustering technique (MOPS) and

GAPS for all the data sets used here for experiment.

Data set Minkowski Score

MOPS GAPS

Mixed 3 2 0.16 0.18

Sym 3 2 0.12 0.12

AD 5 2 0.37 0.51

Bensaid 3 2 0 0

Iris 0.55 0.59

Cancer 0.31 0.36

Newthyroid 0.52 0.59

LungCancer 0.78 0.89

reported in Table 3.3.

As is evident from the table, except for AD 5 2 and LungCancer, the perfor-

mance of MOPS is similar to that of GAPS (though the former, in general,

performs slightly better). For AD 5 2 and LungCancer, MOPS outperforms

GAPS by a large margin. As explained for AD 5 2, GAPS was overestimat-

ing the central cluster. Consideration of the two objectives in MOPS reduces

this problem. The clustering results are shown in Figures 3.15(a) and 3.15(b),

for MOPS and GAPS, respectively. The results on Bensaid 3 2 show that

MOPS is also able to detect symmetric clusters irrespective of their densi-

ties/sizes. In summary, the improved performance of MOPS demonstrates

the effectiveness of using MOO for optimizing both Euclidean compactness

and symmetrical compactness of a partitioning simultaneously.

3.10 Discussion and Conclusions

A new point symmetry based distance is proposed in this chapter that over-

comes the limitations of some existing measures. It incorporates both the
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Euclidean distance as well as a measure of symmetry with respect to a point

in its computation. Kd-tree based nearest neighbor search is used to reduce

the complexity of symmetry based distance computation. A genetic cluster-

ing technique (GAPS) is also proposed here that incorporates the new point

symmetry distance while performing cluster assignments of the points and in

the fitness computation. Experimental results on different data sets demon-

strate the superiority of GAPS as compared to SBKM [187], its modified

version Mod-SBKM [43], the K-means algorithm, genetic algorithm based

K-means clustering technique (GAK-means), average linkage clustering tech-

nique (AL) and expectation maximization clustering technique (EM). GAPS

is found to provide satisfactory performance for four artificial data sets, both

where K-means fails but SBKM succeeds as well as SBKM fails but K-means

succeeds. Results on Bensaid 3 2 demonstrate that GAPS is able to detect

symmetric clusters of any size where most of the algorithms fail. The supe-

riority of GAPS is also established on four real-life data sets. These real-life

data sets are of different characteristics, with the number of dimensions vary-

ing from 4 to 56. The performance of the different algorithms are compared

using the statistical test, ANOVA. Results on the eight artificial and real-life

data sets establish the fact that GAPS is well-suited to detect clusters of

widely varying characteristics.

Thereafter in this chapter a multiobjective clustering technique based on

the new point symmetry based distance, dps, has also been developed. Two

cluster quality measures, one reflecting the total symmetry present in a parti-

tioning calculated using the newly developed point symmetry based distance,

and another reflecting the total compactness calculated using the well-known

Euclidean distance, are optimized simultaneously. This enables the algorithm

to detect clusters that are well characterized by Euclidean compactness as

also those which are not compact in the conventional sense, but are symmet-

ric about a point. The newly developed multiobjective simulated annealing

based technique, AMOSA, has been used to optimize the two objective func-

tions simultaneously. The superiority of the proposed multiobjective clus-

tering technique (MOPS) over GAPS is shown for four artificial and four

real-life data sets.
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The definition of dps in Equation 3.7 involves a term, knear in its computa-

tion. It may be noted that the proper value of knear largely depends on the

distribution of the data set. For instance, for very large clusters (with too

many points), a small value of knear may not be proper as it is very likely

that a few neighbors would have a distance close to zero. On the other hand,

clusters with too few points are more likely to be scattered, and the distance

of the two neighbors may be too large. A large value of knear may not be

desirable in this case. Thus a proper choice of knear is an important issue

that needs to be addressed in the future.

The choice of the crossover probability, µc, and mutation probability, µm, are

important considerations in genetic algorithms [78]. Experiments with dif-

ferent values of µc and µm show that the performance of GAPS also depends

on these values. Hence we kept µc and µm adaptive, as described in Section

3.6.4 and Section 3.6.5, respectively, so that these parameter values can be

adjusted automatically based on the population status.

The major advantages of GAPS are as follows. In contrast to K-means,

use of GA enables the algorithm to come out of local optima, making it

less sensitive to the choice of the initial cluster centers. Moreover, use of

Kd-tree makes the computation of the point symmetry distance significantly

faster than both SBKM and Mod-SBKM as demonstrated in [24]. Again,

the proposed GAPS is able to detect clusters that may be of widely varying

sizes, where most of the other algorithms fail. Such situations may arise in

several real-life domains, e.g., medical images, satellite images, fraud detec-

tion. Incorporation of the proposed dps enables GAPS to detect symmetric

clusters, both convex and non-convex, even if the clusters are symmetrical

with respect to some intermediate point. This is in contrast to SBKM and

Mod-SBKM, which fail in such situations. In other words, GAPS can detect

clusters of different shapes and sizes that is a superset of the types captured

by most of the other methods considered. Moreover, the improved perfor-

mance of MOPS demonstrates the effectiveness of using MOO for optimizing

both Euclidean compactness and symmetrical compactness of a partitioning

simultaneously.

Some important areas of further research in this regard involve the devel-
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opment of new cluster validity indices based on the newly developed dps as

well as automatic clustering methods based on the proposed point symmetry

distance. Chapters 4 and 5 of this thesis will deal with these.
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Chapter 4

Validity Index Based on

Symmetry
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4.1 Introduction

The three fundamental questions that need to be addressed in any typi-

cal clustering scenario are: (i) what is the model of a data set or what is

a good clustering technique suitable for a given data set, (ii) what is the

model order of the data, i.e., how many clusters are actually present in the

data, and (iii) how real or good is the clustering itself. It is well-known to

the pattern recognition community that different algorithms are applicable

for data with different characteristics. For example, while K-means [68] is

widely used for hyperspherical, convex, equisized clusters, it is known to fail

where the clusters are not hyperspherical and also significantly unequal in

size. Similarly average (or, single) linkage clustering algorithms [68] work

well for non-overlapping clusters of any shape, but fail if the clusters over-

lap. The Gaussian Mixture models [37] are considered to be the appropriate

partitioning techniques for data sets whose type of the distributions (e.g.,

Gaussian) are known. Clustering methods like SBKM [187], Mod-SBKM

[43], GAPS and MOPS exploit the symmetry property within the clusters.

These methods are found to be superior to several other techniques when the

clusters do offer a symmetric structure. Thus given a wide choice of methods,

determining an appropriate clustering algorithm invokes a challenge.

The task of determining the number of clusters and also the validity of the

clusters formed [132] are generally addressed by providing several definitions

of validity indices. Several cluster validity indices have been proposed in

the literature. These are Davies-Bouldin (DB) index [132], Dunn’s index

[64], Xie-Beni (XB) index [206], I-index [132], CS-index [44], etc., to name

just a few. Some of these indices have been found to be able to detect the

correct partitioning for a given number of clusters, while some can determine

the appropriate number of clusters as well. However, the effectiveness of

these indices in determining the proper clustering algorithm has seldom been

studied. Such an attempt has been made in the present chapter.

Most of the validity measures usually assume a certain geometrical structure

in the shapes of all the clusters. But if different clusters possess different

structural properties, these indices are often found to fail. In this chapter
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we propose a symmetry based cluster validity index named Sym-index that

uses the new distance dps. This index is able to determine the appropriate

clustering method, the proper partitioning and the correct number of clusters

from data sets having any type of clusters irrespective of its shape, size or

convexity as long as they possess the property of point symmetry.

In a part of this investigation, the newly defined dps is incorporated in the

definitions of several cluster validity indices to develop the symmetry based

versions of these indices. The performance of these symmetry based validity

indices are compared with existing original cluster validity indices and with

Sym-index, showing the effectiveness of the latter. It also demonstrates the

utility of incorporating the measure of symmetry in each index.

4.2 Sym-index: The Proposed Symmetry

Based Cluster Validity Index [162][168]

In this section a new cluster validity index is proposed that is based on dps.

This is followed by an explanation of the interaction among the different

components of the index so that it can indicate the proper partitioning of

the data. A theoretical analysis of the index is also provided.

4.2.1 The Proposed Cluster Validity Measure

Motivation

Consider a crisp partition of the data set X = {xj : j = 1, 2, . . . n}. The

center of each cluster ci can be computed by using ci =

∑ni
j=1

xi
j

ni
, where ni

(i = 1, 2, . . . , K) is the number of points in cluster i and xi
j is the jth point

of cluster i.

Definition 1: The total symmetrical deviation of a particular cluster i is given

by Ei =
∑ni

j=1 d∗
ps(x

i
j , ci).

d∗
ps(x

i
j , ci) is computed by Equation 3.8 with some constraint. Here, first
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knear nearest neighbors of x∗
j = 2 × ci − xi

j will be searched among the

points which are already in cluster i, i.e., now the knear nearest neighbors of

the reflected point x∗
j of the point xi

j with respect to ci and xi
j should belong

to the ith cluster.

Definition 2: Total compactness of the partitioning in terms of symmetry is

denoted by EK and is given by:

EK =
K

∑

i=1

Ei. (4.1)

Definition 3: DK is called the separation of the crisp K-partitioning, where

DK is the maximum distance between any two cluster centroids, i.e.,

DK = maxK
i,j=1‖ci − cj‖. (4.2)

For a good partitioning, the total compactness of the partitioning in terms

of symmetry should be minimized while the cluster separation in terms of

maximum distance between any two cluster centers should be maximized.

Given the above two criteria, at the same time for a proper partitioning the

value of the number of clusters, K, should be minimized. Motivated by these

observations, in the following we have provided a cluster validity index.

Formulation of Sym-index

The newly developed point symmetry distance is used to define a cluster

validity function which measures the overall average symmetry with respect

to the cluster centers. This is inspired by the I-index developed in [132]. The

new cluster validity function Sym is defined as:

Sym(K) =
(

1

K
× 1

EK

×DK

)

, (4.3)

where K is the number of clusters. The objective is to maximize this index

in order to obtain the actual number of clusters and the proper partitioning.

Explanation

As formulated in Equation 4.3, Sym-index is a composition of three factors,

1/K, 1/EK and DK . The first factor increases as K decreases; as Sym-index
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needs to be maximized for optimal clustering, this factor prefers to decrease

the value of K. The second factor is a measure of the total within cluster

symmetry. For clusters which have good symmetrical structures, EK value

is less. Note that as K increases, in general, the clusters tend to become

more symmetric. Moreover, as de(x, c) in Equation 3.8 also decreases, EK

decreases, resulting in an increase in the value of the Sym-index. Since Sym-

index needs to be maximized, it will prefer to increase the value of K. Finally

the third factor, DK , measuring the maximum separation between a pair of

clusters, increases with the value of K. Note that, value of DK is bounded

by the maximum separation between a pair of points in the data set. As

these three factors are complementary in nature, so they are expected to

compete with and balance each other critically for determining the proper

partitioning.

The use of DK , as the measure of separation, requires further elaboration

[168]. Instead of using the maximum separation between two clusters, several

other alternatives could have been used. For example, if DK was the sum

of pairwise inter cluster distances in a K-cluster structure, then it would

increase largely with increase in the value of K. This might lead to the

formation of maximum possible number of clusters equal to the number of

elements in the data set. If DK was the average inter cluster distance then it

would decrease at each step with K, instead of being increased. So, this will

only leave us with the minimum possible number of clusters. The minimum

distance between two clusters may be another choice for DK . However, this

measure would also decrease significantly with increase in the number of

clusters. So this would lead to a structure where the loosely connected sub-

structures remain as they were, where in fact a separation was expected.

Thus maximum separability may not be attained. In contrast, if we consider

the maximum inter cluster separation then we see that this tends to increase

significantly until we reach the maximum separation among compact clusters

and then it becomes almost constant. The upper bound of this value, which

is equal to the maximum separation between two points, is only attainable

when we have two extreme data elements as two single element clusters. But

the terminating condition is reached well before this situation. This is the
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reason why we try to improve the maximum distance between two maximally

separated clusters.

It may appear that consideration of DK , as defined in Equation 4.2, may lead

to an undesirable clustering where two maximally separated clusters (say A

and B) have been found, while another cluster C (which can be divided into

more than one cluster) may lie in between. However, in such situations,

considering only DK , C can not be divided into its component clusters. We

show in the following paragraphs that in such cases, the other two factors

become dominant and are able to provide the requisite clustering. This

follows the line of reasoning provided in [145].

If there is any intermediate divisible cluster(s) between the extreme ones,

this fact is taken into account by the total symmetrical distance of all the

clusters and the number of clusters. It is seen that when division is possible

in the intermediate cluster, the second factor overrides the effect of the first

one, and the reverse is true for indivisible cluster. In order to show it analyt-

ically, we consider spherically approximated clusters. We assume that each

cluster may be approximated by a hyper-sphere having uniform distribution

of elements. If a d dimensional data set is considered and r1, r2, . . . , rd be

the radii of a cluster along these directions, then r = (r1 + r2 + . . . + rd)/d

is considered to be the radius of the spherically approximated cluster. Let

the exact reflected point of every point with respect to the cluster centre

exist in the data set i.e., the spherical cluster is totally symmetrical. Then

the total symmetrical distance of all the points with respect to the cluster

centre is given by
∑

(
∑knear

i=2
di

knear
× de) since here d1 = 0. Assuming that

the
∑knear

i=2
di

knear
value of all the points are almost the same, say α, (as the

cluster is fully symmetrical) then the Euclidean distance is the only factor

playing an important role here. Thus, for a spherically approximated cluster

with radius r and n number of elements, its total within cluster symmetrical

distance is ≈ nα r
2
.

If such a cluster of radius r having n number of elements be divisible into

two equal halves with radius r/2 and n/2 number of elements in each, then

total symmetrical distance of these two newly formed clusters will become

nαr/4. Note that if we try to divide a compact symmetrical cluster into two
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almost equal halves (which are also compact symmetrical clusters), then its

total symmetrical distance will be approximately halved.

Let EK denote the sum of within cluster symmetrical distances of a K-cluster

configuration and PK denote the corresponding Sym-index value. Now let

us consider a K cluster configuration where K − 1 number of clusters are of

radius r having n elements in each, and one intermediate cluster is of radius

2r with 2n elements. The sum of within cluster symmetrical distances for

this configuration is EK =
∑K−1

i=1
nαr
2

+ 2nαr = nαr
2

(K + 3).

For this configuration, the larger intermediate cluster will be the natural

candidate for division at the next step; hence DK will remain the same

even after division. (Let us assume again that division will produce two

clusters of equal sizes with equal symmetry.) Now two cases may arise. The

candidate cluster may have a clear tendency for division or it may be a

compact symmetrical one. In the former case we have EK+1 =
∑K−1

i=1
nαr
2

+

nα r
2

+ nα r
2

= nα r
2
(K + 1). Thus EK

EK+1
= K+3

K+1
and

PK

PK+1

=
(K + 1)(K + 1)

K(K + 3)
=

K2 + 2K + 1

K2 + 3K
,

since DK is the same in both the K and K + 1 cluster configurations. The

factor is less than 1 for all K > 1, i.e., a division is suggested.

In the latter case after division, the radius of each of the resultant clusters

will be (r + (d− 1)2r)/d = ((2d− 1)r)/d. So, we have, EK+1 =
∑K−1

i=1
nαr
2

+

2(2d−1
d
× nαr

2
).

Thus EK

EK+1
= K+3

(K−1)+2(2d−1)/d
and

PK

PK+1
=

(K + 1)(K − 1) + 2(2d− 1)/d

K(K + 3)
=

(K2 − 1) + 2(K + 1)(2d− 1)/d

K2 + 3K
,

which is greater than 1 for all K (and d > 1), i.e., division is not suggested.

These observations are also verified by our experimental results.

So, it is seen that at small values of K, the second and third factors play an

important role in revealing the maximum attainable separation and getting

compact symmetrical clusters. As K grows, the effect of these two factors

is overcome by the first factor. If, in any case, the maximum separation is
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reached before the desired symmetrical compactness, then the first and the

second factors interact to produce the desired symmetrical compactness.

Instead of K in the denominator, one can use several other forms like Kp (p >

1), log(K), exp(K), etc. Let us assume that Symp(K) = DK

EK×Kp , where

p > 1. For the case where the candidate cluster may have a clear tendency

for division,

PK

PK+1

=
(K + 1)(K + 1)p

Kp(K + 3)
=

(K + 1)p+1

Kp+1 + 3Kp
> 1,

since DK is same in both K and K + 1 cluster configurations. This factor is

greater than 1 for all K > 1, i.e., a division is not suggested. So, incorporating

Kp in place of K in the denominator would pose an obstacle in dividing large

compact clusters into sub parts where a division is indeed suggested.

Now if the form of Sym-index is Symexp(K) = DK

EK×exp(K)
, then as exp(K)

increases rapidly with increase in the value of K, it will dominate over the

other two factors (as these two factors are linearly increasing). With increase

in the value of K, the value of Symexp-index will decrease. Thus, there will

be a tendency to restrict K to small values even if the number of clusters is

large.

If the normalizing factor is log(K), i.e., Symlog(K) = DK

EK×log(K)
, then for the

first case

PK+1

PK
=

nαr
2

(K + 3) log(K)
nαr
2

(K + 1) log(K + 1)
=

(K + 3) log(K)

(K + 1) log(K + 1)

Now as (K+3)
(K+1)

> log(K)
log(K+1)

, the right hand side term is > 1 and the division is

always suggested. Now for the second case,

P(K+1)

PK
=

(K + 3) log(K)

(K − 1 + 2(2d− 1)/d) log(K + 1)
=

(K + 3) log(K)

(K + 3− 2/d) log(K + 1)

Now for d = 2,
P(K+1)

PK

=
(K + 3) log(K)

(K + 1) log(K + 1)
> 1,

thus the division is suggested which is not desirable for this case.

If there is no such normalizing factor in the definition of Sym-index, i.e.,

Sym(K) = DK

EK
, then in the first case where the candidate cluster may have
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a clear tendency of division,

PK

PK+1
=

(K + 3)

(K + 1)
> 1

i.e., the division is always suggested. Now for the second case, where the can-

didate cluster may not have a clear tendency of division, if the intermediate

cluster has a radius of r+(d−1)2r
d

, then,

PK+1

PK
=

∑K−1
i=1

nαr
2

+ 2nαr
∑K−1

i=1
nαr
2

+ 2 (2d−1)
d
× nαr

2

=
K + 3

(K + 3− 2
d
)

> 1

i.e., division is suggested. So it would break compact clusters into sub-parts

where no division is needed. Thus this form of Sym-index is not suitable.

4.2.2 Mathematical Justification [169]

In this section, we mathematically justify the new validity index by establish-

ing its relationship to the well-known validity measure proposed by Dunn [64]

for hard partitions. This is inspired by a proof of optimality of the Xie-Beni

index [206].

Uniqueness and Global Optimality of the K-Partition

The separation index D1 is a hard K-partition cluster validity criterion. It

is known that if D1 > 1, unique, compact and separated hard clusters have

been found [64]. Here we have shown that if the optimal solution D1 becomes

sufficiently large, the validity function Sym will be large, which means that

a unique K-partition has been found. The proof of this is as follows.

Theorem 1: For any K = 2, . . . , n−1, let Sym be the overall Sym-index value

of any hard partition, and D1 be the separation index of the corresponding

partition. Then we have

Sym ≥ D1

n×K × 0.5× knear × dmax
NN

where n is the total number of data points, K is the total number of clusters

and knear is the number of nearest neighbors considered while computing
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dps as defined in Equation 3.8 of Chapter 3. dmax
NN is the maximum nearest

neighbor distance in the data set. That is

dmax
NN = maxi=1,...NdNN(xi), (4.4)

where dNN(xi) is the nearest neighbor distance of xi.
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Figure 4.1: (a) Normal 2 4 (b) Variation of EK value with number of clusters

(c) Variation of DK value with number of clusters (d) Variation of Sym-index

value with number of clusters

Proof: Let the hard K-partition be an optimal partition of the data set

X = {xj ; j = 1, 2, . . . , n} with ci (i = 1, 2, . . .K) being the centroids of each

class ui. The total symmetrical variation EK of the optimal hard K-partition

is defined in Equation 4.1. Thus,

EK =
K

∑

i=1

∑

xj∈ui

dps(xj , ci) =
K
∑

i

∑

xj∈ui

∑knear
ii=1 dii

knear
de(xj, ci). (4.5)

Assuming that x∗
j (the symmetrical point of xj with respect to cluster center

ci) lies within the data space, it may be noted that d1 ≤ dmax
NN

2
, d2 ≤ 3dmax

NN

2
,

. . . , di ≤ (2i−1)dmax
NN

2
, where di is the ith nearest neighbor of x∗

j . Considering

the term
∑knear

ii=1
dii

knear
, we can write

∑knear
ii=1 dii

knear
≤ dmax

NN

2knear
(
knear
∑

ii=1

(2× ii− 1)). (4.6)

The right hand side of the inequality may be written as

dmax
NN

2× knear
× (knear × (2× 1 + (knear − 1)2))

2
=

knear × dmax
NN

2
. (4.7)

127



So, combining Equations 4.5, 4.6 and 4.7, we can write,

EK ≤
K
∑

i=1

∑

xj∈ui

0.5× knear × dmax
NN × de(xj, ci) ≤ 0.5× knear × dmax

NN

K
∑

i=

∑

xj∈ui

de(xj , ci).

Suppose that the centroid ci is inside the boundary of cluster i, for i = 1 to K.

Then de(xj, ci) ≤ dia(ui), for xj ∈ ui where dia(ui) = maxxk,xj∈ui
de(xk, xj).

We thus have

EK ≤ 0.5× knear × dmax
NN

K
∑

i=1

∑

xj∈ui

dia(ui) ≤ 0.5× knear × dmax
NN

K
∑

i=1

nidia(ui)

≤ 0.5× knear × dmax
NN × n×max

i
dia(ui).

Here ni denotes the total number of data points in cluster i. So,

1

EK

≥ 1

0.5× knear × dmax
NN × n×maxi dia(ui)

.

We also have that mini,j,i6=j dis(ui, uj) ≤ DK where dis(ui, uj) =

minxi∈ui,xj∈uj
de(xi, xj) and DK is as defined in Equation 4.2. Thus,

Sym(K) =
DK

K × EK

≥ mini,jdis(ui, uj)

K × 0.5× knear × dmax
NN × n×maxidia(ui)

,

i.e.,

Sym(K) ≥
min1≤i≤K{mini+1≤j≤K−1{ dis(ui,uj)

max1≤k≤Kdia(uk)
}}

K × 0.5× knear × dmax
NN × n

(4.8)

The separation index D1 (Dunn [64]) is defined as

D1 = min
1≤i≤K

{ min
i+1≤j≤K−1

{ dis(ui, uj)

max1≤k≤Kdia(uk)
}} (4.9)

So, combining Equations 4.8 and 4.9, we get

Sym(K) ≥ D1

K × 0.5× knear × dmax
NN × n

. (4.10)

Since the denominator of right hand side is constant for a given K, Sym

increases as D1 grows without bound. As mentioned earlier, it has been

proved by Dunn [64] that if D1 > 1 the hard K-partition is unique. Thus, if

the data set has a distinct substructure and the partitioning algorithm has

found it, then the corresponding Sym-index value will be lower bounded by

Equation 4.10.
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4.2.3 Interaction Between the Different Components

of Sym-index

In order to show how the different components of the newly proposed Sym-

index compete with each other to determine the proper model order from

a data set, the variations of different components of Sym-index along with

number of clusters are shown pictorially for two artificially generated data

sets. The description of these two data sets is given below.

• Normal 2 4: Shown in Figure 4.1(a). It consists of 200 points in 2-d space

and has four clusters.

• Normal 2 10: Shown in Figure 4.2(a). It consists of 500 points in 2-d space

and has ten clusters.

The variations of values of different components of the Sym-index along with

the number of clusters for the above two data sets are shown in Figures

4.1 and 4.2, respectively. Instead of K in the denominator of Sym-index

some other possibilities are using K2, exp(K) and log(K). Let us refer to

the corresponding indices as Sym2-index, Symexp-index and Symlog-index,

respectively. The variations of Sym-index, Sym2-index, Symexp-index and

Symlog-index with the number of clusters for Normal 2 10 data set are also

shown in Figure 4.2. It is clearly seen from the given figures that Sym-index

with K in the denominator performs the best compared to the other three.

PS-index [43], which is also based on a point symmetry based distance [43],

is unable to identify the proper number of clusters from data sets like Nor-

mal 2 3 (shown in Figure 4.3(a)). The variation of the value of PS-index

along with the number of clusters is shown in Figure 4.3(g). It is easy to

see that PS-index gets its minimum value for K = 2. This is because dmin

attains its maximum value for K = 2. Thus PS-index prefers the merging of

3 clusters into 2 clusters. The variation of minimum separation between two

cluster centers (dmin) with respect to number of clusters is shown in Figure

4.3(f). The variation of Sym-index along with the number of clusters (shown

in Figure 4.3(d)) reveals that it obtains its optimum value for K = 3.
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Figure 4.2: (a) Normal 2 10 (b) Variation of EK value with number of clusters

(c) Variation of DK value with number of clusters (d) Variation of Sym-

index value with number of clusters (e) Variation of Sym2-index where in

the denominator K is replaced by K2 with number of clusters (f) Variation

of Symexp-index where in the denominator K is replaced by exp(K) with

number of clusters (g) Variation of Symlog-index where in the denominator

K is replaced by log(K) with number of clusters

4.3 Experimental Results

4.3.1 Data Sets

The data sets that are used for the experiments are as follows.

1. Group 1: This group consists of two 2-dimensional data sets: Mixed 3 2

and Sym 3 2.

(a) Mixed 3 2: This data set is described in Section 3.8.1 of Chapter

3.

(b) Sym 3 2: This data set is described in Section 3.8.1 of Chapter 3.
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Figure 4.3: (a) Normal 2 3 (b) Variation of EK value with number of clusters

(c) Variation of DK value with number of clusters (d) Variation of Sym-index

value with number of clusters (e) Variation of the numerator of PS-index with

number of clusters (f) Variation of minimum separation (denominator of PS-

index) between any two cluster centers with number of clusters (g) Variation

of PS-index with number of clusters

2. Group 2: This group consists of two data sets used in [16]. The clusters

present in these data sets are internally symmetrical about their centers

and the clusters themselves are symmetrical with respect to some third

cluster center. These are AD 5 2 and AD 4 3.

(a) AD 5 2: This data set is described in Section 3.8.1 of Chapter 3.

(b) AD 4 3: This data set consists of 400 data points in 3 dimensional

space distributed over 4 hyperspherical disjoint clusters where

each cluster contains 100 data points. This data set is shown

in Figure 4.4.

3. Group 3: This group consists of three real life data sets. These are Iris,

Cancer and Newthyroid data sets described in Section 3.8.1 of Chapter
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3.

4.3.2 Comparative Results

The effectiveness of the Sym-index in determining the appropriate clustering

algorithm as well as the number of clusters is established for the above-

mentioned seven data sets. Six clustering algorithms are used as the under-

lying partitioning techniques. These are described below:

• The newly developed point symmetry based genetic clustering tech-

nique (GAPS) [24] described in Chapter 3 of this thesis.

• GAK-means algorithm [131].

• Average-linkage clustering algorithm [68] (source code was obtained

from

http://bioinformatics.oxfordjournals.org/cgi/content/abstract/19/5/659).

• Self Organizing Map (SOM) [111] (source obtained from

http://www.cs.tau.ac.il/∼rshamir/expander).

• EM algorithm assuming spherical shaped clusters (EM-spherical).

• EM algorithm assuming ellipsoidal shaped clusters (EM-elliptical) [37]

( matlab source codes are obtained from

http://www.mathworks.com/matlabcentral/fileexchange/).
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The number of clusters, K, is varied from 2 to
√

n, where n is the number

of data points, and the variation of the Sym-index is noted. Its maximum

value across different algorithms and different values of K, indicates the

appropriate algorithm and the appropriate K = K∗. Comparison is also

made with four existing cluster validity indices, namely, a point symmetry

based PS-index [43], I-index [132], a recently proposed CS-index [44] and the

well-known Xie-Beni (XB)-index [206], in terms of their ability in providing

the appropriate number of clusters and the partitioning. The parameters of

the genetic clustering algorithms (GAPS and GAK-means) are as follows:

population size is equal to 100 and maximum generations is equal to 50. For

GAPS, the crossover and mutation probabilities are chosen adaptively as in

[184]. For GAK-means, the crossover and mutation probabilities are chosen

as 0.8 and 0.001 (as specified in [131]), respectively. As already mentioned,

the codes for Average Linkage, EM-elliptical, EM-spherical and SOM were

obtained from different sources and were executed using default parameters.

The results reported in the tables are the average values obtained over ten

runs of the algorithms.
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Figure 4.5: Variation of Sym-index with number of clusters for AD 5 2 us-

ing (a) GAPS, GAK-means, Average Linkage (b) SOM, EM-spherical, EM-

elliptical

Figures 4.5-4.6 show the variations of Sym-index with the number of clusters

for AD 5 2 and Iris data sets, respectively, for the purpose of illustration.
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Figure 4.6: Variation of Sym-index with number of clusters for Iris using (a)

GAPS, GAK-means, Average Linkage (b) SOM, EM-spherical, EM-elliptical

Similar figures were obtained using the other data sets and other indices as

well. Based on the results in the figures, Table 4.1 shows the optimum values

of the five validity indices, Sym-index, PS-index, I-index, CS-index and XB-

index and the corresponding number of clusters obtained after application of

the six clustering algorithms for the different data sets. Let S denote the set

of clustering algorithms and CV (A, l) denote the value of some cluster valid-

ity index CV for K = l provided by a clustering algorithm A ∈ S. Then the

most appropriate algorithm and the corresponding K = K∗, denoted by the

tuple (A∗, K∗), is given by (A∗, K∗) = argopt∀A∈S and l=2,3,...,
√

n
{CV (A, l)}.

Table 4.2 shows the overall (A∗, K∗) values obtained using the different in-

dices for all the data sets.

4.3.3 Analysis of Results

This section analyzes the experimental results mentioned in the previous

section.

1. Mixed 3 2: As the clusters present here are symmetric with elliptical

shape, as expected both the symmetry based validity indices, i.e., Sym-

index and PS-index, when used with GAPS and EM-elliptical can find
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out the proper clustering for this data set (shown in Figure 4.7). This

is also reflected in Table 4.2 where it is found that only the symmetry

based validity indices, i.e., Sym-index and PS-index, are able to find the

proper clustering, the proper cluster number and indicate the proper

clustering algorithms. I-index and XB-index are not able to do so for

any of the clustering algorithms (refer to Table 4.1). Although, CS-

index is able to indicate the proper cluster number with EM-elliptical

(refer to Table 4.1) but its optimum value corresponds to K∗ = 2 with

EM-spherical (refer to Table 4.2), wrongly indicating 2 as the proper

cluster number.
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Figure 4.7: Clustered Mixed 3 2 after the application of GAPS/EM-elliptical

for the best value of Sym-index and PS-index providing K∗ = 3

2. Sym 3 2: EM-elliptical along with both the symmetry distance based

indices, Sym-index and PS-index, is able to detect the proper cluster

number (see Table 4.2). The corresponding partitioning is shown in

Figure 4.8(b) where the elliptical shaped cluster is found to be extended

and includes some points from the ring cluster. GAPS with both Sym-

index and PS-index is also able to detect the proper cluster number (see

Table 4.1, partitioning is shown in Figure 4.8(a)). However, the optimal

value of Sym-index corresponds to the partitioning obtained with EM-

elliptical. In order to investigate the reason for this, we have noted the

values of the components of Sym-index. For the partitioning obtained

by EM-elliptical the ellipsoidal cluster has Ei = 2.0515 where as that
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for the ring and spherical clusters are Ei = 1.8249 and Ei = 4.2294

respectively resulting in E3 = 8.1059 and 1
E3

= 0.12337. The value of

D3 is 1.521174. For the partitioning obtained by GAPS, the Ei for

ellipsoidal, ring and spherical clusters are 1.8123, 2.9249 and 4.2294,

respectively, resulting in E3 = 8.9666 and 1
E3

= 0.11152. In this case

D3 = 1.537. Thus it is observed that the Ei value for the ellipsoidal

cluster (2.0515) is much smaller for EM-elliptical (due to the inclusion

of some points on the ring) as compared to that for GAPS (2.9249).

This results in a larger Sym-index value for EM-elliptical.

I-index and XB-index are not able to find the proper clustering and

the proper cluster number with any of the algorithms. CS-index is able

to indicate the proper cluster number with Average Linkage (refer to

Table 4.1) but its optimum value corresponds to K∗ = 4 with EM-

spherical (refer to Table 4.2).
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Figure 4.8: Clustered Sym 3 2 after application of (a) GAPS for K = 3 (b)

EM-elliptical for the best value of Sym-index and PS-index providing K∗ = 3

3. AD 5 2: As clusters present in this data set are spherical in nature,

so Sym-index is able to find the proper cluster number(= 5) for all

the clustering algorithms except EM-elliptical. Figures 4.9(a), 4.9(b),

4.9(c), 4.10(a) and 4.10(b) respectively show the corresponding parti-

tionings. It is evident from the figures that although the algorithms

indicate 5 clusters as the optimum one, the resultant partitionings, spe-
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cially the cluster appearing in the middle, are different. The Sym-index

value for EM-spherical is marginally superior to that of GAK-means

(see Table 4.1). GAPS performs poorly for this data since it tends

to spread out the middle cluster. Optimum values of PS-index and

XB-index also indicate the correct number of clusters when used with

EM-spherical and SOM, respectively (see Table 4.2). Although it can

be seen that I-index finds out the proper cluster number with GAK-

means, EM-elliptical and SOM, (see Table 4.1), its optimum value over

all the algorithms is obtained with K = 9 for EM-elliptical (see Table

4.2). CS-index is able to find out the proper number of clusters with

GAK-means and SOM (refer to Table 4.1) but its optimum value over

all the algorithms is obtained with K = 4 for EM-spherical (refer to

Table 4.2).
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Figure 4.9: Clustered AD 5 2 after application of (a) GAK-means for K = 5

(b) EM-spherical for the best value of Sym-index and PS-index providing

K∗ = 5 (c) GAPS for K = 5

4. AD 4 3: As the four clusters present here are symmetrical, spherical

and nonoverlapping, all the algorithms and most of the indices except

PS-index are able to find out the proper partitioning of this data (shown

in Figure 4.11(a)). PS-index is known to fail in situations where clusters

are symmetrical with respect to some intermediate center (symmetrical

interclusters as defined in Chapter 3) (as for this data). This is because
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Figure 4.10: Clustered AD 5 2 after application of (a) Average Linkage for

K = 5 (b) SOM for the best value of XB-index providing K∗ = 5

PS-index uses dc of Equation 3.4 in Chapter 3. Thus it fails to detect

symmetrical interclusters properly. The partitioning identified by PS-

index for this data set is shown in Figure 4.11(b).
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Figure 4.11: Clustered AD 4 3 after application of GAK-

means/GAPS/Average Linkage/EM-spherical/EM-elliptical/SOM (a)

for the best value of Sym-index, I-index, CS-index and XB-index providing

K∗ = 4 (b) for the best value of PS-index providing K∗ = 2

5. Iris: Sym-index and I-index are able to indicate the proper cluster

number with all the algorithms (refer to Table 4.1). Sym-index attains

its optimum value for the partitioning obtained by EM-elliptical for
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Table 4.1: Optimal values of the five indices for Mixed 3 2, Sym 3 2, AD 5 2,

AD 4 3, Iris, Cancer and Newthyroid using the six algorithms (GAPS:A1,

GAK-means:A2, Average Linkage:A3, EM-spherical:A4, EM-elliptical:A5,

SOM:A6) where K is varied from 2 to
√

n. The number within brackets

is the corresponding cluster number.
Data Method Sym-index PS-index I-index CS-index XB-index

Set Value (K∗) Value (K∗) Value (K∗) Value (K∗) Value (K∗)

Mixed 3 2 A1 0.012701(3) 0.010735(3) 9750.092502(6) 0.901180(2) 0.202252(7)

A2 0.0100824(3) 0.035871(6) 10946.432227(8) 0.899795(2) 0.124709(2)

A3 0.008552(9) 0.014748(2) 12656.378613(7) 0.848677(2) 0.123878(2)

A4 0.009873(6) 0.012660(5) 10047.393375(6) 0.798227(2) 0.131021(2)

A5 0.012701(3) 0.010735(3) 9533.197699(9) 0.980731(3) 0.151893(2)

A6 0.01016(3) 0.012525(2) 10979.0445(10) 0.901180(2) 0.125006(2)

Sym 3 2 A1 0.057140(3) 0.015113(3) 7.200510(8) 0.883900(6) 0.250966(4)

A2 0.051(9) 0.022023(8) 7.243650(6) 0.821136(4) 0.160450(4)

A3 0.018659(4) 0.051505(4) 3.266627(5) 1.132787(3) 0.227456(2)

A4 0.047218(16) 0.020472(10) 5.190689(5) 0.757086(4) 0.157517(4)

A5 0.062554(3) 0.009304(3) 5.294871(10) 0.941965(6) 0.275887(2)

A6 0.044741(10) 0.020531(9) 6.894(8) 0.821136(4) 0.16045(4)

AD 5 2 A1 0.012243(5) 0.019606(4) 1315.883622(6) 0.895751(4) 0.144343(4)

A2 0.013994(5) 0.01936(4) 1277.890304(5) 0.826734(5) 0.138853(4)

A3 0.013951(5) 0.018921(4) 1240.832405(4) 0.824517(4) 0.155164(4)

A4 0.014009(5) 0.015858(5) 1544.990475(9) 0.776564(4) 0.163565(4)

A5 0.013688(4) 0.019617(4) 1271.288857(5) 0.843807(4) 0.169602(4)

A6 0.013924(5) 0.019787(4) 1246.679(5) 0.821682(5) 0.137765(5)

AD 4 3 A1 − A6 0.013723(4) 0.012142(2) 636054.282343(4) 0.498988(4) 0.052002(4)

Iris A1 0.041885(3) 0.027815(2) 693.469990(3) 0.715700(2) 0.065800(2)

A2 0.042486(3) 0.024805(2) 619.605970(3) 0.715700(2) 0.065800(2)

A3 0.043527(3) 0.024805(2) 653.958238(3) 0.626869(2) 0.065409(2)

A4 0.043180(3) 0.024992(2) 633.815597(3) 0.626869(2) 0.065409(2)

A5 0.045598(3) 0.021853(2) 447.609573(3) 0.626869(2) 0.065409(2)

A6 0.043180(3) 0.026918(2) 633.815597(3) 0.715700(2) 0.065800(2)

Cancer A1 0.000522(2) 0.125165(2) 27662.411940(2) 1.098512(2) 0.148525(2)

A2 0.0005(2) 0.131208(5) 28055.566482(3) 1.097088(2) 0.148209(2)

A3 0.000485(2) 0.093310(3) 27058.824291(3) 1.234792(2) 0.226168(3)

A4 0.000475(2) 0.099740(3) 35000.722399(6) 1.027397(2) 0.206329(2)

A5 0.000477(2) 0.118425(2) 17917.064259(2) 1.05373(2) 0.202678(2)

A6 0.000522(2) 0.103135(2) 27662.411940(2) 1.098512(2) 0.148525(2)

New A1 0.001393(3) 0.064669(8) 2521890.873937(7) 0.975621(8) 0.168048(2)

thyroid A2 0.001320(11) 0.108723(4) 1567291.137185(5) 1.395576(5) 0.194599(4)

A3 0.001190(3) 0.025630(3) 4601698.925019(3) 0.631758(3) 0.100727(3)

A4 0.001320(10) 0.111036(10) 2104572.222224(9) 0.956283(10) 0.284915(3)

A5 0.001057(5) 0.116310(5) 1233206.753436(9) 1.621346(5) 0.295940(2)

A6 0.001280(5) 0.114840(3) 1567291.137185(5) 1.395576(5) 0.245661(3)
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Table 4.2: Most appropriate algorithms (A∗) and appropriate cluster number

(K∗) identified by the five validity indices for the different data sets. Here

the algorithms are represented as follows: GAPS:A1, GAK-means:A2, Aver-

age Linkage:A3, EM-spherical:A4, EM-elliptical:A5, SOM:A6 and AC means

actual number of clusters.
Data AC Appro (K∗,A∗)

Set priate Sym PS I CS XB

algo

(known)

Mixed 3 2 3 A1, A5 (3, {A1, A5}) (3, {A1, A5}) (7, A3) (2, A4) (2, A3)

Sym 3 2 3 A1, A5 (3, A5) (3, A5) (6, A2) (4, A4) (4, A4)

AD 5 2 5 A1, A2, (5, A4) (5, A4) (9, A4) (4, A4) (5, A6)

A4, A6

AD 4 3 4 A1 − A6 (4, {A1 − A6}) (2, {A1 − A6}) (4, {A1 − A6}) (4, {A1 − A6} (4, {A1 − A6})

Iris 3 A5 (3, A5) (2, A5) (3, A1) (2, {A3, A4, A5}) (2, {A3, A4, A5})

Cancer 2 A1, A2, A6 (2, {A1, A6}) (3, A3) (3, A2) (2, A4) (2, {A1, A2})

Newthyroid 3 A1, A6 (3, A1) (3, A3) (3, A3) (3, A3) (3, A3)

K = 3 (refer to Table 4.2). I-index obtains its optimum value with

GAPS for K = 3 (refer to Table 4.2). PS-index, CS-index and XB-

index are unable to indicate three clusters with any of the algorithms

(refer to Table 4.1 and Table 4.2). However, they mostly indicate two

clusters, which is also often obtained by many other methods for Iris.

Since visual display of higher dimensional data is difficult, here the

Minkowski Score [98] (defined in Equation 3.22 of Chapter 3) is re-

ported. It is calculated after the application of each algorithm taking

K = 3. This is a measure of the quality of a solution given the true

clustering. For MS, the optimum score is 0, with lower scores being

“better”. Each of the above mentioned six algorithms are executed ten

times, the Minkowski Scores are computed and ANOVA [5] statistical

analysis is performed. The results for Iris data set are reported in Ta-

ble 4.3. From Table 4.3 it can be seen that EM-elliptical finds the best

clustering among the six algorithms. It also reveals from this table that

although the mean MS value of GAPS is slightly better than those of

GAK-means, EM-spherical and SOM but the differences of the values

over ten runs are not statistically significant, i.e., GAPS, GAK-means,

EM-spherical and SOM clustering algorithms perform similarly for this

data set. From Table 4.2 we find that only the Sym-index indicates that

EM-elliptical is the most appropriate algorithm, and that three clusters
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Table 4.3: Estimated marginal means and pairwise comparisons of Minkowski

Scores (MS) for different algorithms obtained by ANOVA testing for Iris

data (GAPS:A1, GAK-means:A2, Average Linkage:A3, EM-spherical:A4,

EM-elliptical:A5, Self Organizing Map:A6)
Algo. Name (I) Mean MS Comp. Algo.(J) Mean Difference (I-J) Significance Value

A1 0.59+
−

0.003 A2 −1.0E − 02+
−

0.004 0.54

A3 −1.1E − 01+
−

0.004 < 0.01

A4 −1.0E − 02+
−

0.004 0.59

A5 0.23
+
−

0.004 < 0.01

A6 −1.0E − 02+
−

0.004 0.59

A2 0.60+
−

0.003 A1 1.0E − 02+
−

0.004 0.54

A3 −0.10
+
−

0.004 < 0.01

A4 0.00+
−

0.004 1

A5 0.24+
−

0.004 < 0.01

A6 0.00+
−

0.004 1

A3 0.70+
−

0.003 A1 1.1E − 01+
−

0.004 < 0.01

A2 0.10+
−

0.004 < 0.01

A4 0.10+
−

0.004 < 0.01

A5 0.34+
−

0.004 < 0.01

A6 0.10+
−

0.004 < 0.01

A4 0.60+
−

0.003 A1 1.0E − 02+
−

0.004 0.59

A2 0.00+
−

0.004 1

A3 −0.10+
−

0.004 < 0.01

A5 0.24+
−

0.004 < 0.01

A6 0.00+
−

0.004 1

A5 0.36+
−

0.003 A1 −0.23+
−

0.004 < 0.01

A2 −0.24+
−

0.004 < 0.01

A3 −0.34+
−

0.004 < 0.01

A4 −0.24+
−

0.004 < 0.01

A6 −0.24+
−

0.004 < 0.01

A6 0.60+
−

0.003 A1 1.0E − 02+
−

0.004 0.59

A2 0.00+
−

0.004 1

A3 −0.10E − 02+
−

0.004 < 0.01

A4 0.00
+
−

0.004 1

A5 0.24+
−

0.004 < 0.01

are present in the data. Therefore, combining the results of Table 4.2

and Table 4.3 reveals that the partitioning indicated by Sym-index is

the best.

6. Cancer: For this data set, like the previous one, Minkowski Score

(MS) [98] of the partitionings obtained after application of all six al-

gorithms with K = 2 are calculated. The MS scores are 0.36, 0.36,

0.45, 0.43, 0.43 and 0.37 for GAPS, GAK-means, Average linkage, EM-

spherical, EM-elliptical and SOM, respectively. From ANOVA analysis

it was observed that GAPS, GAK-means and SOM algorithms perform
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equally for this data (the difference between the mean MSs for any pair

of algorithms is not significant) indicating that the two clusters present

in the Cancer data set are convex as well as highly symmetrical. They

are able to find the best clustering among all the algorithms. As can

be noted from Table 4.2, Sym-index indicates GAPS and SOM as the

most appropriate choices. XB-index is also successful in correctly iden-

tifying GAPS and GAK-means algorithms with K∗ = 2 as the most

appropriate clustering algorithms. Even though I-index is able to de-

tect the proper cluster number with GAPS, EM-elliptical and SOM

(see from Table 4.1) but it attains its optimum value for GAK-means

with K = 3 (refer to Table 4.2). CS-index attains its optimum value

corresponding to the partitioning obtained by EM-spherical for K = 2

(see Table 4.2). PS-index is also able to find the proper cluster number

with GAPS, EM-elliptical and SOM (refer to Table 4.1) but the opti-

mum value of it indicates Average Linkage with K = 3 as the proper

choice (refer to Table 4.2).

7. Newthyroid: Sym-index identifies GAPS as the appropriate clustering

algorithm with the correct cluster number (refer to Table 4.2). Op-

timum values of PS-index, I-index, CS-index and XB-index indicate

Average Linkage as the appropriate clustering algorithm for partition-

ing this data with the correct number of clusters (see Tables 4.1 and

4.2). The MS values attained by the six clustering techniques for this

data set are 0.59, 0.81, 0.88, 0.85, 0.84 and 0.63, respectively for ac-

tual number of clusters present in the data set. It was observed from

ANOVA analysis that GAPS performs the best (providing the lowest

MS score), while average linkage performs the worst. The improvement

in performance obtained by GAPS as compared to the other techniques

is significant. This again highlights the utility of Sym-index which cor-

rectly identified GAPS as the proper algorithmic choice. Performance

of EM-spherical and EM-elliptical are almost similar (the difference in

their MS values over ten runs is not significant).

Interestingly, it was observed that for all the data sets, Sym-index was able

to detect the proper number of clusters as well as atleast a few of the suit-
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able clustering algorithms. This is not the case for any of the other indices

which sometimes fail to identify either the proper algorithm or the appro-

priate number of clusters or both. For example, for Mixed 3 2 which has

symmetrical clusters, Sym-index (as well as PS-index) correctly identifies 3

clusters and GAPS/EM-elliptical as the appropriate clustering algorithms.

However, the other three indices are neither able to identify the correct num-

ber of clusters nor the appropriate algorithm. Again for AD 4 3, PS-index

fails in identifying the appropriate number of clusters, while the Sym-index

(along with I-index, XB-index and CS-index) succeeds. Overall, Sym-index

is able to detect the proper number of clusters and the appropriate clustering

algorithms for all the data sets. PS-index is able to detect the proper number

of clusters in four out of the seven cases and is able to indicate the appropri-

ate clustering algorithms in only three cases. I-index is able to indicate the

proper number of clusters in three cases among which in only one case it is

also able to detect the proper clustering algorithm. CS-index and XB-index

are able to detect the proper number of clusters in three and four data sets,

respectively; among these data sets they are able to identify the appropriate

clustering algorithms for only one and three data sets, respectively.

4.4 Incorporating dps in Some Existing Clus-

ter Validity Indices [172]

As mentioned earlier, in order to validate the obtained partitionings and to

determine the appropriate number of clusters from a data set, several cluster

validity indices have been proposed.

Most of the existing cluster validity indices use the Euclidean distance in

their computation. They are mostly therefore able to characterize only con-

vex clusters. It has been shown in [24] that the symmetry based distance

is effective not only for convex clusters, but also in cases where the clus-

ters are non-convex, but satisfy the property of point-symmetry. In this

chapter we conjecture that incorporation of the symmetry measure in the

above mentioned validity indices will impart the property of characteriz-
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ing non-convex, symmetric clusters to them. Thus, here we incorporate

the newly proposed point symmetry based distance, rather than the Eu-

clidean distance, to develop symmetry-based versions of Davies-Bouldin in-

dex (DB-index) [56], Dunn’s index [64], Generalized Dunn’s index [32], PS-

index [43], Xie-Beni index (XB index) [206], FS-index [75], K-index [118]

and SV-index [103]. The GAPS-clustering is used as the underlying clus-

tering algorithm. The number of clusters is varied from Kmin to Kmax. As

a result, a total of (Kmax − Kmin + 1) partitions will be generated, U∗
Kmin

,

U∗
Kmin+1 . . . U∗

Kmax
, with the corresponding validity index values computed as

VKmin
, VKmin+1 . . . VKmax with V representing one of the above mentioned

validity indices. Let K∗ = argopti=Kmin...Kmax
[Vi]. Therefore, according to

index V , K∗ is the correct number of clusters present in the data. The

corresponding U∗
K is the partitioning obtained by GAPS-clustering with the

number of clusters set to K∗. The tuple < U∗
K∗ , K∗ > is presented as the

solution to the clustering problem.

The effectiveness of the newly proposed point symmetry based cluster va-

lidity indices namely, Sym-DB index, Sym-Dunn index, Sym-GDunn index,

Sym-PS index, Sym index, Sym-XB index, Sym-FS index, Sym-K index and

Sym-SV index, in identifying the proper number of clusters is demonstrated

for two artificially generated and three real-life data sets of varying complex-

ities. Results also reveal that Sym index performs the best compared to all

the other eight indices. For the purpose of comparison, the cluster number

indicated by the original versions of the existing eight cluster validity indices

are also provided for all the artificial and real-life data sets. Experimental

results show that incorporation of point symmetry distance improves the ca-

pabilities of these indices to detect any type of cluster irrespective of their

shapes, sizes and convexity, as long as they possess the property of point

symmetry.
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4.5 Point Symmetry Based Cluster Validity

Indices

In this section, the eight point symmetry distance based cluster validity in-

dices are defined. Note that the definitions of these indices are inspired by

those of eight well-known existing cluster validity indices.

4.5.1 Symmetry Based Davies-Bouldin index (Sym-

DB index)

This index is developed along the lines of the popular Davies-Bouldin (DB)

index [56]. This is a function of the ratio of the sum of within-cluster sym-

metry to between cluster separation. The scatter within the ith cluster, Si,

is computed as

Si =

∑

x∈Ci
d∗

ps(x, zi)

|Ci|
,

where zi represents the center of cluster i and d∗
ps(x, zi) is computed us-

ing Equation 3.8 with some constraint. Note that here the knear nearest

neighbors of the reflected point x∗ of the point x with respect to zi and x

should belong to the ith cluster, i.e., the first knear nearest neighbors of

x∗ = 2 × zi − x are searched among the points which are already in cluster

i. The distance between cluster Ci and Cj, denoted by dij, is defined as

dij = de(zi, zj), where de stands for Euclidean distance computation. Then

Symmetry Based DB index, Sym-DB index, is defined as

Sym-DB =

∑K
i=1 Ri

K
.

where Ri = maxj,j 6=i{Si+Sj

dij
}. The objective is to minimize the Sym-DB index

for achieving the proper clustering.
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4.5.2 Symmetry Based Dunn’s Index (Sym-Dunn in-

dex)

This index is developed along the lines of the popular Dunn’s index [64]. Let

S and T be two nonempty subsets of RN . Then the radius △ of S is defined

as

△(S) = max
x∈S
{d∗

ps(x, z)},

where z represents the center of set S and d∗
ps(x, z) is computed using Equa-

tion 3.8. Note that here also the knear nearest neighbors of the reflected

point x∗ of the point x with respect to z and x should belong to the set S.

The set distance δ between S and T is defined as

δ(S, T ) = min
x∈S,y∈T

{de(x, y)}.

Here, de(x, y) indicates the Euclidean distance between points x and y. For

any partition, Sym-Dunn index is defined as follows

Sym-Dunn = min
1≤i≤K

min
1≤j≤K,j 6=i

{ δ(Ci, Cj)

max1≤k≤K△(Ck)
}.

Larger values of Sym-Dunn index correspond to good clustering, and the

number of clusters that maximizes this index value is taken as the optimal

number of clusters.

4.5.3 Symmetry Based Generalized Dunn’s Index

(Sym-GDunn index)

This index is developed along the lines of the Generalized Dunn’s index

[32]. The generalized Dunn’s index was developed after demonstrating the

sensitivity of the original Dunn’s index [64], to changes in cluster structure,

since not all of the data points were involved in the computation of the index.

The symmetry based GDunn cluster validity index, Sym-GDunn index, is

defined as

Sym-GDunn = min
1≤s≤K

{ min
1≤t≤K,t6=s

{ δ(Cs, Ct)

max1≤k≤K△(Ck)
}}.
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The two measures δ and △ are defined as follows:

△(S) = 2×
∑

x∈S d∗
ps(x, zS)

|S|

and

δ(S, T ) =
1

|S||T |
∑

x∈S,y∈T

de(x, y).

Here zS and zT are the centers of the sets S and T , respectively. Here,

d∗
ps(x, zS) is computed by Equation 3.8 with some constraint. Note that

the knear nearest neighbors of the reflected point x∗ of the point x with

respect to zS, and x should belong to the set S. Larger values of Sym-GDunn

correspond to good clusters, and the number of clusters that maximizes Sym-

GDunn is taken as the optimal number of clusters.

4.5.4 Newly Proposed Symmetry Distance Based PS-

index (Sym-PS index)

This index is developed along the lines of PS-index [43]. The cluster validity

index, Sym-PS index, is defined as

Sym-PS(K) =
1

K

K
∑

i=1

1

ni

∑

x∈Si

d∗
ps(x, zi)

minm,n=1,...,K, m6=nde(zm, zn)
(4.11)

=
1

K

K
∑

i=1

1

ni

∑

x∈Si

d∗
ps(x, zi)

dmin

(4.12)

where Si is the set whose elements are the data points assigned to the ith

cluster, ni is the number of elements in Si, or, ni = |Si|, dmin is the minimum

Euclidean distance between any two cluster centers and d∗
ps(x, zi) is computed

by Equation 3.8 with some constraint. Note that the knear nearest neighbors

of the reflected point x∗ of the point x with respect to zi and x should

belong to the ith cluster. The smallest Sym-PS(K∗) indicates a valid optimal

partition with the optimal cluster number K∗.
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4.5.5 Symmetry Based Xie-Beni index (Sym-XB in-

dex)

This index is developed along the lines of the popular XB-index [206]. It is

defined as follows:

Sym-XB =

∑K
i=1(

∑

x∈Ci
d∗2

ps(x, zi))

n(mini,k=1,...K,i6=k d2
e(zi, zk))

.

d∗
ps(x, zi) is computed by Equation 3.8. Note that here also the knear nearest

neighbors of the reflected point x∗ of the point x with respect to zi and x

should belong to the ith cluster. The most desirable partition (or an optimal

value of K) is obtained by minimizing Sym-XB index over K = 2, 3, . . .Kmax.

4.5.6 Symmetry Based FS index (Sym-FS index)

This index is developed along the lines of the FS-index proposed in [75]. It

is defined as follows:

Sym-FS =
K

∑

i=1

∑

x∈Ci

d∗2
ps(x, zi)−

K
∑

i=1

∑

x∈Ci

d2
e(zi, z).

where z is the center of the entire data set. d∗
ps(x, zi) is computed by Equa-

tion 3.8. Note that here also the knear nearest neighbors of the reflected

point x∗ of the point x with respect to zi and x should belong to the ith clus-

ter. The optimal partition is obtained by minimizing Sym-FS index value

with respect to K = 2, 3, . . .Kmax.

4.5.7 Symmetry Based K index (Sym-K index)

Kwon extended the index given by Xie and Beni [206] to eliminate its ten-

dency to monotonically decrease when the number of clusters approaches to

the number of data points [118]. To achieve this, a punishing function was

introduced to the numerator of the Xie and Beni’s original validity index.

The resulting index is named as K-index. Here we have developed a new

validity index along the lines of K-index but using point symmetry based
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distance. This is named as Sym-K index. This is defined as follows:

Sym-K =

∑K
i=1

∑

x∈Ci
d∗2

ps(x, zi) + 1
K

∑K
i=1 d2

e(zi, z)

mini6=k d2
e(zi, zk)

.

In this equation again z represents the center of the entire data set. d∗
ps(x, zi)

is computed by Equation 3.8. Note that here also the knear nearest neighbors

of the reflected point x∗ of the point x with respect to zi and x should belong

to the ith cluster. A minimum value of Sym-K index corresponds to the

optimal cluster number.

4.5.8 Symmetry Based SV index (Sym-SV index)

Kim et al. attempted to determine the optimal cluster number by measuring

the status of the given partition with both an under-partition index and

an over-partition index [103]. Here, the newly developed Sym-SV index is

defined along the lines of SV index proposed by Kim et al.[103].

Sym-SV = vunder(Z : X) + vover(Z)

=
1

K

K
∑

i=1

∑

x∈Ci

d∗
ps(x, zi)

ni
+

K

mini6=j de(zi, zj)
.

A minimum value of Sym-SV index indicates the optimal number of clusters.

4.6 Experimental Results

This section provides a description of the data sets and the partitionings

indicated by different cluster validity indices after application of the GAPS-

clustering algorithm. Experiments are carried out with two artificial and

three real life data sets. The artificial data sets are Sym 3 2 and Bensaid 3 2

(described in Section 3.8.1 of Chapter 3).

The three real-life data sets are Iris, Cancer, LungCancer (described in Sec-

tion 3.8.1 of Chapter 3).
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Table 4.4: Optimal number of clusters identified by the newly proposed sym-

metry version and the original version of eight cluster validity indices and

Sym-index for five data sets, segmented using GAPS clustering algorithm

where K is varied from 2 to
√

n. Here AC denotes the actual number of

clusters present in the particular data set. Success Rates (defined in Section

4.6.1) of two different versions of eight cluster validity indices along with

Sym-index in detecting the proper partitioning and the proper number of

partitions are also provided.
Validity Version Sym 3 2 Bensaid 3 2 Iris Cancer LungCancer Success Rate

Index

DB Sym 6 3 2 2 3 0.6(3/5)

Org 6 3 2 2 3 0.6(3/5)

Dunn Sym 3 3 8 8 2 0.4(2/5)

Org 3 6 7 7 3 0.4(2/5)

GDunn Sym 3 3 2 2 4 0.6(3/5)

Org 2 2 2 5 3 0.2(1/5)

PS Sym 3 3 2 2 3 0.8(4/5)

Org 3 3 2 2 3 0.8(4/5)

XB Sym 3 3 2 2 3 0.8(4/5)

Org 4 3 2 2 3 0.6(3/5)

FS Sym 6 7 8 10 4 0(0/5)

Org 10 7 8 10 4 0(0/5)

K Sym 3 3 2 2 3 0.8(4/5)

Org 4 3 2 2 3 0.6(3/5)

SV Sym 2 6 2 2 3 0.4(2/5)

Org 2 3 2 2 3 0.6(3/5)

Sym 3 3 3 2 3 1.00(5/5)
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Figure 4.12: Clustered Sym 3 2 after application of GAPS for (a) K = 3 (b)

K = 6 (c) K = 2

4.6.1 Discussion of Results

The parameters of GAPS-clustering are set as detailed in Section 3.8.3 of

Chapter 3. The results reported in the table are the average values obtained

over ten runs of the algorithm. Here Kmin is set equal to 2 and Kmax is set

equal to
√

n where n is the total number of data points present in the data

set. Thus for each data set, a total of (
√

n−2+1) = (
√

n−1) partitions will

be obtained with a particular validity index (V) values V2, V3, . . .V√
n. Then

according to the index V , the optimal number of clusters will be denoted by

K∗ = arg opti=2,...,
√

n[Vi].

Table 4.4 shows the optimum number of clusters identified by the nine newly

proposed point symmetry distance based cluster validity indices, namely,
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Figure 4.13: Clustered Bensaid 3 2 after application of GAPS for (a) K = 3

(b) K = 6

Sym-DB, Sym-Dunn, Sym-GDunn, Sym-PS, Sym, Sym-XB, Sym-FS, Sym-K

and Sym-SV indices for all the data sets used here for experiment. Fig-

ures 4.12(a) and 4.13(a) show, respectively, the partitionings obtained after

application of GAPS-clustering on the two artificial data sets, respectively,

for the actual number of clusters present in the data sets. It can be seen

that for Sym 3 2, all the indices except Sym-DB, Sym-FS and Sym-SV are

able to find the proper partitioning and the proper number of partitions (the

corresponding partitioning is shown in Figure 4.12(a)). Optimum values of

Sym-DB and Sym-FS indices indicate K = 6 as the proper number of clusters

whereas that of Sym-SV indicates K = 2 as the proper number of clusters.

The corresponding partitionings are shown in Figures 4.12(b) and 4.12(c),

respectively. For Bensaid 3 2 data set, all the indices except Sym-FS and

Sym-SV are able to detect the proper partitioning and the appropriate num-

ber of partitions after application of GAPS-clustering (partitioning shown

in Figure 4.13(a)). Sym-SV wrongly indicates K∗ = 6. The corresponding

partitioning is shown in Figure 4.13(b).

For the higher-dimensional three real-life data sets, Iris, Cancer and Lung-

Cancer, the Minkowski Scores (defined in Equation 3.22 of Chapter 3) are

calculated after application of GAPS-clustering algorithm. For Iris data set,

MS value corresponding to the partitioning obtained by GAPS-clustering for

K = 3 is 0.59± 0.00. As can be seen from Table 4.4, only Sym index is able

152



to detect the proper number of partitions for this data set. Optimum val-

ues of Sym-DB, Sym-GDunn, Sym-PS, Sym-XB, Sym-K and Sym-SV indices

indicate two clusters, which is also often obtained for many other methods

for Iris. Sym-Dunn and Sym-FS indices perform poorly for this data set.

For Cancer dataset, MS value corresponding to the partitioning obtained by

GAPS-clustering for K = 2 is 0.36± 0.00. Sym-DB, Sym-GDunn, Sym-PS,

Sym, Sym-XB, Sym-K and Sym-SV indices are all able to indicate this parti-

tioning. But again for this data set, the performance of both Sym-Dunn and

Sym-FS indices are poor. For LungCancer data set, Sym-DB, Sym-PS, Sym,

Sym-XB and Sym-K indices are able to detect the proper number of clusters

along with GAPS-clustering (see Table 4.4). The corresponding MS value is

0.89± 0.01.

The above mentioned results show that Sym-DB is able to detect the appro-

priate partitioning for three out of five data sets used here for the experiment.

Similarly, Sym-Dunn, Sym-GDunn, Sym-PS, Sym, Sym-XB, Sym-FS, Sym-

K and Sym-SV indices are able to detect the proper partitioning from two,

three, four, five, four, zero, four and two out of five data sets, respectively.

Thus, it can be easily concluded that the proposed Sym index performs the

best than the other eight indices for detecting the proper number of clusters

and the proper partitioning from data sets having symmetrical clusters.

Table 4.4 also provides the performance results of the original versions of

the validity indices. The success rates of the two versions of eight cluster

validity indices (original version and the symmetry version) in detecting the

proper number of partitions and the proper partitioning are reported. Here

SuccessRate(i) = A

total number of data sets , where A=Number of data sets

for which index i succeeds in determining the appropriate number of clusters.

From the results provided in Table 4.4, it is easy to conclude that incorpo-

ration of point symmetry based distance in the definitions of existing cluster

validity indices make them more effective in detecting any type of clusters

from a data set irrespective of their shape and size as long as they possess

the property of point symmetry. This is more evident from the results on

first artificial data set having clusters of different shapes possessing the point

symmetry property. While the original versions of the eight cluster validity
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indices mostly fail in detecting the proper number of partitions from this

data set, incorporation of point symmetry distance impart the property of

characterizing these non-compact, symmetric clusters to them.

4.7 Application to Remote Sensing Imagery

[169]

An important task in remote sensing applications is the classification of pix-

els in the images into homogeneous regions, each of which corresponds to

some particular land cover type. This problem has often been modeled as a

segmentation problem [133], and clustering methods have been used to solve

it. However since it is difficult to have a priori information about the number

of clusters in satellite images, the clustering algorithms should be able to au-

tomatically determine this value. Moreover, in satellite images it is often the

case that some regions occupy only a few pixels, while the neighboring re-

gions are significantly large. Thus automatically detecting regions or clusters

of such widely varying sizes presents a challenge in designing segmentation

algorithms.

The point symmetry (PS)-based cluster validity index, Sym-index, and GAPS

are used here for automatically determining the appropriate number of clus-

ters from different image data sets. The number of clusters K is manually

varied from Kmin to Kmax, and for each K, Sym-index is computed for the

partitioning resulting from the application of GAPS-clustering. The parti-

tioning corresponding to the maximum value of Sym-index is presented as a

solution to the segmentation problem.

The effectiveness of the newly proposed cluster validity index, Sym-index,

in conjunction with the GAPS-clustering [24] for automatically detecting

different types of regions is demonstrated on one simulated and two satellite

images. Segmentation results are compared with those obtained by two other

recently proposed cluster validity indices, namely, PS-index [43] and I-index

[132], and another well-known XB index [206]. For each image K is varied

from 2 to 16.
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Figure 4.14: (a) SCI; (b) Segmented SCI obtained by GAPS-clustering with

Sym-index (provides K∗ = 3) (c) Segmented SCI obtained by K-means clus-

tering for K = 3 (d) Segmented SCI obtained by EM-clustering for K = 3

4.7.1 Simulated Circle Image (SCI)

In order to show the effectiveness of the proposed Sym-index in identifying

small clusters from much larger ones where there is a significant overlap of

the small clusters with the bigger one, we first generate an artificial image

of size 256×256 shown in Figure 4.14(a). There are two small circles of ra-

dius 20 each, centered at (113,128) and (170,128), respectively. The pixels

of these two small circles take gray values randomly in the range [160-170]

and [65-75], respectively. The background pixels take values randomly in the

range [70-166]. Here also K is varied from 2 to 16. Figure 4.14(b) shows

the segmented image using GAPS-clustering with Sym-index, when 3 clus-

ters were automatically found. We have calculated Minkowski Score (MS)

[98] (defined in Equation 3.22 of Chapter 3) of the segmented image pro-

vided by the Sym-index. Smaller value of MS indicates better segmentation.

The corresponding MS value is 0.177026. In contrast, PS-index, I-index and

XB-index attained their optimum values for K∗ = 9, K∗ = 5 and K∗ = 9,

respectively, i.e., they are not at all able to detect the proper number of clus-

ters. K-means (with K = 3) is not able to find out the proper clustering from

this data set (shown in Figure 4.14(c)). MS value in this case is 0.806444.

EM algorithm is also not able to find out the proper clustering from this

overlapping dataset (Figure 4.14(d)). MS value in this case is 0.82.
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Figure 4.15: (a) SPOT image of Kolkata in the NIR band with histogram

equalization (b) Variation of Sym-index with number of clusters for Kolkata

image using GAPS

4.7.2 SPOT Image of Kolkata

The French satellites SPOT (Systems Probataire d’Observation de la Terre)

[157], launched in 1986 and 1990, carry two imaging devices that consist of a

linear array of charge coupled device (CCD) detectors. Two imaging modes

are possible, the multispectral and panchromatic modes. The 512 × 512

SPOT image of a part of the city of Kolkata is available in three bands in

the multispectral mode. These bands are:

Band 1 - green band of wavelength 0.50 - 0.59 µm

Band 2 - red band of wavelength 0.61 - 0.68 µm

Band 3 - near infra red band of wavelength 0.79 - 0.89 µm.

Thus, here feature vector of each image pixel composed of three intensity

values at different bands. The distribution of the pixels in the feature space of

this image is shown in Figure 4.16. It can be easily seen from the Figure 4.16

that the entire data can be partitioned into several hyperspherical clusters

where symmetry does exist.

Some important landcovers of Kolkata are present in the image. Most of these
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Figure 4.16: Data distribution of SPOT image of Kolkata in the Feature

Space

can be identified, from a knowledge about the area, more easily in the near

infra-red band of the input image (Fig. 4.15(a)). These are the following: The

prominent black stretch across the figure is the river Hooghly. Portions of a

bridge (referred to as the second bridge), which was under construction when

the picture was taken, protrude into the Hooghly near its bend around the

center of the image. There are two distinct black, elongated patches below

the river, on the left side of the image. These are water bodies, the one to

the left being Garden Reach lake and the one to the right being Khidirpore

dockyard. Just to the right of these water bodies, there is a very thin line,

starting from the right bank of the river, and going to the bottom edge of the

picture. This is a canal called the Talis nala. Above the Talis nala, on the

right side of the picture, there is a triangular patch, the race course. On the

top, right hand side of the image, there is a thin line, stretching from the top

edge, and ending on the middle, left edge. This is the Beleghata canal with a

road by its side. There are several roads on the right side of the image, near

the middle and top portions. These are not very obvious from the images.

A bridge cuts the river near the top of the image. This is referred to as the

first bridge.

GAPS-clustering is applied on this image data set while varying the number

of clusters K from 2 to 16. For each obtained partitioning, the values of

four cluster validity indices (Sym-index, PS-index, I-index and XB-index)

are calculated. Sym-index obtained its optimal value for K∗ = 6. The cor-
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Figure 4.17: Segmented Kolkata image obtained by GAPS-clustering with

Sym-index (provides K∗ = 6)

responding segmented image is shown in Figure 4.17 (note that here differ-

ent segments are shown using different colors). Similarly I-index, PS-index

and XB-index obtained their optimum values for K∗ = 8, K∗ = 3 and

K∗ = 2, respectively, and the corresponding segmented images are shown in

Figures 4.18, 4.19 and 4.20, respectively. The segmentations corresponding

to the optimum values of Sym-index and I-index are able to separate almost

all the regions equally well (Figures 4.17 and 4.18). Even the thin outline of

the bridge on the river has been automatically identified (encircled in Figure

4.17). This again illustrates the superiority of symmetry based distance for

detecting a small cluster. To validate the results, 932 pixel positions were

manually selected from 7 different land cover types which were labeled accord-

ingly. For these points the Minkowski Score (MS) [98] (defined in Equation

3.22 of Chapter 3) is calculated after application of GAPS-clustering for the
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Figure 4.18: Segmented Kolkata image obtained by GAPS-clustering with

I-index (provides K∗ = 8)

optimal cluster number indicated by each of the indices. The MS scores cor-

responding to Sym-index, I-index, PS-index and XB-index are 0.865, 0.8799,

1.3692 and 1.4319, respectively, again demonstrating the superior result ob-

tained with GAPS-clustering in conjunction with Sym-index. PS-index and

XB-index perform poorly for this image. For the segmented SPOT Kolkata

image, Davies Bouldin (DB) index [56] has been calculated corresponding

to the optimal values of Sym-index, I-index, PS-index and XB-index. The

values are listed in Table 4.5. As smaller values of DB are preferable, it again

signifies that segmentation corresponding to Sym-index is the best. Figure

4.15(b) shows the variations of the values of Sym-index with the number of

clusters for this data set.
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Figure 4.19: Segmented Kolkata image obtained by GAPS-clustering with

PS-index (provides K∗ = 3)

4.7.3 IRS Image of Mumbai

The IRS image of Mumbai was obtained using the LISS-II sensor. It is

available in four bands, viz., blue, green, red and near infra-red. Fig. 4.21(a)

shows the IRS image of a part of the city of Mumbai in the near infra red

band. As can be seen, the elongated city area is surrounded on three sides

by the Arabian sea. Towards the bottom right of the image, there are several

islands, including the well known Elephanta island. The dockyard is situated

on the south eastern part of Mumbai, which can be seen as a set of three

finger like structure. This image has been classified into seven clusters [133].

Here also number of clusters is varied from 2 to 16. GAPS-clustering with

Sym-index and PS-index get their optimal values for K∗ = 6 where as GAPS-
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Figure 4.20: Segmented Kolkata image obtained by GAPS-clustering with

XB-index (provides K∗ = 2)

clustering with I-index and XB-index get their optimum values for K∗ =

5 and K∗ = 3, respectively. The segmented images corresponding to the

optimum values of Sym-index and I-index are shown in Figures 4.22 and

4.23, respectively. In case of the former, the water (Arabian sea) surrounding

Mumbai gets differentiated into two distinct regions, based on the difference

in their spectral properties. The other landmarks e.g., the river above the

bridge (north) and dockyard (south) (encircled in Figure 4.22) are detected

reasonably well. In the segmentation obtained by GAPS-clustering using I-

index, some landmarks, e.g., the river just above the bridge on its left end

are not so well delineated. The DB index [56] values corresponding to the

segmented images of Mumbai given by the optimal values of Sym-index/PS-

index, I-index and XB-index are listed in Table 4.5. As smaller values of

DB indicates better clustering, the result signifies that the segmentation
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Figure 4.21: (a) IRS image of Mumbai in the NIR band with histogram

equalization (b) Variation of Sym-index with the number of clusters for IRS

image of Mumbai using GAPS

Table 4.5: DB-index values of the segmented Kolkata and Mumbai satellite

images corresponding to the optimal values of four cluster validity indices

Validity index SPOT image of Kolkata IRS image of Mumbai

Sym-index 0.669 1.586

I index 0.775 1.979

PS-index 0.800 1.586

XB-index 0.724 5.196

corresponding to Sym-index is the best. Figure 4.21(b) shows the variation

of Sym-index with the number of clusters for this data set.

4.8 Discussion and Conclusions

Identifying the appropriate model and the model order are two crucial is-

sues in unsupervised classification. A new symmetry based cluster validity

function, Sym-index, is proposed in this chapter that exploits the property

of point based symmetry to indicate both the appropriate number of clusters

as well as the clustering algorithm. An elaborate description of the different

components of Sym-index and an intuitive explanation of how they compete
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Figure 4.22: Segmented Mumbai image obtained by GAPS-clustering with

Sym-index/PS-index (provides K∗ = 6)

with each other to identify a proper clustering are provided. A mathematical

justification of the newly proposed Sym-index is derived by establishing the

relationship of the Sym-index with the well-known Dunn’s index (however,

note that Sym-index is not a generalization of the Dunn’s index). The ef-

fectiveness of Sym-index is demonstrated for four artificially generated and

three real life data sets. Six clustering algorithms, viz., GAPS, GAK-means,

average linkage algorithm, two versions of the EM algorithm and Self Or-

ganizing Map are used as the underlying partitioning methods. The experi-

mental results establish the superiority of the newly proposed Sym-index as

compared to four existing validity indices, namely, PS index, I-index, CS-

index and XB-index as long as the clusters present in it have a point-based

symmetrical structure irrespective of their geometrical shape and convexity.
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Figure 4.23: Segmented Mumbai image obtained by GAPS-clustering with

I-index (provides K∗ = 5)

Thereafter the point symmetry based distance is incorporated in eight ex-

isting cluster validity indices. These indices exploit the property of point

symmetry to indicate both the appropriate number of clusters as well as

the appropriate partitioning. Results show that the incorporation of point

symmetry distance in the definitions of existing eight cluster validity indices

make them more effective in determining the proper number of clusters and

the appropriate partitioning from data sets having clusters of different shapes

and sizes as long as they possess the property of point symmetry. In [172],

results of the newly proposed symmetry based cluster validity indices have

also been shown for data sets having clusters of different densities. Results

show that if the underlying partitioning technique is able to detect the ap-

propriate partitioning in this case, some of the proposed symmetry based

cluster validity indices, including Sym-index, are able to identify them.
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Finally, an application of Sym-index in conjunction with the GAPS-clustering

technique is described for image segmentation. Its effectiveness, vis-a-vis,

other well-known validity indices is first established for segmenting one arti-

ficially generated image. Thereafter, it is used for classifying different land

cover types in two multispectral satellite images. The choice of the under-

lying clustering technique is important. Although the Sym-index has the

capability of indicating the proper symmetric clusters, the underlying clus-

tering technique should be able to first detect them. For example, both the

well-known K-means and EM clustering algorithms are unable to find out the

proper clustering from the data sets like the synthetic image. In contrast,

GAPS-clustering [24] is able to tackle such situations as is evident from its

consistently good performance.

The present work determines the appropriate algorithm and the number of

clusters in an iterated fashion. The next chapter deals with an approach of

automating this process.
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Chapter 5

Symmetry Based Automatic

Clustering
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5.1 Introduction

In the last chapter, the appropriate algorithm and the number of clusters from

a data set are determined in an iterated fashion. In this chapter an attempt

has been made to automate this process, i.e., to determine the number of

clusters and the appropriate partitioning in an one-shot process.

In this chapter, a variable string length GA (VGA) based clustering method

is used as the underlying segmentation technique. Here assignment of points

to different clusters is done based on the PS distance described in Chapter

3. The Sym-index is used as the optimizing criterion. The characteristic fea-

tures of the proposed clustering technique, referred to as VGAPS-clustering,

are as follows. Use of variable string length GA allows the encoding of a

variable number of clusters. The Sym-index, used as the fitness function,

provides the most appropriate partitioning even when the number of clus-

ters, K, is varied. Again use of GA enables the algorithm to come out of

local optima, a typical problem associated with local search methods like the

K-means. Finally use of the PS-distance enables the evolution of clusters of

any shape and size as long as they possess the symmetry property. Using

finite Markov chain theory, a convergence proof of VGAPS-clustering to a

globally optimal partition is also established. Thereafter this single objec-

tive automatic clustering technique is extended to develop a multiobjective

clustering technique by utilizing the search capability of AMOSA described

in Chapter 2.

5.2 Description of VGAPS [26]

In this section a new clustering technique based on the optimization of Sym-

index using genetic algorithms is described in detail. It includes determi-

nation of the number of clusters as well as the appropriate clustering of the

data set. This genetic clustering technique is subsequently referred to as vari-

able string length genetic clustering technique with point symmetry based

distance (VGAPS).

167



5.2.1 Chromosome Representation and Population

Initialization

In VGAPS clustering, the chromosomes are made up of real numbers which

represent the coordinates of the centers of the partitions. If chromosome i

encodes the centers of Ki clusters in d dimensional space then its length li is

taken to be d∗Ki. For example, in three dimensional space, the chromosome

< 12.3 1.4 5.6 22.1 0.01 10.2 0.0 5.3 15.3 13.2 10.2 7.5 > encodes 4

cluster centers, (12.3, 1.4, 5.6), (22.1, 0.01, 10.2), (0.0, 5.3, 15.3) and (13.2,

10.2, 7.5). Each center is considered to be indivisible. Each string i in the

population initially encodes the centers of a number, Ki, of clusters, such

that Ki = (rand()mod(Kmax − 1)) + 2. Here, rand() is a function returning

an integer, and Kmax is a soft estimate of the upper bound of the number of

clusters. The number of clusters will therefore range from two to Kmax. The

Ki centers encoded in a chromosome are randomly selected distinct points

from the data set.

5.2.2 Fitness Computation

Fitness computation is composed of two steps. Firstly points are assigned

to different clusters using the point symmetry based distance, dps as done in

GAPS (described in Section 3.6.2 of Chapter 3). Next, the cluster validity

index, Sym-index (defined in Section 4.2.1 of Chapter 4), is computed and

used as a measure of the fitness of the chromosome. This fitness function is

maximized using the genetic algorithm.

5.2.3 Genetic Operations and Terminating Criterion

The following genetic operations are performed on the population of strings

for a number of generations.
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Selection

The selection operator randomly selects a chromosome from the previous

population according to the distribution given by

P (si) =
F (si)

∑N
j=1 F (sj)

(5.1)

where F (si) represents the fitness value (Sym-index) of the string si in the

population and N denotes the population size. Here, a string receives a

number of copies that is proportional to its fitness in the population.

Crossover

For the purpose of crossover, the cluster centers are considered to be indivisi-

ble, i.e., the crossover points can only lie in between two cluster centers. The

crossover operation, applied stochastically, must ensure that information ex-

change takes place in such a way that both the offspring encode the centers of

at least two clusters. For this purpose, the operator is defined as follows [133]:

Let parent chromosomes P1 and P2 encode M1 and M2 cluster centers, re-

spectively. The crossover point, τ1, in P1 is generated as τ1=rand() mod M1.

Let τ2 be the crossover point in P2; it may vary in between [LB(τ2),UB(τ2)],

where LB(τ2) and UB(τ2) indicate the lower and upper bounds of the range

of τ2, respectively. LB(τ2) and UB(τ2) are given by

LB(τ2) = min[2, max[0, 2− (M1 − τ1)]] and UB(τ2) = [M2 −max[0, 2− τ1]].

Therefore τ2 is given by

τ2 = LB(τ2) + rand()mod(UB(τ2)− LB(τ2)), if(UB(τ2) ≥ LB(τ2)),

τ2 = 0 otherwise.

It can be verified by some simple calculations that if the crossover points τ1

and τ2 are chosen according to the above rules, then none of the offspring

generated would have less than two clusters.

Crossover probability, pc, is selected adaptively as in GAPS described in

Section 3.6.4 of Chapter 3.
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Mutation

Three types of mutations are considered here.

1. Each cluster center encoded in a chromosome is replaced with a random

variable drawn from a Laplacian distribution, p(ǫ) ∝ e−
|ǫ−µ|

δ , where the

scaling factor δ sets the magnitude of perturbation. Here, µ is the value

at the position which is to be perturbed. The scaling factor δ is chosen

equal to 1.0. The old value at the position is replaced with the newly

generated value. Here, this type of mutation operator is applied for all

dimensions independently.

2. One randomly generated cluster center is removed from the chromo-

some, i.e., the total number of clusters encoded in the chromosome is

decreased by 1.

3. The total number of clusters encoded in the chromosome is increased

by 1. One randomly chosen point from the data set is encoded as the

new cluster center.

Any one of the above mentioned types of mutation is applied on each chro-

mosome of the population with a probability of mutation, pm. The mutation

probability is selected adaptively for each chromosome as in GAPS (described

in Section 3.6.5 of Chapter 3).

Termination Criterion

In VGAPS, the processes of fitness computation, selection, crossover, and

mutation are executed for a maximum number of generations. The best

string having the largest fitness (i.e., the largest Sym-index value) seen up to

the last generation provides the solution to the clustering problem. We have

implemented elitism at each generation by preserving the best string seen

up to that generation in a location outside the population and also inside

the population by replacing the string with lowest fitness value. Thus on

termination, this location contains the centers of the final clusters.
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5.2.4 On The Convergence Property of VGAPS [26]

In this chapter the global convergence of VGAPS to the optimum value of

Sym-index will be proved along the similar lines that of GAPS (derived in

Section 3.7 of Chapter 3) by deriving some conditions on the parameters of

VGAPS that ensure the global convergence.

Here the state space comprises the populations containing strings represent-

ing partitions with K clusters where K ∈ [Kmin, Kmax]. To prove the follow-

ing theorem P is needed to be a primitive matrix. Therefore the first step

of our investigation contributes in finding the conditions on the operators

necessary for the matrix P to be primitive. The transition matrix P reflects

the probabilistic changes of the chromosomes in the population introduced

due to the usage of operators in VGAPS. This transition matrix, P can be

evaluated as a product of four different stochastic matrices as

P = K×C×M× S. (5.2)

K, C, M and S in Equation 5.2 describe intermediate transitions due to K-

means like update center operator, crossover operator, mutation and selection

operators, respectively. It is easy to consider that all these matrices are

stochastic matrices.

Propositions 1 and 2 of Chapter 3 together state that in order to show that the

matrix P is primitive, it would be sufficient to find the conditions necessary

to be imposed, for M to be positive and S to be column-allowable.

To Check Whether the Mutation Matrix is Positive

If the resultant of a mutation operation yields a valid string s ∈ S (S denotes

the state space as mentioned in Section 3.7 of Chapter 3) when works upon

any other valid string then the matrix M is positive. The mutation operator

defined in Section 5.2.3 assures the fulfillment of the above condition. The

mutation operator is of three types. The first type is for obtaining a valid

position from any other valid position. By generating a random variable

using a Laplacian distribution, there is a non-zero probability of generating

any valid position from any other valid position, while the probability of gen-

erating a value near the old value is more. The second type is for decreasing
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the value of K i.e., from a chromosome consisting of K1 number of centers,

another chromosome of having K2 number of clusters, where K1 > K2, is

generated by this type of mutation operation. The third type of mutation

operator is for increasing the value of K in a particular chromosome, i.e.,

if a chromosome encodes K1 clusters, where K1 < Kmax, then by the third

type of mutation operation some new cluster centers can be included in it,

increasing in number of clusters.

Therefore it can be concluded that the mutation operation can change any

valid string to any other valid string in the search space with nonzero prob-

ability, making the transition matrix, M, corresponding to the above men-

tioned mutation operator positive.

Conditions on Selection

The probability of survival of a string in the current population depends on

the fitness value of the string; so is the transition matrix due to selection,

S. It can not be assured that S is column allowable or not if the fitness

function is defined as only the Sym-index value of that particular partition.

The following modification in the fitness function is incorporated to make S

a column allowable matrix. Let

F (s) = cs × Symmax + Sym(s). (5.3)

Here, Symmax represents the maximum Sym-index value that has been found

till the present generation and cs ≥ 1. Sym(s) is the Sym-index value of the

sth string. This will make every chromosome of the population to possess

a strictly positive value. Therefore, the probability that the present state

remains same after the selection, sii can be bounded as follows:

sii ≥
F (s1)

∑N
l=1 F (sl)

× F (s2)
∑N

l=1 F (sl)
. . .× F (sN)

∑N
l=1 F (sl)

=

∏N
l=1 F (sl)

(
∑N

l=1 F (sl))N
> 0 ∀i ∈ S.

Here sl denotes the lth string of the current population. Even though this

bound changes with the generation, it is always strictly positive; hence se-

lection matrix S is column-allowable.
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Convergence Proof

Theorem: Let X(t) = Sym(s∗(t)), where s∗(t) is the string with maximum

Sym-index value, encountered during the evolution of VGAPS till the time

instant t. Let the mutation operator be the same as defined in subsection

5.2.3, and the fitness function be as defined in Equation 5.3. Then

lim
t→∞

Pr{X(t) = Sym∗} = 1 (5.4)

where Sym∗ = max{Sym(i)|i ∈ T }, T is the set of all legal strings.

Proof: According to the proof provided in [Ref. [159], Theorem 6], a canon-

ical GA whose transition matrix is primitive and which maintains the best

solution found over generations converges to the global optimum in the sense

given in Equation 5.4. It is proved in Proposition 2 that the transition matrix

of VGAPS-clustering with mutation operator same as defined in subsection

5.2.3, and the fitness function as defined in Equation 5.3 is positive. Since

every positive matrix is primitive, thus the transition matrix of VGAPS is

also primitive. Moreover, VGAPS uses elitist model of GA, i.e., it preserves

the best solution obtained upto the present time instant. Thus, the above

theorem follows from ([Ref. [159], Theorem 6]).

The above theorem implies that X(t), the maximum Sym-index value of the

strings found by VGAPS upto the instant t, converges to the global optimum

Sym∗, with probability 1 when t goes to infinity.

5.3 Data Sets Used and Implementation Re-

sults

This section provides a description of the data sets and the implementation

results of the proposed algorithm. Five artificial and three real life data sets

are used for the experiments.
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5.3.1 Data Sets Used

1. Artificial data sets used: Sym 3 2, AD 5 2, Bensaid 3 2 and two more

3-dimensional data sets.

(a) Sym 3 2: This data set is described in Section 3.8.1 of Chapter 3.

(b) AD 5 2: This data set is described in Section 3.8.1 of Chapter 3.

(c) Bensaid 3 2: This data set is described in Section 3.8.1 of Chapter

3.

(d) 3dsym 3 2: This data set contains 398 points distributed on two

non-overlapping ellipsoidal shells in three dimensions as shown in

Figure 5.1(a).

(e) 3dsym 3 3: This data set contains 598 points distributed on two

non-overlapping ellipsoidal shells and in one elliptical shaped clus-

ter in three dimensions as shown in Figure 5.1(b).
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Figure 5.1: (a) 3dsym 3 2 dataset (b) 3dsym 3 3 dataset

2. Real-life data sets: The 3 real life data sets were obtained from [2].

These are Iris, Cancer and Newthyroid described in Section 3.8.1 of

Chapter 3.
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Table 5.1: Comparing the number of clusters found on the experimental

data sets by VGAPS-clustering using Sym-index, PS-index and I-index as

the cluster objective function for computing fitness, GCUK-clustering and

HNGA-clustering. Here AC denotes actual number of clusters present in the

data and OC denotes the obtained number of clusters.

Data Set AC OC by VGAPS using OC by different methods

Sym I PS VGAPS GCUK HNGA

Sym 3 2 3 3 8 3 3 3 16

AD 5 2 5 5 6 4 5 5 5

Bensaid 3 2 3 3 3 3 3 2 3

3dsym 3 2 2 2 3 9 2 8 5

3dsym 3 3 3 3 4 9 3 8 17

Iris 3 3 3 2 3 2 2

Cancer 2 2 2 2 2 2 2

Newthy 3 3 7 8 3 8 5

roid

5.3.2 Results and Discussions

As already discussed in detail in Section 3.8.2 of Chapter 3, a proper choice

of the parameters is crucial for good performance of genetic algorithms.

In VGAPS-clustering, as in GAPS, the population size is taken to be equal

to 100. Kmin (minimum number of clusters) and Kmax (maximum number of

clusters) are set equal to 2 and
√

n, respectively, where n is the total number

of data points in the particular data set. VGAPS is executed for a total of

50 generations.

In order to evaluate the proposed method, we performed two types of exper-

iments. At first we show that VGAPS optimizing Sym-index performs better

than VGAPS optimizing two other indices, viz., PS-index [43] and I-index

[132]. After that, we explore the properties of the VGAPS optimizing Sym-

index and compare its performance with other genetic clustering methods,
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Figure 5.2: Clustered Sym 3 2 after application of (a) VGAPS-clustering

where 3 clusters are detected (b) GCUK-clustering where 3 clusters are de-

tected (c) HNGA-clustering where 16 clusters are detected

which do not need knowledge about the number of clusters a priori.

Exploring Sym-index as Fitness Function

In the first experiment, we establish the effectiveness of using the Sym-index

with VGAPS-clustering vis-a-vis another point symmetry based validity in-

dex, PS-index [43] and an Euclidean distance based cluster validity index,

I-index [132]. The number of clusters obtained after applying VGAPS opti-

mizing these three validity indices separately for all the data sets are shown in
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Figure 5.3: Clustered AD 5 2 using (a) VGAPS-clustering where 5 clusters

are detected (b) GCUK-clustering where 5 clusters are detected (c) HNGA-

clustering where 5 clusters are detected

Table 5.1. It can be seen from the table that VGAPS-clustering with Sym-

index is able to find out the proper cluster number from data sets having

symmetrical shaped clusters. VGAPS-clustering with I-index is, in general,

able to find the proper cluster number from data sets with spherically sym-

metrical structure but it is not able to detect other shaped clusters. It is

because I-index essentially prefers hyperspherical clusters, which is not the

case for Sym 3 2, 3dsym 3 2 and 3dsym 3 3. VGAPS-clustering with PS-

index is able to detect the proper clusters from those data sets where the

clusters have strong point symmetry. However, as discussed in Section 3.2
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Figure 5.4: (a) Clustered Bensaid 3 2 by VGAPS-clustering and HNGA-

clustering where 3 clusters are detected (c) Clustered Bensaid 3 2 by GCUK-

clustering where 2 clusters are detected

of Chapter 3 of this thesis, the definition of point symmetry distance in PS-

index precludes the detection of symmetrical interclusters. Thus it fails for

AD 5 2 which has clearly symmetrical interclusters.

Exploring the VGAPS-clustering

In this section, we compare the performance of the VGAPS-clustering (in

conjunction with Sym-index) with those of the GCUK-clustering [16] and a

recently developed HNGA clustering [179]. GCUK clustering utilizes Davies-

Bouldin [56] cluster validity index for computing the fitness of the chromo-

somes. In HNGA [179], a weighted sum validity function (WSVF), which is

a weighted sum of several normalized cluster validity functions, is used for

optimization.

Table 5.1 shows the number of clusters identified by the three clustering

algorithms for all the data sets. As is evident from Table 5.1, VGAPS is able

to find out the appropriate number of clusters and the proper partitioning for

all the data sets. Figures 5.2(a), 5.3(a), 5.4(a), 5.5(a), and 5.6(a) show the

final partitionings obtained after application of VGAPS on Sym 3 2, AD 5 2,
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Figure 5.5: Clustered 3dsym 3 2 using (a) VGAPS-clustering where 2 clusters

are detected (b) GCUK-clustering where 8 clusters are detected (c) HNGA-

clustering where 5 clusters are detected

Bensaid 3 2, 3dsym 3 2, and 3dsym 3 3, respectively. Although for AD 5 2,

VGAPS is able to detect the clusters reasonably well, it is found to somewhat

over-approximate the central cluster (which extends to the left).

The results on real-life data sets are quantitatively compared with respect to

the Minkowski scores [98] described earlier in Section 3.8.3 of Chapter 3.

Final clustering results obtained after the application of GCUK algorithm on

the five artificial data sets are also shown in Figures 5.2(b), 5.3(b), 5.4(b),

5.5(b) and 5.6(b), respectively. Results shown in Table 5.1 reveals that

GCUK-clustering is able to determine the proper cluster number only for
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Figure 5.6: Clustered 3dsym 3 3 using (a) VGAPS-clustering where 3 clusters

are detected (b) GCUK-clustering where 8 clusters are detected (c) HNGA-

clustering where 17 clusters are detected

Sym 3 2, AD 5 2, and Cancer data sets. However, for Sym 3 2 even though

GCUK-clustering is able to detect the proper number of clusters, the final

partitioning identified by it (shown in Figure 5.2(b)) is not proper. Figures

5.2(c), 5.3(c), 5.4(a), 5.5(c) and 5.6(c) show, respectively, the clustering re-

sults obtained after application of HNGA-clustering on five artificial data

sets. Again, results shown in Table 5.1, reveal that HNGA-clustering is able

to determine the proper cluster number only for AD 5 2, Bensaid 3 2 and

Cancer data sets. Thus it is easy to conclude that HNGA-clustering is only

able to find out hyperspherical clusters from a data set but not any other
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Table 5.2: Minkowski Scores obtained by three algorithms for all data sets

used here for experiment

Data Set VGAPS-clustering GCUK-clustering HNGA-clustering

Sym 3 2 0.12± 0.00 1.05± 0.02 0.85± 0.02

AD 5 2 0.42± 0.02 0.14± 0.001 0.10± 0.002

Bensaid 3 2 0± 0.00 0.62± 0.02 0± 0.00

3dsym 3 2 0.0± 0.00 1.01± 0.02 1.12± 0.012

3dsym 3 3 0.0± 0.00 1.1± 0.03 1.21± 0.01

Iris 0.62± 0.02 0.85± 0.01 0.85± 0.025

Cancer 0.36± 0.001 0.38± 0.02 0.38± 0.023

Newthyroid 0.58± 0.03 0.83± 0.021 0.84± 0.022

shaped clusters. The main reason behind such performance is that it opti-

mizes a convex combination of some cluster validity indices all of which are

only able to detect hyperspherical shaped clusters.

Minkowski Score (MS) [98] (defined in Equation 3.22 of Chapter 3) of the

resultant partitionings are calculated after application of all the three algo-

rithms on both the artificial and real-life data sets used here for the experi-

ments.

Each of the above mentioned three algorithms are executed ten times for

each data set. The average MS scores and their standard deviations for all

the experimental data sets after application of the three algorithms are given

in Table 5.2. Except for AD 5 2, VGAPS-clustering is found to provide the

lowest MS values for the other data sets, which indicate that the partitionings

corresponding to VGAPS-clustering are the best among the three clustering

algorithms. ANOVA [5] statistical analysis is performed on the combined

results of the three algorithms. The One-Way ANOVA procedure produces a

one-way analysis of variance for a quantitative dependent variable (here it is

MS value) by a single independent variable (here it is the algorithm). Anal-

ysis of variance is used to test the hypothesis that several means are equal.

From the statistical test ANOVA, it is found that the difference in the mean

MS values obtained by VGAPS-clustering with those obtained by GCUK-
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clustering and HNGA-clustering algorithms, are statistically significant at

the level of 0.05 for all data sets. This indicates the better performance

of VGAPS as compared to GCUK-clustering and HNGA-clustering. For

AD 5 2, HNGA-clustering performs the best in terms of MS score and the

difference in the mean MS values obtained by HNGA and VGAPS clustering

techniques is statistically significant with significance value 2.4603e− 008.

5.4 VAMOSA: Symmetry Based Multiobjec-

tive Clustering Technique for Automatic

Evolution of Clusters [171]

The VGAPS clustering technique optimizes a single cluster validity mea-

sure, namely the point symmetry based cluster validity index, Sym-index.

However, a single cluster validity measure like Sym-index is seldom equally

applicable for different kinds of data sets with different characteristics. Hence

it is necessary to simultaneously optimize several validity measures that can

capture the different data characteristics. In order to achieve this, in this

chapter, the problem of clustering a data set is posed as one of multiob-

jective optimizations (MOO) [60], where search is performed over a number

of, often conflicting, objective functions. The newly developed simulated an-

nealing based multiobjective optimization technique, AMOSA [27], described

in Chapter 2, is used here to determine the appropriate cluster centers and

the corresponding partitioning from a data set. The resultant technique is

referred to as VAMOSA. Here encoding of a variable number of cluster cen-

ters, and the assignment of the points to the different clusters are done as

in VGAPS (discussed in Section 5.2.1 and 5.2.2 of this chapter). Two clus-

ter validity measures are optimized simultaneously, the well-known XB-index

[206] and the recently developed point symmetry distance based Sym-index

(defined in Section 4.2.1 of Chapter 4). Note that any other and any number

of objective functions could be used instead of the above mentioned two.

For computing these two validity indices, the cluster centers are extracted
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from a string in AMOSA. Let there be K number of cluster centers encoded

in a particular string. Let these be denoted as C = c1, c2, . . . , cK . The XB-

index [206] is defined as a function of the ratio of the total variation σ to the

minimum separation sep of the clusters. For the crisp XB-index, σ and sep are

written as: σ(C;X) =
∑K

i=1

∑ni
k=1 d2

e(ci, x
i
k), and sep(C) = mini6=j{‖ci−cj‖2},

where ‖.‖ is the Euclidean norm, and de(ci, x
i
k) is the Euclidean distance

between the kth point of the ith cluster, xi
k, and the cluster center ci, and ni

denotes the number of points present in the ith cluster. C and X represent

the set of cluster centers and the data set, respectively. The crisp version of

the XB-index is then written as

XB =
σ(C;X)

sep(C)
=

∑K
i=1(

∑ni
k=1 d2

e(ci, x
i
k))

n(mini6=j(‖ci − cj‖2)
.

Note that when the partitioning is compact and good, the total deviation (σ)

should be low while the minimal separation (sep) between any two cluster

centers should be high. Thus, the objective is therefore to minimize the

XB-index for achieving the proper clustering. The second objective function

is the newly defined point symmetry distance based Sym-index (defined in

Section 4.2.1 of Chapter 4). Thus the two objective functions of VAMOSA

are f1 = XB and f2 = 1
Sym

. These two objective functions are minimized

simultaneously in VAMOSA using the search capability of AMOSA.

Here mutation operation similar to VGAPS (described in detail in Section

5.2.3 of this Chapter) is used. Finally the best solution is selected from the

final archive of AMOSA following the procedure mentioned in Section 3.9.1

of Chapter 3.
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Figure 5.7: AD 10 2
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Figure 5.8: Automatically clustered Mixed 3 2 after application of (a) VA-

MOSA/VGAPS clustering technique for K = 3 (b) MOCK clustering tech-

nique for K = 2 (c) GCUK-XB clustering technique for K = 5.

5.4.1 Data Sets Used for the Experiment

Eight data sets are used for the experiment: four of them are artificial data

(Mixed 3 2, Sym 3 2, AD 5 2 and AD 10 2) and four are real-life data sets

(Iris, Cancer, Newthyroid and LungCancer). Real-life data sets are obtained

from [2].

1. Mixed 3 2: This data set is described in Section 3.8.1 of Chapter 3.

2. Sym 3 2: This data set is described in Section 3.8.1 of Chapter 3.
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Figure 5.9: Automatically clustered Sym 3 2 after application of (a) VA-

MOSA/VGAPS clustering technique for K = 3 (b) MOCK clustering tech-

nique for K = 2 (c) GCUK-XB clustering technique for K = 4.

3. AD 5 2: This data set is described in Section 3.8.1 of Chapter 3.

4. AD 10 2: This data set, used in Ref. [21], consists of 500 two dimen-

sional data points distributed over 10 different clusters. Some clusters

are overlapping in nature. Each cluster consists of 50 data points. This

data set is shown in Figure 5.7.

5. Iris: This data set is described in Section 3.8.1 of Chapter 3.

6. Cancer: This data set is described in Section 3.8.1 of Chapter 3.

7. Newthyroid: This data set is described in Section 3.8.1 of Chapter 3.
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Figure 5.10: Automatically clustered AD 5 2 after application of (a) VA-

MOSA clustering technique for K = 5 (b) VGAPS clustering technique for

K = 5.

8. LungCancer: This data set is described in Section 3.8.1 of Chapter 3.

5.4.2 Experimental Results

The parameters of the proposed VAMOSA clustering technique are as follows:

Tmax = 100, Tmin = 0.00001, α = 0.8, SL = 200 and HL = 100. Here

Kmax is set equal to
√

n, where n is the size of the data set. For the purpose

of comparison, another MO clustering technique, MOCK [81] is also executed

on the above mentioned data sets with default parameter settings. The source

code for MOCK is obtained from (http://dbkgroup.org/handl/mock/). In

MOCK, the best solution from the final Pareto optimal front is selected by

GAP-statistics [196]. Note that for every data set used here for the experi-

ment, the actual class labels of all the data points are available. Thus in order

to quantify the quality of the obtained partitionings by different algorithms,

their corresponding Minkowski Scores (MS) [98] (defined in Equation 3.22

of Chapter 3) are computed. The number of clusters identified by the best

solution of the proposed VAMOSA clustering technique and MOCK cluster-

ing technique, and the Minkowski Score (MS) values of the corresponding

partitionings are reported in Table 5.3.
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Figure 5.11: Automatically clustered AD 5 2 after application of (a) MOCK

clustering technique for K = 6 (b) GCUK-XB clustering technique for K = 5.

In order to show the efficacy of the proposed MO clustering technique over

existing single objective clustering techniques, two recently developed ge-

netic algorithm based automatic clustering techniques, genetic clustering for

unknown K (GCUK clustering) [16] and VGAPS clustering (described in

Section 5.2 of Chapter 5), are also executed on the above mentioned eight

data sets. These single objective automatic clustering techniques provide a

single solution after their execution. GCUK clustering technique optimizes

an Euclidean distance based cluster validity index, XB-index [206], by using

the search capability of genetic algorithms to automatically determine the

appropriate partitioning from data sets. The parameters of the GCUK-XB

clustering technique are as follows: population size=100, number of genera-

tions=40, probability of mutation=0.2 and probability of crossover=0.8 (as

specified in [16]). The parameters of the VGAPS clustering technique are

set as detailed in Section 5.3.2 of Chapter 5. The number of clusters auto-

matically determined by these clustering techniques for the eight data sets

are also reported in Table 5.3. The MS values are also calculated for the

partitionings obtained by these two single objective clustering techniques for

these eight data sets. These are also reported in Table 5.3. Here the best MS

values obtained by the algorithms over five runs for all data sets are reported.

1. Mixed 3 2: As can be seen from Table 5.3, both the proposed VA-
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Figure 5.12: Automatically clustered AD 10 2 after application of (a) VA-

MOSA clustering technique for K = 10 (b) MOCK clustering technique for

K = 6.

MOSA and the existing point symmetry based clustering technique,

VGAPS, are able to detect the appropriate number of clusters and the

proper partitioning from this data set. The corresponding partition-

ing is shown in Figure 5.8(a). MOCK fails to detect the appropriate

number of clusters and the appropriate partitioning. It merges two

overlapping clusters into a single cluster. The corresponding partition-

ing is shown in Figure 5.8(b). GCUK optimizing XB-index is also not

able to detect the appropriate partitioning. The partitioning provided

by GCUK-XB is shown in Figure 5.8(c).

2. Sym 3 2: As seen from Table 5.3, both the symmetry based cluster-

ing techniques, proposed VAMOSA and VGAPS are able to detect the

proper number of clusters and the proper partitioning from this data

set. The corresponding partitioning is shown in Figure 5.9(a). MOCK

again merges the two overlapping clusters into one cluster and provides

K = 2 as the optimal number of clusters. The corresponding partition-

ing is shown in Figure 5.9(b). GCUK-XB clustering technique identifies

total K = 4 number of clusters from this data set. The corresponding

partitioning is shown in Figure 5.9(c). The MS scores reported in Table

5.3 also show the poorer performance of both MOCK and GCUK-XB
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Figure 5.13: Automatically clustered AD 10 2 after application of (a)

VGAPS clustering technique for K = 7 (b) GCUK-XB clustering technique

for K = 10.

clustering techniques for this data set.

3. AD 5 2: As can be seen from Table 5.3, for this data set the proposed

VAMOSA clustering technique performs much better than VGAPS

clustering technique. The corresponding partitionings are shown in

Figures 5.10(a) and 5.10(b), respectively. The best solution provided

by MOCK is not able to determine the appropriate number of clusters

from this data set. The corresponding partitioning is shown in Figure

5.11(a). GCUK clustering optimizing XB-index is able to detect the

appropriate number of clusters from this data set and the correspond-

ing partitioning is very near to the actual partitioning of the data set

(refer to Table 5.3). The corresponding partitioning is shown in Figure

5.11(b).

4. AD 10 2: For this data set, GCUK-XB clustering provides the best par-

titioning (shown in Figure 5.13(b)) and the corresponding MS value

is also the minimum (refer to Table 5.3). VAMOSA clustering tech-

nique is also able to detect the appropriate number of clusters from

this data set but the corresponding MS value is slightly higher than

that of GCUK-XB clustering (refer to Table 5.3). The corresponding
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Table 5.3: Number of clusters and the Minkowski Score (MS) values obtained

by VAMOSA clustering technique, another automatic MO clustering tech-

nique, MOCK, two single objective clustering techniques, VGAPS clustering

optimizing Sym-index and GCUK clustering optimizing XB-index, for all the

data sets used here for experiment.

DataSet AC VAMOSA MOCK VGAPS GCUK-XB

OC MS OC MS OC MS OC MS

Mixed 3 2 3 3 0.18 2 0.82 3 0.18 5 0.62

Sym 3 2 3 3 0.12 2 0.69 3 0.12 4 0.74

AD 5 2 5 5 0.25 6 0.39 5 0.42 5 0.39

AD 10 2 10 10 0.43 6 1.01 7 0.84 10 0.09

Iris 3 2 0.80 2 0.82 3 0.62 2 0.84

Cancer 2 2 0.32 2 0.39 2 0.36 2 0.38

Newthyroid 3 5 0.57 2 0.82 3 0.58 6 0.65

LungCancer 3 3 0.85 7 0.97 2 0.97 6 0.94

partitioning is shown in Figure 5.12(a). But both MOCK and VGAPS

clustering techniques are not able to detect the appropriate number of

clusters from this data set. The partitionings identified by both MOCK

and VGAPS clustering techniques for this data set are shown in Figures

5.12(b) and 5.13(a), respectively.

5. Iris: For this real-life data set, only VGAPS clustering technique is able

to determine the appropriate number of clusters. The corresponding

MS score is also the minimum (refer to Table 5.3). As this is a higher

dimensional data set, no visualization is possible. Other three clus-

tering algorithms, newly proposed VAMOSA, MOCK and GCUK-XB,

provide K = 2 as the optimal number of clusters, which is also often

obtained for many other methods for Iris data set. But the MS score

corresponding to VAMOSA for K = 2 is the minimum among these

three clustering techniques (refer to Table 5.3).

6. Cancer: For this data set all the four clustering techniques are able

to detect the appropriate number of clusters (K = 2 for this case).
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But the MS value obtained by VAMOSA clustering technique is the

minimum (refer to Table 5.3).

7. Newthyroid : For this real-life data set only the VGAPS clustering

technique is able to detect the appropriate number of clusters (K = 3

in this case). VAMOSA provides K = 5 as the optimal number of

clusters. But the MS value obtained by the final solution provided by

VAMOSA clustering technique is lesser than that obtained by VGAPS

(refer to Table 5.3). Both MOCK and GCUK-XB clustering techniques

are not able to determine the appropriate number of clusters from this

data set. MOCK attains the highest MS value compared to other three

comparing algorithms. For the purpose of comparison the final Pareto

optimal front obtained by VAMOSA clustering technique is shown in

Figure 5.15(a). The boxplots of the Minkowski Score values of the solu-

tions on the final Pareto optimal front provided by both VAMOSA and

MOCK clustering techniques are shown in Figure 5.14 for the purpose

of illustration. This figure reveals that the MS values over the final

Pareto optimal front provided by VAMOSA are much lesser than those

of MOCK clustering technique.

8. LungCancer: For this high dimensional data set only the proposed

VAMOSA clustering technique is able to detect the appropriate num-

ber of clusters. None of the other algorithms are able to detect the

correct number of clusters. The MS value obtained by VAMOSA is

again the minimum (refer to Table 5.3). The final Pareto optimal front

obtained by the proposed VAMOSA clustering technique is shown in

Figure 5.15(b).

Summary of Results

It can be seen from the above results that the proposed VAMOSA clustering

technique is able to detect the appropriate partitioning and the appropriate

number of clusters from most of the data sets used here for the experiments.

It outperforms another MO clustering technique, MOCK, and two single

objective genetic algorithm based clustering techniques. The superiority of

VAMOSA is also established on four real-life data sets which are of different
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characteristics with the number of dimensions varying from 4 to 56. Results

on the eight artificial and real-life data sets establish the fact that VAMOSA

is well-suited to detect the number of clusters automatically from data sets

having clusters of widely varying characteristics as long as they possess the

property of point symmetry.

We have also experimented with MOCK using our proposed method of select-

ing a single solution from the final non-dominated solution set (as described

in Section 3.9.1 of Chapter 3). We found that for AD 5 2 and AD 10 2,

MOCK was able to detect the appropriate number of clusters. (The use of

Gap Statistic however did not select these solutions as the best ones.) Even

then, while for AD 10 2 the MS value was 0.13 (better than VAMOSA), for

AD 5 2 it was 0.33 (which is poorer than 0.25 provided by VAMOSA).
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Figure 5.14: Boxplots of the Minkowski Scores of the Pareto optimal solutions

obtained by VAMOSA clustering Technique and MOCK clustering Technique

for Newthyroid data set. Here column ‘1’ denotes the VAMOSA clustering

technique and column ‘2’ denotes the MOCK clustering technique.

5.5 Discussion and Conclusions

Most of the clustering methods make prior assumptions about the structure

of the clusters. For example, GCUK-clustering, which is a genetic K-means

clustering technique for automatic determination of clusters, can only detect
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Figure 5.15: Pareto optimal front obtained by the proposed VAMOSA clus-

tering technique for (a) Newthyroid data set (b) LungCancer data set

equisized hyperspherical clusters from a data set. In this chapter the newly

defined point symmetry based distance is utilized to develop a variable string

length genetic clustering technique (VGAPS-clustering) which automatically

evolves the number of clusters present in a data set. It optimizes the Sym-

index, which is capable of detecting both the proper partitioning and the

proper number of clusters present in a data set. In VGAPS-clustering, the

assignment of points to different clusters is done based on the point sym-

metry distance rather than the Euclidean distance when the point is indeed

symmetric with respect to a center. Moreover, the use of adaptive muta-

tion and crossover probabilities helps VGAPS-clustering to converge faster.

Kd-tree based nearest neighbor search is utilized to reduce the computa-

tional complexity of computing the point symmetry based distance. The

global convergence property of the proposed VGAPS-clustering is also es-

tablished. The effectiveness of the VGAPS-clustering, as compared to two

recently proposed automatic clustering techniques, namely, GCUK-clustering

and HNGA-clustering, is demonstrated on five artificially generated and three

real-life data sets of different characteristics. Results on these eight data sets

establish the fact that VGAPS-clustering is well-suited to detect the number

of clusters and the proper partitioning from data sets having clusters of widely

varying characteristics, irrespective of their convexity, or overlap or size, as

long as they possess the property of symmetry. Based on these observations,

and the fact that the property of symmetry is widely evident in real-life
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situations, application of VGAPS-clustering to automatically determine the

proper number of clusters and the proper partitioning from different data

sets seems justified. Note that optimizing Sym-index is not inherent to a GA

framework. Any other optimization technique, such as Simulated Annealing

[13], may have been used instead.

Thereafter in this chapter, VGAPS-clustering technique is extended to de-

velop a multiobjective clustering technique. Two cluster validity measures,

one based on the newly developed point symmetry based distance, Sym-

index, and another based on the Euclidean distance, XB-index, are opti-

mized simultaneously. In this regard, the newly developed multiobjective

simulated annealing based technique, AMOSA, has been used in this chap-

ter. The effectiveness of the proposed clustering technique in detecting the

proper number of partitions and the proper partitioning is shown for four

artificial and four real-life data sets and the results are compared with those

obtained by another MO clustering technique, MOCK [81], two single ob-

jective automatic genetic clustering techniques, GCUK clustering optimizing

XB-index [16] and VGAPS clustering technique.

VGAPS as well as VAMOSA seek for clusters which are point symmetric

with respect to their centers. Thus they will fail if the clusters do not have

this property. Much further work is needed to investigate using different and

more objectives, and to test the VAMOSA approach still more extensively.

Selecting the best solution(s) from the Pareto optimal front is an important

problem in multiobjective clustering. A semi-supervised method of selecting

a single solution from the Pareto optimal front is used here. But this method

assumes that the labeling of the partial data points is known beforehand.

Thus some new unsupervised methods to choose the best solution from the

final Pareto optimal front have to be developed.

VGAPS and VAMOSA are able to detect the appropriate number of clusters

and the appropriate partitioning from data sets having symmetrical shaped

clusters. Thus these will fail for clusters having other shapes. Thus develop-

ing a clustering technique which can automatically determine the appropriate

number of clusters and the appropriate partitioning from data sets with clus-

ters having different shapes is another important research problem. The next
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chapter deals with this.
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Chapter 6

A Generalized Automatic

Clustering Algorithm in a

Multiobjective Framework
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6.1 Introduction

The newly developed single and multiobjective clustering techniques like

VGAPS and VAMOSA are able to automatically detect the number of clus-

ters and the appropriate partitioning from data sets having clusters of sym-

metrical shapes. But these algorithms fail for data sets having clusters other

than symmetrical shapes.

In this chapter we have developed a new multiobjective clustering technique

with encoding of cluster centers as in [131], which can detect the appropriate

number of clusters and the appropriate partitioning from data sets with many

different types of cluster structures. A newly developed simulated annealing

based multiobjective optimization technique, AMOSA, is used as the under-

lying optimization strategy. The concept of “multiple centers” corresponding

to each cluster is used in this chapter. Each cluster is divided into several

non-overlapping small hyperspherical sub-clusters and the centers of these

sub-clusters are encoded in a state to represent a particular cluster. Three

cluster validity indices are optimized simultaneously using the search capa-

bility of AMOSA. One of these cluster validity indices reflects the total com-

pactness of a particular partitioning, another represents the total symmetry

present in a particular partitioning and the last one measures, in a novel way,

the degree of “connectedness” of a particular partitioning. The superiority of

the proposed GenClustMOO in comparison with MOCK-clustering technique

[81], VAMOSA clustering technique (described in Section 5.4 of Chapter 5)

and a single objective genetic clustering technique, VGAPS-clustering (de-

scribed in Section 5.2 of Chapter 5), is shown for seven artificial data sets

(including most of the data sets used in [81]) and five real-life data sets

of varying complexities. In a part of the experiment, the effectiveness of

AMOSA as the underlying optimization technique in GenClustMOO is also

demonstrated in comparison to another evolutionary MO algorithm, PESA2

[50].
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6.2 Proposed Method of Multiobjective

Clustering [25]

This section describes the newly proposed multiobjective clustering tech-

nique, GenClustMOO, in detail.

6.2.1 State Representation and Archive Initialization

In GenClustMOO, a state of AMOSA comprises a set of real numbers which

represents the coordinates of the centers of the partitions. AMOSA at-

tempts to evolve an appropriate set of cluster centers and hence the as-

sociated partitioning of the data. Here, each cluster is divided into sev-

eral small non-overlapping hyperspherical sub-clusters. Then each cluster

is represented by the centers of these individual sub-clusters. Suppose a

particular state encodes the centers of K number of clusters and each clus-

ter is divided into C number of sub-clusters. If the data set is of dimen-

sion d, then the length of the state will be C × K × d. This concept of

representing one cluster using multi-centers is shown in Figure 6.1. Sup-

pose a particular state contains K = 2 number of clusters. Each clus-

ter is divided into 10 smaller sub-clusters, i.e., here C = 10. Let the

dimension (d) of the data set be 2. Suppose the center of the jth sub-

cluster of the ith cluster is denoted by ci
j = (cxi

j, cy
i
j). Then this state will

look like: < cx1
1, cy

1
1, cx

1
2, cy

1
2, . . . , cx

1
10, cy

1
10, cx

2
1, cy

2
1, . . . , cx

2
10, cy

2
10 >. Each

Figure 6.1: Example of representing clusters using multiple cluster centers.
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state i in the archive initially contains Ki number of clusters, such that

Ki = (rand()mod(Kmax − 1)) + 2. Here, rand() is a function returning an

integer, and Kmax is a soft estimate of the upper bound of the number of

clusters. The number of initial clusters will therefore lie between two and

Kmax. Our initialization procedure is motivated by that of Ref. [81]. Here

the initialization procedure is partly random and partly based on two dif-

ferent single-objective algorithms in order to obtain a good initial spread

of solutions. One third of the solutions in the archive are initialized after

running Single Linkage clustering algorithm [67] for different values of K.

These solutions perform well when clusters present in the data set are well-

separated. Another one third of the solutions in the archive are generated

using the K-means algorithm. These solutions perform well when clusters

present in the data set are hyperspherical in shape. The last one third of

the solutions are generated randomly, i.e., for these states the Ki centers

encoded in a state are randomly selected distinct points from the data set.

The initial partitioning is obtained using a minimum center distance based

criterion. For all the initial encoded solutions, C number of distinct points

are selected from each cluster randomly. These C ×K number of points are

encoded in that particular state.

6.2.2 Assignment of Points

For the purpose of assignment, each sub-cluster is considered as a separate

cluster. Here assignment is done based on the minimum Euclidean distance

criterion. A data point xj is assigned to the kth sub-cluster where

k = argminK×C
i=1 de(ci, xj).

Here de(ci, xj) denotes the Euclidean distance between sub-cluster center ci

and the data point xj. Thereafter, the partition matrix is formed in the

following way: u(kj) = 1 and u(ij) = 0, ∀i = 1 . . .K × C, k 6= i.
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6.2.3 Objective Functions Used

For the purpose of optimization, three different cluster validity indices are

considered. These three objective functions reflect three different aspects of

good clustering solutions. The first validity index quantifies the amount of

symmetry present in a particular partitioning. The second quantifies the

connectedness of the clusters and the third measures the compactness of the

partitionings in terms of the Euclidean distance. These indices are described

below.

The first cluster validity index to be optimized is the newly proposed sym-

metry based cluster validity index, Sym-index defined in Chapter 4.

6.2.4 Newly proposed Connectivity Based Cluster Va-

lidity Index: Con-index

In this chapter a new cluster validity index based on the concept of connect-

edness of the clusters is developed. This index is capable of detecting the

appropriate partitioning from data sets having clusters of any shape, size or

convexity as long as they are well-separated. The concept of relative neigh-

borhood graph (RNG) [198] has been successfully applied for solving several

pattern recognition problems. An unsupervised clustering technique based

on the concepts of RNG is developed in Ref. [12]. In this chapter, RNG is

used to develop a new cluster validity index, Con-index, that quantifies the

degree of connectivity of well-separated clusters.

Relative Neighborhood Graph [198]

Let p, q be two points in r-dimensional Euclidean space. Let r be an integer.

Then the lune of p and q, denoted by lun(p, q) or lun(pq), is the set of points

{z ∈ Rr : d(p, z) < d(p.q) and d(q, z) < d(p, q)}.

Here d denotes the Euclidean distance. In other words, lun(p, q) is the interior

of the region formed by the intersection of two r-dimensional hyperspheres
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Figure 6.2: The lune of two points p and q is the region between the two

arcs, not including the boundary.

Figure 6.3: (a) A set of points in the plane [198] (b) RNG of the points in

(a)

of radius d(p, q), one of the hyperspheres being centered at p and the other

at q. This is illustrated in Figure 6.2 which shows the lune of two points

p, q in the plane. If V is a set of n points in r-space, then the relative

neighborhood graph of V (denoted RNG(V )) is the undirected graph with

vertices V such that for each pair p, q ∈ V , pq is an edge of RNG(V ) if and

only if lun(p, q) ∩ V = ∅. Weight of a particular edge (pq) is kept equal to

d(p, q). Here d(p, q) is the Euclidean distance between the points p and q.

Figure 6.3(a) demonstrates a set V of points in the plane. The corresponding

RNG of this set of points V is shown in Figure 6.3(b). The RNG problem

is: Given a set V , find RNG(V ).
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Measuring the Connectivity Among a Set of Points

Here we propose a novel way of measuring the connectivity among a set of

points using the above discussed RNG. The distance between a pair of points

is measured in the following way.

• Construct the relative neighborhood graph of the whole data set.

• The distance between any two points, x and y, denoted as dshort(x, y),

is measured along the relative neighborhood graph. Find all possi-

ble paths among these two points along the RNG. Suppose there are

total p paths between x and y, and the number of edges along the

ith path is ni, for i = 1, . . . , p. If the edges along the ith path

are denoted as edi
1, . . . , ed

i
ni

and the corresponding edge weights are

w(edi
1), . . . , w(edi

ni
), then the shortest distance between x and y is de-

fined as follows:

dshort(x, y) =
p

min
i=1

ni
max
j=1

w(edi
j). (6.1)

In order to improve the efficiency of computing dshort, we adopt the following

pruning strategy. The maximum value of w(edi
j) corresponding to the first

path is stored in a temporary variable max. If in any of the next path being

traced, a weight value greater than max is obtained, that path is pruned.

However, if a smaller value of the maximum weight is found in any of the

subsequent paths, then max is updated to this smaller value and the process

repeats.

Definition of the Proposed Cluster Validity Index

The proposed cluster validity index is defined as follows. Suppose the clusters

formed are denoted by Ck, for k = 1, . . . , K, where K is the number of

clusters. Then the medoid of the kth cluster, denoted by mk, is the point of

that cluster which has the minimum average distance to all the other points

in that cluster. Suppose the point which has the minimum average distance
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to all the points in the kth cluster is denoted by xk
minindex. Then,

minindex = argminnk
i=1

∑nk
j=1 de(x

k
i , x

k
j )

nk
,

where nk is the total number of points in the kth cluster and xk
i denotes the

ith point of the kth cluster. Then

mk = xk
minindex.

The newly developed Con-index is defined as follows:

Con =

∑K
i=1

∑nk
j=1 dshort(mi, x

i
j)

n×minK
i,j=1

∧

i6=j dshort(mi, mj)
,

where dshort(mi, x
i
j) is the shortest distance along the relative neighborhood

graph between the two points mi and xi
j , the jth point of the ith cluster. It

is calculated using the procedure mentioned in Section 6.2.4. n denotes the

total number of points present in the data set. Intuitively smaller values of

Con-index corresponds to good partitioning. In order to achieve the proper

partitioning, the value of Con-index has to be minimized.

Con-index has two components. Its denominator measures the minimum

shortest distance between any two medoids among a total of K clusters.

Thus when the clusters are well-separated, this distance is the maximum and

this in turn minimizes the Con-index value. The numerator of the Con-index

measures the total connectedness of a particular partitioning. If the clusters

are well-connected then the shortest distance between the medoid and any

point of that particular cluster is small and thus numerator of the Con-index

also takes a very small value. Thus Con-index obtains its minimum value

when clusters are connected as well as separated too.

6.2.5 Euclidean Distance Based Cluster Validity In-

dex: I-index

The third objective function used here is an Euclidean distance based cluster

validity index, I-index [132]. It is defined as follows:

I(K) = (
1

K
× E1

EK
×DK)p,
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where K is the number of clusters. Here EK =
∑K

k=1

∑nk
j=1 de(ck, x

k
j ) and

DK = maxK
i,j=1 de(ci, cj) where cj denotes the center of the jth cluster and

xk
j denotes the jth point of the kth cluster. nk is the total number of points

present in the kth cluster. The value of K for which I-index takes its maxi-

mum value is considered as the appropriate number of clusters.

The index I is a composition of three factors, namely, 1
K

, E1

EK
, and DK . The

first factor will try to reduce index I as K is increased. The second factor

consists of the ratio of E1, which is constant for a given data set, and EK ,

which decreases with increase in K. Hence, because of this term, index I

increases as EK decreases. This, in turn, indicates that formation of more

numbers of clusters, which are compact in nature, would be encouraged.

Finally, the third factor, DK (which measures the maximum separation be-

tween two clusters over all possible pairs of clusters), will increase with the

value of K. However, note that this value is upper bounded by the maximum

separation between two points in the data set. Thus, the three factors are

found to compete with and balance each other critically. The power p is used

to control the contrast between the different cluster configurations. Here, we

have taken p = 2.

6.2.6 Sub-cluster Merging for Objective Function Cal-

culation

Before computing the above mentioned three objective functions for each

state, first the total C × K number of sub-clusters encoded in a particular

state are merged to form a total of K clusters. The merging operation is

done in the following way. First, the shortest distance between each pair of

C ×K cluster medoids along the relative neighborhood graph is computed.

This provides a distance matrix denoted as distanceshort, i.e.,

distanceshort = [dshort(ci, cj)]i,j=1...C×K .

Thereafter single linkage clustering technique [67] is executed on these cluster

centers K times with this modified distance measure, distanceshort, each time

merging C number of clusters to form a single cluster.
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After the merging operation is done, the three cluster validity indices are

computed for each state. Thus the objective functions for a particular state

are:

obj = {sym(K), 1/Con(K), I(K)}

where sym(K), Con(K) and I(K) are, respectively, the calculated Sym-

index value, Con-index value and I-index value for that particular state.

Here K denotes the number of clusters present in that particular state. These

three objective functions are simultaneously optimized by using the simulated

annealing based MOO algorithm, AMOSA.

6.2.7 Mutation Operation

A new state is generated from the current one by adopting one of the

following three types of mutations.

1. Each cluster center encoded in a state is replaced with a random vari-

able drawn from a Laplacian distribution, p(ǫ) ∝ e−
|ǫ−µ|

δ , where the

scaling factor δ sets the magnitude of perturbation. Here µ is the value

at the position which is to be perturbed. The scaling factor δ is chosen

equal to 1.0. The old value at the position is replaced with the newly

generated value. Here this type of mutation operator is applied for all

dimensions independently.

2. A total of C sub-cluster centers are removed from the state, i.e., the

total number of clusters present in that state is decreased by 1.

3. The total number of clusters present in that chromosome is increased

by 1. C randomly chosen points from the data set are encoded as the

new sub-cluster centers.

Any one of the above mentioned types of mutation is applied randomly on a

particular state.
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6.2.8 Selection of a Solution from the Archive

Here a solution is selected from the final archive using the procedure described

in Section 3.9.1 of Chapter 3.

Table 6.1: Results on different data sets by GenClustMOO, MOCK, VGAPS,

GenClustPESA2, VAMOSA clustering algorithms.

Data Set N d K GenClustMOO MOCK VGAPS GenClustPESA2 VAMOSA

OC MS OC MS OC MS OC MS OC MS

AD 10 2 500 2 10 10 0.13 6 1.01 7 0.84 11 0.32 10 0.43

Pat1 557 2 3 3 0.00 10 0.89 4 0.93 3 0.00 2 0.83

Long1 1000 2 2 2 0.00 2 0.00 3 1.00 2 0.00 8 0.73

Sizes5 1000 2 4 4 0.14 2 0.64 5 0.76 3 0.69 4 0.14

Spiral 1000 2 2 2 0.00 3 0.39 6 1.00 2 0.00 4 0.97

Square4 1000 2 4 4 0.49 4 0.60 5 0.52 4 0.49 4 0.51

Twenty 1000 2 20 20 0.00 20 0.00 20 1.35 24 0.31 20 0.77

Iris 150 4 3 3 0.54 2 0.82 3 0.62 3 0.55 2 0.80

Cancer 683 9 2 2 0.32 2 0.39 2 0.36 2 0.35 2 0.32

Newthyroid 215 5 3 3 0.55 2 0.82 3 0.58 9 0.85 5 0.57

LungCancer 33 56 3 2 0.77 7 0.97 2 0.97 4 0.83 3 0.85

Glass 214 9 6 6 0.49 5 0.53 5 0.53 5 0.53 5 2.75

6.3 Experimental Results

6.3.1 Data Sets Used

Seven artificial data sets and five real-life data sets are used for the exper-

iment. The artificial data sets are AD 10 2, Pat1, Long1, Spiral, Square4,

Sizes5 and Twenty. Real-life data sets were obtained from [2]. These are Iris,

Cancer, Newthyroid, LungCancer and Glass. A description of the data sets

in terms of the number of points present, dimension of the data set, number

of clusters is presented in Table 6.1.

1. AD 10 2: This data set is described in Section 5.4.1 of Chapter 5.

2. Pat1: This data, used in Ref. [146], consists of 880 patterns . There

are three non convex clusters present in this data set. This is shown in

Figure 6.4(a).

3. Long1: This data set, used in Ref. [81], consists of 1000 data points

distributed over 2 long clusters. This is shown in Figure 6.4(b).
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Figure 6.4: (a) Pat1 (b) Long1 (c) Spiral (d) Square4 (e) Sizes5 (f) Twenty
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4. Spiral: This data set, used in Ref. [81], consists of 1000 data points

distributed over 2 spiral clusters. This is shown in Figure 6.4(c).

5. Square4: This data set, used in Ref. [81], consists of 1000 data points

distributed over four squared clusters. This is shown in Figure 6.4(d).

6. Sizes5: This data set, used in Ref. [81], consists of 1000 data points

distributed over four clusters. The densities of these clusters are not

uniform. This is shown in Figure 6.4(e).

7. Twenty: This data set, used in Ref. [81], consists of 1000 data points

distributed over 20 small clusters. This is shown in Figure 6.4(f).

8. Iris: This data set is described in Section 3.8.1 of Chapter 3.

9. Cancer: This data set is described in Section 3.8.1 of Chapter 3.

10. Newthyroid: This data set is described in Section 3.8.1 of Chapter 3.

11. LungCancer: This data set is described in Section 3.8.1 of Chapter 3.

12. Glass: This is a glass identification data consisting of 214 instances

having 9 features (an Id# feature has been removed). Criminological

investigation inspires the study of the classification of the types of glass.

At the scene of the crime, the glass left can be used as evidence, if it is

correctly identified. There are 6 categories present in this data set.
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Figure 6.5: Automatically clustered AD 10 2 after application of (a) Gen-

ClustMOO clustering technique for K = 10 (b) MOCK clustering technique

for K = 6.
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Figure 6.6: Automatically clustered AD 10 2 after application of (a) VGAPS

clustering technique for K = 7 (b) VAMOSA clustering technique for K = 10.
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Figure 6.7: Automatically clustered Pat1 after application of (a) GenClust-

MOO clustering technique for K = 3 (b) MOCK clustering technique for

K = 10.
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Figure 6.8: Automatically clustered Pat1 after application of (a) VGAPS

clustering technique for K = 4 (b) VAMOSA clustering technique for K = 2.
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Figure 6.9: Automatically clustered Long1 after application of (a) GenClust-

MOO clustering technique for K = 2 (b) MOCK clustering technique for

K = 2.
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Figure 6.10: Automatically clustered Long1 after application of (a) VGAPS

clustering technique for K = 3 (b) VAMOSA clustering technique for K = 8.
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Figure 6.11: Automatically clustered Spiral after application of (a) Gen-

ClustMOO clustering technique for K = 2 (b) MOCK clustering technique

for K = 3.

6.3.2 Discussion of Results

In GenClustMOO, the newly developed simulated annealing based MOO

technique, AMOSA is used as the underlying optimization strategy. The

parameters of the proposed GenClustMOO clustering technique are as fol-

lows: SL=100 HL=50, iter=50, Tmax=100, Tmin=0.00001 and cooling rate,

α = 0.9. GenClustMOO has been executed on all the data sets used in the

previous chapters. For all the data sets having symmetrical shaped clusters
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Figure 6.12: Automatically clustered Spiral after application of (a) VGAPS

clustering technique for K = 6 (b) VAMOSA clustering technique for K = 4.
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Figure 6.13: Automatically clustered Square4 after application of (a) Gen-

ClustMOO clustering technique for K = 4 (b) MOCK clustering technique

for K = 4.

(e.g., Mixed 3 2, Sym 3 2) it performs similar to those of the VAMOSA and

VGAPS. For AD 5 2 data set it performs similar to VAMOSA clustering

technique. Thus results are reported here for only those data sets for which

it outperforms the previously defined clustering techniques, VAMOSA and

VGAPS. For the purpose of comparison, another automatic MOO cluster-

ing technique, MOCK [81], is also executed on the above mentioned data

sets. The source code for MOCK is obtained from [3] and the default pa-

rameter values are used. In MOCK the final best solution is selected by

GAP-statistics [196]. The number of clusters automatically determined by
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Figure 6.14: Automatically clustered Square4 after application of (a) VGAPS

clustering technique for K = 5 (b) VAMOSA clustering technique for K = 4.
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Figure 6.15: Automatically clustered Sizes5 after application of (a) Gen-

ClustMOO clustering technique for K = 4 (b) MOCK clustering technique

for K = 2.

the proposed GenClustMOO and MOCK clustering techniques for all the

above mentioned data sets are shown in Table 6.1. This table also contains

the Minkowski Score [98] (defined in Equation 3.22 of Chapter 3) values of the

final partitionings identified by these two algorithms. Here we have reported

the best Minkowski Score (MS) values obtained by the algorithms over five

runs for all data sets. In [81] it has already been established that the perfor-

mance of MO clustering technique, MOCK, is much better than K-means,

average linkage, single linkage and Strehl’s ensemble method. Thus compar-

isons of GenClustMOO with these well-known clustering techniques are omit-
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Figure 6.16: Automatically clustered Sizes5 after application of (a) VGAPS

clustering technique for K = 5 (b) VAMOSA clustering technique for K = 4.
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Figure 6.17: Automatically clustered Twenty after application of (a) Gen-

ClustMOO clustering technique for K = 20 (b) MOCK clustering technique

for K = 20.

ted from this chapter. In order to show the effectiveness of AMOSA as the

underlying optimization technique in GenClustMOO, we have also shown the

results for all the data sets obtained by GenClustPESA2 that has exactly the

same approach of GenClusMOO, with the underlying MOO strategy replaced

by PESA2 [50]. The number of clusters and the corresponding Minkowski

Score values are reported in Table 6.1. The performance of GenClustMOO is

also compared with those of VAMOSA clustering technique. The number of

clusters obtained by this technique along with the corresponding Minkowski

Score values are also reported in Table 6.1.
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Figure 6.18: Automatically clustered Twenty after application of (a) VGAPS

clustering technique for K = 20 (b) VAMOSA clustering technique for K =

20.

In order to show that the proposed multiobjective clustering technique

(GenClustMOO) performs better than a single objective version, VGAPS-

clustering [26] is also executed on the above mentioned data sets used here

for experiment. The parameter values of VGAPS-clustering technique are

set as detailed in Section 5.3.2 of Chapter 5.

The clusters present in AD 10 2 are hyperspherical in shape. The proposed

GenClustMOO is able to identify automatically the appropriate number of

clusters and the appropriate partitioning from this data set. The partitioning

obtained by GenClustMOO for this data set is shown in Figure 6.5(a). MOCK

is not able to detect the appropriate number of clusters from this data set.

The partitioning obtained by MOCK for this data set is shown in Figure

6.5(b). The MS value obtained by GenClustMOO is also less than that

obtained by MOCK (refer to Table 6.1). VGAPS is not able to detect the

proper partitioning for AD 10 2 data set (corresponding partitioning is shown

in Figure 6.6(a)). GenClustPESA2 clustering technique fails to detect the

proper number of partitions from AD 10 2 data set. Partitioning obtained

by VAMOSA for AD 10 2 is shown in Figure 6.6(b).

The clusters present in Pat1, Long1, Spiral, Sizes5, Square4 and Twenty are

well-separated having any shape, size or convexity. These data sets are used

to show the performance of the algorithms for detecting some well-separated
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clusters. Our proposed GenClustMOO is able to detect the appropriate num-

ber of partitions and the appropriate partitioning from all six data sets. The

partitionings identified by GenClustMOO for all these six data sets are shown

in Figures 6.7(a), 6.9(a), 6.11(a), 6.13(a), 6.15(a), and 6.17(a), respectively.

MOCK is able to detect the appropriate number of partitions from three

out of six data sets. The partitionings are shown in Figures 6.7(b), 6.9(b),

6.11(b), 6.13(b), 6.15(b) and 6.17(b), respectively. VGAPS-clustering is able

to detect the the proper partitioning and the proper number of clusters from

only one out of six data sets. The partitionings are shown in Figures 6.8(a),

6.10(a), 6.12(a), 6.14(a), 6.16(a) and 6.18(a), respectively. GenClustPESA2

clustering technique performs poorly for Sizes5 and Twenty data sets (refer

to Table 6.1). For other data sets of this group, GenClustPESA2 and Gen-

ClustMOO clustering techniques perform similarly. The partitionings iden-

tified by VAMOSA for all these six data sets are shown in Figures 6.8(b),

6.10(b), 6.12(b), 6.14(b), 6.16(b) and 6.18(b), respectively. Table 6.1 shows

that for most of the data sets of this group VAMOSA is not able to detect

the proper partitioning and the proper number of partitions. This is because

most of these data sets contain clusters having non-symmetrical shapes but

well-separated structures.

For the real-life data sets no visualization is possible as these are higher

dimensional data sets. For Iris data set both GenClustMOO and VGAPS

clustering techniques are able to detect the appropriate number of partitions.

But the Minkowski Score value attained by GenClustMOO clustering tech-

nique is slightly smaller than that obtained by VGAPS (refer to Table 6.1).

MOCK and VAMOSA automatically identify K = 2 number of clusters for

this data set which is also often obtained for many other methods of Iris [131].

For Cancer data set all the five algorithms are able to detect the appropriate

number of clusters (K = 2) for this data set. But the MS value obtained

by GenClustMOO is smaller than those corresponding to MOCK, GenClust-

PESA2, and VGAPS. This in turn indicates that the proposed algorithm

provides more better partitioning for this data set than MOCK, GenClust-

PESA2 and VGAPS. For Newthyroid data set, proposed GenClustMOO is

able to detect the appropriate number of partitions from this data set but

217



MOCK, GenClustPESA2 and VAMOSA fail to do so. The Minkowski Score

value of the partitioning identified by GenClustMOO for this data set is also

much smaller than those obtained by MOCK, GenClustPESA2, VAMOSA

and VGAPS (refer to Table 6.1). For LungCancer data set, only VAMOSA

is able to detect the appropriate number of partitions from this data set.

But the MS value attained by GenClustMOO is the smallest among all other

algorithms. For Glass data set only GenClustMOO is able to detect the ap-

propriate number of clusters and the corresponding MS value is also optimum

(refer to Table 6.1).

Summary of Results

Results on a wide variety of data sets show that the proposed GenClustMOO

is able to detect the appropriate number of partitions and the appropriate

partitioning from data sets having many different types of clusters. Re-

sults on artificial data sets show that GenClustMOO is capable to identify

various symmetrical shaped clusters (hyperspheres, linear, ellipsoidal, ring

shaped, etc.) having overlaps, as well as some well-separated clusters having

any shape. Results on real-life data sets also show that GenClustMOO is

capable to detect partitioning from real-life data sets of varying characteris-

tics. The results on seven artificial and five real-life data sets establish the

fact that GenClustMOO is well-suited to detect clusters of widely varying

characteristics. Results show that while MOCK is only able to detect well-

separated or hyperspherical shaped clusters well, VGAPS is capable of doing

so for symmetrical shaped clusters either overlapping or non-overlapping.

The proposed GenClustMOO clustering technique is able to find out the

proper clustering automatically where MOCK succeeds while VGAPS fails

as well as where VGAPS succeeds while MOCK fails. Experimental re-

sults also show that VAMOSA clustering technique is only able to detect

the appropriate partitioning automatically from data sets having symmetri-

cal shaped clusters. VGAPS and VAMOSA clustering techniques fail when

clusters are non-symmetrical in shape. But GenClustMOO succeeds for sym-

metrical as well as well-separated clusters having any shape. In a part of the

experiment, we have also compared the effectiveness of the underlying mul-

tiobjective optimization techniques, AMOSA and PESA2, in the proposed
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clustering algorithm, GenClustMOO. GenClustPESA2 clustering technique,

utilizing PESA2 [50] as the underlying optimization technique in GenClust-

MOO framework, performs similarly as GenClustMOO clustering technique

using AMOSA for data sets with equisized, equi-density small number of

clusters.

The improved performance of GenClustMOO can be attributed to the follow-

ing facts. Use of multi-center approach for each cluster enables it to detect

any shaped clusters. The symmetry based cluster validity index captures the

total symmetry present in the obtained partitioning. Use of relative neigh-

borhood graph to compute the Con-index enables it to detect any shaped

clusters as long as they are well-separated. AMOSA, the underlying op-

timization technique makes it capable of optimizing three cluster validity

indices efficiently.
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Figure 6.19: Automatically clustered Spiral after application of GenClust-

MOOV where 2 clusters are detected. Number of sub-cluster centers per

cluster are 14 and 16, respectively.

6.4 Varying the Number of Sub-clusters per

Cluster

In the previous section, the number of sub-clusters for each cluster was kept

fixed apriori in order to keep the approach simple. Evidently, this number

needs to be varied depending on the cluster type. An initial attempt in this
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direction is reported in this section. Here the number of sub-clusters is varied

over a range. The proposed GenClustMOOV (generalized MOO clustering

technique with variable number of sub-cluster centers per cluster) is capable

of determining the appropriate number of sub-cluster centers per cluster.

Suppose a particular state encodes the centers of K clusters. Initially each

cluster i is represented by Ci number of sub-cluster centers. Here Ci varies

within a range 2 to Cmax. These Ci number of sub-centers are randomly

selected points from each cluster. Therefore
∑K

i=1 Ci number of sub-centers

are encoded in that particular state. If the data set is of dimension d, then the

length of the state will be
∑K

i=1(Ci× d). Suppose a particular state contains

K = 2 clusters. The first cluster is divided into 10 smaller sub-clusters

and the second cluster is divided into 8 smaller sub-clusters, i.e., here C1 =

10, C2 = 8. Let the dimension (d) of the data set be 2. Suppose the center of

the jth sub-cluster of the ith cluster is denoted by ci
j = (c1i

j , c2
i
j). Then this

state will look like: < c11
1, c2

1
1, c1

1
2, c2

1
2, . . . , c1

1
10, c2

1
10, c1

2
1, c2

2
1, . . . , c1

2
8, c2

2
8 >.

Mutation operator has been modified accordingly. Results reveal that num-

ber of sub-cluster centers per cluster depends on the size and shape of the

clusters. Experiments have been carried out for all the data sets used earlier

in this chapter. Results show that for Pat1 data set, the number of sub-

clusters for the three clusters are 11, 5 and 3, respectively. Similarly for

Spiral, Sizes5, Square4 data sets number of sub-centers per clusters are (14,

16), (10, 2, 2, 2) and (2, 2, 3, 4), respectively. The partitioning obtained

by GenClustMOOV clustering technique for Spiral data set is shown in Fig-

ure 6.19. The sub-centers automatically detected by GenClustMOOV is also

shown in this figure. This work is just in its initial stage. Future works

include detailed evaluations and more extensive analysis of GenClustMOOV.

6.5 Discussion and Conclusions

In this chapter, a new multiobjective clustering technique is proposed. This

uses a newly developed simulated annealing based multiobjective optimiza-

tion technique, AMOSA, as the underlying optimization strategy. Center
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based encoding is used. Multiple cluster centers are used to encode a par-

ticular cluster. Three cluster validity indices, an Euclidean distance based

cluster validity index, a point symmetry distance based cluster validity index,

and a connectivity based cluster validity index are optimized simultaneously.

Relative neighborhood graph [198] is utilized to compute the connectivity

index. The performance of the proposed algorithm named GenClustMOO

is compared with the existing multiobjective clustering techniques, MOCK

and VAMOSA, one single objective clustering technique, VGAPS, for sev-

eral data sets having different characteristics. Results show that the proposed

technique is well-suited to detect the appropriate partitioning from data sets

having either the point symmetric clusters or well-separated clusters. In a

part of the experiment the effectiveness of AMOSA as the underlying opti-

mization technique in GenClustMOO is also demonstrated in comparison to

another evolutionary MO algorithm, PESA2.

Much further work is needed to investigate the utility of having different

and many more objectives, and to test the approach still more extensively.

Extensive results have to be taken varying the number of sub-centers per

cluster. Selecting the best solution(s) from the Pareto optimal front is an

important problem in multiobjective clustering. One method of selecting a

single solution from the Pareto optimal front is used here. But this method

apriori assumes that the labeling of a small set of points is known beforehand.

Thus some new methods to choose the best solution from the Pareto optimal

front have to be developed. A recently proposed approach of combining the

Pareto optimal solutions proposed in [135] may be used in future.
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Chapter 7

Conclusions and Scope for

Further Research
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7.1 Conclusions

In this thesis some single and multiobjective clustering techniques which

exploit the property of symmetry present in the clusters are proposed. In

this regard a new symmetry based distance measure and a validity index

based on it are proposed. For single objective clustering techniques search

and optimization capabilities of genetic algorithms are used to obtain the

appropriate partitioning from a data set. In order to solve the multiobjective

clustering problem a new multiobjective optimization technique based on

simulated annealing is first developed in the present thesis.

Many real-life problems involve the optimization of several, often conflicting,

objectives simultaneously. Chapter 2 first discusses some existing single and

multiobjective optimization techniques. Thereafter a simulated annealing

based multiobjective optimization algorithm, archived multiobjective sim-

ulated annealing based technique (AMOSA) [27] has been proposed. In

contrast to most other MOO algorithms, AMOSA [27] selects dominated

solutions with a probability that is dependent on the amount of domina-

tion measured in terms of the hypervolume between the two solutions in the

objective space. The results of binary-coded AMOSA are compared with

those of two existing well-known multiobjective optimization algorithms -

NSGA-II (binary-coded) [61] and PAES [110] for a suite of seven 2-objective

test problems having different complexity levels. In a part of the investi-

gation, comparison of the real-coded version of the proposed algorithm is

conducted with a very recent multiobjective simulated annealing algorithm,

MOSA [181], and the real-coded NSGA-II for six 3-objective test problems.

Real-coded AMOSA is also compared with the real-coded NSGA-II for some

4, 5, 10 and 15 objective test problems. Several different comparison mea-

sures like Convergence, Purity, MinimalSpacing, and Spacing, and the time

taken are used for the purpose of comparison. In this regard, a measure

called displacement has also been used that is able to reflect whether a front

is close to the PO front as well as its extent of coverage. A complexity anal-

ysis of AMOSA has been performed. It has been found that its complexity

is more than that of PAES but smaller than that of NSGA-II.

223



It is seen from the given results that the performance of the proposed AMOSA

is better than that of MOSA and NSGA-II in a majority of the cases, while

PAES performs poorly in general. AMOSA is found to provide more distinct

solutions than NSGA-II in each run for all the problems; this is a desirable

feature in MOO. AMOSA is less time consuming than NSGA-II for complex

problems like ZDT1, ZDT2 and ZDT6. Moreover, for problems with many

objectives, the performance of AMOSA is found to be much better than that

of NSGA-II. This is an interesting and appealing feature of AMOSA since

Pareto ranking-based MOEAs, such as NSGA-II [61] do not work well on

many-objective optimization problems as pointed out in some recent studies

[91], [93]. An interesting feature of AMOSA, as in other versions of mul-

tiobjective SA algorithms, is that it has a non-zero probability of allowing

a dominated solution to be chosen as the current solution in favour of a

dominating solution. This makes the problem less greedy in nature; thereby

leading to better performance for complex and/or deceptive problems. Note

that it may be possible to incorporate this feature as well as the concept of

amount of domination in other MOO algorithms in order to improve their

performance.

Chapter 3 deals with the problem of clustering that is an important analy-

sis tool in data-mining. The property of symmetry, commonly observed in

nature, is exploited in this regard. Here, a symmetry based similarity mea-

surement [24] is first defined. Thereafter the problem of clustering a data set

is formulated as one of optimization of the total symmetry of a partitioning.

Genetic algorithm is used to solve this optimization problem. This yields a

clustering technique named GAPS (genetic algorithm with point symmetry

based clustering technique) [24] which is able to detect any types of clusters

possessing the property of point symmetry. The major advantages of GAPS

are as follows. In contrast to K-means, use of GA enables the algorithm

to come out of local optima, making it less sensitive to the choice of the

initial cluster centers. Again, the proposed GAPS is able to detect clusters

that may be of widely varying sizes, where K-means fails. Such situations

may arise in several real-life domains, e.g., medical images, satellite images,

fraud detection. Incorporation of the proposed PS-distance enables GAPS to
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detect symmetric clusters, both convex and non-convex, even if the clusters

are symmetrical with respect to some intermediate point. This is in contrast

to SBKM and Mod-SBKM, which fail in such situations. Moreover, use of

Kd-tree makes the computation of the point symmetry distance significantly

faster than both SBKM and Mod-SBKM. The global convergence proof of

GAPS-clustering technique has also been established in this chapter.

Experimental results on four artificial data sets and four real-life data sets

demonstrate the superiority of GAPS as compared to SBKM [187], Mod-

SBKM [43], K-means algorithm, genetic algorithm based K-means clustering

technique (GAK-means), average linkage clustering technique (AL) and Ex-

pectation Maximization clustering technique (EM). GAPS is found to provide

satisfactory performance both where K-means fails but SBKM succeeds as

well as where SBKM fails but K-means succeeds. Results on Bensaid 3 2

demonstrate that GAPS is able to detect symmetric clusters of any size

where most of the other algorithms fail. Comparison of the obtained results

by different algorithms are performed by statistical tests like ANOVA.

In the later part of this chapter, the problem of clustering a data set is posed

as one of multiobjective optimization. The aforementioned simulated anneal-

ing based multiobjective optimization technique, AMOSA, has been used as

the underlying optimization technique. Two cluster quality measures, to-

tal Euclidean compactness and total symmetrical compactness are optimized

simultaneously using the search capability of AMOSA. This enables the algo-

rithm to detect clusters that are well characterized by Euclidean compactness

as also those which are not compact in the conventional sense, but are sym-

metric about a point. The performance of MOPS is compared with GAPS

in order to establish its effectiveness.

The newly proposed symmetry based distance is then used to develop a clus-

ter validity index called Sym-index [162][168] in the next chapter (Chapter 4).

Experimental results show that Sym-index is not only able to find the proper

number of clusters from a given data set (model order) but is also able to

detect the proper clustering algorithm (or, the appropriate model) suitable

for that data set. An elaborate description of the different components of

Sym-index and an intuitive explanation of how they compete with each other
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to identify a proper clustering are provided. A mathematical justification of

the newly proposed Sym-index is derived by establishing the relationship

of the Sym-index with the well-known Dunn’s index. (However, note that

Sym-index is not a generalization of the Dunn’s index.) The effectiveness

of Sym-index is demonstrated for four artificially generated and three real

life data sets. GAPS, a newly proposed symmetry distance based genetic

clustering technique, GAK-means, average linkage algorithm, two versions of

the EM algorithm and Self Organizing Map are used as the underlying par-

titioning methods. The experimental results establish the superiority of the

newly proposed Sym-index as compared to the four existing validity indices,

namely, PS index, I-index, CS-index and XB-index for the data sets.

The concept of point symmetry is thereafter introduced in eight well-known

cluster validity indices [172]. Results show that incorporation of point sym-

metry distance in the definitions of existing eight cluster validity indices make

them more effective in determining the proper number of clusters and the

appropriate partitioning from data sets having clusters of different shapes

and sizes as long as they possess the property of point symmetry. There-

after, the application of the newly proposed symmetry based cluster validity

index, Sym-index and GAPS-clustering technique are described for image

segmentation [169].

In the earlier chapters, the number of clusters was assumed to be known

apriori. However, in many real-life situations this value may not be known.

In order to overcome this limitation, a variable string length GA based clus-

tering technique [26], VGAPS-clustering, has been then proposed in chapter

5. The newly proposed cluster validity index, Sym-index, which is capable

of detecting both the proper partitioning and the proper number of clusters

present in a data set, is used as the fitness of the chromosomes. In VGAPS-

clustering, the assignment of points to different clusters is done based on

the point symmetry distance rather than the Euclidean distance when the

point is indeed symmetric with respect to a center. Moreover, the use of

adaptive mutation and crossover probabilities helps VGAPS-clustering to

converge faster. Kd-tree based nearest neighbor search is utilized to reduce

the computational complexity of computing the point symmetry based dis-
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tance. The global convergence property of the proposed VGAPS-clustering

is also established. The effectiveness of the VGAPS-clustering, as compared

to two recently proposed automatic clustering techniques, namely, GCUK-

clustering and HNGA-clustering, is demonstrated on five artificially gener-

ated and three real-life data sets of different characteristics. Results on the

eight data sets establish the fact that VGAPS-clustering is well-suited to de-

tect the number of clusters and the proper partitioning from data sets having

clusters of widely varying characteristics, irrespective of their convexity, or

overlap or size, as long as they possess the property of symmetry.

The corresponding MO version of VGAPS clustering technique [171] utilizing

the aforementioned AMOSA algorithm is also developed in this chapter. It

simultaneously optimizes Sym-index and an Euclidean distance based cluster

validity index, XB-index [206]. The effectiveness of the proposed clustering

technique (VAMOSA) in detecting the proper number of partitions and the

proper partitioning is shown for four artificial and four real-life data sets

and the results are compared with those obtained by another recent MO

clustering technique, MOCK [81] and two single objective automatic genetic

clustering techniques- GCUK clustering optimizing the XB-index [16] and

VGAPS clustering [26].

Finally Chapter 6 deals with the development of a multi-center based mul-

tiobjective clustering approach [25] which can automatically determine any

type of clusters having either symmetrical (may be convex or non-convex

and/or overlapping or non-overlapping) or non-overlapping but connected

shapes from a data set. Here each cluster is divided into several nonoverlap-

ping small hyperspherical clusters and the centers of these sub clusters are

encoded in the states. For the assignment of points all these sub clusters

are considered individually. However, during fitness computation, the sub

clusters corresponding to each cluster are identified based on a proximity

measure and these are merged together. Three cluster validity indices, an

Euclidean distance based index, a point symmetry distance based index, and

a connectivity based index are optimized simultaneously. Relative neighbor-

hood graph is utilized to compute the connectivity index. The performance

of the proposed algorithm named GenClustMOO is compared with the exist-
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ing multiobjective clustering technique, MOCK, another multiobjective clus-

tering technique developed in this thesis, VAMOSA and a single objective

clustering technique, VGAPS, for several data sets having different charac-

teristics. In a part of the experiment the effectiveness of AMOSA as the

underlying optimization technique in GenClustMOO is also demonstrated in

comparison to another evolutionary MO algorithm, PESA2. Results show

that the proposed technique is well-suited to automatically detect the appro-

priate partitioning from data sets having either the point symmetric clusters

or well-separated clusters.

For the data sets having symmetrical overlapping clusters (e.g, Sym 3 2,

Mixed 3 2), none of the solutions in the final non-dominated set of MOCK

correspond to the best ones. However for data sets like AD 10 2 and AD 5 2,

the best solutions are present in the final non-dominated set of MOCK,

though the GAP statistic is not able to identify them. If our proposed semi-

supervised approach of selecting the best solution is adopted in MOCK, then

these solutions may be identified as discussed in Section 5.4.2 of Chapter 5.

The papers corresponding to these works are either published or accepted or

under revision or communicated.

7.2 Scope for Further Research

Though we have made all possible attempts to make the work as complete

as possible, as in any research there are still several areas where a lot of

potential work may be carried out. We highlight some such future research

directions in this section.

There are several ways in which the proposed AMOSA algorithm [27] may

be extended in future. The main time consuming procedure in AMOSA is

the clustering part. Some other more efficient clustering techniques or even

the PAES [110] like grid based strategy, can be incorporated for improving

its performance.

In [181][182] an unconstrained archive is maintained. Note that theoretically,

the number of Pareto optimal solutions can be infinite. Since the ultimate
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purpose of an MOO algorithm is to provide the user with a set of solutions

to choose from, it is necessary to limit the size of this set for it to be usable

by the user. (It has been mentioned in [70] that it is sometimes desirable not

to truncate the archive as it was found in an earlier study [210] that almost

40% of the solutions provided by an algorithm with truncation of archive got

dominated by the solutions provided by an algorithm without archive trunca-

tion. However the experiments we conducted did not adequately justify this

finding. This is explained more in detail in Chapter 2.) Though maintain-

ing unconstrained archives as in [181][182] is novel and interesting, it is still

necessary to finally reduce it to a manageable set. Limiting the size of the

population (as in NSGA-II) or the Archive (as in AMOSA) is an approach in

this direction. Clustering appears to be a natural choice for reducing the loss

of diversity, and this is incorporated in the proposed AMOSA. Clustering

has also been used earlier in [212]. It will be interesting to investigate, in

future, the effect of incorporating the concept of unconstrained archive as in

[181][182] in the proposed AMOSA.

An algorithm, unless analyzed theoretically, is good for only the experiments

conducted. Thus a theoretical analysis of AMOSA needs to be performed

in future in order to study its convergence properties. We are currently

trying to develop a proof for the convergence of AMOSA in the lines of the

proof for single objective SA given by Geman and Geman [77]. As has been

mentioned in [192], there are no firm guidelines for choosing the parameters in

an SA-based algorithm. Thus, an extensive sensitivity study of AMOSA with

respect to its different parameters, notably the annealing schedule, needs to

be performed. Finally, application of AMOSA to several real-life domains

e.g., VLSI system design [175], remote sensing imagery [17], Bioinformatics

[140], needs to be demonstrated.

GAPS clustering algorithm [24] based on the proposed dps distance (described

in Chapter 3) does not require a point and its symmetrical point (or its

nearest neighbor) to belong to the same cluster. This may prove to be a

disadvantage as was evident for AD 5 2 where the central cluster got overes-

timated. Further research needs to be carried out to rectify this limitation.

We are currently working in this direction. A detailed sensitivity study of
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different parameters of GAPS constitutes an important direction of future

research. In the newly proposed symmetry based cluster validity indices in

Chapter 4 we have retained whatever normalization was used in the original

version. However, appropriate normalization is important and a study in this

direction needs to be conducted in future.

As a part of future work, the utility of the proposed dps distance needs to

be studied on more real life problems such as brain tissue classification from

magnetic resonance images (MRI) which is of great importance for research

and clinical study of much neurological pathology. Since some of the tissue

types in the brain constitute small clusters while some others may consti-

tute much larger clusters, application of the proposed schemes appears to be

appropriate for such applications. Some works have been initiated for auto-

matic segmentation of brain MR images. VGAPS and VAMOSA clustering

techniques have been used to automatically partition these MR normal and

MS lesion magnetic resonance brain images [163][173]. The obtained seg-

mentation results by VGAPS and VAMOSA clustering techniques need to

be compared with those obtained by other well-known segmentation algo-

rithms. As a part of the future work, some spatial information inherently

available in the pixel locations will also be incorporated while segmenting

the brain MR images.

The current work concentrates only on a particular form of symmetry viz.,

point-based symmetry. Other forms of symmetry e.g., line-based symmetry,

polynomial symmetry etc. may exist in the clusters. Techniques for detect-

ing clusters with these higher forms of symmetry are also some interesting

areas of future research. Some work in this area has already been initiated

[161][164][166] though a lot more remains to be done.

It is important to investigate systematically the different objectives that are

to be optimized in MOPS, VAMOSA and finally in the GenClustMOO clus-

tering techniques. Selecting the best solution(s) from the Pareto optimal

front is an important problem in multiobjective clustering. In MOO, the

algorithms produce a large number of non-dominated solutions on the final

Pareto optimal front. Each of these solutions provides a way of clustering

the given data set. All the solutions are equally important from the algorith-
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mic point of view. But sometimes the user may want only a single solution.

Thus selecting the best solution(s) from the Pareto optimal front or com-

bining them into one is an important problem in multiobjective clustering.

In this regard, a new semi-supervised method is proposed to select the best

solution in MOPS, VAMOSA and GenClustMOO clustering techniques. An-

other approach recently proposed in [135] integrates the learning capability of

a support vector machine based classifier. Thus several alternate approaches

need to be developed and tested in this regard.

GenClustMOO clustering technique has been extended to automatically

evolve variable number of sub-cluster centers per cluster. This work has

just been initiated. Extensive comparison results have to be taken in future.

Most of the clustering techniques developed in this thesis are only able to

detect symmetrical shaped clusters. Thus these will fail for non-symmetrical

shaped clusters. The tolerance of these approaches have to be studied on

some more data sets varying the amount of symmetry within data sets.

Changing the amount of symmetry within data sets in a parametric way

is also another important future research work.

The use of symmetry based distance and AMOSA for solving partitioning

problems in several different domains have to be investigated in future. In

VLSI, the problem of equi-partitioning a set of flipflops in order to design the

clock trees efficiently is a very important problem. This problem is posed as

one of multiobjective optimization in [174][175]. A popular MOO technique,

NSGA-II has been used to solve this problem. AMOSA can be used as an

alternative MOO technique for solving these problems. The newly devel-

oped point symmetry based distance, dps, can also be used for segmentation

purpose.

Developing a supervised classification technique based on point symmetry

is another area of future research. Some work has been initiated in this

direction [167].

Developing some semi-supervised clustering techniques based on point sym-

metry based distance, dps, is another important direction of future work.

Some works have also been initialized in this direction [170].
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